
Fish Behavior Detection through Video Frames and
Trajectories

Gonçalo Filipe Antão Adolfo

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. Alexandre José Malheiro Bernardino
Prof. Helena Sofia Andrade Nunes Pereira Pinto

Examination Committee

Chairperson: Prof. Paolo Romano
Supervisor: Prof. Alexandre José Malheiro Bernardino

Member of the Committee: Prof. Arnaldo Joaquim Castro Abrantes

October 2021

Acknowledgments

The development of this project would not be possible without the key presence of several people, for

which I would like to write some appreciation words. I would like to thank my supervisors Prof. Alexandre

Bernardino and Prof. Sofia Pinto for sharing knowledge and guidance throughout the thesis process,

from its idea to its implementation and improvement. Thank you for sharing your experience and guiding

me to the right path, but also for all the comprehension and patience. I would like to also thank Lisbon

Oceanarium for the interest and trust in this project, and for letting us film videos from the oceanarium

tanks that were key to the development process. A special thank you to Núria Baylina and Hugo Baptista

for letting us know more about aquatic life and for helping us to understand what could be important for

biologists.

Last but not least, thank you to all my family and friends for always encouraging me to achieve all the

dreams that I have in mind. A very special thank to my parents Helena and José, my sister Madalena,

my grandparents António and Belarmina, my godparents José and Carla, and my girlfriend and family

Beatriz, Ana, Nuno, Inês, and Manuela. Thank you for all the support and comprehension throughout

this project.

To each and every one of you – Thank you.

i

Abstract

Detecting automatically fish behaviors can be helpful to monitor fish in tanks, which can save consider-

able time for biologists. In this project, we developed a system capable of detecting abnormal behaviors,

feeding periods, and also interesting moments to be analyzed by biologists. Due to its importance to

Lisbon Oceanarium, we focused on sharks and manta rays. The system relies on video frames, and

fish trajectories which are represented in a features vector format. To detect abnormal behaviors, we

resorted to clustering approaches or a switching vector model, and several classifiers were trained to

detect interesting moments. Additionally, it is possible to define a set of species-specific rules regarding

the extracted features. Feeding periods are detected using a convolutional neural network, or based on

aggregation/motion variability. To evaluate each of the approaches, several metrics are extracted such

as accuracy, precision, and recall.

Keywords

Machine Learning; Behaviors; Computer Vision; Trajectories; Aquatic Species

iii

Resumo

Detectar automaticamente comportamentos de espécies aquáticas pode ser útil para a sua monotorização,

o que pode economizar um tempo considerável para os biólogos. Neste projeto, desenvolvemos um

sistema capaz de detectar comportamentos anormais, perı́odos de alimentação e momentos interes-

santes para serem analisados por biólogos. Devido à sua importância para o Oceanário de Lisboa,

focamo-nos nos tubarões e nas mantas. O sistema baseia-se em imagens de vı́deo e nas trajetórias

dos peixes, que são representadas em um formato de vetor de caracterı́sticas. Para detectar comporta-

mentos anormais, recorremos a abordagens de agrupamento ou um modelo de campos de movimento,

e vários classificadores foram treinados para detectar momentos interessantes. Além disso, é possı́vel

definir um conjunto de regras especı́ficas para as espécies em relação às caracterı́sticas extraı́das.

Os perı́odos de alimentação são detectados usando uma rede neural convolucional, ou com base na

variabilidade de movimento/agregação. Para avaliar cada uma das abordagens, várias métricas são

extraı́das, como a acurácia, precisão e sensibilidade.

Palavras Chave

Aprendizagem; Comportamentos; Visão Computacional; Trajectórias; Espécies Aquáticas

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Project Goals . 4

1.3 Contributions . 5

1.4 Outline . 6

2 Related Work 7

2.1 Detection Tracking and Classification . 9

2.1.1 Previous Projects . 9

2.1.2 Detection . 10

2.1.3 Tracking . 11

2.1.4 Classification . 12

2.2 Activity Recognition . 13

2.3 Abnormal Behavior Detection . 16

2.3.1 Non-Machine Learning Methods . 16

2.3.2 Machine Learning Methods . 17

2.4 Summary and Conclusions . 19

2.4.1 Detection . 19

2.4.2 Tracking . 19

2.4.3 Classification . 19

2.4.4 Behavior Detection . 19

3 Methodology 23

4 Implementation 27

4.1 Library Modules and Integration Architecture . 29

4.2 Trajectories Processing . 32

4.2.1 Pre-processing . 32

4.2.2 Feature Extraction . 36

4.3 Anomaly Detection . 38

vii

4.3.1 Clustering-based . 38

4.3.2 Switching Vector Model . 39

4.4 Interesting Episodes Detection . 41

4.4.1 Machine Learning Models . 41

4.4.2 Rule based . 42

4.4.3 Switching Vector Model Adaptation . 43

4.5 Feeding Period Detection . 43

4.5.1 Convolutional Neural Network . 43

4.5.2 Motion-based Approaches . 44

4.5.3 Aggregation-based Approach . 45

5 Experimental Setup 47

5.1 Datasets . 49

5.1.1 Trajectories vector-format dataset . 50

5.1.2 Feeding datasets . 53

5.2 Experiment A: Anomaly detection DBScan vs KMeans . 53

5.3 Experiment B: Interesting episodes detection . 56

5.4 Experiment C: Feeding Period Detection CNN vs Motion Based methods 58

6 Results 61

6.1 Results of experiment A: Anomaly detection DBScan vs KMeans 63

6.2 Results of experiment B: Interesting episodes detection 65

6.2.1 Machine Learning models . 65

6.2.2 Model by species . 67

6.2.3 Segmentation impact . 69

6.2.4 Vector Switching Model . 70

6.3 Results of experiment C: Feeding Period Detection CNN vs Motion based methods 71

6.3.1 Bottom feeding results . 71

6.3.2 Surface feeding results . 74

6.4 Experiments Summary . 76

7 Conclusion 77

7.1 Future Work . 80

Bibliography 81

viii

List of Figures

1.1 Example of interesting episodes: direction sudden changes 5

1.2 Bottom feeding . 5

1.3 Surface feeding . 5

1.4 Feeding in the different zones of the tank (bottom and surface) 5

3.1 Conceptual flow of behavior detection . 25

4.1 Behavior Detection Module (BDM) packages . 30

4.2 Example of a possible integration architecture . 31

4.3 Interpolation methods comparison . 33

4.4 Interpolation performance . 33

4.5 Filtering application on each position axis . 34

4.6 Filtering illustration: path before and after the filtering process 34

4.7 Trajectory segments using position epsilon=30, speed epsilon=2 and angle epsilon=50 . . 35

4.8 Douglass Peucker results on speed time series using different epsilon values 36

4.9 Example of a trajectory and specified regions . 37

4.10 Regions frequency . 37

4.11 Time series of the normalized bounding box feature . 37

4.12 Velocity time series using a higher calculation period of twelve frames 38

4.13 Exponential moving average using different alpha values 38

4.14 Clustering approach illustration . 39

4.15 Vector fields initialization . 40

4.16 Complete log likelihood along the training iterations . 40

4.17 First field vectors before (left frame) and after training (right frame) 41

4.18 Machine learning model training process . 42

4.19 Highlight moment regarding turning angle feature . 43

4.20 Baseline convolutional neural network for feeding frame classification 44

ix

4.21 Active pixels in a frame during the feeding period and with a region defined 44

4.22 Optical flow result for an example frame . 44

4.23 Frame during feeding and detected fishes . 45

4.24 Output aggregation mesh . 45

5.1 Trajectories duration histogram for sharks . 51

5.2 Regions frequency for manta rays . 51

5.3 Histogram of the correlation matrix values . 52

5.4 Dimensionality variation using different correlation thresholds 52

5.5 Probability density plots for the median of the speed feature 52

5.6 feeding frame . 54

5.7 non-feeding frame . 54

5.8 Example frames for bottom feeding using the Cannon camera 54

5.9 feeding frame . 54

5.10 non-feeding frame . 54

5.11 Example frames for bottom feeding using the gopro camera 54

5.12 feeding frame . 54

5.13 non-feeding frame . 54

5.14 Example frames for surface feeding . 54

6.1 Best DBScan pipeline: normalizer + feature selection + DBScan 63

6.2 Number of detected outliers using different DBScan parameters 64

6.3 Identified outliers using DBScan . 64

6.4 Sequence of frames of the detected outlier . 64

6.5 Cohesion value for different number of clusters . 65

6.6 Clusters distribution using KMeans . 65

6.7 Resulting trajectories from cluster 0 and 2 respectively . 66

6.8 Most characterizing features of cluster 0 . 66

6.9 Precision-Recall curves for the different Machine Learning models 67

6.10 Models performance modeling by species . 68

6.11 Samples by species . 68

6.12 Model performance using segmentation . 69

6.13 Segments class balance . 69

6.14 Active pixels time series for the training video . 72

6.15 Errors timeline using the CNN . 73

6.16 Confusion matrix using the test set and for surface dataset 75

x

List of Tables

2.1 Behavior Detection Summary . 20

4.1 Number of resulting segments using different epsilon values 35

5.1 Information about the videos used for evaluation . 49

5.2 Information of feeding datasets . 53

5.3 Pre-processing methods summary . 55

5.4 Machine learning models summary . 57

5.5 Hyper-parameters description . 59

5.6 Architectural parameters description . 59

6.1 DBScan pipelines’ results . 64

6.2 Tuning and performance summary of Machine Learning models 67

6.3 Area Under the Curve (AUC) values . 68

6.4 Vector swicthing model tuning results (normal trajectories group) 70

6.5 Vector swicthing model tuning results (interesting trajectories group) 70

6.6 Vector swicthing model evaluation results . 70

6.7 Hyper-parameters tuning results for bottom dataset . 72

6.8 Architecture tuning results for bottom dataset . 72

6.9 Bottom feeding test set results . 73

6.10 Hyper-parameters tuning results for surface dataset . 75

6.11 Architecture tuning results for surface dataset . 75

6.12 Experiments evaluation summary . 76

xi

xii

1
Introduction

Contents

1.1 Motivation . 3

1.2 Project Goals . 4

1.3 Contributions . 5

1.4 Outline . 6

1

2

1.1 Motivation

The animal world, namely the aquatic environment, is based on behaviors within and outside of ob-

servable normal patterns. Thus, it is essential to detect and measure these behaviors, in order to help

biologists, both in terms of research and in terms of control and monitoring. This is the essence of

this thesis, incorporated in the context of the Lisbon Oceanarium. Fish behaviors themselves can be

seen with different levels of abstraction. The focus can be to detect something out of the ordinary or

to detect explicitly known activities such as resting, feeding, swimming, among others. The abnormal

behaviors can serve as an alarm for something of interesting to analyze and the known activities can

help to understand fish patterns through the day (or other levels of granularity).

From the set of observable behaviors, feeding behavior is one that stands out. It is considered

especially interesting because of its impact on production costs and water quality. Underfeeding leads

to aggressive behavior while overfeeding leads to food waste (more costs) and the uneaten food/fish

feces interferes with water quality. This activity is usually controlled based on the observer’s experience,

which may be subjective since many factors can contribute to fish appetite: physiological, nutritional,

environmental.

This thesis is fundamental for the work of biologists at the Lisbon Oceanarium, as it helps them to

monitor fishes, preventing in advance certain problems that these species may have in their habitat, pre-

serving the habitat stability. An abnormal behavior can have different meanings: fish disease, problems

in water quality, poor habitat integration, or poor integration with other species. Whatever the cause,

the traditional way to identify these behaviors is based on visual inspection by marine biologists. This is

considered, by many, very time-consuming, dependent on the biologist’s experience and also invasive

due to the biologist presence. A possible alternative would be to resort to technology and install cam-

eras that could record the different environments, for further analysis. In this case, it would be possible

to continuously analyze, instead of having to be analyzed in person in the period of interest. However,

the amount of data produced daily would be huge requiring considerable human effort to process it, in

addition to the storage space needed to store all the produced videos.

Another aspect to consider is the fact that the oceanarium, namely the Lisbon Oceanarium, contains

several tanks with different species. For this reason, biologists cannot be present in all the tanks at the

same time. On the other hand, even with several installed cameras, the amount of information to be

processed would be substantial and incomparable to the rate at which it is generated. This thesis also

reinforces the additional assistance to biologists in solving these problems. Hence, a system capable of

helping biologists to monitor fish behaviors is needed.

Computer science areas, such as computer vision and machine learning, have evolved in recent

years which allows the implementation of a system in a cheap way, without requiring more expensive

technology (e.g. acoustic technology). For this reason, this thesis is motivated by the use of these

3

technologies at the service of the needs of biologists and Lisbon Oceanarium, in order to help monitoring

the aquatic environment. Fish habitat may reflect some challenges, namely: the depth of the tank which

can affect the notion of movement (speed, curvature, etc); species variability, which implies different

abnormality definitions and feeding methodologies; the size of some tanks, such as the main tank of

Lisbon Oceanarium, making it difficult for the camera to cover all its range and consequently limiting the

space in which fish are detected; presence of habitat components such as rocks and fauna, which can

interrupt the fish’s tracking.

1.2 Project Goals

This thesis was implemented in partnership with the Lisbon Oceanarium. In this institution, as in many

others, biologists analyze the behavior of species visually in real time. This causes limitations in terms

of time management and it can be subjective due to the biologist’s experience. For these reasons, the

objective is to develop a system capable of helping biologists, managing to produce a set of key episodes

to be analyzed. This essentially includes three behaviors: abnormal, interesting and feeding.

One of the factors that can influence the definition of interesting moments and what might be abnor-

mal is the species. The variability that exists in the oceanarium causes difficulties because it is possible

that a given criterion is a factor of interest for one species but not for another. As a result, we decided

to focus on sharks and mantas due to the fact that they are considered a focus species for biologists,

and also because they have similarities in these behaviors. Additionally, they are visually distinct from

the others. These species inhabit the main tank, which is the oceanarium’s tank with the largest area,

which further enhances the complexity of the task of analyzing behaviors only using human vision.

Typically, these focus species do not have major changes in their movement. For this reason, the

following criteria can be indicators of an episode of interest: static for a significant time, direction and

speed sudden changes, high speed, too many direction changes, manta rays swimming on the bottom,

and sharks aggregation. Figure 1.1 illustrates examples of interesting episodes: two sharks with sudden

direction and speed changes. An identification of an episode of this nature, by one of these indicators,

should provide an alert enabling the biologist to analyze it in more detail. Within the interesting episodes,

a special behavior was defined as abnormal whose definition is the deviation from normal considering

all the detected samples from a given species. When compared to episodes of interest, an anomaly

is always considered an interesting episode. An anomaly has a more abstract definition, and therefore

has greater episode coverage. The purpose of this behavior is to signal behaviors that are out of the

ordinary, even without having any of the specific criteria of interest. Like the episodes of interest, it is

very useful in terms of monitoring species, but also in terms of discovering more information (research).

Similar to episodes of interest, feeding is also similar in these species. During this period, they tend

4

Figure 1.1: Example of interesting episodes: direction sudden changes

to aggregate in the feeding area, which does not normally happen except during this behavior. The

manta rays do not usually frequent the bottom of the tank, but they are feed in this area through divers

(Figure 1.2). On the other hand, sharks are fed through sticks with food at their tip, closer to the surface

(Figure 1.3).

Finally, in terms of conditions, the system falls within the computer vision field. Several videos of

the main tank were filmed in the Lisbon oceanarium, focusing on these behaviors, and using a camera

placed outside the tank and in a static position. The developed system was implemented and evaluated

using these videos.

Figure 1.2: Bottom feeding Figure 1.3: Surface feeding

Figure 1.4: Feeding in the different zones of the tank (bottom and surface)

1.3 Contributions

In this project, we developed a system capable of detecting feeding periods, abnormal behaviors, and in-

teresting episodes, using a camera that was static and positioned outside of the tank. For each behavior,

we experimented different state-of-the-art methods, adaptions of it, and also new approaches, to move

towards the best possible performance. It is possible to highlight the following points: experimentation of

different clustering algorithms and the utilization of a switching vector model to detect outlier behaviors;

5

train classifiers to be able to identify interesting moments based on trajectory features but also give the

ability to define species-specific rules; train networks to detect feeding frames, but also try to rely on

aggregation and motion variability. In terms of data, we defined a set of datasets along with the project

development: trajectories of sharks and manta rays in the main tank, trajectories in a features vector

format dataset, interesting moments ground truth and feeding frames datasets.

1.4 Outline

This document follows the traditional pipeline: related work study, system development and implemen-

tation approaches, evaluation and experimentations process, and finally achieved results. We start this

document by going through several projects in the same area, or that have goals in common (chapter

2). After that, in chapter 4 we explain what was the followed approach in terms of the developed system,

and also details about its implementation. Chapter 5 defines the different experimentations that were

made, the tuning process regarding those, and the evaluation metrics that were calculated. In chapter

6 the results themselves are exposed and the respective conclusions about these. Finally, we make a

retrospective regarding all the developed work and also present a list of possible future work (chapter

7).

6

2
Related Work

Contents

2.1 Detection Tracking and Classification . 9

2.2 Activity Recognition . 13

2.3 Abnormal Behavior Detection . 16

2.4 Summary and Conclusions . 19

7

8

Modelling trajectories allows the identification of activities and the analysis of behaviors. Over the

years several projects have been developed within the scope of trajectory analysis, and in different

contexts: analysis of tourist activities [11] using semantic information; modeling of pedestrian/car/cyclist

trajectories based on Markov models [2]; methodologies without a concrete domain [12] (clustering

trajectories based on shape); among others.

Our context is aquatic species. The related work in this section is divided as follows:

• modules needed for the acquisition of trajectories: fish detection, tracking for several consecutive

images and classification of the image of the detected fish;

• recognition of activities to assist fish monitoring (feeding, swimming, resting, among others), mainly

to control fish health;

• detection of abnormal behaviors: many of the applications developed are intended to help biolo-

gists, detecting something out of norm.

2.1 Detection Tracking and Classification

2.1.1 Previous Projects

Our project was developed as a follow up of two previous master thesis [6,14]. Castelo et al. [6] explored

the problem of detection, tracking, and classification of aquatic species within the scope of the Lisbon

Oceanarium. Detection used background subtraction methodologies. In this approach, a background

image is estimated by averaging the value of sample images. Subtracting a certain image from the

calculated image allows the identification of motion pixels, and using a given threshold to obtain a binary

image, where the active pixels are the motion pixels. Through this approach, it is possible to label the

regions that are connected, which are considered the regions of the fish detected at that moment. Using

the set of blobs identified in two consecutive images, the association is made through the characteristics

of these regions, both the position of the centroid and the predominant colors.

The detection module is not perfect, so associations can be lost. To try to deal with this problem,

an algorithm (Kalman Filter) is used to predict the next positions of a given fish and a heat map is

calculated around the estimated position. If there is a region with a similar area and similar colors, it is

considered the region of the fish in question, although it has not been detected as a movement zone. In

this project, the method used to classify depends on the environment. In the case of the coral tank, the

class associated with a given fish is given by the one with the most overlap between color histograms.

On the other scenario, in the main tank, since the fish have very similar colors to the background color,

the histogram of oriented gradients (HOG) was chosen: θ(x, y) = arctan(
Gy(x,y)
Gx(x,y)) where Gx and Gy

9

are the image gradients for each dimension. Several linear regressions are used to reconstruct the

histogram and the class associated with the model weights that best reconstruct is the one assigned.

Santos et al. [14] aimed at improving tracking. The idea was mainly adding robustness to tracking

problems resorting to: color history, temporary tracks and motion prediction. When two distinct fish

regions overlap, their histogram get corrupted. To overcome this problem, the color histogram takes into

account the color histogram from several previous frames and not only from the last one. The temporary

track concept defines that a new track is marked initially as temporary, and when it remains for 5 frames

then it turns into permanent. This concept allows to not propagate noise tracks, related for example from

the division of some fish region into two different regions. Finally, a Kalman Filter is also used to predict

future positions of a given fish, and the predicted position is the one used for the position similarity

calculation. This can be useful in scenarios where the true track starts following another fish or when

there are miss detections.

2.1.2 Detection

In the [10, 18, 19, 21] approaches, background subtraction methods are used. However, an application

in [10] allows the user to choose the highest contrast color plane, according to the Red-Green-Blue

(RGB) color plane, instead of using the gray-scale image. Additionally, the background image is only

updated every 100 seconds. The methods in [19, 21] use the Multi-Scale Retinex contrast enhance-

ment algorithm before background subtraction is applied. This algorithm enhances the contrast be-

tween regions of the image: the original image passes through a Single Scale Retinex: SSR(x, y) =

log(I(x, y)) − log(G(x, y, α) ~ I(x, y)) where I is the original image and G a 2D Gaussian filter with

α scale, ~ represents the convolution operation. Multi-Scale Retinex is defined as the application of

several SSR’s with different scales in the Gaussian filter. The work described in [18] also defines a

methodology, an alternative to background subtraction methods, based on Optical Flow, since the focus

of this paper is not the detection of fish regions, but the analysis of the school itself. A particle grid

is placed over the image and between consecutive images, its movement is estimated. The detected

movements are assumed to be the movements of the fish. Although this method is not subject to prob-

lems such as changes in luminosity, which have an impact on the background and consequently on the

obtained motion regions, it presents greater temporal complexity for motion estimation and is also not

resilient to problems such as small movements of background objects.

In [15] and [1], two different approaches are used to detect fish present in a given image. The

first uses a Gaussian Mixture Model while the second uses a YOLO network. The idea behind the first

method is to model the intensity of each pixel by a set of Gaussians, and the training works as follows: for

a new pixel value, the parameters (average, standard deviation, and associated weight) of the Gaussian

that best represent its intensity are updated. Given a new image and the set of Gaussians for each pixel,

10

all pixels in the new image are classified as being part of the background or not. The advantage of this

approach is the ability to model small movements of background objects.

The other method (YOLO) is part of the recent field of convolutional neural networks. Despite being

applied in several domains, they are specially useful to model structure. In an R-CNN network, it is used

a process called Selective Search: several bounding boxes (of different sizes) are placed over the image

domain and are grouped according to similar characteristics, of adjacent bounding boxes, generating a

set of proposed regions that are passed as input to another convolutional neural network (CNN). The

YOLO algorithm achieves better training and classification times: it starts by dividing the image into a

grid of SxS regions and m bounding boxes are generated in each region; for each bounding box, the

network returns as output the probability of belonging to each class and only those with a value greater

than x are considered to locate the object. In this sense, with the YOLO algorithm, a single CNN is used

to predict bounding boxes and calculate their respective probabilities. The use of this algorithm is more

resilient to common problems such as changes in the background and occlusion of fish, but it does not

return the fish mask, only its bounding box. However, in general, it presents better detection results

since it is more robust.

2.1.3 Tracking

Regarding tracking on consecutive images, [1] uses an approach based only on distance while [15] uses

the Adaptive Mean Shift algorithm. In the first approach, given a new f+1 image, it checks if there is any

close detection in the previous image f . If so, the same identification is associated, otherwise, a new

identification is associated. With the AMS approach, the idea is to move the region of interest (in this

case of a certain fish) in the direction of the highest density area until it converges. For this, the binary

image of the current instant and the region of interest detected in the previous image is used. With this,

the centroid of the zone is calculated given the binary image, the zone is moved towards the centroid,

and this is repeated until the successively obtained centroids converge. Finally, it is verified in which

blob the final centroid is inserted and the same identification is given. Both approaches do not correct

occlusion problems. However, using an image such as the histogram back-projection image makes the

second method more robust to this type of problem.

The project described in [7] proposes the innovative idea of identifying and tracking sharks based only

on the characteristics of their dorsal fine as if it were a fingerprint. Two convolutional networks (CNN’s)

are used: one that detects sharks present in a given image and the second that detects the region of

the shark’s dorsal fine, given its bounding box. In order to not take into account the background pixels

of the fine region, a K-Means algorithm is applied. The edge of the dorsal fine that presents greater

disturbances is the edge that best identifies the shark. To obtain it, first, it extracts the triangle that best

characterizes the fine contour and the midpoint (of each edge) that is farthest from the real contour is the

11

point belonging to the edge of interest. Then, k key points are identified on this edge of the fine contour

and they will be defined as the boundary descriptor. These are the points where there are the biggest

disturbances (salient locations) given by: p(ui) = D(ui,m, σ)−D(ui+1,m, σ) where u is a contour point

and D a corner response function being m the multiplication factor and σ the standard deviation of a

Gaussian filter. Since each shark is defined by a vector of K points, these are first normalized to be

invariant in scale and orientation and passed to an algorithm based on graphs, given two sets: one from

the sharks detected in the current frame and another from the previous frame (or even other images). A

connected full graph is built, and the weights between nodes are given by the Euclidean distance. Finally,

a minimum-weight perfect matching algorithm is applied to obtain the matches. Under this approach, it

is important to highlight the need to use high resolution images, which may be difficult to achieve.

2.1.4 Classification

Research described in [8,13,15] also address classification. In [15], each fish is represented by a vector

of texture and shape features. Regarding texture, statistics of the gray histogram and the co-occurrence

matrix are extracted: contrast, energy, correlation, among others. The shape is defined by the histogram

(with 30 cells) of the discrete Fourier transform (DFT) on the contour points and the first 20 local minimum

of the Curvature Scale Space (CSS) image. The set of example feature vectors is passed to a Principal

Component Analysis (PCA) algorithm, which allows reducing the dimensionality by projecting the points

on the axes of greater variance. The vectors, of reduced dimensionality, are finally passed as input to a

linear discriminant.

The project [8] uses the size of the fish together with the size of the different fines: anal, caudal,

dorsal, pelvic, and pectoral. A Support Vector Machine (SVM) is used, because it is more robust than a

linear discriminant since it calculates the hyperplane that best separates the different classes, with the

optimal margin. The real estimation of the size of the fines can be a challenge, but it can be done through

semantic segmentation (Mask Neural Networks), as described in [16]. Finally, [13] uses deep learning

for classification between different species. A convolutional neural network (CNN) is trained using a very

large dataset of sample images for several species. This type of methodology has the disadvantage

of needing a lot of examples, given the high number of parameters. The described method has the

particularity of receiving as input the binary image of the fish concatenated with the 3 Red-Green-Blue

(RGB) planes. This is calculated by applying the OSTU algorithm [9] to the gray image, to discover the

threshold that better divides the intensities present in the fish image (less intraclass variance and greater

interclass variance). To enhance the fish region, morphological operations are also applied (opening and

closing). The results obtained with deep learning were better when compared to previous approaches,

according to the accuracy obtained in test sets.

12

2.2 Activity Recognition

Papadakis et al. [10] developed a system capable of monitoring a set of fish tanks simultaneously. The

project aimed to observe fish behaviors in the following environment: a net was placed in each tank to

separate its area into two zones, and all fish were placed in only one of the regions. The tanks had

different fish densities and the net in different states. The focus behaviors were inspection and biting.

The inspection activity is detected when at least one fish approaches sufficiently the net and it is

counted by the number of images in which it occurs. The midpoint of the network is manually marked

as a reference point by the user. For each image, the horizontal distance between the center of mass of

each fish and the reference point is calculated. Other statistical metrics are also extracted (to analyze

certain correlations with the activities): center of mass of the school, an average of the horizontal/vertical

distance, and average velocity. With this approach, it was possible to take conclusions, about inspection

and biting, in different environmental conditions. Despite being defined in the article, it is not explicit how

to detect the biting activity.

The approaches in [5,17] used an accelerometer on each fish of interest, and certain activities were

detected based on the collected values. Broell et al [5] (2013) focused on detecting the following set of

activities: swimming, feeding, and escaping. They proposed a signal processing system based on the

analysis of time series features, related to the acceleration in each dimension. Multiple features were

calculated, based on example data for the different behaviors, in several domains: frequency (spectral

and wavelet analysis), probability (mean, maximum, variance), and time (autocorrelation, integrals, and

derivatives). The idea was to identify which features could have identical values within the same activity

but different between different activities. They managed to conclude the following:

• magnitude of acceleration MA =
√
x2 + y2 + z2 standard deviation was the most efficient feature

to distinguish the swimming activity from the others, presenting significantly lower values during

this activity;

• the distinction between feeding and escaping activities achieved better results using 6 features:

4 of them are associated with the comparison of values between x and y dimensions (standard

deviation, maximum value, acceleration range, and root mean square) and the remaining 2 are

correlation values (autocorrelation of the acceleration norm, and spearman correlation between x

and y dimensions).

In short, this method has a total of 7 parameters: a threshold for each of the mentioned features.

These values were estimated in a different set from those used for analysis and in a brute force way:

go through a set of values and check which ones presented the best division between activities. The

precision of the division is associated with the weight of that feature for the final decision, which can

be interpreted as a confidence value in the parameter in question. With the first parameter, the signal

13

processing method first identifies ”fast start” events (feeding and escaping). It is used a sliding window

covering each 1 second period of the acceleration norm, and the standard deviation is calculated. When

the condition is verified, then the remaining parameters are used to distinguish between feeding and

escaping. Finally, in this project, the impact of frequency was also studied, that allowed to conclude that

lower frequencies give worse results. However, in certain scenarios, it can be advantageous in terms of

energy costs. It is a context-dependent tradeoff.

Zhang et al. [17](2019) solves a similar problem but focuses on activities related to sharks: swimming,

resting, feeding, and non-deterministic movement. Similarly to the previous method, it uses time series

of the value of the overall dynamic body acceleration (ODBA), calculated by adding the absolute value

of the acceleration in each of the dimensions. Given a set of example time series for each activity (2-

second segments), three different models of deep learning are trained, more specifically convolutional

neural networks:

• Shark VGG1: two convolution layers followed by a max-pooling, repeated 2x and always using

twice the filters of the previous convolutions. After feature extraction layers, the output is full con-

nected to a layer with 1000 neurons which in turn is full connected to a layer with 100 neurons.

Finally, the last hidden layer is connected to an output layer, with a softmax activation function, and

four neurons, which is the number of activities that are intended to be detected;

• SharkVGG2: the previous model uses 1x5 kernels. In this version, the same layers are used for

feature extraction but with different kernel sizes (1x3, 1x5, 1x7). The output, the this three kernels,

is concatenated and passed as input to the first hidden layer. In other words, the layers related to

feature extraction are applied with different kernels “in parallel”.

• SharkInception: uses the concept of inception. In this case, the feature extraction layers are not

replicated “in parallel” but in each convolution block, before being passed to the max-pooling layer.

The application of several kernels allows processing at different levels of detail in parallel. The results

shown in the article demonstrate that all networks went into overfitting since the accuracy obtained in the

train set was much higher than the one obtained in the test set. It should also be noted that approaches

based on this type of sensors are considered invasive by certain specialists and that are easily lost from

the animal, causing additional economic costs.

Zhou et al. developed several projects [19–21] within the scope of the feeding activity. Initially, in [21],

the goal was to detect the feeding activity through the analysis of the level of aggregation of the school,

since it is usually higher during this period. This measure is described using a value called Flocking

Index of Fish Feeding Behavior (FIFFB). For its calculation, fish are first detected in a given image, and

their center of mass is calculated. Given the set of centroids, the Delaunay Triangulation algorithm is

14

applied to originate a set of triangles that interconnect the points. This algorithm allows obtaining the

triangles that maximize the minimum angle of all triangles. It is defined by the following points:

1. a point p1 is selected randomly from the set of points not covered yet;

2. the first edge is formed with the closest point p2;

3. the third chosen point is the point that forms the circumference with the smallest radius and that

satisfies the Delaunay rule: no point can be within circumferences formed by other triangles.

With the obtained triangles, the FIFFB value is described by adding the perimeter of all triangles

((2.1) where n is the total number of triangles and L the length of each side). The lower this value,

the greater the level of aggregation. The analysis of the value of this index also makes it possible to

indirectly conclude the level of appetite: the longer the fish take to return to their “normal” aggregation

level, the longer the feeding period and in turn the greater the appetite.

FIFFB =

∑n
i (L1i + L2i + L3i)

n
(2.1)

The idea of this approach possibly works best in scenarios where the species in question are not

usually aggregated, so the difference is greater during the feeding period. In [19], one more index is

used: Snatch Intensity of Fish Feeding Behavior (SIFFB). In this method, it is argued that fish usually

eat close to the surface, and during the feeding period, the surface texture changes substantially due to

the intensive movements of the fish. The texture is represented by the gray level co-occurrence matrix

(GLCM). This matrix is a p×pmatrix where p is the number of possible intensity values. For each position

(i, j), the corresponding value defines how many times these values occur together given an offset in

terms of x and y. The SIFFB index value is defined as the contrast value which is higher during the

feeding period. It is given by:
∑p
i

∑p
j (i − j)2P (i, j) where i and j are intensity values and P the GLCM.

In this article, it is also proposed a methodology, based on a model that combines a fuzzy inference

system and a neuronal network, to identify when the feeding should be stopped. The input of this model

is the two described indexes and the output is a binary value: to stop or not.

Finally, in article [20], an innovative idea is described to identify the appetite of the fish present in a

given image. A convolutional neural network (CNN) is trained based on several images at different levels

of appetite. The dataset was increased using transformations of rotation, scale, and translation once

large amount of data is needed to achieve good performance. The idea in this approach is that the model

itself learns image patterns associated with each level of hunger. The network architecture consists of

two series of convolution layers (using 5x5 kernels) and max-pooling (using 2x2 kernels), followed by two

hidden layers (with 120 and 84 neurons respectively), and an output layer with 4 neurons representative

of the various hunger intensities. This approach may have worse performance when several species are

15

detected by the camera, in environments considered more complex. Additionally, the measurement of

appetite itself can be considered subjective, from specialist to specialist.

2.3 Abnormal Behavior Detection

2.3.1 Non-Machine Learning Methods

Beyan et al. [3] proposed a method to filter a set of trajectories considered normal from a total set of

trajectories. This mechanism is based on the application of several rules that characterize normality.

They are applied in the form of a cascade: the total set of trajectories is passed as an entry to the first

rule, which in turn filters out a certain part (according to that rule) and the rest are passed as an entry to

the next. Trajectories that are not filtered by any of the rules are considered abnormal.

The fish, when caught by the camera’s ray of vision, do not have many changes in direction. This is

the basic idea of the proposed rules. It is argued that usually there are no more than three changes be-

tween primitive movements: horizontal movement, vertical movement, and stationary movement. Each

of the rules models the possible set of moves giving a total of 3 + (3 × 2) + (3 × 2 × 2) = 21 rules.

Each filter, and for each of the primitive movements, is also associated with the concept of ”search area”

(calculated by analyzing example trajectories). The trajectory must satisfy the following conditions:

• all the centroids of the bounding boxes of the fish, during a certain movement, must be within a

certain area (”search area”);

• the centroid in a given frame f must be within an area given the position detected in frame f − 1.

The results illustrate that this approach has a low false-positive rate. However, most of the trajectories

did not pass any rule, giving a high rate of false negatives. That said, the approach has not shown good

results when it comes to detecting abnormal trajectories but it can work as a preliminary method for

another approach.

The method defined in [18] aim at detecting special events in schools, instead of focusing on certain

fish individually. The underlying idea is that the fish in a school does not disperse much in terms of

movement. The proposed kinetic energy model, according to physics, represents the energy that a

given object presents given its movements. It combines two measures of the dispersion regarding the

motion vectors, the velocity and the direction angle: Ekn = (D+100)2× (−E) where D is the dispersion

regarding the motion vectors and E the dispersion concerning velocity in relation to turning angle. Given

several example images, a threshold is estimated for each measure: dispersion of movement, dispersion

of velocity/angle, and energy value. When these conditions are met for n consecutive images, an alarm

is given.

16

The features of the school are modeled by two histograms: a 2D histogram of the motion vectors

(in x and y), and a 2D histogram of the velocity concerning the direction angle. These are normalized

and the entropy value is extracted: E = −
∑m1

i

∑m2

j pxy(i, j) log2(pxy(i, j)) where pxy is the probability

in a given cell, m1 and m2 are the number of bins for each feature. This measure is associated as a

measure of uncertainty/chaos. The higher the entropy value, the more dispersed the movement features

of the school fish are, indicating something special. This approach, as it uses background subtraction

methodologies to detect fish, is very sensitive to occlusions and unions of different fish regions. For this

reason, it also proposes a method based on Optical Flow, as explained in the previous section.

2.3.2 Machine Learning Methods

The task of detecting trajectories related to something abnormal can also be seen as a problem of

outlier detection or even a classification problem. In [15], a clustering algorithm (IKMeans) is applied

over the entire set of trajectories and the clusters with few samples are considered to be trajectories of

interest (when compared to the total number). This algorithm is applied to each set of trajectories of

each species since different species have different motion patterns.

Trajectories can contain a large number of points, not all of which are needed to describe it correctly,

which can lead to a long processing time. To try to solve this problem, before being used as input to

the clustering algorithm, they are pre-processed with the Douglass-Peucker algorithm. On this step, the

goal is to remove points from the trajectory that have no impact on its original form. This is done by

recursively dividing the trajectory. It consists of the following steps:

1. mark the first and the last point as ”to keep”;

2. obtain the furthest point from the line segment AB, with A initially being the starting point of the

trajectory and B being the last point;

3. if the distance is greater than ε then that point is marked as ”to keep” and the algorithm returns to

step 2 but with the line segments A-FurthestPoint and FurthestPoint-B. Otherwise, all points in the

middle are discarded.

The IKMeans clustering algorithm itself also tries to deal with this issue. It takes advantage of the

Haar Wavelet decomposition, which allows representing a time series of the trajectory in lower res-

olutions, preserving the original information/form. The idea of the IKMeans algorithm is to apply the

traditional KMeans algorithm in the set of time series of the trajectories at increasing levels of detail.

This approach usually converges soon at low levels of resolution. However, even if that does not hap-

pen, the centroids of one level will be the centroids of the next level, allowing them to converge more

quickly in the next level. Overall, better results are achieved in terms of clusters’ quality and processing

time than the traditional algorithm.

17

The method described in [4] requires a clustering algorithm to train a hierarchical classifier. The

points at a given level of the tree are obtained as follows:

1. feature extraction (subset) and Principal Component Analysis (PCA) application;

2. clustering and outlier detection;

3. feature selection: increase features subset;

4. return to step 1.

Despite being a model whose training is based on clustering, the example trajectories must have

an associated class. The previous points are repeated until eventually, the accuracy goes down with

the increase of features space. When this happens, the clusters obtained that are pure (only normal

trajectories or only abnormal trajectories) are maintained at this level. The trajectories belonging to the

remaining clusters are used to estimate the clusters of the next level of the tree, thus the steps mentioned

are repeated but with different input. In this way, each level of the tree will have a set of associated pure

clusters and considers different subsets of features. Given this tree the classification is made as follows:

1. for each level, the closest cluster to the new trajectory is obtained (given its feature vector for the

level in question);

2. it is verified to which class each of the closest clusters are associated;

3. the new trajectory is classified as normal if there is a pure cluster of normal trajectories as the

closest cluster (in at least 1 of the levels).

The [1] approach also trains and evaluates various classifiers to classify trajectories as normal or

abnormal. However, what is passed as input in this method is an image with all the trajectories of the fish

detected in a 10s window. Several models were evaluated, namely: Naive Bayes, K-Nearest Neighbors,

Linear Regression, and a Random Forest. Within the models described, the Naive Bayes probability

model was the one that achieved better results. Since the input of these models is the image itself, the

usage of deep learning was expected. However, the decision must have been derived from the reduced

set of example data. Both approaches obtained similar values in terms of evaluation despite the [4]

method being tested on more robust datasets, including datasets from other domains. Additionally, it

takes into account that the trajectories may not be perfect: an interpolation is applied to derive certain

missing points. The other approaches do not take this problem into account, as well as the fact that

abnormal events can be quite fast. In this case, in longer trajectories, these events can be canceled by

the normality of the remaining segments.

18

2.4 Summary and Conclusions

2.4.1 Detection

Background subtraction methodologies can be simpler to implement. However, they are very sensitive to

environmental changes. Gaussian mixture models can deal with small background movements once it

can model different pixel intensities. Finally, Convolutional Neural Networks are the most robust method

to this problem but they need a huge amount of data to achieve good performance.

2.4.2 Tracking

The base approach for tracking is position-based. This can be very sensitive to occlusions derived from

fish crossing movements. More features can be used to make this module more robust namely: color,

shape, and texture. Motion prediction can also be useful to recover from missing detection or occlusions

during a few frames. In situations where the actual prediction and full track are not important, optical

flow can be a good choice to have an idea of the general movement (for example using a particle grid).

The choice of methods and additional features should come from the analysis of the trade-off between

the needed robustness and the temporal requirements of the system in question.

2.4.3 Classification

The classification aims to associate a species label for a given detection. This usually uses Machine

Learning models. For this purpose, for each detection, a set of features can be extracted such as: color,

shape and texture. Each detection can be represented as a feature vector and a model can be trained

to model each species. Another alternative is to incorporate the feature extraction phase into the model

itself, and opt for models from the convolutional neural network family. Typically, these can get better

performance but require more data.

2.4.4 Behavior Detection

Table 2.1 defines a summary for the behavior related projects. From that, the following limitations are

concluded:

• the rule-based approach [3] gave a substantial amount of false abnormal behaviors due to the

rules coverage and the different species taken into account;

• in [18], there is the disadvantage of focusing on shoal behavior instead of fish individually;

19

• clustering approaches [4,15] are applied considering all data points of the trajectory, so the interval

related to the abnormal behavior can not be gathered. Additionally, the normality of the most part

of the trajectory can cancel some fast-start abnormal event;

• projects that used sensors [5, 17] are considered invasive and these are easily lost causing more

costs.

Approach Behaviors Limitations
Motion rule-based [3] Normal/Abnormal Lots of false abnormal behaviors
Kinetic energy
(velocity + turning angle) [18] Normal/Abnormal Shoal based

Clustering and outlier detection [4,15] Normal/Abnormal Performed on all trajectory
Reference Zones [10] Inspecting/Biting Image plane (2D)

Accelerometer data [5,17] Swimming/Resting/
Feeding/Abnormal Sensor costs, invasive, easily lost

Flocking and Snatching Index [19,21] Feeding Species must have a flocking behavior
during the feeding period

Table 2.1: Behavior Detection Summary

This thesis tries to overcome some of the limitations mentioned, starting with the environment itself.

No sensors of any kind are placed under the fish in question, but only a camera that is placed outside

the tank and in a static position is used, which makes it difficult for this equipment to be lost, not causing

additional costs. Through this, and as investigated in the previous thesis [6, 14], it is possible to detect

fish in a given image (detection) and follow them along consecutive images (tracking), forming a set of

trajectories, defined as a sequence of positions. From these, and as performed in [15], a set of features

related to the movement of each fish are calculated, namely: velocity, acceleration, curvature, angle of

movement, frequented regions, dispersion of the trajectory, among others. This makes it possible to

represent a trajectory under a feature vector.

Unlike in [18], we focus on each individual fish. Each fish is essentially characterized by its trajectory

and, consequently, by the features of its movement. From this information, and taking into account

apriori episodes marked as interesting, several models were trained in order to try to characterize each

trajectory as being or not interesting to be analyzed. As these episodes are characterized as being

episodes of short duration, and the abnormality can be mitigated by the normality in the generality

of the movement, we tried to segment each trajectory into different partitions, and consider each of

these partitions as an independent trajectory. In addition to using models, the user is also free to define

concrete rules, using these same extracted features. For example, as manta rays do not usually frequent

the bottom of the tank, it would be useful to define a rule for when this event occurs.

As explained initially, in this thesis we distinguish the concept of interesting from abnormal. To detect

behaviors of this nature, we follow the logic explained in [4], which uses clustering methods to detect

20

groups of trajectories. In this thesis, instead of using only spatial position information, trajectories are

also grouped based on movement characteristics. Thus, trajectories whose movement deviates from the

normal pattern are characterized as abnormal. For this same goal, we also tried to explore the use of a

Switching Vector Model, as used in [2] in the context of modeling the trajectories of people and vehicles,

but in our context of fish trajectories. This method, as the name implies, focuses essentially on modeling

a set of trajectories through various motion fields.

Last but not least, approaches to feeding behavior go against the explanation of the behavior of

sharks and manta rays during this behavior, which reflects a moment of aggregation and greater move-

ment. In addition to having implemented the method described in [19, 21] using the aggregation index,

two other methodologies were experimented, trying to remove the dependence from the fish detections.

The first is related to the difference in terms of movement: the level of movement is measured using

image subtraction methodologies or through the Optical Flow method, and through the definition of a

threshold, the beginning and end of the feeding period is detected. On the other hand, we experimented

more recent methods such as convolutional neural networks so that the image itself is passed as input

and classified as being from the feeding period or not.

21

22

3
Methodology

23

24

The proposed solution followed the previously developed projects in the Lisbon Oceanarium domain.

Castelo et al. [6] explored the detection, tracking, and classification of fishes in a tank, while Santos

et al. [14] experimented several detection approaches and improved the tracking algorithm. With these

projects, we can detect fishes in a given image, and also follow them through consecutive frames.

Given a set of trajectories, which are the output of the tracking module, we can now try to understand

something related to fish behavior. However, feeding behavior approaches do not rely on trajectories

nor detection. They receive directly the frames as input and are based on image patterns or motion

variability, so the capabilities of these modules (detection and tracking) can be avoided to detect this

behavior. As defined previously, the goal of this project is to detect a set of behaviors: anomalies,

feeding periods, and interesting episodes. For this project, anomalies and interesting moments rely

on trajectories data because their approaches depend on the features that are extracted from those.

However, to detect feeding periods we only rely on the images of the video, it is not necessary to know

the fishes that are present on each frame. Figure 3.1 illustrates the bridge between the previous works

and the current goal of detecting fish behaviors. In this figure, we can verify the described inputs and

outputs of each of the blocks. Similar to the previous projects, this system requires that the camera stays

at a static position, mainly because of the trajectory definition which is characterized by a sequence of

2D positions. Additionally, even though feeding approaches do not need trajectories, they are tuned for

a given camera position.

Figure 3.1: Conceptual flow of behavior detection

25

26

4
Implementation

Contents

4.1 Library Modules and Integration Architecture . 29

4.2 Trajectories Processing . 32

4.3 Anomaly Detection . 38

4.4 Interesting Episodes Detection . 41

4.5 Feeding Period Detection . 43

27

28

In this section, the implementation of the developed system is explained. Initially, an overview is given

about the methodology used and a notion from an architectural point of view, and then we drill-down for

each of the necessary modules. In each of these, in addition to the point of view of its usefulness, its

implementation and the reasoning behind each of the methods is also deepened.

4.1 Library Modules and Integration Architecture

The Behavior Detection Module (BDM) is a library that was developed with the goal of providing a set

of approaches to handle the fish behavior detection task. As explained before, we are interested mainly

in some pre-defined behaviors: anomalies and interesting episodes, feeding period. Figure 4.1

illustrates the several packages that constitute this module, where we can see the different approaches

and features that can be used for each behavior. The different behaviors were divided into different

packages. The remaining packages implement complementary functionalities that are used for the

behavior detection task:

• trajectory reader: to read trajectories from a file, and parse to a suitable format;

• pre-processing: to fill possible gaps that may exist on the trajectory, to smooth the trajectory path,

and to segment it on different partitions;

• trajectory features: to extract features from the trajectory, such as speed, turning angle, etc...

• labeling: to help on ground truth definition, including information such as species, interesting

episodes, regions.

These capabilities are not directly related with the behavior itself but are preliminary needed to the

behavior detection task. Trajectory interpolation can be especially important when the algorithm is im-

pacted by missing detection. Additionally, trajectories can also have some noise due to the bounding

box noise caused by the fish’s change of orientation, so we may need to smooth its path to have more

reliable feature values. Trajectory segmentation did not have such an important role as the packages

described before but was used to the impact of classifying individually the different partitions of the tra-

jectory instead of the trajectory as a whole. Finally, almost all the behavior approaches depend on the

features that are extracted from the trajectory, as we can state from the package diagram (Figure 4.1),

and this is achieved by the trajectories features package. From this diagram, we can also visualize the

different approaches to detect each behavior:

• anomaly detection: clustering-based, and switching vector model;

• interesting episodes: trajectory classification, rule-based, and also switching vector model;

29

• feeding: aggregation-based, motion-based (active pixels identification, and optical flow), and con-

volutional neural network (CNN);

• swallowing air: position-based.

Anomalies can be defined as something that escapes from the normal state. To detect something

of this nature, we can group all the samples and verify which of the groups represent outliers (clustering-

based) as in [15], or model the set of trajectories considered as normal and be able to verify how

well a new trajectory can be described by this model (switching vector model [2]). On the interesting

episode’s side, these can be described by a given set of specific criteria, as opposite to outliers. We

can either classify each trajectory or trajectory segment as being interesting or not based on machine

learning models, declare a set of rules based on its features as in [3], or use an adaption of the switching

vector model. For the feeding behavior, we also have several approaches: based on the aggregation

of the several detected fishes as previously done in works [19, 21], based on the motion variance, or

using a convolutional neural network similar to what was done in projects [5,17].

Figure 4.1: Behavior Detection Module (BDM) packages

As described previously and as we can state from the package diagram, the main goal of this library

is to be able to detect fish behaviors, so this can be integrated into a given system. Figure 4.2 illustrates

30

a possible architecture where this software development kit (SDK) could be incorporated. We can see it

highlighted in red on the worker nodes. The general flow of this system can be described by the following

points:

1. frames are captured from a given tank of fishes;

2. from time to time, a server will receive a portion of frames. It will be stored on the file system and

sent to a worker node;

3. this worker node will apply all the logic regarding behaviors and retrieve all the information relative

to those, and these will be sent back to the server;

4. the results are stored on some kind of structure.

Finally, and most importantly, we have the end-users (biologists) at the edges of the system. These

will have the ability to analyze all the results and take all the necessary conclusions through the use of

an application (it could be a mobile, web, or even desktop application).

Figure 4.2: Example of a possible integration architecture

31

4.2 Trajectories Processing

4.2.1 Pre-processing

Trajectories are not perfect. Detection and tracking algorithms can also have errors. It is possible to miss

the detection of some fish in a given instant, and it is also possible to fail its tracking especially if the

fishes are very aggregated. In the pre-processing phase we try to overcome some of these problems

by applying interpolation to fill possible gaps in the trajectory, and also exponential filtering to reduce the

noise of the path due to the different fish angles and bounding box identification. Additionally, it is also

possible to segment the trajectory into different partitions.

Interpolation

An interpolation was the applied solution to fill the gaps that a trajectory may have. Two types of inter-

polation were implemented: linear as used in work [4], and also newton. This is applied for both axes

independently: x position and y position.

Linear interpolation assumes that the speed during the missing period is constant. The value for one

axis (x or y) for a given instant t can be calculated as

y(t) = y0 + (t− t0)
y1 − y0

t1 − t0
,

where t0, t1 are the timestamps of the gap edges positions, and y0, y1 are the position values (x or y)

for those points. On the other hand, newton interpolation takes more points into account (interpolation

points). Using k+1 interpolation points, defining a polynomial of degree k, the value for an instant t can

be calculated as

N(t) =

k∑
j=0

ajnj(t),

where aj is the jth coefficient and nj is the newton basis function. In the newton interpolation ap-

proach, there are two different ways of choosing the interpolation points:

• equidistant points among the position time series;

• nearest points to the gap edges.

Figure 4.3 illustrates an example of the application of the different methods of interpolation. The

generated synthetic gap is surrounded by red dots. We can verify how each of the approaches predicts

the missing position points. As expected, the newton interpolation takes more into account than the two

edge points, since the coefficients are calculated with Newton’s divided differences, so the predicted

32

line is not straight. The downside of this polynomial is the Runge’s phenomenon which can be slightly

attenuated using the nearest points of the gap as interpolation points.

Figure 4.3: Interpolation methods comparison

To have an idea of the best interpolation approach on our domain, synthetic gaps were generated and

predicted using each of the methods, and the mean square error was calculated. Figure 4.4 illustrates

the results for this experiment. Overall, a simple linear interpolation gave better results which can be

explained by the linear motion of the focus species. Newton interpolation using the nearest points

as interpolation points also obtained similar values, although these points can reflect a wrong trend

sometimes that can lead to a higher error.

Figure 4.4: Interpolation performance

Filtering

The trajectory points can have noise due to instability on the detection task. Most of the time, the points

are characterized by the center of the bounding box detection and this can be noisy because of the image

plane and fish aspect ratio changes. One of the possible solutions is the application of moving average

33

techniques to smooth the position time series. The exponential moving average was the chosen filter,

so closer data points can have a higher impact. The new value for a given instant t can be calculated as

y(t) =

N∑
i

wiyt+i,

where N is the window size, and wi is the weight of the point at distance i. This filter also depends

on the definition of a α value which determines how the weights are attenuated among the window.

Figure 4.5 illustrates the difference for each axis before and after the application of the exponential

filter. Additionally, Figure 4.6 also complement this problem in a trajectory path visualization. The left

frame in the figure draws the trajectory using the original positions. On the other side, the right frame

draws the trajectory after applying the exponential moving average filter through the x-axis and y-axis

positions. The trajectory after the filtering process is significantly more smooth, which will reflect also on

the feature extraction phase, and consequently in the following behavior detection processes.

Figure 4.5: Filtering application on each position axis

Figure 4.6: Filtering illustration: path before and after the filtering process

34

Segmentation

In the context of our domain, trajectory segmentation was a block that was essentially used as pre-

processing to identify interesting episodes, so the different partitions could be classified instead of

the whole trajectory. However, it can be very useful simply to divide the trajectory into smaller analysis

pieces. It is derived from the application of the Douglass Peucker algorithm regarding the position,

speed, and angle time series of a given trajectory. Figure 4.7 illustrates a frame with the different

trajectory segments drawn with a different color, resulting from the trajectory segmentation. Using this

method, we probably won’t cut the trajectory in the middle of some important moment. However, it

is possible to verify that some of the segments have few points but this could be avoided by ignoring

segments with small duration.

The epsilon parameter has to be tuned according to the data that is being used to implement these

algorithms. This highly depends on the environment and the camera position/angle which will affect tra-

jectories. Figure 4.8 shows different speed time series applying several epsilon values. As expected, a

higher value will only trigger very important data points, as opposed to a low value that will output points

that preserve better the original shape. In the context of its application, the idea is to not have unnec-

essary trajectory cuts, so non-conservative values were chosen to avoid a huge amount of segments.

Table 4.1 complement this logic and illustrates the number of segments variation for different epsilons.

Figure 4.7: Trajectory segments using position epsilon=30, speed epsilon=2 and angle epsilon=50

position epsilon speed epsilon angle epsilon number of segments
10 0.5 10 55
10 0.5 50 38
10 2 10 38
10 2 50 20
30 0.5 10 52
30 0.5 50 35
30 2 10 36
30 2 50 18

Table 4.1: Number of resulting segments using different epsilon values

35

Figure 4.8: Douglass Peucker results on speed time series using different epsilon values

4.2.2 Feature Extraction

Most of the behaviors depend on the features that are extracted from the trajectory, so this package has

a major role in the behavior detection task. Most of the features that are extracted are also described in

the work in [4]. Overall there are features related to the motion, fish orientation, trajectory sparsity, and

regions analysis. In total, the following features are calculated:

• velocity that can be calculated as v = ∆p
∆t , and described as the position variation over time;

• acceleration that can be calculated as a = ∆v
∆t and described as the velocity variation over time;

• turning angle that can be calculated as θ = arctan(pt− pt−1), where pt− pt−1 is the motion vector;

• curvature that can be calculated as k = x′y′′−y′x′′

(x′2+y′2)
3
2

, where x′, y′ and x′′, y′′ are the first and second

derivatives respectively;

• centered distance that can be calculated as cd = d(pt, µ), where pt is the position on instant t, and

µ is the mean position of the trajectory;

• normalized bounding box that can be calculated as nbb = w
h , where w and h are the width and

height of the bounding box respectively.

Beyond the specified features, it is also registered information regarding the regions that the fish

visits, and the transitions between those regions. It is possible to define as input a set of regions, and

along with the trajectory processing, the counter for a given region is incremented every time the fish is

detected on that region. Additionally, the same logic is applied when the fish cross to another region.

Figure 4.9 illustrates an example of a trajectory with three defined regions. We can verify that the fish

starts to being detected at the surface zone and meanwhile swims at the middle of the tank. Figure

4.10 complements this information with more detailed data: the example fish frequent the middle zone

sensibly 75% of the time, and around 25% on the surface, while detected by the camera.

36

Figure 4.9: Example of a trajectory and specified regions
Figure 4.10: Regions frequency

The enumerated features, with exception of the region-based features, can be calculated at every

instant. This will afford to have a time series for each feature, such as the one draw in the Figure 4.11

which shows the normalized bounding box value along the trajectory lifetime. To represent a trajectory

in a feature-vector format, several statistics are extracted from each time series and form a unique

vector. The following statistics are calculated: mean, median, standard deviation, minimum, maximum,

first quartile, third quartile, and finally the auto-correlation which can be seen as the correlation of the

time series with a lagged representation of itself. Given that there are 6 features (velocity magnitude,

acceleration magnitude, curvature, centered distance, turning angle, and bounding box aspect ratio), 8

calculated statistics, plus also the fact that the velocity and acceleration can be separated by x-axis and

y-axis giving another 4 different time series, this gives a total of 10 ∗ 8 = 80 features. This vector can

increase in size depending on the number of regions used. The frequency for each region is also added,

as the number of transitions between each.

Figure 4.11: Time series of the normalized bounding box feature

Similar to what can happen on the trajectory path, and also from the same motifs, these time series

can have noise that will impact statics that is calculated, such as minimum and maximum of each time

series. If a given feature is extracted frame by frame, it is possible to verify some noise spikes. Those

can be avoided if we increase the calculation period, for example, twelve by twelve frames. In this case,

37

we can see that those spikes no longer appear (Figure 4.12). However, some data points are being

wasted using this approach which is a downside. Another approach is applying, as in the trajectory

filtering, an exponential moving average filter. The results using different alphas are shown in Figure

4.13. We can see that several alpha values seem to be acceptable but a conservative value was usually

used (0.01) to take into account the trajectories that have the most noise.

Figure 4.12: Velocity time series using a higher calculation period of twelve frames

Figure 4.13: Exponential moving average using different alpha values

4.3 Anomaly Detection

4.3.1 Clustering-based

Clustering is a type of machine learning task whose goal is to group a set of samples. Despite being

used to identify profile types and other similar domains, it is also known in the outlier detection field.

This approach follows the logic also used in the work [4], but instead of using the positioning to group

the trajectories, we use the features and the vector format described in the previous section.

38

First, all the trajectories are transformed into vector format and a clustering algorithm is applied using

all these vectors. Looking at the output clusters, the groups that have few samples when compared with

the total number of samples, are considered outlier groups. This logic is also described by the Figure

4.14. In this figure, we can verify that the red group only contains one sample, which is far away from

the other cluster in green that contains six samples.

Two different clustering algorithms were applied: KMeans and DBScan. KMeans has the disadvan-

tage of needing the specification of the number of clusters. To identify the outlier clusters we define a

percentage threshold. Groups with less than thr ∗ #samples samples are classified as outlier groups,

where #samples is the total number of samples. On the other hand, DBScan has already the notion

of outlier. It depends on two parameters: ε and min samples. If a given sample does not contain

min samples other samples within a distance ε, then it is classified as an outlier, so there is no need of

specifying the percentage threshold.

Figure 4.14: Clustering approach illustration

4.3.2 Switching Vector Model

The switching vector model was used to model pedestrian trajectories in work [2]. In this project, we

try to use it to model the fish trajectories. In summary, it tries to model the different motion vectors for

each image plane region, and also the transition between those fields. The image plane is described by

a grid of nodes, where each region contains k motion vectors and a transition matrix. It is essentially

characterized by the grid size, the number of fields, and two parameters that impact the fields update

during training: δ which defines the neighborhood distance, and α that defines how attenuated distant

vectors are.

To initialize the motion fields for each node, we resorted to a clustering algorithm. We extract all

the motion vectors detected on that specific node and KMeans is applied on those, as we can verify in

Figure 4.15. The red dots, the clustering centroids, are used as initial motion fields for this node. This

logic is applied to every region in the grid. The training phase is based on the Expectation-Maximization

39

algorithm which goal is to maximize the complete log-likelihood value. On every iteration, the motion

vectors and the transition matrix for every region are updated according to this maximization function.

Figure 4.17 shows the motion vectors for a given field in an initial state, and also after the training phase,

and Figure 4.16 illustrates the complete log-likelihood value along the training process. As we can see,

this value tends to increase which means that the input trajectories are better described by the updated

parameters.

In the anomaly detection task, we can specify a minimum threshold for the joint probability. Given a

new trajectory, the joint probability is calculated and if its value is lower than the specified threshold it is

considered as an outlier.

Figure 4.15: Vector fields initialization

Figure 4.16: Complete log likelihood along the training iterations

40

Figure 4.17: First field vectors before (left frame) and after training (right frame)

4.4 Interesting Episodes Detection

4.4.1 Machine Learning Models

Interesting trajectories are trajectories that were marked with some interesting event, as described

previously. We can visualize this problem as a binary classification task, where each trajectory can be

classified as being interesting or not to be analyzed. Similar to the clustering strategy, this approach

uses the feature extraction package to describe each trajectory in a vector format. Each vector has

associated a binary label that is set to true if any event was notified during that trajectory.

Taking into account all the trajectories, these were transformed into a vector format and passed as

input to a pre-processing pipeline before being transmitted to the model itself. The goal is to be able

to learn interesting trajectories feature patterns, to have the ability to generalize to other not known tra-

jectory samples. Figure 4.18 complements this explanation. We can verify the three described phases:

extraction of features from the trajectory, vectors pre-processing phase, and finally the model training

phase.

Several models were experimented. We tried to explore the different classifier families: decision trees

and random forest from a logic perspective, naive bayes from a probabilistic side, and support vector

machines and k-nearest neighbors from a similarity view. Relatively to the pre-processing approaches,

several methods were experimented to improve the model performance: normalization, class balance,

principal component analysis, ANOVA feature selection, and correlation removal. Almost all these meth-

ods are already implemented, so we resorted to the sklearn library which is one of the known names on

the machine learning libraries field.

41

Figure 4.18: Machine learning model training process

4.4.2 Rule based

The ability to define rules is an alternative to the utilization of machine learning models. This approach

has the advantage of being more user-friendly to understand the results. With this method, the user can

define a set of rules regarding the extracted features, and also define the target species (sharks, manta

rays, or others). The idea is to be able to define alert functions, but specific to a given species.

The rule validation is done through the feature time series that are extracted from the trajectory:

velocity, acceleration, turning angle, curvature, normalized bounding box, and regions information. Each

rule is defined by an interval of values and a minimum duration. The feature value has to be within the

specified interval for at least n consecutive frames, where n is the specified minimum duration. When

this is detected, a highlight moment is saved. Figure 4.19 shows an example of a highlighted moment

detected on the turning angle feature for a given trajectory, using an interval value of 60 to 120, which

reflects a significant ascent to the surface.

As an additional feature, it is also possible to specify a single threshold and use a minimum or

maximum function. A single threshold is also what is needed relatively for region-based features. We

can specify a maximum duration allowed for a given region. For example, manta rays do not usually

frequent the bottom part of the tank, so we could specify a rule to trigger an event when that happens.

The same logic can be applied to the transition between regions.

42

Figure 4.19: Highlight moment regarding turning angle feature

4.4.3 Switching Vector Model Adaptation

The switching vector model was also an approach implemented for the interesting moment’s classifi-

cation. The idea is to train two different models, so each model represents each of the classes: normal

and interesting trajectories. Each of the sets is passed as input to a switching vector model, so this can

learn suitable fields and transition information for each of the classes. After that, given a new trajectory,

the joint probability is calculated using each of the models, and the argument associated with the model

that gave a higher probability is the assigned class, as specified by

c = argmax[p(x|θn), p(x|θi)]

4.5 Feeding Period Detection

4.5.1 Convolutional Neural Network

Resorting on Convolutional Neural Networks (CNN) is one of the possible solutions to detect feeding

periods. Using this type of model, the frame can be directly passed as input. Internally, a feature vector

will be calculated using convolutional and pooling layers. This vector is then passed to a set of full

connected layers to make the decision of being a feeding frame or not.

Several training videos were filmed for this behavior, so all frames from these videos can be used

to train a model of this nature, so it can be able to learn image patterns for each of the classes. The

work in [20] also uses a neural network, but with a sensibly different goal: measure the feeding hungry

intensity. However, its architecture was used as baseline for this project. This network receives 80x50

frames as input, so that the number of parameters to be trained is not excessively high. This frame

is passed as input to a convolutional layer with a 5x5 kernel, and then by a max-pooling layer using a

43

2x2 kernel. These layers are repeated twice. Then, using the feature vector from these layers, two full

connected layers follow, one with 120 neurons and the other with 84 neurons, which is finally connected

to an output layer.

Figure 4.20: Baseline convolutional neural network for feeding frame classification

4.5.2 Motion-based Approaches

The feeding activity is characterized by the change on motion intensity around the feeding region. An

alternative approach to the machine learning method is to be able to measure the amount of motion,

and verify if this difference is visible between the feeding period and the normal period. We implemented

two different ways of measuring the level of motion: apply consecutive frame subtraction and a threshold

binarization to detect the number of active pixels (Figure 4.21); apply optical flow algorithm and calculate

the average magnitude of the vectors (Figure 4.22).

Figure 4.21: Active pixels in a frame during the feeding
period and with a region defined Figure 4.22: Optical flow result for an example frame

44

4.5.3 Aggregation-based Approach

Similar to the logic around the motion measurement, fishes also tend to aggregate more during feed-

ing. To measure the level of aggregation of the detected fishes in a given frame we use the approach

explained in work [21], which applies the delaunay triangulation on the fish’s centroids that will form a

triangular mesh between those points. However, we do not take into account fishes that seem to be far

way from the center of mass (median position of all points). These outlier fishes are considered to not

being interested on the feeding activity, which can be a motif of alert and a advantage of this approach.

Figure 4.24 illustrates the resulting mesh and outlier from the application of this method on the frame of

the Figure 4.23.

Figure 4.23: Frame during feeding and detected fishes Figure 4.24: Output aggregation mesh

45

46

5
Experimental Setup

Contents

5.1 Datasets . 49

5.2 Experiment A: Anomaly detection DBScan vs KMeans 53

5.3 Experiment B: Interesting episodes detection . 56

5.4 Experiment C: Feeding Period Detection CNN vs Motion Based methods 58

47

48

A set of experiments were performed with the aim of validating the system’s implementation, as well

as evaluating each of the methodologies. This section is intended to introduce these experiences. First,

we give an explanation of the data that is used, as well as an analysis of its features, and posteriorly an

explanation of each of the experiments regarding its purpose, under what conditions it was performed

and also which metrics were extracted.

5.1 Datasets

Several data are needed to verify how the described algorithms work in the project domain. During the

development of this project, many videos were filmed in the Lisbon Oceanarium. The focus tank was the

main tank which has sharks, manta rays, and other species. These videos were filmed using a Canon

camera and also, a go pro hero session 4.

Table 5.1 lists all the information related to the videos that were used in the experiments. All these

videos are from the main tank of Lisbon Oceanarium. Notice that most of the videos have a high

resolution and a considerable duration, which consequently justifies a high video size (300MB to almost

10GB).

video name resolution duration (min) fps frames behavior usage
v29 720x480 5:00 24 7200 anomalies/interesting

feeding-v1-trim 1920x1080 5:02 30 9060 feeding
(bottom feeding period)

feeding-v1-trim2 1920x1080 5:00 30 9000
feeding
(bottom period without
feeding)

feeding-v2 1920x1080 5:52 50 17600 feeding
(bottom feeding period)

feeding-v3 1920x1080 22:09 50 66450 feeding
(surface feeding period)

GP011844 Trim 1920x1440 3:04 30 5520
feeding
(bottom feeding period
using go pro)

Table 5.1: Information about the videos used for evaluation

Video 29 was captured in a previous work, and preliminary ground truth of some fish’s motion was

already available. The rest of the videos are related to the feeding behavior and have frame labels

indicating the feeding periods. With this project, video 29 ground truth was enlarged with the trajectories

of all detected sharks and manta rays, which are the main focus species of this project. To do so, we

resorted to the Darklabel 1 application. All the trajectories were saved into a JSON format file, that

facilitates the parsing of this data directly to a suitable format every time this data is needed. It can

1https://github.com/darkpgmr/DarkLabel

49

https://github.com/darkpgmr/DarkLabel

be described as a dictionary where each fish corresponds to a new entry. Each entry value is also a

dictionary with two entries: the trajectory and the bounding boxes of the associated fish. The following

file portion complements the described structure.

1 {

2 "<fish -id >": {

3 "trajectory": [[<t0>, <x0>, <y0>], ..., [<tn>, <xn>, <yn>]],

4 "bounding -boxes": {

5 "<t0 >": [<width >, <height >],

6 ...,

7 "<tn >": [<width >, <height >]

8 }

9 },

10 ...

11 }

Data exploration was performed regarding the trajectories data in Video 29. Two interesting features

to be analyzed are the trajectory duration and the most visited regions for each of the species. Regarding

duration, most of the trajectories have a value of up to twenty seconds but there are samples with higher

values. Figure 5.1 illustrates the duration’s histogram for the sharks, and confirms the specified values:

cases that have a duration higher than twenty seconds are rare. The scenario for the manta rays is

similar.

Relatively to the regions, we could verify that the manta rays usually don’t swim at the bottom part of

the tank, which confirms the information given by the biologists. A heatmap of the visited areas by manta

rays is drawn by Figure 5.2. Each cell on the heatmap represents the number of positions detected on

that specific region for all trajectories. We can see that the bottom part is almost absent of detections,

as opposed to the top part.

5.1.1 Trajectories vector-format dataset

To avoid repeating the feature extraction phase for all the trajectories, a dataset was created in a feature

vector format. Using the feature extraction package was used. As previously explained, several features

are extracted from the trajectory: speed and acceleration (for both dimensions, x-only axis, and y-

only axis), turning angle, curvature, distance to center, visitation frequency, and regions transition. For

each of these time series several statistics are extracted: mean, median, standard deviation, minimum,

maximum, first quartile, third quartile, and auto-correlation. This gives a total of eighty nine features.

50

Figure 5.1: Trajectories duration histogram for sharks

Figure 5.2: Regions frequency for manta rays

A trajectory can be represented by a vector of the specified shape, instead of a sequence of position

points. The dataset building can be summarized by:

1. reading fishes from the fishes ground truth file

2. apply pre-processing: fill the gaps, and smooth the trajectory

3. extract the features for each of the trajectories

4. save all the trajectory vectors to the dataset file: comma-separated values file where each row is

a different trajectory vector sample

Correlation among variables is an important property to analyse in the datasets. Two variables are

correlated if they move in coordination with one another. In other words, if two variables have a high

correlation, one is easily calculated by knowing the value of the other. This means that one of them

is probably expendable, and it is only contributing to the high dimensionality which can impact models

51

performance (curse of dimensionality). Taking into account all the vectors, the correlation matrix was

calculated and the histogram of those values was visualized (Figure 5.3). As we can see, most of the

correlation values are not high. On Figure 5.4, we can also verify how the dimensionality decreases

when deleting correlated features, considering a correlation relationship when two variables have a

higher correlation value than a given threshold. When using a threshold of 0.9, we can decrease the

dimensionality value to approximately 80 features, and when using 0.8 it is possible to decrease sensibly

another 10 features.

Figure 5.3: Histogram of the correlation matrix values
Figure 5.4: Dimensionality variation using different corre-

lation thresholds

Resorting on the seaborn 2 library, the distribution plots were also analyzed for the different features.

Figure 5.5 shows an example regarding the median of the speed (pixel/frame). Each of the lines repre-

sents the median speed probability density function of a given species. The tuna class incorporates all

the fishes that are not sharks nor manta rays. Regarding this feature, we can conclude that they have

the highest speed. On the other hand, sharks have a slightly higher value than manta rays but are not

very far apart.

Figure 5.5: Probability density plots for the median of the speed feature

2https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot

52

https://seaborn.pydata.org/generated/seaborn.kdeplot.html##seaborn.kdeplot

5.1.2 Feeding datasets

Most of the used videos are related to feeding. One of the reasons is the fact that this was identified by

the biologists as very interesting behaviour to analyse and where we put a lot of effort. Additionally, the

feeding behavior is the most visible to the human eye, when compared with anomalies and interesting

moments which are more subjective. Three datasets regarding this behavior were built, for both feeding

regions (bottom and surface) and also using different cameras and perspectives.

Table 5.2 specifies information about these datasets, including the videos used to build each one, the

total number of frames, the training/testing division, and the percentage of feeding frames. The number

of total frames and the number of feeding frames are consequently related to the video size and frames

per second, and how much time was the feeding period filmed, respectively. In every scenario, an 80-20

train-test split percentage was used. While making this division, we made sure that consecutive frames

are not in separated sets, to avoid having extremely similar frames in the train and test set. Also, all the

frames were saved with a significantly low resolution (80x50), given its usage as input for convolutional

neural networks.

dataset videos total frames training set feeding frames

bottom
(cannon)

feeding-v1-trim
feeding-v1-trim2
feeding-v2

35686 80% 57%

bottom
(GoPro™) feeding-v3 21600 80% 31%

surface
(cannon) feeding-v4 66474 80% 61%

Table 5.2: Information of feeding datasets

Figures 5.8, 5.11, and 5.14 shows an example frame for each of the states (feeding and non-feeding),

and also for the different datasets: bottom-feeding using the cannon camera, bottom-feeding using the

GoPro™ camera, and surface feeding using the cannon camera, respectively. We can confirm the

motion variation on the bottom region when comparing the feeding frame and the non-feeding frame of

the bottom datasets. However, the feeding at the surface is not so visible, even for the human eye. A set

of sticks are used (highlighted by a red circle in Figure 5.12), but there are not many and they are thin

which difficult its visibility, even when using a high resolution.

5.2 Experiment A: Anomaly detection DBScan vs KMeans

Clustering, as explained before, can be useful to identify trajectories that do not follow the usual trajec-

tory features (outlier trajectories), and also to discover groups of patterns among the trajectories. This

experiment has the goal of evaluating the quality of the anomalies identified by the clustering algorithms:

53

Figure 5.6: feeding frame Figure 5.7: non-feeding frame

Figure 5.8: Example frames for bottom feeding using the Cannon camera

Figure 5.9: feeding frame Figure 5.10: non-feeding frame

Figure 5.11: Example frames for bottom feeding using the gopro camera

Figure 5.12: feeding frame Figure 5.13: non-feeding frame

Figure 5.14: Example frames for surface feeding

DBScan and KMeans. An anomaly can be defined as something that deviates from it is standard, so

trajectories that are far away from the general group of trajectories can be classified as an anomaly.

In this experiment, several clustering pipelines are applied in the trajectories dataset and several

clustering metrics are extracted to get an idea of the quality of the output groups. Within the machine

learning field, pre-processing methods can play an important role. Diverse methods are applied in the

54

trajectories vectors, Table 5.3 summarizes the pre-processing methods, in terms of their functionality

and presents also the short formula for each one.

method description formula

normalization
(standard scaler)

vector features can have different scales
and this can have an impact specially on
models that regard on distance and similarity,
which is the case of these clustering approaches.
x refers to a trajectory feature vector, and µ,σ
the mean and the standard deviation for each
dimension respectively

z = x−µ
σ

principal components analysis
(PCA)

projection of the data on the axis with highest
variance, helping highlighting differences
between the groups. W are the eigenvectors
and X the trajectory feature vectors matrix

y =WTX

feature selection
(ANOVA f-value)

ratio that take into account the uni variate
variance within groups and between groups.
This value is calculated for each trajectory feature
dimension, and used to reduce the dimensionality
to the K features with higher value.

F = between groups
within groups

correlation removal

when two variables have a correlation value
higher than a given threshold, one of them
is removed. sxy is the covariance
between two dimensions and sx the variance
of variable x

rxy =
sxy

sxsy

Table 5.3: Pre-processing methods summary

In terms of algorithms, DBScan is a density-based clustering approach. For this reason, it can

automatically identify outlier samples. It relies essentially on two parameters: ε (distance threshold),

and the minimum number of samples. If a given sample does not have a number of neighboor samples

larger or equal to the minimum number of samples within the epsilon distance, it will be classified as an

outlier. On the other hand, KMeans requires the specification of the number of clusters (parameter k),

and the distance metric can have an impact on the results. Given that the number of clusters needs to

be specified apriori a cluster is classified as an outlier if it has few samples when compared with the total

number of samples.

Regarding the evaluation metrics, three values are extracted: cohesion, separation and silhouette,

which in turn depend on the two previous ones. These metrics are considered internal metrics as they

do not depend on any ground truth definition. Cohesion reflects how close the samples of a given cluster

are to each other. It is the mean distance between a given sample and the other samples of the same

cluster and can be calculated as

cohesion(i) =
1

|Ci| − 1

∑
jεCi,i6=j

d(i, j), (5.1)

where Ci is the cluster on which the sample i was assigned. On the other hand, separation represents

55

how separate the output clusters are from each other. Separation of a given sample is the minimum

mean distance found between that sample and all samples of another cluster, and it can be calculated

as

separation(i) = min
k 6=i

1

Ck

∑
jεCk

d(i, j), (5.2)

where Ck is a cluster that does not contain the instance i. Finally, the silhouette combines these two

metrics, and it is calculated as

silhouette(i) = 1− cohesion(i)

separation(i)
(5.3)

An ideal silhouette is a value close to 1. In this case, the separation value is significantly higher than

the cohesion value. The quality of the output trajectory clusters can be measured by these metrics, and

consequently, the quality of the detected outliers.

5.3 Experiment B: Interesting episodes detection

As explained before, there is a set of criteria to define interesting moments. It can also be seen as

an abstraction of anomalies. An anomaly is always an interesting moment to be analyzed. Given these

criteria, interesting moments were identified, by hand, on the sharks and manta rays trajectories of video

29, and saved into a ground truth file. A given trajectory is considered to be interesting if there is any

episode marked on it. Of the 81 trajectories in the Video 29, episodes of interest were identified in 31.

The goal of this experiment is to evaluate the capability of classifying correctly these trajectories as

being interesting, or not, to be analyzed. To do so, several models were trained and evaluated, using

also different pipelines. Table 5.4 summarizes the models that were experimented. Classifiers from

different families were evaluated. Regarding parameters, a grid search was performed to discover the

most suitable set of parameters for each classifier. In Table 5.4, notice that decision trees and random

forests have more interesting parameters to be optimized due to the tree learning process. Relatively to

pre-processing, we experimented the same methods as in the clustering approaches (Table 5.3).

Holdout technique was the chosen evaluation approach, given the low number of samples of the

dataset. This method consists of training the model with all the samples except the one that is pre-

tended to be evaluated, and this process is repeated for all the samples. This way we can guarantee

that the classifier is not trained with few samples to be evaluated. In terms of evaluation metrics, the

traditional precision, recall and accuracy were calculated: equations 5.4, 5.5, and 5.6 respectively. A

true positive(TP) sample is an interesting trajectory that was classified as interesting, and in another

hand, a true negative(TN) is a trajectory without any marked episode that was classified as not being

56

model family main parameters
K-Nearest Neighbor similarity n neighbors, metric
Support Vector Machine similarity C, kernel, degree, gamma

Decision Tree logic criterion, min samples split,
min samples leaft, min impurity decrease

Random Forest logic
n estimators, criterion, max depth,
max features, min samples leaft,
min samples split

Naive Bayes probabilities -

Table 5.4: Machine learning models summary

interesting. Applying the same reasoning, a false positive (FP) corresponds to a trajectory that has no

marked interesting episodes but was classified as interesting, and a false negative (FN) corresponds

to a trajectory with some marked interesting episode that was classified as not being interesting. Addi-

tionally, the precision-recall curve was visualized. This curve is drawn calculating precision and recall

using different decision thresholds to classification. One possible metric to evaluate the generalization

capability of a model is the area under this curve. These can be especially useful to verify the capability

of the model to react to different decision thresholds, given that there are problems in which precision

can be more important than recall or vice versa.

Precision =
TP

TP + FP
(5.4)

Recall =
TP

TP + FN
(5.5)

Accuracy =
TP + TN

TP + TN + FP + FN
(5.6)

Regarding this task, three additional experiments were tested. The first one was related to the

species. The idea was to train a model per species (one for sharks and another for manta rays), instead

of using all the samples in just one generic model, and verify if better results are achieved. The second

hypothesis tried to take advantage of segmentation and interesting moments characteristics. These

moments are characterized by having a short period. The goal was to verify if better results are obtained

if the trajectory segments are classified instead of classifying the trajectory as a whole.

Finally, in the last experience we evaluate the application of the switching vector model to the inter-

esting episodes classification task, explained in Section 4.4.3. In this adaptation, two switching vector

models were trained: one using as input the trajectories considered to be interesting and the other using

the trajectories without any marked episode. Given a new trajectory, the joint probability is calculated for

these two models, and the one that gives a higher value is the class assigned. This model is essentially

57

characterized by four parameters: number of nodes, number of fields, δ, and α. Several models were

trained using different parameter values and the complete log-likelihood was calculated for each one.

The joint probability reflects how well the model describes the trajectory passed as input and it can be

calculated as

p(x, k|θ) = p(x1, k1)

L∏
t=2

p(xt|kt, xt−1)p(kt|kt−1, xt−1), (5.7)

where x is a sequence of positions of a given trajectory, k its active vectors, θ is the model itself, and L

is the length of the trajectory. The complete log-likelihood is the sum of the logarithm joint probability for

all the trajectories, and it can be calculated as

p(χ, κ|θ) =
S∑
j

log p(χj , κj |θ), (5.8)

where χ is the set of trajectories, κ is the set of active vectors for each trajectory, and S is the number

of trajectories. The models that gave a higher complete likelihood value were the ones evaluated for

this task. For the evaluation purpose, the same metrics were used as the ones used regarding machine

learning models: precision, recall, and accuracy.

5.4 Experiment C: Feeding Period Detection CNN vs Motion Based

methods

In the set of videos that were filmed, there are several with feeding activity. Sharks are fed near the

surface using sticks with food on the tip, and some of the manta rays are fed on the bottom of the tank

by divers. The goal of this experiment is to evaluate the performance of the different approaches for

detecting feeding periods. The following list summarizes the methods that were evaluated:

• convolutional neural network(CNN): the frame is passed as input to the network, and it is classified

as being a feeding frame or not;

• active pixels: motion is determined on each instant based on consecutive frames subtraction, and

a motion threshold is applied to classify it as being a feeding frame or not;

• optical flow: the motion vector is calculated for a grid of points, and a motion threshold is applied

to the average motion to classify it as being a feeding frame or not.

In this context, a true positive(TP) is a feeding frame that was classified as being part of the feeding

activity. On the other hand, a true negative(TN) is a frame that is not part of the feeding period, and it

58

was assigned to the non-feeding class. Precision, recall, and accuracy were calculated to evaluate each

of the approaches (equations 5.4, 5.5, and 5.6 respectively). Additionally, the timeline of the errors was

also visualized, to verify if most of the errors are near the feeding period switch.

CNN parameters can have a significant impact on the performance, either in terms of architecture or

in terms of hyper-parameters. Tables 5.5 and 5.6 contain a summary of the set of parameters that were

tuned. A grid search was applied on a different validation set to verify the most suitable values for each

one.

Regarding the motion methods, they depend essentially on the threshold definition. To choose this

parameter, the motion time series was visualized for a given training video, and a value that divides the

feeding frames motion from non-feeding frames motion was chosen. Additionally, these methods were

also performed using the region definition feature (definition of a region of the image in alternative to the

entire frame), so the motion on the other regions does not interfere with the decision. For example, if

we are interested in detecting the bottom-feeding activity, we could exclude the detected motion on the

upper side of the tank.

parameter description
learning rate step size at each iteration
dropout rate percentage of neurons that are ignored
activation function defines the output of a neuron
error function measure of prediction

Table 5.5: Hyper-parameters description

parameter description
number of convolutional layers layer that applies a set of filters

number of hidden layers layer of mathematical functions
that produce a given output

number of neurons per hidden layer mathematical function units
number of filters matrices that slide over the image (convolution)

Table 5.6: Architectural parameters description

59

60

6
Results

Contents

6.1 Results of experiment A: Anomaly detection DBScan vs KMeans 63

6.2 Results of experiment B: Interesting episodes detection 65

6.3 Results of experiment C: Feeding Period Detection CNN vs Motion based methods 71

6.4 Experiments Summary . 76

61

62

In this section, we present the results for the experiments described in the previous section. For

each of them, the obtained values of the metrics are exposed, and a critical analysis is done in order to

justify these values. At the end, a summary of all the results obtained is presented, as well as additional

conclusions.

6.1 Results of experiment A: Anomaly detection DBScan vs KMeans

One of the main approaches to detect anomalies is based on clustering. Clusters with few samples can

be seen as a set of anomalies, its features deviate from the general group of samples. Two algorithms

have been experimented with: DBScan and KMeans.

To choose the best pipeline to be used with DBScan, a set of experiences using different pre-

processing methods was made. Figure 6.1 represents the pipeline with the better performance con-

sidering silhouette metric: a standard scaler as the normalizer, followed by a feature selector using the

ANOVA f-value and finally applying the DBScan cluster algorithm. Resorting on this pipeline, a silhou-

ette of nearly 0.72 was achieved which was significantly higher than the ones obtained utilizing the other

pipelines (Table 6.1). Only one outlier was detected from the set of trajectories, as we can see in Figure

6.3 and 6.4: a shark that does a considerable curvature to the bottom and suddenly changes direction

turning back to the origin point of detection. However, if we relax the ε value, more samples can be seen

as outliers but the silhouette value also decreases, as we can verify in Figure 6.2.

Figure 6.1: Best DBScan pipeline: normalizer + feature selection + DBScan

The DBScan algorithm has the advantage of not being necessary to specify the number of clusters,

unlike the KMeans algorithm. In Figure 6.5, it is possible to visualize the cohesion value calculated from

the resulting clusters, using different numbers of clusters (k value). Although it is not possible to observe

a standing out an elbow, a value of k whose cohesion value starts to stabilize, we can verify that from a

value of approximately seven clusters the cohesion starts decreasing at a slower pace.

63

Pipeline epsilon min-samples distance metric silhouette
DBScan 106 9 euclidean 0.48
Normalizer + DBScan 102 5 manhattan 0.45
Normalizer + PCA + DBScan 11 5 euclidean 0.51
Normalizer + FS + DBScan 29 5 manhattan 0.72
Normalizer + CVR + DBScan 80 5 manhattan 0.46

Table 6.1: DBScan pipelines’ results

Figure 6.2: Number of detected outliers using different DBScan parameters

Figure 6.3: Identified outliers using DBScan
Figure 6.4: Sequence of frames of the detected outlier

Looking at the distribution of the resulting clusters (Figure 6.6), and applying the outlier logic, we can

consider clusters 0/2/4 as outliers because they have considerably fewer samples when comparing with

the rest of the clusters, such as cluster 2 which is the major one. It is possible to visualize the trajectories

from clusters 0 and 2 in Figure 6.7. As we can see, there is a very pronounced pattern in each of the

clusters. Group 0 tends to keep the same direction (constant turning angle) during all the trajectory,

and although it is not represented in the image they also have similar x-axis speed values. This can

also be concluded from Figure 6.8, which presents the set of features that most differentiate from the

other clusters. Group 2 contains the identified outlier using the DBScan algorithm. It also contains two

additional trajectories which have the same motion behavior: a sudden direction change turning back

64

to the origin of the trajectory. Although these resulting clusters seem to represent interesting groups

according to motion patterns, the overall performance (silhouette) value was sensibly 0.30, thus we

believe that the DBScan algorithm is more appropriated for the outlier detection task.

Figure 6.5: Cohesion value for different number of clusters

Figure 6.6: Clusters distribution using KMeans

6.2 Results of experiment B: Interesting episodes detection

6.2.1 Machine Learning models

Interesting episodes are trajectories, or segments of trajectories, that are considered interesting to be

analyzed by biologists, as previously defined. In a first evaluation, each trajectory was considered in-

teresting if any interesting episode is defined in its ground truth. In the context of Machine Learning,

it can be seen as a binary classification: it is either classified as interesting or not. Several models,

and from different classifiers families, were evaluated to verify which one fits better on this type of data:

65

Figure 6.7: Resulting trajectories from cluster 0 and 2 respectively

Figure 6.8: Most characterizing features of cluster 0

Support Vector Machine, K-Nearest Neighbors, Naive Bayes, Decision Tree, and Random Forest. Addi-

tionally, because of the impact that the pre-processing methods and hyperparameters can have, different

pipelines were tested, and the respective tuning for each model applying a grid search.

Table 6.2 summarizes the tuning and evaluation process of each of the models. Note that balancing

data increased performance in the majority of the cases. It is normal to have more normal trajectories

than interesting ones, so generating synthetic interesting samples helped to achieve better results. Also,

regarding pre-processing, using the standard scaler normalizer makes the feature weight even which

can be important for classifiers that regard similarities and distances. We can also verify that Decision

trees and Random Forest have a considerable amount of parameters to tune due to the tree growth

settings, that have a high impact on performance. The model that got better accuracy was the Support

66

Vector Machine which achieved 82%.

Model Best pre-processing Best parameters Accuracy

SVM balancer + normalizer kernel=poly, c=0.01
degree=3, gamma=1 0.82

KNN balancer + normalizer + pca metric=euclidean, n neighbors=5 0.73
NB - - 0.78

DT balancer criterion=entropy, min samples split=2
min samples leaf=1, min impurity decrease=0 0.78

RF -

n estimators=5, criterion=entropy
max depth=5, max features=sqrt,
min samples leaf=3, min samples split=2
bootstrap=true

0.77

Table 6.2: Tuning and performance summary of Machine Learning models

Precision and recall can also have an impact on the model choice process. In our context, it would

be possibly overwhelming for biologists to analyze several false positives. However, it can also be a

danger to let some interesting moments pass by. It is a trade-off that has to be agreed to biologists’

needs. Figure 6.9 draws the precision-recall curve for each of the models. This also complements the

information from the previous table and consolidates the fact that the Support Vector Machine works

better with this data. Table 6.3 shows the area under the curve values, which illustrate the models that

have a better precision-recall overall trade-off.

Figure 6.9: Precision-Recall curves for the different Machine Learning models

6.2.2 Model by species

The previous evaluation considers models that are trained using all the samples for both focus species

(shark and manta-ray). Figure 6.11 shows the balance of the sample in terms of species. There are

a few more shark samples than manta-rays. This experiment aims verifying if separating on different

67

Model AUC
SVM 0.89
KNN 0.81
NB 0.8
DT 0.84
RF 0.7

Table 6.3: Area Under the Curve (AUC) values

models for each species produces better results. In other words, the objective is to train two different

models: one using only the shark samples and another one only using manta-ray samples. The Support

Vector Machine was used for comparison purposes, and the best pipeline was verified on the previous

evaluation. Figure 6.10 reflects the obtained results. Better performance was achieved modeling using

data from both species instead of separating on different models. However, it was not a significant

difference and the model for manta rays got a better recall value although the precision has been harmed.

Figure 6.10: Models performance modeling by species

Figure 6.11: Samples by species

68

6.2.3 Segmentation impact

Segmentation could also be useful for interesting episodes identification. The idea was to segment all

the trajectories and to perform classification on each segment instead of the trajectory as a whole. For a

given trajectory segment, it was considered to be interesting to be analyzed if there was some interesting

episode contained on it. This approach could be a way of avoiding the fact that there are statistics

extracted from the features time series that can be attenuated by the values on normal intervals.

The segmentation task followed the Douglass Peucker approach, as explained in Section 4.2.1, and

values of 30, 2, and 50 were used as ε values for position, speed, and angle respectively to avoid over-

segmentation. After applying segmentation on all the trajectories set, the class balance changed to the

values illustrated in Figure 6.13. As expected, there were more normal segments but there were also

a considerable amount of interesting segments. In terms of the performance difference, similar to the

ones observed on modeling by species results were obtained: better performance was achieved without

using segmentation but the difference was not significant.

Figure 6.12: Model performance using segmentation

Figure 6.13: Segments class balance

69

6.2.4 Vector Switching Model

The vector switching model can also be adapted to incorporate this task. The idea is to train two

different models which receive as input the two groups of trajectories: normal trajectories and interesting

trajectories. When a new trajectory arrives, the likelihood probability is calculated for both models and

the label with the highest probability is assigned.

Before the evaluation itself, a tuning phase was performed to discover the best parameter values for

the number of grid nodes, number of fields, δ, and α. Tables 6.4 and 6.5 show the models that gave

better complete log-likelihood. In other words, the models that best fit the trajectories received as input.

For both groups, normal and interesting, we could conclude that it worked better with twenty-five nodes

(grid of 5x5), four-vector fields, and a δ of one hundred and twenty-five, regardless of the alpha value.

number of nodes number of fields delta alpha complete log likelihood
25 4 125 2 -7442
25 4 125 1 -7444
16 4 125 1 -7496
16 4 125 2 -7496

Table 6.4: Vector swicthing model tuning results (normal trajectories group)

number of nodes number of fields delta alpha complete log likelihood
25 4 125 1 -5548
25 4 125 2 -5551
16 4 125 2 -5696
16 4 125 1 -5699

Table 6.5: Vector swicthing model tuning results (interesting trajectories group)

The models that best fit each of the groups were used on the interesting trajectories detection task.

Table 6.6 illustrates the number of correctly classified trajectories on each group. As we can see, the re-

sults show us a good precision value but a significantly low recall value, which means that this approach

gave a considerable amount of false positives, once the overall accuracy stayed by 58%.

group correctly classified
normal 17 of a total of 42 (40%)
interesting 24 of a total of 29 (83%)
both 41 of a total of 71 (58%)

Table 6.6: Vector swicthing model evaluation results

70

6.3 Results of experiment C: Feeding Period Detection CNN vs

Motion based methods

The feeding period is a group behavior, it depends on the union of the behaviors of all detected fishes

in a given moment. As explained in the previous chapters, the focus species, sharks and manta rays,

tend to aggregate when they feel that the feeding period is close. Most of the manta rays are fed on

the bottom of the tank through divers and sharks are fed at the surface through sticks that have food

on its tip. Using the bottom-feeding videos, both of the approaches, convolutional neural network, and

motion-based, were evaluated. Also, evaluation results for the network were gathered using the surface

dataset. In this scenario, the motion-based was not experimented with since there is always significant

motion on the surface due to the shoals.

6.3.1 Bottom feeding results

Architecture and hyper-parameters can have major importance on classification results. The training

samples were split into a training set and validation set, and several models were trained and evaluated.

Tables 6.7 and 6.8 show the grid search results (the best seven models out of the sixteen models that

were trained). It was only taken into account parameters that were considered to be the most impactful

to performance, regarding hyper-parameters and also architecture. It was possible to conclude the

following points:

• architecture: best results were achieved using one convolutional layer and two hidden layers or

vice versa;

• hyper-parameters: best results were achieved using a learning rate of 0.001 and the mean squared

error as error function;

• the model with the best performance (accuracy of 94%) on the validation had the following pa-

rameters: number of convolutional layers (1), number of hidden layers (2), number of neurons per

hidden layer (120), number of applied filters (5), learning rate (0.001), dropout rate (0%), activation

function (relu), error function (mean squared error).

Relatively to the motion methods, both approaches follow the same logic and rely on a threshold

definition. Active pixels and average optical flow magnitude are calculated on each instant, and the time

series for each of the features was visualized, to decide the most suitable threshold for a given training

video that includes normal and feeding frames. On both time series, a well-defined difference can be

seen in values regarding these two states. This is illustrated by the example in Figure 6.14. According

71

to this logic, the most suitable threshold for active pixels was defined as 394,000 and for average optical

flow magnitude as 2,8.

learning rate dropout rate activation function error function validation set acc
0.01 None relu binary crossentropy 0.56
0.01 0.2 relu mean squared error 0.56
0.01 0.2 relu binary crossentropy 0.56
0.001 0.2 sigmoid mean squared error 0.80
0.001 None sigmoid mean squared error 0.84
0.001 0.2 relu mean squared error 0.85
0.001 None relu mean squared error 0.90

Table 6.7: Hyper-parameters tuning results for bottom dataset

nº of CL nº of HL nº neurons per HL nº filters validation set acc
1 2 120 15 0.86
1 2 80 15 0.86
1 2 80 5 0.90
2 1 120 15 0.91
2 1 120 5 0.92
2 1 80 15 0.92
1 2 120 5 0.94

Table 6.8: Architecture tuning results for bottom dataset

Figure 6.14: Active pixels time series for the training video

Using the model parameters that gave the best performance, in the case of the Convolutional Neu-

ral Network (CNN), and the predefined thresholds in the case of the motion-based methods, these

approaches were evaluated in a different test set. Both approaches gave good results according to

accuracy, precision, and recall metrics having been able to reach 92% and 96% of accuracy respec-

tively (Table 6.9). However, the optical flow method classified most of the frames as non-feeding frames,

72

which means that the vectors gathered on the test video had a lower average magnitude than the one

observed on the training video, even on the feeding period.

Two additional experiences were made: evaluate the motion-based approach using the region defini-

tion ability and the CNN in a video filmed with a different camera which was in a different perspective. As

we can see in Table 6.9, the region was not the problem for the miss classification of some of the frames

because the same results were sensibly observed. Also, we can conclude that the initial trained model

to bottom-feeding classification task could not generalize to another perspective. Contrary to what was

observed on the optical flow approach, almost all the frames were classified as feeding frames.

As a final analysis, we also tried to understand if the errors that we were getting were close to the

feeding state transition. The errors timeline for the CNN approach, and using the Canon camera, is

drawn in Figure 6.15. As we can see, for this approach, the errors are scattered through time. The

same does not happen with the active pixels method. When the feeding period ends, the motion that

is detected does not drop instantly, once the frames that are still close to this state change are still

classified as feeding frames, as we can visualize in Figure 6.14.

Method Accuracy Precision Recall
CNN 0.90 0.95 0.87
active pixels 0.96 1 0.94
optical flow 0.4 0.65 0.05
active pixels (using region) 0.96 1 0.94
optical flow (using region) 0.4 0.7 0.06
CNN using go pro dataset 0.27 0.28 0.86

Table 6.9: Bottom feeding test set results

Figure 6.15: Errors timeline using the CNN

73

6.3.2 Surface feeding results

Surface feeding is more difficult to notice than bottom feeding. When this event happens on the bottom,

a clear change in the number of aggregated species is verified, and also on the level of motion in that

region. Surface feeding is hard to visualize. Even as a human, the food sticks are not easily detectable

on the frames, only if there is some knowledge about the context. Figure 5.14 illustrates a frame during

the feeding period and a frame during the normal period. These example frames have a high resolution

which is not the one passed into the network. Even in this resolution, we can conclude that the sticks

are hard to verify.

In terms of evaluation, the same methodology was used when comparing to bottom-feeding evalua-

tion. First, we tried to identify the most suitable parameters in terms of hyper-parameters and architec-

ture. After that, using the parameters that gave the best performance on a validation set, the model was

evaluated on a different test set.

Tables 6.10 and 6.11 illustrated the tuning results regarding hyper-parameters and architecture re-

spectively. Only the best seven models’ parameters are on the table, similar to what was presented in

the bottom-feeding results. According to hyper-parameters, there is no significant difference between

the presented results. The three worst combinations, reaching an accuracy of 0.39, had the following

set of parameters:

1. learning rate of 0.001, no dropout, sigmoid as activation function, binary crossentropy as error

function

2. learning rate of 0.001, dropout rate of 0.2, sigmoid as activation function, binary crossentropy as

error function

3. learning rate of 0.01, dropout rate of 0.2, relu as activation function, binary crossentropy as error

function

Looking at the following models, we can see that the binary cross-entropy did not work well with the

sigmoid function and a learning rate of 0.001, and also that specific combination using the relu activation

function.

More differential results were observed regarding architecture. When using only one hidden layer,

the best results seem to be getting together with eighty neurons per layer. On the other hand, using two

hidden layers worked better using one hundred and twenty neurons on each. Additionally, as a general

rule, using only one hidden layer also gives better results. However, despite all these patterns, 78% of

accuracy (best accuracy) was achieved using a combination of two hidden layers with one hundred and

twenty neurons each and one convolutional layer, and five filters. Regarding the number of filters, if we

change the number of filters to fifteen the accuracy decreases 9%.

74

learning rate dropout rate activation function error function validation set acc
0.01 None relu binary crossentropy 0.61
0.01 None sigmoid mean squared error 0.61
0.01 None sigmoid binary crossentropy 0.61
0.01 0.2 relu mean squared error 0.61
0.01 0.2 sigmoid mean squared error 0.61
0.01 0.2 sigmoid binary crossentropy 0.61
0.001 0.2 relu mean squared error 0.61

Table 6.10: Hyper-parameters tuning results for surface dataset

nº of CL nº of HL nº of neurons per HL nºfilters validation set acc
2 2 120 15 0.69
1 2 120 15 0.69
2 1 120 15 0.70
1 1 80 5 0.71
1 1 80 15 0.74
2 1 80 5 0.74
1 2 120 5 0.78

Table 6.11: Architecture tuning results for surface dataset

The model described previously was also evaluated on a different test set. The obtained confusion

matrix is illustrated by Figure 6.16. This model was able to identify correctly all the non-feeding frames

giving a maximum recall of 1. Relatively to feeding images, the precision was significantly lower obtaining

a value of 0.53. As expected, better results were achieved on the bottom-feeding model.

Figure 6.16: Confusion matrix using the test set and for surface dataset

75

6.4 Experiments Summary

Several approaches were experimented for the various activities. Table 6.12 presents a summary of

the evaluation metric value for each of the methods. In green, we have the algorithm that gave the

highest performance value for each behavior. Relatively to the anomaly detection, DBScan output more

cohesive clusters, and also more separated from each other. Regarding interesting moments detec-

tion, the support vector machine obtained the highest accuracy from the various experimented models.

Regarding this activity, we can also notice two points:

• multiple-models and segmentation did not improve the performance;

• switching vector fields gave poor results, when compared with the rest of the models, probably due

to the lack of trajectories to train the numerous parameters.

Finally, all the methods achieved good performance on the feeding side, except the utilization of the

optical flow. This approach has more noise due to the vector prediction, and the motion threshold is

more difficult to adapt to the several videos.

activity approach evaluation value
(silhouette/accuracy)

KMeans 0.30anomaly detection DBScan 0.72
K-Nearest Neighbors 0.73
Naive Bayes 0.78
Decision Tree 0.78
Random Forest 0.77
Support Vector Machine 0.82

SVM with multiple-model sharks - 0.78
manta rays - 0.72

SVM with segmentation 0.79

interesting moments

Switching Vector Fields 0.58
Convolutional Neural Network 0.90
Ative Pixels 0.96
Active Pixels using a region 0.96feeding

Optical Flow 0.4

Table 6.12: Experiments evaluation summary

76

7
Conclusion

Contents

7.1 Future Work . 80

77

78

Aquatic life has a lot of density. It can be hard for biologists to track all the fish activity. Automatic

behavior detection can play a major role, which can save time for biologists, and let them focus on

other tasks. Traditionally, it is made by visual inspection, and that requires the biologists to spend

considerable time analyzing fishes, and it can be subjective to biologist experience. In this project,

we focused on abnormal behaviors, feeding periods, and interesting moments of sharks and manta

rays, due to their importance to Lisbon Oceanarium. Keep track of abnormal behaviors can be mainly

important to conclude about diseases, water quality problems, or poor habitat integration. Feeding can

also impact water quality, and it is important to control food waste that can lead to costs or underfeeding

that can lead to aggressive behaviors.

In this project, it was developed a system capable of detecting these behaviors in the main tank of

the oceanarium, and as described, focusing on sharks and manta rays. This is the tank that presents

the focus species, and the most useful to monitor given its dimensions, being complicated to carry out

an efficient monitoring only using manual inspection. To detect abnormal and interesting moments we

start by extracting several features from each fish trajectory, such as speed, turning angle, curvature,

distance to the center, among others. With this representation, we try to model this kind of behavior

through machine learning models of different classification families (similarity, logic, probabilistic), and

clustering to define different motion groups. We also tried to model trajectories through a Switching

Vector Model, which resorts on motion fields and transition matrices to define a set of trajectories.

Additionally, the system also has the ability to define a set of rules based on those features, which can

be more user friendly and specific for some species. Relatively to feeding, there are several approaches

that can describe this behavior: we can define a threshold according to aggregation or motion variability,

or try to model feeding frames patterns through a convolutional neural network.

Overall the system achieved good performance metrics. The detected outlier seems to also corre-

spond to an interesting moment, given its sudden changes in direction, but it would be good to have a

more robust set of trajectories. In terms of its evaluation, a clustering algorithm based on density is con-

sidered more appropriate for this task, since it obtained a higher silhouette value and it already contains

the notion of outlier. Regarding interesting moments, all the training models round the 80% of accuracy,

and the Support Vector Machine was the model that achieved better performance, obtaining a value

of 82%. The usage of segmentation or multiple-model training did not make any significant difference

in terms of achieved results, and the switching vector model adaption obtained poor results regarding

this task, but one of the reasons could be the low number of trajectories. Finally, for the feeding behav-

ior, convolutional neural networks could model feeding image patterns and achieved 90% of accuracy.

The motion approach, based on active pixels identification, also obtained results in the excellent range

(96%). On the other hand, using optical flow to this effect was noisier decreasing this value to only 40%.

79

7.1 Future Work

There are several topics that could be explored in the future. One of them could be focusing on the clus-

tering approach, but using a fish trajectories big data dataset. This would allow for a better perception

and definition of different movement patterns, as well as a broader concept of normality. Additionally,

all the methods suffer from image plane dependency and camera perspective, especially for the trajec-

tories definition which is a sequence of 2D position points. Another future problem could be focusing

on fixing or decreasing this dependency, in order to be able to have a more flexible and less restrictive

system regarding the position of the camera. Another possible focus could be the results coming from

the convolutional neural network approach, that can be hard to understand. It would be interesting to try

to understand what image patterns, and image regions, are characterizing each of the classes. Finally,

it would be extremely useful to develop an application to be used by biologists. This could allow the

analysis of the generated alerts, in order to help biologists to carry out the monitoring of the tanks.

80

Bibliography

[1] Omar Anas, Youssef Wageeh, Hussam El-Din Mohamed, Ali Fadl, Noha ElMasry, Ayman Nabil, and Ayman

Atia. Detecting abnormal fish behavior using motion trajectories in ubiquitous environments. Procedia Com-

puter Science, 175:141–148, 2020.

[2] Catarina Barata, Jacinto C Nascimento, and Jorge S Marques. Improving a switched vector field model for

pedestrian motion analysis. In International Conference on Advanced Concepts for Intelligent Vision Systems,

pages 3–13. Springer, 2018.

[3] Cigdem Beyan and Robert B Fisher. A filtering mechanism for normal fish trajectories. In Proceedings of the

International Conference on Pattern Recognition, pages 2286–2289. IEEE, 2012.

[4] Cigdem Beyan and Robert B Fisher. Detection of abnormal fish trajectories using a clustering based hierar-

chical classifier. In British Machine Vision Conference, 2013.

[5] Franziska Broell, Takuji Noda, Serena Wright, Paolo Domenici, John Fleng Steffensen, Jean-Pierre Auclair,

and Christopher T Taggart. Accelerometer tags: detecting and identifying activities in fish and the effect of

sampling frequency. Journal of Experimental Biology, 216(7):1255–1264, 2013.

[6] José Castelo, H Sofia Pinto, Alexandre Bernardino, and Núria Baylina. Video based live tracking of fishes in

tanks. In International Conference on Image Analysis and Recognition, pages 161–173. Springer, 2020.

[7] Taina Gariglio Dias Coleman. SharkID: A Framework for Automated Individual Shark Identification. PhD thesis,

California State University, Long Beach, 2020.

[8] SO Ogunlana, O Olabode, SAA Oluwadare, and GB Iwasokun. Fish classification using support vector ma-

chine. African Journal of Computing, 8(2):75–82, 2015.

[9] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE transactions on systems, man,

and cybernetics, 9(1):62–66, 1979.

[10] Vassilis M Papadakis, Ioannis E Papadakis, Fani Lamprianidou, Alexios Glaropoulos, and Maroudio Kentouri.

A computer-vision system and methodology for the analysis of fish behavior. Aquacultural engineering, 46:53–

59, 2012.

[11] Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko, Natalia Andrienko, Vania Bogorny,

Maria Luisa Damiani, Aris Gkoulalas-Divanis, Jose Macedo, Nikos Pelekis, et al. Semantic trajectories model-

ing and analysis. ACM Computing Surveys (CSUR), 45(4):1–32, 2013.

81

[12] Telmo JP Pires and Mário AT Figueiredo. Shape-based trajectory clustering. In International Conference on

Pattern Recognition Applications and Methods, pages 71–81, 2017.

[13] Dhruv Rathi, Sushant Jain, and S Indu. Underwater fish species classification using convolutional neural net-

work and deep learning. In 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR),

pages 1–6. IEEE, 2017.

[14] Joao Santos. Tracking animals in underwater videos. Master’s thesis, Instituto Superior Técnico, Lisbon, 2020.

[15] Concetto Spampinato, Daniela Giordano, Roberto Di Salvo, Yun-Heh Jessica Chen-Burger, Robert Bob Fisher,

and Gayathri Nadarajan. Automatic fish classification for underwater species behavior understanding. In

Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in

imagery streams, pages 45–50, 2010.

[16] Chuang Yu, Xiang Fan, Zhuhua Hu, Xin Xia, Yaochi Zhao, Ruoqing Li, and Yong Bai. Segmentation and mea-

surement scheme for fish morphological features based on mask r-cnn. Information Processing in Agriculture,

2020.

[17] Wenlu Zhang, Anthony Martinez, Emily Nicole Meese, Christopher G Lowe, Yu Yang, and Hen-GeulHenry Yeh.

Deep convolutional neural networks for shark behavior analysis. In IEEE Green Energy and Smart Systems

Conference (IGESSC), pages 1–6. IEEE, 2019.

[18] Jian Zhao, Zhaobin Gu, Mingming Shi, Huanda Lu, Jianping Li, Mingwei Shen, Zhangying Ye, and Songming

Zhu. Spatial behavioral characteristics and statistics-based kinetic energy modeling in special behaviors de-

tection of a shoal of fish in a recirculating aquaculture system. Computers and Electronics in Agriculture, pages

271–280, 2016.

[19] Chao Zhou, Kai Lin, Daming Xu, Lan Chen, Qiang Guo, Chuanheng Sun, and Xinting Yang. Near infrared

computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. Computers and

Electronics in Agriculture, 146:114–124, 2018.

[20] Chao Zhou, Daming Xu, Lan Chen, Song Zhang, Chuanheng Sun, Xinting Yang, and Yanbo Wang. Evaluation

of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture,

507:457–465, 2019.

[21] Chao Zhou, Baihai Zhang, Kai Lin, Daming Xu, Caiwen Chen, Xinting Yang, and Chuanheng Sun. Near-

infrared imaging to quantify the feeding behavior of fish in aquaculture. Computers and Electronics in Agricul-

ture, pages 233–241, 2017.

82

83

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Motivation
	1.2 Project Goals
	1.3 Contributions
	1.4 Outline

	2 Related Work
	2.1 Detection Tracking and Classification
	2.1.1 Previous Projects
	2.1.2 Detection
	2.1.3 Tracking
	2.1.4 Classification

	2.2 Activity Recognition
	2.3 Abnormal Behavior Detection
	2.3.1 Non-Machine Learning Methods
	2.3.2 Machine Learning Methods

	2.4 Summary and Conclusions
	2.4.1 Detection
	2.4.2 Tracking
	2.4.3 Classification
	2.4.4 Behavior Detection

	3 Methodology
	4 Implementation
	4.1 Library Modules and Integration Architecture
	4.2 Trajectories Processing
	4.2.1 Pre-processing
	4.2.2 Feature Extraction

	4.3 Anomaly Detection
	4.3.1 Clustering-based
	4.3.2 Switching Vector Model

	4.4 Interesting Episodes Detection
	4.4.1 Machine Learning Models
	4.4.2 Rule based
	4.4.3 Switching Vector Model Adaptation

	4.5 Feeding Period Detection
	4.5.1 Convolutional Neural Network
	4.5.2 Motion-based Approaches
	4.5.3 Aggregation-based Approach

	5 Experimental Setup
	5.1 Datasets
	5.1.1 Trajectories vector-format dataset
	5.1.2 Feeding datasets

	5.2 Experiment A: Anomaly detection DBScan vs KMeans
	5.3 Experiment B: Interesting episodes detection
	5.4 Experiment C: Feeding Period Detection CNN vs Motion Based methods

	6 Results
	6.1 Results of experiment A: Anomaly detection DBScan vs KMeans
	6.2 Results of experiment B: Interesting episodes detection
	6.2.1 Machine Learning models
	6.2.2 Model by species
	6.2.3 Segmentation impact
	6.2.4 Vector Switching Model

	6.3 Results of experiment C: Feeding Period Detection CNN vs Motion based methods
	6.3.1 Bottom feeding results
	6.3.2 Surface feeding results

	6.4 Experiments Summary

	7 Conclusion
	7.1 Future Work

	Bibliography
	Bibliography

