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Abstract

Toponym resolution concerns the task of mapping names for
places (toponyms), previously detected in a textual document,
into the corresponding locations on Earth (e.g., through geo-
graphical coordinates). Complexity arises when a single place
name refer to many real locations (e.g., Paris can refer to
more than 50 places in over 20 countries around the world),
making disambiguation a non-trivial procedure. We present
a novel toponym resolution method based on deep learning,
taking inspiration from recent methods achieving state-of-
the-art results. The proposed neural network architecture is
based on a pre-trained language model, sharing parameters
for the processing of different inputs (e.g., the toponym to
disambiguate along with the surrounding words). We use the
HEALPix method to model toponym resolution as a classi-
fication task. Subsequently, the result of the classification is
used to inform the prediction of geographic coordinates for
each place name reference, through a separate layer that di-
rectly applies the great circle distance as a loss function. Ad-
ditionally, we also test the use of external geophysical in-
formation, by using an additional term in the cost function
for each geophysical property considered, thus allowing the
model to obtain more information about the locations when
making predictions. The proposed model was tested on col-
lections of documents used and developed in previous stud-
ies. The obtained results show that the proposed model can
significantly outperform previous approaches.

1 Introduction
Toponym resolution, also known as geo-parsing, geo-
grounding, or place name resolution, aims to assign un-
ambiguous locations (e.g., geographic coordinates) to loca-
tion names mentioned within textual documents. The task is
usually performed in two independent steps. The first step
concerns toponym detection, where the spans of text corre-
sponding to place names are identified. In the second step,
toponym disambiguation or geocoding, each of the discov-
ered place names can be mapped to latitude and longitude
coordinates, corresponding to the centroid of its physical lo-
cation. This work focuses exclusively on the toponym dis-
ambiguation task, intending to assign an unambiguous posi-
tion over the surface of the Earth to each place name refer-
ence in a textual document.
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The names of locations are usually ambiguous expres-
sions, since these names can correspond to distinct geo-
graphical referents (e.g., the place name Paris is associated
to several geographic locations, besides the capital city of
France), and the same location can often be associated to
several alternative names (e.g., the names New York and Big
Apple can both be used as references to New York City in the
United States).

Toponym resolution is important in many real-life ap-
plications, for instance supporting geospatial text analy-
sis within digital humanities, computational social sciences
(Wing et al. 2015), and other scientific domains.

This article proposes a novel method using a Transformer-
based pre-trained language model, that builds a representa-
tion of the toponym to be disambiguated together with its
surrounding context. Other toponyms, or even regular words
appearing in the surrounding context, can be characteristic
of a certain region, which can provide clues about the lo-
caftion of the mention (e.g., the words Louvre or Seine are
usually associated with the toponym Paris).

We use the Hierarchical Equal Area isoLatitude Pixeliza-
tion (HEALPix) (Gorski et al. 2005) scheme to partition the
geographic study region into a set of cells, in order to ap-
proach the task of toponym resolution as a classfication task,
by associating each place name reference with a region on
the surface of the Earth. Furthermore, a regression loss based
on the great circle distance (i.e., the shortest distance be-
tween two points on the surface of a sphere) is used for the
output corresponding to the geographical coordinates of the
place name reference.

Additionally, we test the use of external information cor-
responding to geophysical properties (e.g., terrain proper-
ties, natural resources, etc.) in order to turn the system more
robust and improve performance. This information was ex-
tracted from external raster datasets and incorporated in the
proposed model, through an additional term in the cost func-
tion for each geophysical property considered. Our goal with
this experiment is to enable the model to obtain more infor-
mation about the locations when making predictions.

The rest of this article is organized as follows. Section
2 describes previously developed studies in the field of to-
ponym resolution. Section 3 details the proposed model,
while Section 4 presents the corpora used in our experi-
ments, together with the evaluation methodology. This sec-



tion also presents the obtained results. Finally, Section 5
summarizes our conclusions and describes ideas for future
work, within the field of toponym resolution.

2 Background
Many previous methods for toponym resolution have ex-
plored the use of heuristics, relying on an external source
of knowledge (e.g., a gazetteer) to assign textual references
to corresponding locations (Leidner 2007; Leidner, Sinclair,
and Webber 2003). More recently, several studies have con-
sidered supervised learning approaches that take heuristics
as features in machine learning models (Santos, Anastácio,
and Martins 2015; Lieberman and Samet 2012; Wang et al.
2019), while later studies have explored the use of the text of
a document within the surrounding context, through statisti-
cal language models (Wing et al. 2015; DeLozier, Baldridge,
and London 2015).

Nowadays, the task of toponym resolution can also be
addressed through the use of state-of-the-art deep learning
methods for NLP, e.g. related to the use of contextual em-
bedding models such as BERT or RoBERTa (Liu, Kusner,
and Blunsom 2020). These neural methods offer several ad-
vantages over existing rule-based techniques for toponym
resolution, namely the ability to naturally leverage contex-
tual clues to improve predictions and disambiguate location
names. However, previous studies have shown that the per-
formance of these methods varies greatly when applied to
corpora of different genres and domains.

One of these approaches is the CamCoder system (Gritta,
Pilehvar, and Collier 2018), which combines a sparse vector
representation that generates geographic features from text
that go beyond lexical features (i.e., geographic representa-
tion of location mentions), and a system that uses represen-
tations based on lexical features. The system combines lexi-
cal and geographic information, considering four inputs: the
target entity (i.e., the toponym mention to disambiguate), the
context location mentions (i.e., other places mentioned in the
same context), the context words (excluding location men-
tions), and the feature vector named MapVec. The first three
inputs are fed into convolutional layers with global maxi-
mum pooling, while the fourth input is fed into a fully dense
layer. The resulting vectors are then combined and passed
into a final layer that predicts the location prediction region
based on a classification into regions. This system achieved
state-of-the-art results when compared to its competitors,
thus showing that lexical clues improve the performance of
toponym resolution (Gritta, Pilehvar, and Collier 2018).

Another recent deep learning approach based on contex-
tual embeddings was developed by Cardoso, Martins, and
Estima (2019). This system relies on contextual embeddings
model such as ELMo or BERT to transform the input text,
feeding these representations into a neural network in or-
der to make a region classification based on a geodesic grid.
This method achieved state-of-the-art results on two differ-
ent dataset: WOTR and LGL, when compared with other
systems such as CamCoder. Slightly better results were also
achieved when using BERT instead of ELMo for embed-
ding the input, although the author did not attempt to fine-

tune BERT, instead relying on LSTMs to generate represen-
tations from BERT embeddings

More recently, Radford (2021) presented yet another neu-
ral network method named ELECTRO-map. This end-to-
end probabilistic model for toponym resolution relies on the
fine-tuning of a transformer language model, namely Dis-
tillRoBERTa, to minimize the negative log-likelihood of a
five component mixture of von-Mises Fisher (vMF) distri-
butions. More particularly, the vMF distribution generalizes
the von Mises distributon beyond two dimensionto the sur-
faces of sphres or hyperspheres. For every input text, the
model predicts parameters for five parameters vMF distribu-
tions, as well as a set of mixing probabilities describing the
weights given to each of the five components. By using five
components, the model can then fit a more flexible distribu-
tional shape than it would be able to with a single vMF com-
ponent. The authors also proposed several solutions for ag-
gregating results to a single latitude/longitude prediction per
observation, namely choosing the single highest probability
prediction and choosing the best prediction from the mix-
ture, given apriori knowledge. The ELECTRO-map system
achieved state-of-the-art results while choosing the first so-
lution to aggregate results, when compared to Mordecai (i.e.,
a full-text geoparsing system that extracts place names from
text, resolves them to their correct entries in a gazetteer, and
returns structured geographic information for the resolved
place name).

One more neural system was developed by Kulkarni
et al. (2021), named the Multi-Level Geocoder (MLG).
This approach, unlike CamCoder, does not rely on gazetteer
metadata and population signals, therefore avoiding bi-
ased predictions towards locations with large populations.
MLG learns spatial language representations by mapping to-
ponyms from text to coordinates on the Earth’s surface. In
particular, The system uses multi-level S2 1 cells as the out-
put of a multi-headed feature encoding model. The model
defines losses at several levels of granularity (L5, L6, L7)
and minimizes them jointly. This method was evaluated in
the same datasets used to evaluate CamCoder, and achieved
better results than its competitors, displaying that the archi-
tecture is effective on text geocoding. Moreover, results also
showed that it is possible and even preferable to solely rely
on lexical clues present in the text. Additionally, the authors
also verified inconsistencies in the true coordinates of the
different datasets, whereby decided to unify the true coordi-
nates corresponding to the same target entity, thus creating a
consistent evaluation.

3 Proposed Model
The end-to-end toponym resolution model (1) detailed in
this article relies on the fine-tuning of a pre-trained language
model, and builds a representation from the toponym that is
to be disambiguated, as well as its surrounding context. This
section is organized as follows: Section 3.1 describes the ar-
chitecture of the model, while Section 3.2 details the use
of geophysical properties as an additional prediction in our

1https://s2geometry.io/



Figure 1: Proposed model architecture

model. Finally, Section 3.3 illustrates the training hyperpa-
rameters used in our experiments.

3.1 Model Architecture
The proposed model considers multiple textual inputs, fol-
lowing the input partition proposed by Cardoso, Martins,
and Estima (2019). Firstly, the textual document needs to
be tokenized, using the language model tokenizer. Then,
the tokenized text is divided into three sequences of tokens,
namely: the toponym mention to be disambiguated (target
toponym), the close context around the toponym mention
(i.e., a fixed window, to the left and right sides of the tar-
get toponym, totalling 50 tokens), and a wider range con-
text around the toponym mention (i.e., a fixed window, to
the left and right sides of the target toponym, totalling 510
tokens). It is worth mentioning that most language models
have a maximum length limit for the input of 512 tokens,
and knowing that each input vector needs to be fed with a
[CLS] and a [SEP] token (at the beginning and ending of the
vector, respectively), the bare maximum of actual textual in-
put tokens has to be 510.

Each of these sequences is then fed into a pre-trained lan-
guage model, sharing parameters for the processing of the
three sequences. Since we are dealing with a classification
task, only the first output vector associated with the special
token [CLS] is extracted from each. The resulting three vec-
tors are then concatenated to form a representation of the
whole input data. This vector is then processed by an out-
put layer that produces a probability distribution over the re-

gions that were defined by the Earth partitioning algorithm.
Probably the most widely known pre-trained language

model is the BERT model. In brief, the BERT model ar-
chitecture corresponds to a multi-layer bidirectional Trans-
former encoder based on the original implementation. It
is designed to train deep bidirectional representations by
jointly conditioning on the left and right context in all layers,
resulting in the capacity to be fine-tuned with the addition of
an output layer to create models for downstream tasks (i.e.,
supervised-learning tasks that use a pre-trained model) such
as classifying input texts (Devlin et al. 2018).

As previously mentioned, we choose to tackle the to-
ponym resolution task as a prediction problem, where each
place name reference is associated with a certain region of
the Earth through a geodesic grid. We then use the classifi-
cation probability distribution to obtain geographical coordi-
nates (i.e., latitude and longitude) of each recognized place
name, through a regression loss.

The geodesic grid used to support the classification is built
through the Hierarchical Equal Area isoLatitude Pixeliza-
tion (HEALPix) scheme, proposed by Gorski et al. (2005).
In brief, the HEALPix algorithm partitions a spherical rep-
resentation for the Earth’s surface, generating equal are cells
corresponding to different regions. Throughout the experi-
ments reported on this article, we fixed the resolution pa-
rameter to Nside=256, which is equivalent to considering a
maximum of 786,432 regions. However, in reality, the num-
ber of classes will be much smaller, given that most regions
will not be associated to any instance in the data.



The predicted class probability over the partition schema
is one of the outputs of the system, so a loss function is
computed over it. A natural choice is to compute the cross-
entropy loss between the predicted probabilities and the one-
hot true vector class. Alternatively, and taking advantage of
studies performed in the field of Computer Vision, we also
test the use of an asymmetric loss function. Asymmetric loss
functions were first introduced by Zhou et al. (2021), and
later explored by Ben-Baruch et al. (2020), and are robust to
learning with noisy labels for various types of noise.

The predicted class probability is then passed through a
softmax layer. The softmax probability distribution vector is
then raised to the third power and re-normalized (i.e., a more
peaked distribution is built from the softmax results, empha-
sizing the most likely region), and a final interpolation be-
tween this peaked probability distribution vector and a vec-
tor representation of the cell centroids (i.e., a matrix that
contains the centroid coordinates of each HEALPix class)
is performed to obtain the predicted geospatial coordinates
of the toponym to be disambiguated, similarly to what was
done in the work of Cardoso, Martins, and Estima (2019).
The obtained vector is then connected to a new loss function
that computes the great circle distance between the predicted
and the ground-truth coordinates.

3.2 Geophysical properties

Additionally, and besides HEALPix regions and geospa-
tial coordinates, other outputs can be considered. We esti-
mate geophysical properties, such as land cover, elevation,
and percentage of vegetation, associated with the predicted
HEALPix cell, in order to guide the model towards correct
location predictions.

This geophysical information is extracted from datasets
in the raster format (i.e., a matrix of cells organized into
rows and columns where each cell contains a value repre-
senting information), and incorporated into the model with
the same interpolation technique used to estimate the predic-
tion of geospatial coordinates, previously described. More
specifically, each of the geophysical properties is encoded
into real values, and then vectors corresponding to the mea-
surements associated to each HEALPix class are created. In
order to obtain these values, a polygon associated with the
HEALPix class is used to crop the original rasters, thus ob-
taining a representative value of the region, and not only of
the HEALPix cell centroid. The dot product between each
vector and the previously calculated peaked probability dis-
tribution vector is computed, and the results are connected
to new loss functions that correspond to the absolute differ-
ence between the predicted and the real values (in the case
of the elevation and vegetation geophysical properties), and
the cross-entropy between the predicted and label vectors (in
the case of the land coverage geophysical property).

The raster datasets are obtained from the ”Global Map
data archives” project, and the ”International Satellite Land-
Surface Climatology Project” initiative. The following geo-
physical properties are considered: (1) the land coverage
classification (i.e., amount of developed versus natural ter-

rain), inferred from an historical source2 (in the case of the
WOTR corpus), and from modern sources3 (in the remaining
datasets); (2) the percentage of vegetation 4 (i.e., the ratio of
the area covered with branches and leaves of trees); (3) the
terrain elevation5 (i.e., the elevation data at 1m interval cov-
ering the whole world) .

3.3 Training
Our model is trained using PyTorch (Paszke et al. 2019), by
using the pre-trained language model architectures provided
by the transformers library 6. The model is trained for 6
epochs, using a optimal learning rate of 0.0003, and AdamW
as optimizer (Loshchilov and Hutter 2017). The learning rate
scheduler used creates a schedule with a learning rate that
decreases linearly from the initial learning rate set in the op-
timizer to 0. Each training batch has a total of 8 examples.
Given the fact that some versions of these pre-trained lan-
guage models are usually extremely big and require major
computational resources to fine-tune and even produce infer-
ences, we consider a smaller batch size for the large versions
of the language models (this is explained later on the docu-
ment). In particular, a gradient accumulation technique (i.e.,
running a configured number of steps without updating the
model variables while accumulating the gradients of those
steps and then using the accumulated gradients to compute
the variable updates) is used to simulate the original batch
size of 8. Additionally, we use the Healpy python library7,
based on the HEALPix scheme, to generate the regions over
the Earth’s surface.

The cost function of our model can be defined as a com-
bination of the following loss functions:
• (1) HEALPix region classification. One can either con-

sider the cross-entropy loss or the asymmetric loss be-
tween the predicted class probabilities and the one-hot
true vector class (i.e., labels).

regionClassification(outputs, labels) =

crossEntropyLoss(outputs, labels)

or

regionClassification(outputs, labels) =

ASLSingleLabelLoss(outputs, labels)

(1)

• (2) Coordinates prediction. Great circle distance com-
puted between the predicted coordinates and the ground-
truth ones.

greatCircleDistance(φ1, λ1, φ2, λ2) = sin (
φ2 − φ1

2
)
2

+ cosφ1 cosφ2 sin (
λ2 − λ1

2
)
2

(2)
2https://thredds.daac.ornl.gov/thredds/catalog/ornldaac/

967/historic landcover hdeg/catalog.html?dataset=967/
historic landcover hdeg/historic landcover hd 1850.nc4

3https://globalmaps.github.io/glcnmo.html
4https://globalmaps.github.io/ptc.html
5https://globalmaps.github.io/el.html
6https://huggingface.co/transformers/
7https://pypi.org/project/healpy/



Statistic SpatialML LGL WOTR SemEval-19 Task-12 Corpus GeoVirus
Number of Docs 428 588 1644 105 229
Number of Toponyms 4783 4462 10377 4659 2167
Number of Distinct Toponyms 825 1201 1970 950 685
Average Number of Toponyms per Document 11.18 7.59 6.31 44.37 9.46
Number of Distinct HEALPix classes 461 758 999 801 558

Table 1: Statistical characterization of the used corpora

Where φ1 and λ1 represent the latitude and longitude
values of the predicted coordinates, and φ2 and λ2 the
latitude and longitude values of the ground-truth coordi-
nates.

• (3) Geophysical properties predictions. The mean ab-
solute error is computed between the predicted values
and the ground-truth values for the elevation and vege-
tation geophysical properties. Regarding the land cover-
age property, one can consider the cross-entropy loss be-
tween the predicted class probability and the one-hot true
vector class.

elevationLoss(ePred, eLabel) = MAE(ePred, eLabel)
(3)

vegetationLoss(vPred, vLabel) = MAE(vPred, vLabel)
(4)

landCoverageLoss(lcPred, lcLabel) =

crossEntropyLoss(lcPred, lcLabel)
(5)

It is worth mentioning that given the fact that each of the
previously described loss functions produce different range
values, the contribution of each loss function to the final
combined loss is weighted (i.e., different weights to each
loss function were tested, and the ones achieving the best
results were kept). The following equation resumes the cost
function of our model where γn represent the result of the
nth previously described equation..

costFunction = 1 ∗ γ1 + 0.005 ∗ γ2 + 0.1 ∗ γ3+

0.1 ∗ γ4 + 0.01 ∗ γ5
(6)

Model training therefore involves minimizing the com-
bined loss functions associated to each of the outputs.

4 Datasets and Evaluation Methodology
This section describes the overview of the experiments con-
ducted. Section 4.1 characterizes the corpora used through-
out the experiments, and the evaluation methodology. Fi-
nally, Section 4.2 illustrates the experiments, and provides
the results.

4.1 Experimental Methodology
We use four well-known public datasets: the War of the
Rebellion (WOTR) (DeLozier et al. 2016) 8, the Local-
Global Lexicon (LGL) (Lieberman, Samet, and Sankara-
narayanan 2010)9, the SpatialML (Mani et al. 2010) and

8https://github.com/utcompling/WarOfTheRebellion
9https://github.com/milangritta/Pragmatic-Guide-to-

Geoparsing-Evaluation

the GeoVirus (Gritta, Pilehvar, and Collier 2018)10. These
corpus have been target of intense study over the years in
the area (Cardoso, Martins, and Estima 2019; Gritta, Pile-
hvar, and Collier 2018; DeLozier, Baldridge, and London
2015; Santos, Anastácio, and Martins 2015; DeLozier et al.
2016). Additionally, the training corpus used in the context
of the SemEval-2019 Task-12 Challenge (Weissenbacher
et al. 2019) 11 is also used in our experiments.

The SpatialML corpus is a subset of the ACE 2005 En-
glish SpatialML Annotations (Mani et al. 2010), available
from the Linguistic Data Consortium. It contains documents
that represent a variety of data sources, among which are
broadcast news, magazine news, and web blogs. Each docu-
ment is annotated using an XML-based language also called
SpatialML, that allows the association of toponyms in the
text with their respective locations and other geographically-
relevant attributes. It should nonetheless be noted that,the
SpatialML corpus is limited to the purpose of evaluating
local toponyms, since news are usually directed to a much
more geographically distributed audience. For that reason,
Lieberman, Samet, and Sankaranarayanan (2010) presented
the Local-Global Lexicon (LGL) corpus, composed of arti-
cles from a variety of smaller distributed geographic news-
papers. This corpus was specifically created for challenging
toponym resolution systems, as it contains highly ambigu-
ous names, including small cities and local mentions.

DeLozier et al. (2016) proposed another corpus, in this
case composed of annotated documents from a set of Amer-
ican Civil War archives, known as War of the Rebellion
(WOTR). Some of these archives contained military reports
and orders, and others contained historical correspondence.
It was concluded that WOTR was the most challenging cor-
pus at the time (i.e., end-to-end toponym resolution systems
achieved lower performance than in other previous devel-
oped corpora, such as LGL and SpatialML), as it contained
place names not in gazetteers and had a respectable size (i.e.,
it had roughly twice the number of toponyms than in previ-
ously developed corpora).

Aside from proposing a new method for toponym res-
olution, Gritta, Pilehvar, and Collier (2018) introduced
GeoVirus, a dataset for the evaluation of geoparsing of news
events covering global disease outbreaks and epidemics
(Gritta, Pilehvar, and Collier 2018). Place names are man-
ually tagged and assigned Wikipedia page URLs along with
their global coordinates.

More recently, yet another corpus was introduced in the
10https://github.com/milangritta/Geocoding-with-Map-

Vector/tree/master/data
11https://competitions.codalab.org/competitions/19948



Dataset Mean dist. (km) ↓ Median dist. (km) ↓ Accuracy@161 km (%) ↑
SpatialML Corpus
Learning to Rank (Santos, Anastácio, and Martins 2015) 140 28.71 -
Our model 206 9.08 90.9
LGL Corpus
MLG w/o Gaz (Kulkarni et al. 2021) 1407 - 53.0
MLG with Gaz (Kulkarni et al. 2021) 620 - 73.0
Our model 193 12.52 85.0
WOTR Corpus
TopoCluster (DeLozier et al. 2016) 604 - 57.0
TopoClusterGaz (DeLozier et al. 2016) 468 - 72.0
Cardoso, Martins, and Estima (2019) model 164 11.48 81.5
Our model 99 11.11 87.1
SemEval-2019 Task-12 Challenge corpus
Our model 146 11.71 85.4
GeoVirus
MLG w/o Gaz (Kulkarni et al. 2021) 1690 - 49
MLG with Gaz (Kulkarni et al. 2021) 276 - 85
Our model 720 180.80 49.8

Table 2: Experimental results with the base model

context of the SemEval-2019 Task-12 Challenge, where to-
ponym resolution systems were evaluated on scientific ar-
ticles. Weissenbacher et al. (2019) summarized the corpus
used within this challenge. The corpus is composed of docu-
ments linked with different viruses, namely the Influenza A,
B, and C virus, and the West Nile river virus. Additionally,
some other documents associated with biomedical research
articles were added to the corpus. The result was a dataset
with fine-level toponyms that can be used to resolve name
places in other scientific domains, particularly related to the
domain of epidemiology.

We decided to simulate the conditions of the experiments
developed by previous methods, thus making the compar-
isons as trustworthy as possible. In particular, we decided
to keep the changes performed by Kulkarni et al. (2021)
in the LGL and the GeoVirus corpora. As previously ex-
plained in Section 2, the authors decided to unify the true
coordinates corresponding to the same target entity. Regard-
ing the WOTR corpus, we chose to use the same data split
presented by the authors (DeLozier et al. 2016). As far as
the SpatialML is concerned, we decided to split the data in
the following proportions: 90% of the instances for train and
10% for test. Finally, and regarding the corpus used in the
SemEval-2019 Task-12 Challenge, we determined to merge
the train and validation splits into one (Weissenbacher et al.
2019). Since the test data was not made publicly available,
we chose to split the merged data in the following propor-
tions: 90% of the instances for train and 10% for test.

Table 1 shows a statistical characterization of the main
corpora used in the development of this project. Note that
this statistical description was performed without a train-
test data split, so these statistics refer to the whole data for
each corpus. Additionally, the number of distinct HEALPix
classes considered for each dataset is also presented.

To assess the performance of the developed system across
the multiple datasets, the distance between the predicted co-
ordinates and the ground-truth coordinates is computed, us-

ing Vincenty’s formula (i.e., a well-known method for cal-
culating geodesic distances between a pair of latitude/lon-
gitude points on an ellipsoidal model of the Earth). Hav-
ing these values, some evaluation metrics can be computed,
such as the mean and median error distances, and an accu-
racy (i.e., percentage of correct decisions) based on a given
threshold over the distance. Previous studies have used 161
kilometers as the threshold distance value for the accuracy,
so that value was also taken into consideration in this project.

4.2 Obtained Results
The architecture presented in Section 3.1 is the one used
in our experiments. We decided to use two different pre-
trained language models, namely the BERT (Devlin et al.
2018) and the RoBERTa (Liu et al. 2019). As briefly ex-
plained in Section 3.1, BERT is probably the most widely
known Transformer-based language model. However, sev-
eral new language models based on the BERT architecture,
namely the RoBERTa model, have been producing prosper-
ous results in several NLP tasks. Additionally, and besides
testing two different models, we also test different versions
of those models (i.e., a single pre-trained language model
can have multiple versions that share the same general archi-
tecture but differ in the number of parameters and in the cor-
pora used to train the model). Particularly, the versions used
in our experiments are the BERT-base and the RoBERTa-
large. In brief, the BERT-base model has 12 encoder layers
stacked on top of each other whereas RoBERTa-large has
24 layers of encoders stacked on top of each other. As the
number of layers is increased so does the number of param-
eters and the number of attention heads. BERT-base has a
total of 12 attention heads and 110 million parameters. On
the other hand, RoBERTa-large has 16 attention heads with
355 million parameters. BERT-base has 768 hidden layers
while RoBERTa-large has 1024 hidden layers.

We test both the BERT-base and the RoBERTa-large with
and without integrating geophysical properties, originating



Model and Dataset Mean dist. (km) ↓ Median dist. (km) ↓ Accuracy@161 km (%) ↑
SpatialML Corpus
BERT-base W/GeoProperties 206 9.08 90.9
BERT-base w/o GeoProperties 205 9.08 90.6
RoBERTa-large W/GeoProperties 182 9.08 92.1
RoBERTa-large w/o GeoProperties 182 9.08 91.9
LGL Corpus
BERT-base W/GeoProperties 193 12.52 85.0
BERT-base w/o GeoProperties 192 12.57 84.5
RoBERTa-large W/GeoProperties 171 12.26 87.8
RoBERTa-large w/o GeoProperties 172 12.24 88.9
WOTR Corpus
BERT-base W/GeoProperties 99 11.11 87.1
BERT-base w/o GeoProperties 105 11.26 85.7
RoBERTa-large W/GeoProperties 74 10.99 88.5
RoBERTa-large w/o GeoProperties 81 10.99 88.0
SemEval-2019 Task-12 Challenge corpus
BERT-base W/GeoProperties 146 11.71 85.4
BERT-base w/o GeoProperties 152 11.90 84.3
RoBERTa-large W/GeoProperties 110 11.12 89.1
RoBERTa-large w/o GeoProperties 116 11.15 87.8
GeoVirus
BERT-base W/GeoProperties 720 180.80 49.8
BERT-base w/o GeoProperties 652 138.65 51.6
RoBERTa-large W/GeoProperties 621 32.21 59.9
RoBERTa-large w/o GeoProperties 583 29.52 61.1

Table 3: Experimental results with different modelling approaches

the following models: (1) BERT-base W/GeoProperties (this
particular model will be addressed as the baseline) and
BERT-base w/o GeoProperties, and (2) RoBERTa-large W/-
GeoProperties and RoBERTa-large w/o GeoProperties.

Table 2 summarizes the results obtained by our base
model (i.e., the BERT-base model considering GeoProper-
ties), comparing them against the results reported on previ-
ous publications that have used the same datasets and the
same evaluation metrics. We can verify that our base model
achieves results that outperform those of previous methods
achieving state-of-the-art results in several metrics. In par-
ticular, our model achieves best results on both the WOTR
and the LGL datasets, outperforming the previous best re-
sults. Regarding the SpatialML corpus, the learning to rank
system from Santos, Anastácio, and Martins (2015) achieves
the smallest mean distance error, even though our model ob-
tains a much smaller median distance error. As to the corpus
used in the SemEval-2019 Task-12 Challenge we couldn’t
compare the results achieved by our model with the ones
achieved by the teams competing in the contest, given the
fact that we didn’t have access to the test data. Finally, and
regarding the GeoVirus dataset, we achieve worst results
than the system that relies on gazetteer information proposed
by Kulkarni et al. (2021). However, when compared to the
system that does not rely on gazetteer information proposed
by the same authors, our model obtain a much smaller mean
distance error and slightly better accuracy. One possible ex-
planation for this results is the fact that the GeoVirus dataset
is mainly composed by large populated toponyms (i.e., most

of the documents are concerned with locations with large
populations), thus a system that relies on gazetteer informa-
tion can somewhat benefit from this, by leaning to predict
more common toponyms (i.e., when dealing with toponym
disambiguation, a gazetteer-based system will likely opt to
choose the larger toponym).

Additionally, it is also worth mentioning that the loss
function computed over the class probability differs from
corpus to corpus. In the case of the WOTR and the SemEval-
19 Task-12 Corpus we use the asymmetric loss function, and
in the rest of the corpora we decided to stick with the cross
entropy loss function. This decision is based on the fact that
both the WOTR and the corpus from the SemEval-19 Task-
12 Corpus have the highest number of distinct HEALPix
classes (see Table 1), thus could benefit from the use of the
asymmetric loss function.

Table 3 describes the results obtained by our different
modelling approaches. The results show that the large ver-
sion of the RoBERTa language model obtains better results
across all datasets (i.e., on average, less 42 kilometers of
mean distance error, less 50 kilometers in the median er-
ror, and an increase of 3.74% on the accuracy@161) . Al-
though the large version can lead to significantly better re-
sults, it also exponentially increases the training time, and
the amount of computational resources needed to fine-tune
the model. Thus, using or not a larger version of a pre-
trained language model is a trade-off between better perfor-
mance overall and less computational efficiency.

With respect to the experiments with geophysical infor-



Corpus Lowest distance error (km) Highest distance error (km)

WOTR Mexico (0.62) Shelter Cove (4016.65)
Spring River (0.70) Fort Sheward (3956.01)
Owen’s Big Lake (1.08) Gravely Ford (3179.59)

LGL Iowans (1.16) Nigeria (9304.27)
Pa. (2.30) Philippines (8344.62)
Pennsylvania (2.30) Vietnam (7674.42)

SpatialML Tokyo (0.44) Dunblane (15062.31)
Lusaka (2.38) Cayman Islands (12900.50)
Basra (2.76) British Colombia (7361.93)

SemEval-2019 Task-12 Challenge corpus Dominican Republic (0.42) Topografov River (4584.17)
Japan (0.63) Antananarivo (3122.57)
Stratford (0.983) United Arab Emirates (2399.63)

GeoVirus United States (4.53) New Zealand (16610.02)
China (6.07) Wisconsin (12859.72)
California (10.23) North America (8098.64)

Table 4: Toponyms with the lowest and highest distance errors

mation, we record some inconsistencies in the results. We
achieve worst results in the GeoVirus dataset, and slightly
better results among the remaining corpora. In particular,
we notice a bigger gap in the results on the WOTR dataset.
This can probably be explained by the fact that the WOTR
dataset is mainly composed of annotated documents from a
set of American Civil War archives that contain a lot of geo-
physical information, such as terrain properties, water cov-
erage, and resources, hence useful features when predicting
the actual values of the geophysical properties. We can then
conclude that the model indeed benefits from the addition of
geophysical information, though not consistently.

Table 4 presents the place names with the lowest and high-
est distance error predictions for all corpora. There are a few
conclusion one might retrieve from this statistical character-
ization, namely: (1) the model can identify different textual
names as the same real location (e.g., Pa. and Pennsylvania
both refer to the state in the United States), (2) the model
can identify demonyms (i.e., a noun used to denote the na-
tives or inhabitants of a particular country, state, city, etc.),
such as Iowans (i.e., a native or inhabitant of the US state
of Iowa), and predict the locations of the place itself, (3)
there are a few small places that are among the locations
with the lowest mean distance error, such as Owen’s Big
Lake or Spring River. These results show language model-
based systems can effectively predict the geographical coor-
dinates of some toponyms that would be poorly predicted by
gazetteer-based approaches.

Finally, Table 5 presents some illustrative examples of to-
ponym resolution together with the corresponding textual
reference. Each of the examples has the document text with
the place names references highlighted in red, and the image
that show the real location of the place name (in red), and
the corresponding predicted location (in blue). Additionally,
the distance between the real and predicted locations is rep-
resented through a black line. In the examples shown, we

illustrate two different behaviours of our model. In the first
example, the distance between the predicted and the real lo-
cations is significant. In particular, the average distance error
is 375 kilometers. Also, the first example has quite a few in-
teresting toponyms such as Peidmont and Peidmont Valley,
that correspond to the same real location and are predicted
differently by our model. In the second example, the average
distance error is much smaller (i.e., 18 kilometers), probably
due to the presence of toponym co-ocurrence consecutively
(i.e., Fort Magruder, Va.), which can give clues about both
toponym locations.

5 Conclusions and Future Work
This article proposed a novel method using a Transformer-
based pre-trained language model for the toponym resolu-
tion task, by considering multiple textual inputs, produc-
ing multiple outputs for classification and regression tasks.
More specifically, the neural network predicts a probabil-
ity distribution over HEALPix regions, and then uses this
probability distribution to calculate the corresponding geo-
graphical coordinates of the toponym to be disambiguated.
Additionally, we conducted several experiments, including
the use of large versions of pre-trained language models, and
adding geophysical properties retrieved from a raster dataset
to guide the prediction of geographical coordinates.

The proposed method was tested on the WOTR, the
LGL, and the SpatialML. Additionally, we also tested the
model on scientific corpora such as the corpora used in the
SemEval-2019 Task-12 Challenge, and the GeoVirus cor-
pus. The results obtained confirm the superiority of the pro-
posed model over previous methods that produced state-of-
the-art results. The use of the large version of the RoBERTa
pre-trained model produces better results than the non-large
version of the model, even though it introduces a trade-off
between performance and efficiency, given that the large ver-
sion requires major computational resources. The incorpora-



tion of external geographical information into the model had
a generally beneficial impact on the results, even though it
also produced worst results in some experiments.

For future work, we would like to add a term to the cost
function based on a contrastive function. The idea behind it
is to preserve neighborhood relationships between data in-
stances. More specifically, since the training will be done
in mini-batches, the distance between the predicted coordi-
nates among each instance in the batch will be compared
to the distance between the ground-truth coordinates among
each instance in the batch.

Additionally, it would be interesting to explore other tech-
niques to partition the Earth into a set of discrete cells. Some
approaches that were first introduced in the context of image
geolocation that we could possibly analyze are:

• Combinatorial Partitioning: Hongsuck Seo et al.
(2018) proposed an algorithm to tackle the trade-off be-
tween accuracy and overfitting by generating a large
number of fine-grained classes by intersecting multiple
coarse-grained cells, allowing a model to predict loca-
tions at a fine-scale while keeping several training exam-
ples per class.

• Hierarchical Partitioning: An algorithm that exploits
hierarchical knowledge of multiple partitions was pro-
posed by Muller-Budack, Pustu-Iren, and Ewerth (2018).
This approach also uses the S2 library to generate sets of
geoclasses, and applies an adaptive hierarchical subdivi-
sion, where each cell is the node of a quad-tree (i.e., a
tree data structure in which each internal node has ex-
actly four children).

• Using an MvMF Output Layer: Izbicki, Papalexakis,
and Tsotras (2019) introduced a geolocation method that
exploits the Earth’s spherical geometry based on the von
Mises-Fisher (vMF) distribution, which is one of the
standard distributions in the field of directional statistics
and that can be seen as the spherical analog of the Gaus-
sian distribution.
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Table 5: Illustrative examples

I took the main column on the Peidmont. At that point I sent
Captain Hart with 150 men of the First New Jersey Cavalry
to pass through Peidmont Valley and stop at Paris until I ar-
rived. With 100 men of the First Pennsylvania, under Cap-
tain McGregor, and 50 men of the Third Pennsylvania, under
Captain Wetherill, I marched to Markham Station in Manas-
sas Gap. From that point I crossed the mountains by a by-
path, and joined the other parties at Paris at 12 o’clock on
the day of the 18th. The column under Lieutenant Bradbury
lost their way and came into Paris without passing through
Upperville, and captured some horses and arms without see-
ing any of the enemy. The column under Captain Hart passed
through Piedmont Valley, and surprised and captured 15 of
Mosby’s guerrillas and furloughed soldiers, and a quantity of
arms, equipments, and horses. The other column with myself
passed into Manassas Gap to Markham, and furloughed sol-
diers, and a quantity of arms, equipments, horses, and some
medical stores. The latter we destroyed. As we came near
Paris about 40 guerrillas charged on my rear guard. I sent a
squadron and charged, scattering them. No casualties on our
side.

GENERAL: The following dispatch, in cipher, just re-
ceived from General Kilpatrick, dated Fort Magruder, Va.,
March 3, 1864: HEADQUARTERS CAVALRY EXPEDI-
TION, March 3, 1864-9 p. m. Major General A. PLEA-
SONTON, Commanding Cavalry Corps: I have reached Gen-
eral Butler’s lines with my command in good order. HEAD-
QUARTERS CAVALRY CORPS, March 4, 1864. GEN-
ERAL: The following dispatch, in cipher, just received from
General Kilpatrick, dated Fort Magruder, Va., March 3, 1864:
HEADQUARTERS CAVALRY EXPEDITION, March 3,
1864-9 p. m. Major General A. PLEASONTON, Command-
ing Cavalry Corps: I have reached General Butler’s lines with
my command in good order. I have failed to accomplish the
great object of the expedition, but have destroyed the en-
emy’s communications at various points on the Virginia Cen-
tral Railroad; also the canal and mills along the James River,
and much other valuable property. Drove the enemy into and
through his fortifications to the suburbs of Richmond.


