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Abstract: Autonomous driving has been a topic of great interest in several areas, from which motor racing is no exception.
Aiming to autonomously control the future Formula Student Lisboa vehicle, this work was developed with the objective of
implementing different strategies for control and path planning. These strategies were tested in simulation, using a realistic
model of the prototype. For planning, as it is important in competition to minimise the time, the necessary references were
generated with this in mind. The approach followed involves the decoupling of the lateral and longitudinal subsystems, where
the reference path was obtained using artificial potential fields and then combined with a two passes algorithm developed
to generate a speed profile. This allowed to obtain a sub-optimal solution that adequately portrays the expected behavior of
a human driver while respecting traction conditions. Following this approach, the process of generating the speed reference
requires prior knowledge of the track layout. However, another approach was developed, without this premise being verified
for obstacle avoidance i.e, for a scenario where, in addition to the track limits, there is the presence of static obstacles. For
control, a decoupled approach was followed once again, controlling each one of the subsystems individually. With guidance
as main focus, several strategies were implemented for lateral control and only one for longitudinal control.

Keywords: Formula Student, autonomous driving, path planning, obstacle avoidance, guidance laws, automotive control

I. INTRODUCTION

Autonomous vehicles have been a topic of growing research
and investment in recent decades. Such vehicles can have
a wide range of applications covering different types of
systems, like small unguided robots or unmanned vehicles, and
environments, which can be extended from indoors to outdoors
or even to planetary exploration.

Focusing on driverless cars, the control design for au-
tonomous driving and racing has attracted considerable atten-
tion which led to the creation of different types of competi-
tions. In a more academic oriented environment, the Formula
Student (FS) is one of the most well-known, where students
are challenged to design, build and test a race car according
to a specific set of rules. With the intent of competing in the
driverless category, the Formula Student team from Instituto
Superior Técnico - Universidade de Lisboa (FST) is currently
developing its first hybrid prototype, in the sense that allows
both person-driven and driverless configurations.

This autonomy is not just ”all or nothing”, but rather a
spectrum with six development stages defined by the Society
of Automotive Engineers (SAE), where the core competencies
needed can be broadly divided into three categories, namely
perception, planning, and control [19].

Being what allows the vehicle to detect and process the
environment, the perception algorithms usually make use of
GPS (Global Positioning System), computer vision and a
wide range of sensors [24] which, to compensate for individ-

ual shortcomings and achieve a positive redundancy, can be
coupled via sensor fusion. From the received data, planning
derives instructions for the system to act in accordance with
such data, being usually categorized in global, behavioral or
local [12], [19], [21]. Regarding this last classification, it may
concern obstacle avoidance [8], [15], trajectory planning [11],
[12] or path planning [12], [16] where the latter frequently
involves a decoupled approach regarding the steering and the
velocity. Finally, control competency executes the planned
actions that have been generated by the previous process.
Considering the decoupling, this execution is achieved by
two different controllers, commonly designated as lateral and
longitudinal controllers, giving two different input signals: a
steering command; and an acceleration or a braking signal,
respectively.

However, the complexity of the underlying algorithms as-
sociated with each one of the mentioned categories is highly
influenced by the scenario where the vehicle will be inserted.
Comparing autonomous city driving with autonomous racing,
the degree of unpredictability of the surroundings in the latter
is distinctly lower which, combined with the highly controlled
and regulated environment, allows for simpler approaches
regarding perception that frequently rely on the combination
of LiDAR (Light Detection and Ranging) sensors, cameras
and computer vision [1], [13]. The planning, is usually based
on a minimum lap time problem, which accounts for the
vehicle dynamics and track boundaries. Lastly, the control
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strategies used in a racing scenario, frequently require more
data than provided by perception, which can be acquired from
motor encoders, GPS or accelerometer, for example, or from
estimation [13]. The longitudinal control problem is frequently
simplified by assuming that many of the dynamics of the
drivetrain, motors and transmission is regulated by low-level
controllers, resulting in a fairly simple system to control [6],
or combined with the lateral control for an appropriate MPC
(Model Predictive Control) formulation [16], [22]. On the
other hand, lateral control tends to include the inertia of the
car and tire forces, ranging from models based in the path,
which may [22] or may not [20] involve MPC formulation, to
models based on vehicle dynamics like the single-track [14]
or four-wheeled [20] models.

Being this work mainly focused in planning and lateral
control of the autonomous vehicle pipeline, the objectives are
threefold:
→ Develop an algorithm for path planning under the as-

sumptions that there is an a priori knowledge of the
track layout and an algorithm for obstacle avoidance
considering static obstacles;

→ Design different control strategies to effectively steer the
vehicle, as well as a low-level controller, in order to
obtain more accurate results, ensure vehicle stability and
avoid wheel lock or spin;

→ Test, evaluate and compare the different algorithms with
a developed realistic model of the vehicle.

The remainder of this work is structured as follows: Section
II describes the vehicle modelling, Section III the planning
algorithms and Section IV the control strategies; the simulation
results will be presented and discussed in Section V and the
conclusions, as well as suggestions for future research on this
topic, will be covered in Section VI.

II. VEHICLE MODELLING

Since the controller design, tuning and validation processes
are made resorting to simulation, it is important to develop
models that emulate the vehicle behaviour. In this section, two
categories of vehicle models are detailed: the first, designated
as realistic, has a high degree of complexity, being used for
simulation; the second, designated as simplified, includes the
models used for control and observer design as well as for
preliminary validation.

A. Realistic Model

The vehicle model used for simulation has six degrees of
freedom (DOF), modelling the vehicle as a rigid body with a
simplified vertical suspension system for each wheel. The car
is four-wheel-driven (4WD) by independent electric motors
and front-wheel steered.

The model formulation is done resorting to a state-space
representation where the states are the linear v and angular Ω
velocities of the center of gravity (CG) expressed in the local
frame, the CG position pCG expressed in the global frame,

the Euler angles Φ associated with the rotations from global
to local frame and the angular speeds of each wheel ω. Having
as inputs the wheel torques tw and the steering angles δ, the
model returns the state derivatives and generates as output the
suspension deformations ∆z , the slip ratio κ, the slip angles
α and the forces fx, fy, fz and moments mz resulting from the
tire-ground interaction.

Regarding the kinematics, the linear and angular velocities
of the body frame can be expressed in the global frame as [5]

ṗCG = S⊤ v (1)

Φ̇ = R−1 Ω (2)

where R stands for the transformation matrix from the Euler
angles rate of change to the CG angular velocities and S is
the rotation matrix that converts global frame coordinates into
local frame coordinates. The expressions for both matrices can
be found in [5].

Lastly, with respect to dynamics, from the Newton-Euler
equations the following equations can be obtained [5]

mv̇ = −m(Ω× v) +m S g + fCG (3)

JΩ̇ = −(Ω× JΩ) + tCG (4)
Jw ω̇ = Tw − FxR− Tdisw (5)

where m is the vehicle mass, g the gravity vector, J and Jw
are the vehicle’s inertia tensor and wheel rotational inertia,
respectively, and R the tire radius. In the above equations, the
terms with the subscript CG represent the resultant force and
torque acting on the CG, which includes tire, dissipation and
aerodynamics forces in (3) and energy dissipation in (4). In
equation (5), Tdisw stands for dissipation torque. All dissipa-
tions and aerodynamics forces were modeled in a quadratic
form.

Powertrain
Due to the complexity of modeling the full powertrain

system, a simplification was made in which the motor losses
were dynamically modeled, resorting to the implementation of
an efficiency map and all the remaining losses were considered
as constant. Additionally, to approximate the torque response
dynamics, the first order system

T =
ηPT

τPT s+ 1
Tcmd (6)

was implemented, where ηPT is an efficiency to account for
the remaining losses and τPT is the time constant for the
torque dynamics that accounts for the electrical time constant
and mechanical response. This model was inherent from [4].

Steering
Considering a low-speed or low curvature cornering ma-

noeuvre, as the vehicle travels along the curved path, all tires
follow unique trajectories around a shared turn center, each
one with a specific curvature radius. Hence, to avoid sliding
and maintain a pure rolling condition, the angle described by
the inside front tire angle must be larger than the one described
by the outside front tire.
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The geometry that allows to obtain such configuration,
known as Ackermann steering, computes the steering angles
as

δFR = arctan

(
L tan(δ)

L− LW
2 tan(δ)

)
(7a)

δFL = arctan

(
L tan(δ)

L+ LW
2 tan(δ)

)
(7b)

in which L = LF + LR and LW are the wheelbase (sum of
the distances from the CG to the front axle LF and from the
CG to the rear axle LR) and the track width (distance between
two wheels of the same axle) respectively. This geometry was
the one considered since low-speed or low curvature cornering
manoeuvre are typically found in FS race tracks [4].

Similarly to the powertrain modelling, a first-order system
given by

δ =
1

τSAs+ 1
δcmd (8)

was used in order to model the relation between the real and
command steering angles. In such model τSA stands for the
steering actuation time constant. Lastly, a slew rate limitation
was also implemented to model the physical limit in the
actuator velocity.

Tires
The tires, as the only element interacting with the driving

surface, are the ones responsible for the generation of the
forces and moments that allow the acceleration, braking and
turning of the vehicle. Due to the inherent complexity of
measuring such mechanical quantities in real time, tire models
are commonly used to provide estimations.

For this work, the Pacejka tire model [18] was considered to
be suitable as it is the one used by the FST Lisboa tire supplier.
However, to be able to employ the provided tire model and
compute the friction loads, several concepts must be defined
first.

When a vehicle is in contact with the ground, part of the
energy delivered by the motor torque is consumed by friction,
generating an longitudinal force Fx which, opposing the wheel
rotation, is responsible for the acceleration and braking of
the vehicle. This force is influenced by the slip phenomenon,
which can be quantified by the slip ratio:

κ =
ωR− vwx

vwx
(9)

in which vwx represents the longitudinal component of the
linear wheel velocity vw in the wheel coordinate system.
However, it is important to note that, if the vehicle is turning,
a lateral force Fy is also generated, which is influenced not
by the longitudinal slip, but by the side slip, quantified by the
angle presented in (10).

α = arctan

(
vwy
vwx

)
(10)

Given the non-uniform tire deformation that occurs in the
surface originated by the tire-ground interaction, not only

forces but also moments are generated, like the self-alignment
moment Mz , which depends on the same parameters as the
lateral force since it is generated by it.

Having been defined the concepts associated with tire me-
chanics, it is now possible to state the formula inherent to
the chosen model. Commonly known as the Magic Formula,
this model resorts to a semi-empirical formulation [18], which
is present in (11), to mathematically describe not only both
longitudinal and lateral forces, but also the self-alignment
moment.

YMF−SV = D sin

(
C arctan

(
(1− E)B(xMF+

SH) + E arctan
(
B(xMF + SH)

))) (11)

Regarding the parameters inherent to (11), B, C, D and E
are the stiffness factor, shape factor, peak value and curvature
factor, respectively, which are empirically obtained and must
respect the relations presented in [18]; SV and SH are the
vertical and horizontal shifts and, lastly, XMF and YMF are
the input (which can be either κ or α) and output (which can
be Fx, Fy or Mz) variables, respectively.

B. Simplified Models

As it can be seen from the previous subsection, the equations
of motion are complex and highly nonlinear, which would
lead to a complex deduction of the appropriate controllers or
estimators. As such, two simplified models were used, which
will be presented next.

Bicycle Dynamics Model
In order to develop a model and understand the dynamic

involved, the balance of forces and moments plays an im-
portant role. Assuming that the vehicle can be seen as a rigid
body with planar motion, is rear-wheel driven (RWD) and front
steered only, from the lumping of the two wheels belonging
to the same axis (inherent to the bicycle model formulation)
the dynamics can be described by [4]

v̇x =
1

m

(
− FFy sin(δ) + FRx

)
+ vyψ̇ (12)

v̇y =
1

m

(
FFy cos(δ) + FRy

)
− vxψ̇ (13)

ψ̈ =
1

Izz

(
LFF

F
y cos(δ)− LRF

R
y

)
(14)

where the tire forces Fx and Fy were modelled resorting to
the simplified Magic Formula [13].

For control and estimator design, a linearisation of (12) and
(14) was performed. Considering CαF and CαR the cornering
stiffness of the front and rear tires and (X,Y ) the position of
the vehicle reference point, in the fixed frame, obtained from
the integration of [3]

Ẋ = vx cos(ψ)− vy sin(ψ) (15)

Ẏ = vx sin(ψ) + vy cos(ψ) (16)
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a state space model can be formulated for the lateral subsystem
where the states are [Y ψ vy ψ̇]

⊤ and the dynamic matrix A
and the input vector B are


0 vx 1 0
0 0 0 1

0 0 − 2(CαF +CαR )

mvx
− 2(CαRLR−CαF LF )

mvx
− vx

0 0 − 2(CαRLR−CαF LF )

Izzvx
− 2(CαF L

2
F+CαRL

2
R

Izzvx


[
0 0

2CαF
m

2LFCαF
Izz

]⊤
Bicycle Dynamics Model in Terms of Road Errors

A dynamics model, with the lateral position and the yaw
angle as degrees of freedom was presented in the previous
section. However, it can be useful to define a dynamics model
in terms of position and heading errors with respect to the
road. To formulate such model it is only necessary to redefine
the linear equations obtained from the previous state space
model in terms of the mentioned errors.

Since the inertial acceleration of the vehicle ay have the
contribution of two terms, namely, the acceleration v̇y due to
motion along the y axis and the centripetal acceleration vxψ̇,
assuming steady-state conditions allows to obtain the desired
acceleration as in (17) [20] where ψ̇d can be obtained from the
under-steer gradient Ku and wheelbase L through (18) [2].

ȧyd = vxψ̇d (17)

ψ̇d =
v

L+Kuv
2
δ (18)

With these variables defined, the errors in the lateral and
yaw accelerations can be computed as [20]

ëy = ay − ayd = v̇y + vx(ψ̇ − ψ̇d) (19)

ëψ = ψ̈ − ψ̈d (20)

Substituting (19), (20) and (18) in in the equations of the
previous model (neglecting both Ku and vy which simplifies
(18)) a linear state space can be finally obtained [20] where
the state are [ey ėy eψ ėψ]

⊤ and the dynamic matrix A and
the input vector B are


0 1 0 0

0 − 2(CαF +CαR )

mvx

2(CαF +CαR )

m

2(CαRLR−CαF LF )

mvx
0 0 0 1

0 − 2(CαF LF+CαRLR)

Izzvx

2(CαF LF−CαRLR)

Izz

2(CαRL
2
R−CαF L

2
F )

Izzvx


[
0

2CαF
m − 2(CαF LF−CαRLR)

mL − v2x
L 0

2CαF LF
Izz

− 2(CαF L
2
F+CαRL

2
R)

IzzL

]⊤

III. PLANNING ALGORITHMS

Being this work focused on local planning, in this section
the algorithms developed for path planning and obstacle avoid-
ance will be presented.

A. Path Planning

For path planning the employed strategy consists in a de-
coupled approach, in the sense that one algorithm obtains the
path, accounting for the boundaries of the track, and another
one regulates its speed. Both algorithms will be described next.

Reference Path
Aiming for a more optimised reference path than the cen-

terline, which is the common baseline solution, the potential
field concept resorting to virtual forces was used. The main
idea behind this approach consists in considering the vehicle as
a charged particle moving under the influence of repulsive and
attractive potentials. Since the objective is maintain the vehicle
within the track, the repulsive forces will be associated with
the track boundaries, the attractive force with a target ahead
and the guidance with the result of the combination of both
effects.

The computation of the attractive force is quite simple as it
only requires the knowledge of the actual position of the car
p and the selection of a target point lying on the centerline
ptarget. This force can be mathematically described as [23]

fatt = Katt(ptarget − p) (21)

where Katt is a gain, simulating a proportional controller.
The repulsive force, on the other hand, requires more

attention since it depends on the danger level U which is
influenced by the danger of the boundary γ and the distance
between the vehicle’s position and the limits of the track
d(X,Y ). The danger level U can be given by [23]

U = max
k

limγ→γk
d1−γk (X,Y )−d1−γmax

d1−γmin −d1−γmax
(22)

where dmin is the distance below which U will be always 1 and
dmax the distance above which U will be always 0. Analysing
all the boundary points in the proximity of the vehicle, the
one with the minimum distance is selected since it will present
the higher danger level. From this point pdanger, the repulsive
force can be calculated from [23]

frep = Krep U
p−pdanger

∥p−pdanger∥ (23)

where Krep is a gain, as in the attractive force.
Seeing the virtual resultant force f direction as a desired

orientation, as it minimizes the potential, and knowing the
current heading of the vehicle ψ, an heading error eψ can be
defined as shown in Figure 1. The steering command intends
to drive this error to 0 meaning that this is a regulator problem;
thus, the steering command was set equal to the error. In this
way, the vehicle is steered in the direction of the resultant
force. This law could seem extremely simple, since it results
from a unitary proportional controller, but it should be kept in
mind that the reasoning behind the heading error used to obtain
this control action involves highly non-linear calculations.

Having in mind that an optimal solution cannot be guaran-
teed, in the sense of guaranteeing the completion of the course
with minimum time, this method was further combined with
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the speed algorithm that will be presented next, in order to
obtain the set of parameters that will result in a solution close
to the optimal. Such set consists on the distance to the target,
which will be referenced as offset, Krep and γ. The attractive
gain was left out and set to a unitary value since, although
it can be seen as parameter, it is related with the offset. The
procedure adopted in the search of these parameters was a
sweeping in which, for each of the resultant paths obtained
for a constant longitudinal speed of vx = 5 [m/s], the speed
profile was found and the one with the lowest time was chosen
as final.

Figure 1. Schematic of the forces felt by the vehicle

Reference Speed
Although approaches capable of simultaneously optimising

both the path and the speed profile exist, the procedure taken
was based on aiming to find a speed profile that results in
complete a given fixed path in minimum time respecting
traction conditions and powertrain constraints.

Considering an isotropic tire, the maximum transferable
force between the road and the vehicle is limited by the tire
force which, using the friction circle model, can be computed
from

F 2
x + F 2

y ⩽ (µFz)
2 (24)

Neglecting the aerodynamic downforce, the forces in (24) are
given by

Fx = max +
1

2
ρApCDv

2
x = max + Fdis (25a)

Fy = mv2xK (25b)
Fz = mg (25c)

where K stands for the path curvature obtained through

K = X′Y ′′−Y ′X′′

((X′)2+(Y ′)2)
3
2

(26)

In (26), the single and double apostrophes denote the first and
second derivatives, respectively, of the waypoints coordinates
(X,Y ) expressed in the global frame. These derivatives can be
approximated using forward, backward and central differences
in starting, finishing and remaining points, respectively.

Discretising the path at N steps, using a fixed step ∆s in arc
length s, and performing algebraic manipulation, which can be
seen with more detail in [10], of the equations for uniformly
accelerated motion

vx(k + 1) = vx(k) + a(k)∆t (27a)

s(k + 1)= s(k) + vx(k)∆t+
1
2a(k)(∆t)

2

= s(k) + ∆s
(27b)

it is possible to obtain the following equations

∆s =
v2x(k + 1)− v2x(k)

2a(k)
(28)

vx(k + 1) =
√
v2x(k) + 2a(k)∆s (29)

t(k + 1) = t(k) +
2∆s

vx(k + 1) + vx(k)
(30)

which will be used in the optimisation process. This optimi-
sation is split into two passes, a backward and a forward one,
both explained below. The algorithms of both passes can be
found in [10], where the pseudo-code is provided.

→ Backward Pass
In the first pass, the backward algorithm determines the

maximum speed in turns and the necessary braking distance
before each turn. Starting from the finishing point and iterating
the sampled curve in the reverse order, the maximum speed
at each step is obtained from the minimum between a user-
defined limit vxlim and the maximum speed for the previous
sample (k−1), which corresponds to the real positive solution
of (24), solved for K(k − 1) and ax = 0. Once the speed is
computed, the negative acceleration required to achieve such
value can be determined with (28) and the minimum between
this value and the available by the powertrain, which is given
by function h that will be described latter, is applied. Then, the
next iteration continues by moving backward along the curve.

→ Forward Pass
In the second pass, the forward algorithm maximises the

speed and determines the optimal times of transition between
acceleration and braking. This is done reparametrising the
originally profile using time steps, instead of distance steps,
forming a trajectory parametrised in time [10]. Beginning in
the starting point, and iterating in the forward order, when
the velocity is below the velocity profile of the backward
pass, the maximum available positive acceleration is applied
to increase the speed and, once such velocity is reached, the
optimal braking is applied as in the previous pass. As a result,
the optimal transition times between acceleration and braking
are determined to execute the track in the minimum time
and under the acceleration constraints resulting from traction
and/or powertrain.

→ Powertrain constraint
From the description provided, it can be seen that both

passes use a function h to determine the maximum available
longitudinal acceleration in direction d = ±1, with forward
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represented as positive. Using K and vx, such acceleration
can be determined from (24) based on the maximum available
tire force in the longitudinal direction. However, this value is
further limited by the vehicle powertrain [10].

Assuming that the available torque T can be aproximated
as constant, but differs, however, depending on the axle and
on whether the vehicle is braking or accelerating, the wheel
tractive force Ftrc can be computed from [10]

Ftrc =
1

R

Nmtr∑
i=1

(ηi,trans · rgear · Ti) (31)

where ηi,trans is the transmission efficiency and rgear the gear
ratio. Thus, the maximum available longitudinal acceleration
can then be given by

h =
1

m

[
− Fdis + dmin

(√
µ2F 2

z − F 2
y , |Ftrc|

) ]
(32)

B. Obstacle Avoidance

For obstacle avoidance a decoupling between the guidance
and acceleration was followed once again, which will be de-
scribed next. In this scenario, the static obstacles are intended
to represent other vehicles which were modelled as rectangles.

Reference Path
Resorting again to potential field methods, and being intu-

itive to bypass a given obstacle through the widest passageway,
the algorithm presented in the previous section was used
and four main scenarios were taken into account: the wider
passage being free, the wider passage being obstructed, no
wider passage and, lastly, no passage at all.

However, from the definition of the repulsive potential field,
given by (22), and knowing that the repulsive force will have a
direction perpendicular to the potential field that originated it,
some problems were anticipated and four modifications were
implemented, namely:

1) Track limits and obstacles were differentiated, meaning
that they were defined by different repulsive fields;

2) The obstacles repulsive force was forced to have the
direction of the vehicle’s closest edge, instead of being
perpendicular to the contour lines from the different
danger levels;

3) The ability to check if a given obstacle is already behind
was included (considering a given obstacle as passed
when the CG is ahead of all the edges of the rectangle
representing the obstacle);

4) The ability of change the repulsive and attractive gains
if a collision is predicted (by projecting the current
trajectory a fixed distance ahead) was incorporated;

Reference Speed
Since the approach followed for path planning requires an

a priori knowledge about the track to obtain the speed profile,
for obstacle avoidance this reference needs to be obtained with
a different method which, in this work, was done resorting to

the concept of safety zones [9]. However, it should be noted
that this method could also be used for path planning if there
is no prior knowledge of the track layout.

This approach takes into account that any electromechanical
system has an inherent response time, so the ability of a
system to respond to a sudden obstacle can be derived from the
concept of vehicle safety [9] and translated into the definition
of multiple zones within the system observable environment.
Such zones are four, which are represented in Figure 2, and
are responsible for the velocity adjustment needed to avoid
collision.

Figure 2. Schematic of the forces felt by the vehicle

Similarly to what was done for the reference path, some
modification were implemented relatively to the concept typ-
ically found in the literature [9]:

1) Since a negative velocity is not allowed in FS competi-
tion, the profile was changed to take this constraint into
account;

2) If no possible passage is detected, the reference speed is
set to zero;

3) Due to possible chattering caused by a linear piece-
wise profile, a cubic spline interpolation were performed
between the different radius, allowing a smooth transition
between regions;

4) To avoid an ”overshoot” in the observation zone, the
velocity associated with this outer radius was slightly
decreased from the maximum velocity;

5) The radius RO, RW and RD were parameterised as func-
tion of velocity, with a linear relation, and not established
as fixed values. RC was fixed, containing the vehicle with
an extra safety distance.

IV. DECOUPLED CONTROL APPROACH

The linearisation of the bicycle dynamics model with the tire
slip ratio κ as additional state, provided in [4], shows clearly a
division into two decoupled subsystems: a chained longitudinal
subsystem; and a lateral subsystem. As such, for control
purposes, a decoupled approach was followed developing the
lateral and longitudinal controllers independently which will
be presented in this section.

A. Longitudinal Control

As it was proposed in [4], a cascade control architecture
with proportional gains was used. Such structure was chosen
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as it allows to control the slip ratio and the longitudinal speed
(chained variables) separately and perform a direct saturation
of the physical quantities that must be limited. In this structure,
the inner and outer loops variables are the slip ratio κ and
the longitudinal speed vx, respectively, since the former has a
faster dynamics.

To take into account the load transfer occurring while
the vehicle is describing a turn, a left/right motor torque
asymmetry was created, assisting the control of the slip ratios
generated in each tire, which is possible due to the use of
independent wheel-hub motors. With this in mind, the control
law implemented can be mathematically described by [4]

Ti = Ki
κ

(
κref − κi − (−1)iκdiff

)
(33)

where κref and κdiff can be computed as [4]

κref = Kvx(vxref − vx) (34a)

κdiff = Kψ̇(ψ̇ref − ψ̇) (34b)

B. Lateral Control
The lateral control, related with the ability to steer the

vehicle to a different lateral position, frequently relies on the
knowledge of the vehicle’s pose regarding the track, or in rela-
tion to a given referenced path, resorting to variables typically
called path-following errors. As such, in this subsection these
variables will be introduced first and then the control strategies
will be presented.

Cross-track and Heading Errors
In autonomous driving it is essential to know the vehicle

pose in relation to the track in order to allow the control
algorithm to correct eventual errors. These can be related with
a distance, like the cross-track error, or with an angle, which
the heading error is an example of. Being possible to define
such errors in different manners, in this work it was assumed
that the vehicle had the waypoints in front of it, provided by
the perception and planning algorithms, and would then curve
fit them with a second-order polynomial in order to obtain a
reference path [3].

The computation of the path-following errors under this
assumption must be done in the absence or presence of a
look-ahead distance Llad since such concept is frequently
used for control, as it allows for a timely correction of the
errors, providing an anticipation capability. Considering pRP

the closest point to the car, expressed in the local frame, and
tRP the tangent at that point, since the only difference between
using or not using a look-ahead distance is the location of this
point and, consequently, the tangent (as it can be seen from
Figure 3) the mathematical expression for the cross-track and
heading error is the same regardless of the situation. Such
computation can be given by [3]

ey =
pRP × tRP

∥ tRP ∥
(35a)

eψ = arcsin

(
tRP × v

∥ tRP ∥ · ∥ v ∥

)
(35b)

where the heading error was defined as the angle between the
referenced tangent and the vehicle’s velocity vector v to take
into account eventual sideslip [3].

(a) Without a look-ahead (b) With a look-ahead

Figure 3. Cross-track and heading errors

An additional error parameter can also be defined, since it
will be used in one of the controllers. Denoting it by η, it
consists of the angle between the look-ahead vector (which
can be obtained once the reference point as been established
since its elements will be equal to the coordinates of such
point in the local frame) and the velocity vector, as shown in
Figure 3 (b). This variable can be computed as

η = arcsin

(
v × pRP

∥ v ∥ · ∥ pRP ∥

)
(36)

Control Strategies
→ Pure Pursuit (PP)

The Pure Pursuit controller [7] consists of a non-linear
control strategy, where only one parameter is utilized as error,
the angle η, represented in Figure 3 (b).

Assuming a kinematics vehicle model, and using a circular
arc to connect the rear axle of the vehicle to an imaginary
point moving along the desired path, this controller calculates
the required steering angle from the curvature of such arc
(obtained geometrically as shown in [7]) through the following
law

δcmd = arctan

(
2L sin(η)

Llad

)
(37)

→ Linear Quadratic Gaussian (LQG)
The Linear Quadratic Regulator (LQR) approach is a linear

control strategy and it consists on minimising a given quadratic
performance index [17] which penalises how far the final state
of the system is from zero at the end of a finite time horizon
and the state and control authority evolution during the same
time horizon. For this minimisation, a significantly good ap-
proximation of the optimal solution can be obtained by solving
the Albegraic Riccati Equation (ARE) [17] which requires
establishing two tuning parameters: the state weighting matrix
Q, which penalises the deviation of the state from zero, and
the control weighting matrix R, which penalises the actuator
authority.

7



Considering the bicycle dynamics model provided on Sec-
tion II, the control law is given by [3]

δcmd = −(KLQG
y ey+K

LQG
ψ eψ+K

LQG
vy vy+K

LQG

ψ̇
ψ̇) (38)

where the gains are obtained from the ARE. Since the model
used is parameterised as a function of longitudinal velocity,
these gains will be velocity dependent making it necessary to
update them accordingly. This was done resorting to a gain
scheduling, where the gains were calculated offline for the
speed operating range and then obtained from a neighborhood
table containing this values.

Since the variables vy and ψ̇ are not accessible directly
from sensors, the design of a Kalman filter to estimate them
is necessary. To obtain the gains related with this filter two
additional parameters are needed, namely, the process Q0 and
sensor R0 noise covariances. This estimator uses the same
model as the one used for the LQR and resorts, once again,
to a gain scheduling to update the gains.

For this work, the weighting matrices for the LQR and
Kalman filter were:

QLQG = diag{7, 15, 1, 1}, RLQG = 5
QLQG

0 = diag{0.5, 0.1, 0.1, 1}, RLQG
0 = diag{0.01, 0.01}

→ Kinematics Lateral Speed (KLS)
The Kinematics Lateral Speed controller [7] bases itself on

the distance between the vehicle and the reference path and on
how such distance should influence the desired rate of change
of the cross-track error ėyd : if the car is far from the reference
line, it is required to make it get closer at higher rate than
it would if it was close [7]. As such, ėyd can be defined as
proportional to the cross-track error ey , with negative sign. In
order to reduce the error between the desired and actual rates
of change, the controller must steer the car accordingly with
[7]

δcmd =arctan

(
L

(
−KKLS

ψ sin(eψ)−

KKLS
ψ KKLS

ey
ey

vx
+

kRP cos(eψ)
1−kRP ey

)) (39)

where KKLS
ψ and KKLS

ey are positive constants and kRP
denotes the curvature of the path at the reference point pRP,
which can be computed from a different definition to the one
presented in (26), since a polynomial was used to curve fit a
given set of waypoints. Considering xi and yi the coordinates
expressed in the local frame of the n points curve fitted for the
reference path generation and f(x) = y = ax2 + bx + c the
function describing the second-order polynomial used, kRP
can be computed as

kRP =
2a

(1 + (2axRP + b)2)
3
2

(40)

where the lower letter k was used since it is with respect to
the local frame.

The gains used were KKLS
ψ = 1 and KKLS

ey = 2.5.

This controller (and the next one) resorts to a bicycle vehicle
model formulated with respect to the path to obtain, from
linearisation, an general expression (provided in [7]) for the
steering angle, which is then used to obtained the control laws.

→ Modified Sliding Mode (MSM)
The sliding mode strategy is a simple and robust control

law which does not require a precise model of the system
[7]. However, due to the discontinuous nature of its control
action, this type of control usually leads to oscillations that are
commonly designated as chattering which can be be weakened
or eliminated. As such, as suggested in [7], the sliding surface
is defined as (41) and the sliding controller as (42) in order
to ensure stability without chattering.

σ = Keyey +Keψeψ (41)
σ̇ = −Kσσ (42)

The resulting Modified Sliding Mode control law can be
obtained from [7]

δcmd = arctan

(
L

(
C1

vx
+ kRP

cos(eψ)

1− kRP ey

))
(43)

where Key and Keψ are weighting coefficients, kRP is the
curvature at the reference point computed from (40) and C1

is given by

C1 = −
KMSM
σ KMSM

ey ey +KMSM
σ KMSM

eψ
eψ +KMSM

ey ėy

KMSM
eψ

(44)
Since the variable ėy is not accessible directly from sensors,

a Kalman filter was designed to estimate it. The model used in
this estimator was the bicycle dynamics one written in terms
of road errors and, similarly to what was done in the LQG
controller, resorts to a gain scheduling to update the gains.

The weighting matrices for the Kalman filter and the re-
maining gains used were:

QMSM
0 = diag{0.8, 0.5, 0.8, 0.5}, RMSM

0 = diag{0.01, 0.01}
KMSM
σ = 7, KMSM

eψ
= 0.1, KMSM

ey = 1.

V. RESULTS AND DISCUSSION

Beginning with path planning, for evaluation purposes a
track from the trackdrive event of a Formula Student com-
petition held in Germany (FSG) was used. Such course is
represented in Figure 4 along with the reference trajectory
since the reference path is sketched with varying color, which
has a correspondence to the values presented in the colorbar.

From the trajectory shown in Figure 4 it can be seen that
the vehicle cuts corners while driving slower in corners and
faster on straights; so the final solution captures the expected
behaviour of a human driver. The parameters that allowed to
obtain this solution are presented in Table I.

Since the use of the centerline is a typical baseline solution
for the reference path, a comparison was made with this
solution, which is presented in Table II. From this table it is
possible to see that the centerline could lead to a considerable
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loss of time in curves, which is mitigated with the method
used since there is a tendency to cut corners.

Figure 4. FSG reference trajectory

Table I. Planning parameters

Notation Value Units
Katt 1 N/m
Krep 2 N

γ 10 -
offset 4 -
doffset 6.16 m
dmin 0.75 m
∆s 1.50 m

ηtrans 0.70 -
vxlim 26.5 m/s

Table II. Comparison between centerline and the potential field solution

Reference path t [s] Improvement
Centerline 30.86 – –

Potential Field 27.00 3.86 [s] 12.50 [%]

Having been both reference path and speed profile obtained,
the controllers performance in the trackdrive event can be
evaluated recurring to suitable metrics. Considering that the
reference path is intended to represent a solution closely to
an optimal, the cross-track error is an important factor to take
into account and, as such, the root-mean-square (RMS) of this
error was used as an evaluation parameter. However, such error
was computed separately to the one used for path-following,
in order to guarantee an independent method to measure the
distance to the reference path to be tracked. Knowing the
curvature of the track and distinguishing a line from a arc
of circumference if the curvature of the path between two
waypoints has an absolute value below 0.002 [m−1], this error
can be computed by [3]

ey =

{
di,i+1×di,P
∥di,i+1∥ , if |Ki,i+1| < 0.002

sign(Ri,i+1) ·
(
PC − |Ri,i+1|

)
, otherwise

(45)

where C and Ri,i+1 are the center and radius of the circumfer-
ence arc, respectively, di,i+1 denotes the displacement vector
from waypoint i to waypoint i+1 and di,P the displacement
between a waypoint i and the reference point in the car P .

Lastly, noting that some of the implemented control strate-
gies require or could benefit from the use of a look-ahead
distance, and keeping in mind that such distance should
change with the longitudinal speed, the performance for such

controllers was evaluated for two types look-ahead profiles,
namely a linear and a parabolic one, both present in (46).

Llad1 = 1 + 0.25vx (46a)

Llad2 =

(
vx
5

)2

(46b)

The results for this event are presented in Table III where
a column was added to provide additional information. This
column qualitatively informs if, in the path actually described,
the vehicle touched the cones, but still managed to remain in
the track (being signaled a penalty) or if the vehicle did not
finish the course (which will be shown as DNF).

Table III. Trackdrive results

Controller Llad RMS(ey) [m] Penalty

PP 1 0.05 –
2 0.07 –

LQG 1 0.04 –
2 – DNF

KLS – 0.05 –
MSM – 0.10 –

Beginning the analysis with the cross-track error, it can be
highlighted that the PP, LQG and KLS controllers present a
similar performance being the difference between the MSM
and these controllers not significant and possibly diminished
with further tuning. Although not presented, some tests were
performed using the centerline as reference path and it was
noted that the cross-track error increased. Such phenomenon
can be explained by the general increase of the curvature,
making it harder to track with the same precision as in the
path used. Regarding the look-ahead analysis, the most clear
conclusion is that the linear profile enables both controllers
to finish the track and allows for a better performance, with
respect to the cross-track error. This can be explained by how
the speed influences this predictive distance. The variation in
the parabolic profile is more significant, which means that it
will result in higher values for the distance, leading the con-
trollers to correct their position prematurely and, consequently,
losing part of the benefit associated with this concept. This
occurrence is in accordance with what usually happens in the
behaviour of a driver: being the predictive distance dependent
not only on speed, but also on curvature, it is usually smaller
for larger curvatures, which can be better achieved with the
linear profile used as it presents, in general, lower values.

Analysing now the obstacle avoidance scenario, the break-
points used are presented in Table IV and the results can be
found in Figure 5. Regarding steering, the vehicle is still able
to portray what can be considered as an expected path, but
some ”clumsy” movements can be detected. However, this
occurs mostly in tight curves and the vehicle still manages to
perform them and remain within the track. On the other hand,
the behaviour regarding speed presents less flaws, since the
speed is decreased in the proximity of an obstacle or in a curve,
but increased in straights, as expected. The minimum distance
to track limits and obstacles were also computed and it was
found that the vehicle complete the track without touching
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boundaries or obstacles. However, a difficulty in guaranteeing
a trajectory without collision was verified (using other tracks
and obstacles layouts), meaning that the developed algorithm
is difficult to generalise.

Table IV. Points used for cubic spline interpolation where vxmax = 15 [m/s]

RO RW RD RC

Distance [m] 1.5 vx 1.2 vx 0.9 vx 1.5 L
Velocity [m/s] vxmax vxmax − 3 vxmax/2− 1 0

Figure 5. Obstacle avoidance results

Weighting all comments and results it was considered that
the different control strategies implemented correspond to
adequate solutions for vehicle guidance and that the planning
algorithms are able to provide a satisfactory solution.

VI. CONCLUSIONS

Analysing the results documented in the previous section,
it can be concluded that the objectives of this work were
accomplished. Regarding planning, the adopted approaches do
not guarantee optimality, but are able to portray the expected
behaviour of a human driver. With respect to control, a set
of controllers and path-following strategies was provided,
enabling a FS vehicle to follow a given path.

However, some improvements could be implemented in
future work. Relatively to simulation, some realistic models
for the sensors and a mechanism that simulates the perception
algorithms could be included. Regarding planning, formula-
tions that allow to simultaneously optimises the path and speed
profile should be investigated. In addition, if such reference is
obtained in an offline fashion, some mechanism for online
update should be present since the actual conditions may
not match those expected when the reference was generated.
Lastly, for obstacle avoidance, approaches that allow a cou-
pling between the lateral and longitudinal subsystems should
be analysed and dynamic obstacle should be considered.
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