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ABSTRACT
Dialog systems have been at the center of Natural Language
Processing (NLP) since its inception. With a wide range of
applications, this type of system is particularly interesting
as a user interface, creating the possibility of a more natu-
ral and convenient user experience. In the context of Cus-
tomer Support, goal-oriented dialog systems are now widely
used, helping users carry out specific tasks. Traditionally,
these systems were created by employing knowledge-based
architectures. However, the growth of Deep Learning and
the increase in data availability facilitated the development
of neural dialog systems, which can be trained end-to-end. A
well-known example of such a system is the “Transformer”,
a self-attentional model that has achieved state-of-the-art re-
sults in multiple NLP tasks. Notwithstanding, these systems
still present some shortcomings, particularly in terms of scal-
ability. The need for large amounts of data and considerable
computing power can be an impediment, especially in situa-
tions where multiple entities must be represented. In Goal-
Oriented Dialog Systems, this becomes evident when consid-
ering multi-brand Customer Support, since each brand must
communicate differently with its users, meaning one model
must be developed and maintained for each brand. In Open-
Domain System, an analogous problem arises when consider-
ing settings where multiple characters must be impersonated.

In this work, we explore how we can create conversational
agents that tackle this issue, in both settings. To this end, we
adapt and experiment with multiple state-of-the-art architec-
tures together with recent datasets.
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INTRODUCTION
The modeling of dialog systems is a fundamental problem in
NLP. In essence, Dialog Systems reflect our ability to artifi-
cially generate human-level conversations, bringing us closer
to achieve one of the most ambitious long-term goals of AI
since its advent, the Turing Test [27].

This type of system can have a wide range of applications,
particularly as human-machine interfaces [16] [25]. One of
the most prominent areas where this can be leveraged is Cus-
tomer Service Automation through the development of task-
oriented dialog generation systems. Task-oriented dialog sys-
tems or task-oriented chatbots are devised to help users carry

out specific tasks, such as booking plane tickets or making a
reservation. This type of chatbot is typically restricted in the
range of tasks it can help the user with and is optimized to
make the execution of the task as fast and seamless as possi-
ble. This helps to create a more natural and convenient user
experience.

Traditionally, the creation of such systems resorted to
knowledge-based architectures [30] [29]. Then, the advent
of Deep Learning, coupled with the growing data abundance,
allowed the development of neural dialog systems. Contrarily
to the traditional models, the latter can be trained end-to-end
[4]. Furthermore, sequence modeling methods can also be
used to train task-oriented dialog systems. These methods
receive a sequence as an input and predict a sequence as out-
put. In Customer Support, for example, the input could be a
query from a user, and the predicted sequence could be the
answer to that query. More recently, new architectures based
solely on attention mechanisms [28], neglecting recurrence
and convolution, emerged as a new paradigm for sequence
modeling tasks. These models have achieved state-of-the-art
performance in multiple NLP tasks, such as Machine Trans-
lation [28]. Despite the encouraging results, they pose some
problems. Namely, they depend upon large amounts of data,
have high model complexity, and require considerable com-
puting power [8]. These key factors render their scaling bur-
densome.

This is a problem in both Open and Closed Domain set-
tings. However, for Goal-Oriented systems (Closed Domain
setting), the described problems can be aggravated, consid-
ering multi-brand companies. Usually, the different brands
employ a different Brand Communication Style and answer
differently to a given query. This means that, in order to
leverage dialog systems, such companies need to develop one
model for each brand, significantly increasing the amount of
data, storage space and computational power required. In
Open-Domain, the same is true for settings where multiple
characters must be impersonated by the system. Once again,
to leverage dialog systems, one would need to develop one
model for each character, raising the same issues.

The problem however is not limited to the scale. How to en-
sure that a neural conversational agent maintains a consistent
and coherent communication style or represents truthfully a
given character is still an open problem and solving it will
allow us to create more engaging and realistic conversational
agents.



Objective
The objective of this work is to build a persona-aware
model that can represent multiple personas, when prompted
to. As defined in [11], a persona can be defined as “the char-
acter that an artificial agent, as actor, plays or performs dur-
ing conversational interactions.” This means a persona can in-
clude different elements of identity such as background facts,
language behaviour and even interaction style. This persona
can be a brand (for Customer Support) or a character (for
chit-chat). The objective of the agent is: take an input that
includes the query and persona metadata, and responds as the
persona is expected to. By doing this, the costs associated
with employing chatbots are drastically reduced in these con-
texts, when employing the developed models.

Contributions
To achieve this, we make use of modern NLP methods and
techniques that have showed encouraging results in Dialog
Generation and adapt them to our specific task, which, to the
best of our knowledge, has not been properly explored. We
started by collecting/adapting two different datasets, one for
Open-Domain: the Friends Corpus [36]; and one for Cus-
tomer Support: Twitter Customer Support Dataset 1. To facil-
itate the pre-processing of these datasets we also developed
a tool called “Piertotum”. This tool automates the setup of
a preprocessing pipeline, speeding up the process of adapt-
ing the same datasets to different models and of experiment-
ing with different preprocessing techniques. Then, we de-
velop, train and test two different models: One based on the
TransferTransfo model [31], and a second one similar to it
but with a key architectural difference: the use of Adapters
[7]. Finally, to evaluate our work, we test our models, to-
gether with a strong baseline, using untrained automatic met-
rics, machine-learned metrics and human-centric metrics, al-
lowing to get an hollistic and complete comparison of the dif-
ferent methods employed on our task.

DATASETS
Here are the datasets relevant to the development of the mod-
els presented in this work.

Twitter Customer Support Dataset
This dataset was developed to “aid innovation in natural lan-
guage understanding and conversational models, and for the
study of modern customer support practices and impact” 2.
With 2811774 tweets from customers and Customer Support
agents from 20 major brands from different business areas,
including Apple, Amazon, Uber, Delta, Spotify, Tesco, and
others. This is one of the largest publicly available real Cus-
tomer Support datasets and therefore, a great starting point to
our study.

Persona-Chat Dataset
The Persona-Chat dataset [33] consists of 162064 utterances
distributed over more than 10000 dialogs. The dataset was
1https://www.kaggle.com/thoughtvector/
customer-support-on-twitter
2https://www.kaggle.com/thoughtvector/
customer-support-on-twitter

created by crowdsourcing “persona sentences” and then, ran-
domly pairing another set of crowd workers. Each crowd
worker of the second set was randomly assigned a persona
(a small subset of the “persona sentences”) and asked to chat
naturally while trying to get to know their pair during the con-
versation. This setup allows the creation of engaging conver-
sations that allow models to learn the relation between the
“persona sentences” and the utterances of that persona. Even
though the utterances in this dataset are representative of a
chit-chat scenario, the idea of imbuing an agent with a per-
sona can be closely related to making the agent brand-aware
in the context of Customer Support and, therefore, this can be
extremely useful in our work.

Friends Corpus
The Friends Corpus [36] is collection of all the conversation
occurring over the 10 seasons of Friends (the popular Amer-
ica TV sitcom from the 1990s). The series have a total of 236
episodes, with 3107 conversations, 67373 utterance and 700
characters. Even though this corpus was created with a differ-
ent task in mind (Character Identification), the speaker-level
and utterance level metadata make it ideal for the develop-
ment of our model in a Open-Domain environment.

DEVELOPED TOOLS AND MODELS
The first step to develop our models was to create ”Pierto-
tum”, a data preprocessing tool that allowed us preprocess our
datasets in a quick and programmatic way. Then, following
the most recent works presented in chap:related, we explored
different Transformer-based language models that have suc-
cessfully been employed to solve tasks in both Open-Domain
and Goal-Oriented settings. As a baseline, we developed a
dialog system based on the DialoGPT. To improve on its re-
sults, we develop a two models still based on DialoGPT. The
first one has newly trained embeddings that allow the usage
of special tokens in our vocabulary to represent delimiters
and segment indicator. This allows us to feed, as input to
the model, not only the conversation history, but also some
meta-data about the persona. The second one, leverages the
use of adapters [7], a set of newly introduced weights within
the layers of the initial model. This provides an alternative
method to fine-tune the model to each persona.

Piertotum
In order to adapt the ”Customer Support on Twitter” dataset
and ”Friends Corpus” dataset, we decided to develop a tool
that would allow us to do it programmatically. To this end we
developed “Piertotum”. The tool includes three main mod-
ules:

• GetMetadata;

• Preprocess;

• Personify.

The GetMetadata module allows us to retrieve metadata re-
lated to the dataset. This includes number of utterances, num-
ber of conversations, number of brands, size of the dataset
and others. The “Preprocess” module allows us to preprocess
the dataset by applying specific steps that can be controlled
through the use of its options:

https://www.kaggle.com/thoughtvector/customer-support-on-twitter
https://www.kaggle.com/thoughtvector/customer-support-on-twitter
https://www.kaggle.com/thoughtvector/customer-support-on-twitter
https://www.kaggle.com/thoughtvector/customer-support-on-twitter


• emojis: a Boolean that if True, removes all the emojis from
the dataset. These can be useful for tasks like sentiment
analysis. However, in this scenario, it is better to remove
them (since we want to generate text). The default value is
True;

• emoticons: a Boolean that if True, removes all the emoti-
cons from the dataset. Similar to emojis, for our goal, it is
better to remove them. The default value is True;

• urls: a Boolean that if True, tags urls in the dataset as
’(URL)’. Often, the agent directs the user to an url in or-
der to assist him. Since the specific url is not relevant, in
this case, we decided to mask it as the token ’(URL)’. The
default value is True;

• html tags: a Boolean that if True, removes all the html tags
from the dataset. The default value is True;

• acronyms: a Boolean that if True, converts acronyms to
their meaning. E.g: ”SMH” is converted to ”So Much
Hate”. In Twitter, the use of specific abbreviations is ex-
tremely common. For the purpose of fine-tuning the model,
it may be beneficial to substitute them for their meaning.
To do this, we created a list of the most common abbrevi-
ations and their meaning that the tool uses to convert. The
default value is True;

• spelling: a Boolean that if True, spell checks the dataset.
This can be an extremely useful feature since there are a
lot of spelling errors present in the dataset. However, since
the operation of spell checking all utterances is very time-
consuming, we decided to not do it at this stage. The de-
fault value is False;

• usernames: a Boolean that if True, tags usernames as
”USER” and ”AGENT” for users and agents, respectively.
The default value is False.

Finally, the “Personify” module allows us to format the pre-
processed dataset as the Persona-Chat dataset. Instead of
a speaker personality, each brand has in this field either its
name or a short description of the brand characteristics. It
includes the options:

• brand: a String that represents the name of a brand. If
not null, the tool will only adapt the conversations with
agents representing that specific brand. If the value is null,
it adapts the whole dataset. The default value is Null;

• limit: an Integer that indicates how many conversations we
want to adapt. This option can be useful in scenarios where
we have limited computational resources. If the value is -1,
it uses the whole dataset. The default value is -1.

Besides the main modules, the tool includes a list of the most
common acronyms used on Twitter, and a dictionary with all
the emojis and emoticons with their name, representation, and
meaning. This can be useful if, in the future we want to sub-
stitute the emojis for their meaning instead of erasing them
from the utterance.

In order to interact with the different modules we developed
a Command Line Interface (CLI). A CLI is a text-based user

interface, that allows us to interact with the scripts through
the command line. In this case, our CLI allows us to choose
the module we want to use and specify its options. To run it
we can write on the terminal:

pythoncli.py[modulename][−− option]∗
The complete tool, with its description and instructions on
how to install and run it can be found in public repository on
Github 3.

Developed Models
Baseline
The first model developed and used as a baseline is a
multi-layer Transformer decoder based on the work de-
scribed in [22]. Architecturally, it inherits from GPT-2,
a 12 layer decoder-only transformer with 12 masked self-
attention heads and 768 dimensional states. As explained in
chap:related, the masked attention mechanism works a con-
straint on self-attention, making it so every token can only
attend to the tokens on its left (left context).This mechanism
is what gives it the name of “Transformer decoder” since
it identical to the decoder of the original encoder-decoder
Transformer [28]. Similarly to the models in [22] and [5],
the model leverages positional embeddings with a maximum
sequence size of 512 tokens. It also preprocesses and tok-
enizes the input sequences using BPE with Vocabulary size
of 40.000 words [24].

We chose this model as baseline because the text generated by
GPT-2 is extremely coherent and it has had recent success in
several NLP tasks demonstrates that Transformer LM are able
to portray natural language to a fine level of detail. To boot-
strap our work, we based the implementation of our model on
the Pytorch adaption of GPT-2 published by Huggingface. 4

TransferTransfo
Architecturally, this model is identical to the baseline. How-
ever, its training, particularly the fine-tuning phase is funda-
mentally different, as described in chap:experiments the sec-
ond model is trained following the methodology described in
[31], leading to contrasting results. For that reason and for the
sake of clarity, we will be treating them as different models.

Adapter
The third and last developed model has the same base as the
previous models. However, it has a key architectural differ-
ence: the introduction of domain adapters. As described in
chap:related, instead of fine-tuning the model as a whole,
the use of adapters allow us to only fine-tune a small set
of task-specific parameters. The remaining weights are kept
fix. This brings advantages in terms of size, modularity and
composability without sacrificing the quality of the results.
The applied adapters are based on the work described in [7],
where the adapters are applied to NLP by fine-tuning them
to learn representations for specific downstream tasks (senti-
ment analysis, question answering and others). In our work,
we use them as persona-adapters, where instead of different
downstream tasks, the adapters learn representations for each
3https://github.com/HLT-MAIA/twcs2PersonaChat
4https://github.com/huggingface/pytorch-openai-transformer-lm



of the personas in the dataset. The implementation of adapters
present multiple architectural choices that allows the devel-
oper to control the concrete structure of its modules and their
location in the layers of the Transformer. Previous works sug-
gest that simple designs attain good performance, with empir-
ical results on par with more complex counter-parties [7, 21,
26]. Besides that, our task seems, a priori, simpler than the
tasks adapter are usually used for. For these reasons, we im-
plemented a fairly simple adapter design, following [7, 20]:
On each Decoder unit, we insert two adapter components, one
after the multi-head attention and one after the feed-forward
layers. Each of these components is comprised of a two-layer
feed-forward neural network with a bottleneck and a nonlin-
ear activation function between the projection layers.

EXPERIMENTS

Data Preparation
For the training of our models we use two datasets, one
for Customer Support (Goal-Oriented) and one for Open-
Domain. In the first setting, the dataset used for fine-
tuning the models is based on the “Twitter Customer Support
Dataset” (). However, the dataset must first be adapted to our
end goal. To do this, the following preprocessing steps are
required:

First, we must preprocess each utterance. This includes low-
ercasing, removing emojis/emoticons, and anonymizing IDs.
Besides this, we also must remove all HTML tags and substi-
tute all URLs for an URL token. Finally, we must also con-
vert commonly used acronyms for their meaning (e.g.:“afk” is
substituted by “away from keyboard”). We also need to elim-
inate all non-English utterances. After having the utterances
preprocessed, we rebuild the sequence of the conversation be-
tween each customer and the respective Customer Support
agent. To rebuild these conversations, we start by identifying
the tweet that begin a conversation (usually initiated by a cus-
tomer) and then trace the following tweets in that thread using
their IDs. Thanks to the utterances’ preprocessing, some of
these conversations will have non-valid utterances (e.g.: ut-
terances consisting only of emojis will become empty). For
this reason, before returning the final conversations, we must
eliminate all the conversations that have non-valid utterances.
In the end, each conversation includes a list of objects com-
posed by:

• an utterance;

• its context with all the prior utterances in that conversation;

• the speaker (customer or agent);

• the brand name or a short description of the brand charac-
teristics.

The final dataset is composed of all the remaining utterances
after preprocessing and organized into conversations. To
build this final dataset, we will leverage the tool we created,
“Piertotum” (), which allows the selection of different pre-
processing steps and the addition of various metadata to each
conversation.

For the Friends Corpus [36], the preprocessing is similar but
far simpler. In this dataset we can skip the anonimization step,
removal of non-textual elements and expansion of acronyms.
The remaining steps are identical.

Training
Since we want to test the same approaches both in Open-
Domain and Goal-Oriented settings, we must train the models
twice (one for each of these settings). For each of these set-
tings, the training is identical except for the used dataset. For
Open-Domain, we use the “Friends Corpus” and for Goal-
Oriented we use the “Twitter Customer Support Dataset”. As
such, the methods described in this section were applied twice
(once for each dataset).

Baseline
Our baseline, is based on the architecture of DialoGPT, an ex-
tension of GPT-2 designed to address the challenges of con-
versational response generation.

Pre-Training Following previous works ([22, 31]), the pre-
training of the model is done employing the BookCorpus
Dataset (described in chap:bookcorpus). The rational behind
this choice has to do with the fact that this is a document-level
corpus and not a shuffled sentence-level corpus. By exposing
the architecture to long contiguous texts, it can better learn
how to model long-term dependencies. That would not be the
case with a shuffled sentence-level corpus. The model uses a
vocabulary of 50257. A Noam learning rate scheduler with
16000 warm-up steps was used for the pre-training. This cor-
responds to increasing the learning rate linearly during the
first ”warmup steps”, and then, decreasing it thereafter pro-
portionally to the inverse square root of the step number, as
described in [28].

Fine-Tuning After having the model pre-trained we now must
choose a loss to fine-tune the model on. Following the work
of [31], we use a combination of two different losses: lan-
guage modelling loss, and next-utterance loss.

The first is a simple cross-entropy loss. The softmax function
is applied to the content of the last hidden state of the last
decoder unit. This will return the next token probabilities.
The target values are used as labels and, based on that we
calculate the NLL.

To calculate the other loss we need add an extra layer to our
model. A linear layer is appended after the last decoder. This
layer works as a classifier. The classifier is trained to iden-
tify the correct next sentence among a group of distractors
(these are a group of 2-6 randomly sampled sentences from
the training dataset). As an input, the model takes the an el-
ement composed by the last hidden state and the next sen-
tence/distractor. Then, a score is calculated for each if these
elements and these scores are passed to a softmax function
to obtain the probabilities associated with each of them. This
classifier is jointly trained with the model fine-tuning.

For the fine-tuning step we use a batch size of 16 for 2 epochs.
We used the Adam algorithm [9] as an optimizer, with learn-
ing rate 6.25e-5, an exponential decay rate for the first mo-
ment (β1) of 0.9, an exponential decay rate for the second



moment (β2) of 0.999, and L2 weight decay of 0.01. Next
we had to decide what are the relatives weights given to each
loss. As in the referenced works, we chose giving a weight
of 75% to the language modelling loss and 25% to the cross
entropy loss.

A dropout probability of 0.1 was given to all the layers and,
following [22] we used ReLU as activation function.

TransferTransfo
The training of the second was identical in all aspects to the
training of the baseline. However, a change was made to the
input, based on the work described in [31]. During the fine-
tuning step on this dataset, the name or a short description
of the persona characteristics take the place of the speaker
personality on the original model. In the Open-domain set-
ting this means the name of the character or a description of
their personality. In the Goal-Oriented domain this means the
name of the brand or a description of its characteristics. We
experiment with these two variations since each one of them
may present different benefits. On one side, if the persona’s
name coupled with the interactions is enough for the model to
learn how to impersonate it, adding new personas to our dia-
log system becomes trivial, provided we had enough data. On
the other hand, if providing a short description of the persona
can be used for the same end, the model may present a higher
generalization capability, since it may be able to simulate the
communication style of personas that were not in the dataset,
provided that they can be described as a combination of the
sentences used to describe personas that were.

Then, these persona sentences are used to generate an aug-
mented input representation. An input is generated by con-
catenating the persona sentence(s), the conversation history
(clipped to prevent the input to become too large). Addi-
tionally, extra tokens are created to separate the sequences.
This input is then used to generate the initial embeddings the
model will consume. Besides the original word and positional
embeddings learned in the pretraining, a third set of segment
embedding are used to indicate to which segment of the input
does each token belong to. This set of embeddings is trained
during the fine-tuning phase. The sequence passed to the ini-
tial decoder block is the sum of the three (word, positional
and segment) embedding arrays.

Adapters
Once again, the pre-training of this model is the same as the
previous ones. However, the fine-tuning phase is fundamen-
tally different. Instead of fine-tuning all the weights of the
Transformer, only a small subset of the weights are updated
during the fine-tuning (the ones belonging to the adapter mod-
ules), while the rest are kept fixed.

The initial Adapter weights are set with a near identity initial-
ization, which is required for a stable training of the model
[7]. The training is done following the approach in [5]. To
this end we use an initial learning rate of 0.0001 and opti-
mize it with Adam algorithm [9]. We try them with reduction
factors 16, 64.

Evaluation Metrics

According to [3], Dialog System evaluation methods can
be grouped into three categories: untrained automatic met-
rics, machine-learned metrics, and human-centered evalua-
tion metrics. Since Dialog Generation is, for the most part, an
open-ended problem, the evaluation of Dialog Systems can be
extremely challenging. Many of the existing automated met-
rics were adopted from Machine Translation and have been
shown to be sub-optimal for the evaluation of Dialog Systems
[13]. For this reason, human evaluation is still regarded as
the gold standard for this type of task. However, human eval-
uation can be considerably expensive and time-consuming,
making it impractical for quantifying day-to-day progress or
for dealing with performance optimization matters.

With this in mind, we will use different metrics for differ-
ent stages of development, leveraging the three categories of
evaluation methods, allowing to measure the models’ quality
from different perspectives and in the most efficient manner.

Untrained Automatic Metrics
This is the most commonly used type of metric. Untrained
Automatic Metrics evaluate the system by comparing the
machine-generated texts to human-generated texts, for the
same input. The difference when compared to machine-
learned metrics, is that the former compares these texts using
simple rules, such as n-gram matching or distribution simi-
larity, making it considerably faster and less expensive to cal-
culate. For this reason this type of metrics is ideal to use in
day-to-day development and for performance optimization.

Following the proposed evaluation in [2], we consider Bilin-
gual Evaluation Understudy (BLEU) [18] as the main metric
to measure the fluency of the generated answers. This metric
analyses the overlapping of n-grams between the machine-
generated answer and a set references. Even though, it was
developed with the task of Machine Translation in mind, it
is commonly used in other NLP tasks, particularly in dialog
generation. sentences, regardless of the word order.

Machine-Learned Metrics
These metrics usually leverage machine-learning models that
will measure the semantic similarity between texts. These
models try to simulate a human judge, offering a cheaper al-
ternative to Human-Centered Evaluation. One of the most fa-
mous machine-learned metrics is the BERTScore [34]. Like
BLEU, BERTScore calculates the similarity between the to-
kens of two sentences (the machine-generated and the refer-
ence). However, this similarity is calculated using the sum
of cosine similarities between the word embeddings for the
elements of each sentence. This makes it more context-aware
and able to compare the sentences semantically, making more
effective, especially in the presence of paraphrases [5].

Human-Centered Evaluation Metrics
These metrics present the most reliable way to evaluate the
quality of machine-generated text. Typically, human judges
are asked to compare the texts generated by different sys-
tems, using single-turn pairwise evaluation or multi-turn Lik-
ert scores or to distinguish machine-generated texts using
from human-generated texts (Turing Test [27]). However
these human judgement tests present some serious flaws. The



Acute-Eval method [12], proposes a novel procedure that in-
volves comparing two full dialogs. The human judge is asked
to focus on only one speaker within each of the dialogs and
then make a pairwise judgement. Besides maximizing the ro-
bustness of judgement across different humman judges, using
this method also result in faster and cheaper human tests.

Results
With the evaluation metrics described in the previous sec-
tion in mind., we proceeded to evaluate the model. First, we
compared the three models and their variations using auto-
matic metrics, in both datasets. Then, after selecting the best
performing iterations of each model, we performed Human-
Centered evaluation for both datasets as well.

Automatic Evaluation
Tables 1 and 2 present the obtained results, for the ”Friends
Corpus” and ”Twitter Customer Support Dataset” respec-
tively. Since this is an answer generation task, the model’s
answer is compared with the ground truth (provided in the
dataset) both in terms of word overlapping (for BLEU and
METEOR) and embeddings distance (for BERTscore).

BLEU METEOR BERTscore Hits@1
DialoGPT m (baseline) 16.34 8.73 75.32 73.98
TTname (greedy) 18.02 9.51 79.21 78.83
TTname (beam) 20.38 10.02 82.07 81.75
TTname (top-k) 20.95 9.23 81.23 79.44
TTsent (greedy) 19.21 9.69 78.56 80.87
TTsent (beam) 22.07 11.44 82.41 82.27
TTsent (top-k) 22.19 10.74 83.99 82.90
Adapter (64) 20.44 9.93 77.01 79.83
Adapters (16) 21.48 10.62 82.19 81.70

Table 1. Evaluation results for the ”Friends Corpus”. The models
named TTname and TTsent represent the second model based on Trans-
ferTransfo with the different inputs (just name of the persona or persona
sentences) and different decoding strategies (greedy decoding, beam
search, and top-k). The Adapters represent the model using adapters
with different reduction factors (64, 16)

BLEU METEOR BERTscore Hits@1
DialoGPT m (baseline) 18.14 8.43 78.92 80.01
TTname (greedy) 18.73 9.54 79.61 81.28
TTname (beam) 22.78 10.99 84.25 82.96
TTname (top-k) 22.85 9.33 84.70 79.03
TTsent (greedy) 20.21 10.19 80.56 82.87
TTsent (beam) 23.74 11.35 87.28 84.94
TTsent (top-k) 22.50 9.42 83.24 81.89
Adapter (64) 20.55 10.90 77.09 78.56
Adapters (16) 23.14 11.04 86.46 79.88

Table 2. Evaluation results for the ”Twitter Customer Support Dataset”.
The models named TTname and TTsent represent the second model
based on TransferTransfo with the different inputs (just name of the
persona or persona sentences) and different decoding strategies (greedy
decoding, beam search, and top-k). The Adapters represent the model
using adapters with different reduction factors (64, 16)

By analyzing tables 1 and 2 the first observation that becomes
evident is that, overall, the models obtain a significant better
performance in the ”Twitter Customer Support Dataset” than
in the ”Friends Dataset”. This is likely related to the fact
that the first is composed by conversations in a closed domain
and the second by conversations in open-domain. In closed
domain, the conversations will be more similar, and for the
same questions the expected answer will mostly be the same.

This is not true for conversations in open-domain, where the
expected answer will be more dependent on the context of the
conversation, hence the observed difference.

Another interesting observation is that the ”TransferTransfo”
is the best performing model for both datasets, however the
best decoding strategy is different for each case. Beam-search
maintains a beam of the multiple sequences that we can use
to construct the answer, word by word. At the end, we select
the most likely sequence among the different beams. This
is the standard decoding algorithm for most language gen-
eration tasks [10]. However, recent works have shown that
beam-search is very sensitive to the length output, and fur-
thermore, that it works best when the output length can be
predicted a priori [17, 32]. For that reason, it makes sense
that beam-search is a good decoding strategy in low entropy
settings (like closed domain dialog generation). However, in
higher entropy settings, like Open-Domain dialog generation,
where various outputs with different lengths are equally valid
for the same input, its performance decreases. For this reason,
in open-domain dialog generation, the decoding performance
can be improved by leveraging sampling techniques. In this
case, we used top-k sampling, in which the model samples
the next token from the top-k most likely tokens, being k
an hyperparameter. Similarly to previous works [6, 23], in
our experiments, this has provided better results than beam
searching.

A final observation to be made is that the best performing
model is the ”TransferTransfo” model, using persona sen-
tences in the input. As expected, using the persona sentences
leads to a more enriched input than using simply the name
(since it includes the name and more meta-information, like
area of business, etc).

Trained params (%) BLEU METEOR BERTscore Hits@1
TTsent (top-k) 100 22.19 10.74 83.99 82.90
Adapters (16) 3.6 21.48 10.62 82.19 81.70
Delta (%) 96.4 3.20 1.12 2.14 1.45

Table 3. Comparison between the best overall model and best adapter
model for the ”Friends Corpus”. Delta represents the percentage differ-
ence of performance in the different evaluated metrics

Trained params (%) BLEU METEOR BERTscore Hits@1
TTsent (beam) 100 23.74 11.35 87.28 84.94
Adapters (16) 3.6 23.14 11.04 86.46 82.80
Delta (%) 96.4 2.52 2.73 0.94 2.52

Table 4. Comparison between the best overall model and best adapter
model for the ”Twitter Customer Support Dataset”. Delta represents the
percentage difference of performance in the different evaluated metrics

Tables 3 and 4 provides a different insight. As expected, fine-
tuning the full model provided the best performance in both
datasets. However, the use of adapters demonstrate their use-
fulness. By training only 3.6% of the parameters (instead of
fine-tuning the whole model), we can get a performance that
is very close to the best developed model.

Human-Centered Evaluation
The usage of automatic metrics allowed us to make an ini-
tial evaluation of the models and decide on different param-
eters. However, this evaluation can be insufficient. Previous
works have shown that these metrics do not have a clear cor-
relation with human evaluation [14, 15, 19]. On one side,



semantically different phrases can be very similar, and on
the other, for the same prompt, multiple different answers
may be correct, which makes the automatic evaluation much
more difficult, particularly in an Open Domain. For these rea-
sons, after selecting the best models with the automated met-
rics presented, we evaluated them using a Human-Centered
method. The selected method was the Acute-Eval method
[12], ”a novel procedure involving comparing two full dia-
logues, where a human judge is asked to pay attention to only
one speaker within each, and make a pairwise judgment”.
The setup is as follows: In each trial, the judge is presented
with two previously obtained conversations, one of model A
interacting with a human, and one of model B also interact-
ing with the same human. The judge, reads both conversa-
tions and is then posed with a question (e.g. ”Which speaker
represents Ross from the show Friends”, ”Which speaker rep-
resents a Customer Support Agent from Apple”). The judge
must choose between model A and B to answer the question.
We use 20 annotators, each presented with 5 trials for each
pair of models and then use their answers to decide which
model wins. The results can be consulted in the tables 5 and
6.

Wins (%)
Original DialoGPT TransferTransfo Adapter

Original - 93 88 90
DialoGPT 7 - 24 35
TransferTransfo 12 76 - 61
Adapter 10 65 39 -

Table 5. Results of Acute-Eval for the question ”Which speaker do you
think represents Ross from Friends?”. The considered models are the
baseline (DialoGPT), the TransferTransfo model with beam decoding
(TransferTransfo) and the Adapter model with reduction factor of 16
(Adapter). The values for ”Original” are sampled conversations taken
from the original dataset.

Wins (%)
Original DialoGPT TransferTransfo Adapter

Original - 91 85 90
DialoGPT 9 - 46 49
TransferTransfo 15 54 - 58
Adapter 10 51 42 -

Table 6. Results of Acute-Eval for the question ”Which speaker do you
think represents a Customer Support Agent from Apple?”. The con-
sidered models are the baseline (DialoGPT), the TransferTransfo model
with beam decoding (TransferTransfo) and the Adapter model with re-
duction factor of 16 (Adapter). The values for ”Original” are sampled
conversations taken from the original dataset.

Similarly to the results obtained with the automatic evalua-
tion, the TransferTransfo model is the one with best perfor-
mance overall, followed by the Adapter and then the baseline.
Another aspect to notice is the fact that, even though all the
models are still very far from being indistinguishable from the
original conversations, both developed models show a signif-
icantly better performance when tested against the original
conversations than the baseline. One final observation worth
making is that the models are less distinguishable in the Cus-
tomer Support setting than in the Open Domain. This is due
to the fact that the conversations for Customer Support are
much more similar and objective, making the conversations
with the different models harder to distinguish.

CONCLUSION
The goal of this work was leverage the state of the art dialog
systems that exist today and explore how the can be adapted
to represent personas in a scalable way. Solving this prob-
lem is not only crucial to deliver a better customer support
experience to clients but is also a crucial step to develop more
engaging and realistic chatbots, bringing us one step closer to
pass the Turing test. This chapter concludes this dissertation
by presenting our main contributions in chap:contributions
and pointing out promising directions to further develop this
work in chap:future.

Contributions
The main contributions of our work are: (1) the development
of Piertotum, a preprocessing tool that allows to us to imple-
ment a data preprocessing pipeline to NLP datasets and mod-
ify their structure; (2) the development of two models capa-
ble of incorporating a persona and weaving its traits into their
generated answers; an extensive test and comparative analysis
of this models and a competitive baseline. Piertotum, the pre-
processing tool can be used to apply different preprocessing
steps to NLP datasets, allowing users to test different prepro-
cessing steps to the datasets and test them. Besides that, Pier-
totum also allows the user to adapt the structure of a dataset
to resemble the [33], making it easier to apply the Transfer-
Transfo [31] methodology to any dataset. With the devel-
oped models we showed how the TransferTransfo method-
ology [31] can be leveraged to help Transformer architec-
ture impersonate a predefined persona in Open-Domain and
Customer Support settings. The experiments done with this
model also allowed us to optimize the use of this method, in-
cluding the decoding strategy and how to best use the persona
sentences. The other developed model, leveraging Adapters
[7], uses this state of the art fine tuning technique in an orig-
inal way, creating persona adapters. The test results show
that these persona adapter have a slightly lower performance
than the other models, with only a fraction of the trainable
parameters, making it a competitive and much more scalable
approach.

Future Work
As future work, we would like to further explore the devel-
opment of persona adapters, utilizing the most recent devel-
opments in this area, such as AdapterFusion [20] and Mad-X
[21]. Due to hardware limitations it was not possible to use
the large version of the models to our development, resulting
in some performance loss. For that reason it would also be
interesting to test our models using the large version of Di-
aloGPT[35]. Finally, we also like to explore how GPT-3 [1]
can be used to solve the posed problem for this thesis. The
reason for this is that, currently, GPT-3 outperforms all other
models when it comes to performing of specific tasks with-
out any fine tuning, making it a prime candidate to solve our
problem.
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