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Abstract

This thesis takes on the work of Cata-
rina Botelho in her Thesis ”Speech as a
Biomarker for Sleep Disorders and Sleep
Deprivation", focusing on the automatic de-
tection of Obstructive Sleep Apnea (OSA).
This sleep disorder can cause fatal traffic ac-
cidents due to fatigue as well as work re-
lated accidents and so far the best diagnosis
exam, the Polysomnography, is not practical
and makes the patient uncomfortable.

Our objective was to improve on C.
Botelho’s work by adding to it cough and
snore analysis to the sleep disorders de-
tection and comprehension to all the other
speech signals collected.

By evaluating the features of the subjects’
speech signals with an SVM classifier we
were able to reach a 91% accuracy rate with
majority voting.

The results were obtained from two different
corpora, the first one has 40 subjects and it
was compiled from YouTube vlogs and the
second one has 26 subjects and it was com-
piled through a JotForm survey.

Keywords: Osa, Sleep disorders, Speech,
Cough, Computational diagnosis.

1 Introduction

This work focuses on sleep disorders, more specifically
on the analysis of biomarkers for the detection of sleep
disorders. It follows up on the work done by Cata-
rina Botelho during her MSc thesis entitled "Speech as
a Biomarker for Sleep Disorders and Sleep Depriva-
tion" (which has also an associated paper: "Speech as
a Biomarker for Obstructive Sleep Apnea Detection"
[4]).

Control OSA

#F 12 6

#M 8 19

Age - F 22 ±11 55 ±9

Age - M 36 ±10 53 ±10

Table 1: Portuguese Sleep Disorders (PSD) Corpus.

The decrease in the muscle tone of the upper airway
dilator muscle, excessive compliance of the pharyngeal
wall and anatomical alterations of the respiratory tract
are some of the causing factors of Obstructive Sleep
Apnea. These factors also cause articulatory anoma-
lies, phonation anomalies and resonance anomalies,
that are correlated with speech and are able to be iden-
tified through speech analysis.

C. Botelho collected a speech dataset in which the sub-
jects had to complete several tasks and their speech sig-
nals were recorded. However this initial corpus was
not as balanced as desired, and could jeopardize the
results, so a second corpus was formed in order to
avoid that possibility. C. Botelho also collected a small
In-the-Wild Obstructive Sleep Apnea (WOSA) Corpus
with data obtained from audio in YouTube videos.

The best experimental results of C. Botelho’s Thesis
for OSA detection (TPR of 88% and TNR of 80%)
were achieved with a feature set selected based on
the literature and an ensemble of SVM, LDA and
kNN classifiers with majority vote. These results were
achieved in the PSD corpus, with 25 subjects suffering
from OSA and 20 control subjects. The results were
also validated with data acquired from YouTube.



Control OSA

#F 11 8

#M 11 11

Age - F 50 ±8 61 ±14

Age - M 43 ±10 55 ±10

Table 2: Portuguese Sleep Disorders balanced (PSD-b)
Corpus.

1.1 Motivation

The previously mentioned Thesis talks about how
sleep disorders, such as Obstructive Sleep Apnea
(OSA) and Insomnia, cause sleep Deprivation on those
who suffer from them. Consequently, theses subjects
may suffer from fatigue, mood alteration, decreased
work performance, traffic and accidents and also work
accidents due to sleep deprivation. It also refers to the
fact that Obstructive Sleep Apnea can cause Diabetes,
reduce life quality and increase mortality and morbid-
ity by cardiovascular diseases. The gold standard for
the diagnosis of OSA is the Polysomnography (PSG)
study. However, it is expensive and uncomfortable, due
to the fact that subjects have to be attached to sleep
monitoring equipment whilst trying to sleep [4].

1.2 Objectives

We expanded the corpus whilst keeping it balanced,
focusing on the attainment of data related to other
biomarkers such as simulated snoring and cough in or-
der to assess their potential contribution to the detec-
tion of Obstructive Sleep Apnea.

2 Background

2.1 Sleepiness and Sleep Disorders

Sleep is a cyclic process with four stages. One com-
plete cycle lasts approximately 90 minutes, and one
night of sleep includes 5 to 6 cycles. Sleep depriva-
tion interferes with the maintenance of vital functions
and results in increasing sleep propensity and destabi-
lization during awake periods [16].

2.2 OSA

Obstructive sleep apnea (OSA) is a widespread but
frequently unrecognized condition. It is triggered
by pharyngeal collapse during sleep and marked by

repeated awakenings, interrupted sleep and conse-
quent extreme sleepiness. The link between OSA and
asthma, metabolic syndrome, diabetes, heart failure
and other disorders is acknowledged [10].

2.3 Neurocognitive somatic symptoms of OSA

People with OSA often have difficulties focusing and
retaining focus for long periods. OSA can, primarily
through intermittent hypoxia, promote cognitive im-
pairment. Hypersomnolence can also play a role in
the development of neurocognitive impairment due to
sleep fragmentation [3].

2.4 Insomnia

Dissatisfaction with sleep related to trouble falling
asleep or staying asleep or waking up too early is oc-
curring on a weekly basis in about one third of adults.
Prolonged sleeplessness, however, is frequently asso-
ciated with severe anxiety, impaired activity during the
day, or both. A diagnosis of insomnia disorder is nec-
essary in such circumstances. Chronic insomnia is
all related to declines in perceived fitness and quality
of life, increases in occupational accidents and absen-
teeism, and even fatal injuries. Insomnia symptoms
may also be an independent risk factor for suicide at-
tempts and deaths from suicide, independent of depres-
sion [15].

3 Related Work

3.1 Speech Signals

The most widely used objective measure of OSA sever-
ity is the apnea-hypopnea index (AHI) This index re-
flects the average number of obstructive apnea and hy-
popnea events per hour of sleep. This study "Diagno-
sis of Obstructive Sleep Apnea Using Speech Signals
From Awake Subjects" [12] reports an innovative sys-
tem to identify OSA subjects while they are awake, not
asleep, by extracting speech signals from subjects .

The three main extractions from the speech data base
used in this work were Breathing Segments, Sustained
Vowels and Continuous Speech Signal.

The system achieved an average accuracy of 77.14%,
a sensitivity of 75%, and a specificity of 79%.

Another paper called "Prediction of Sleepiness Ratings
from Voice by Man and Machine" [8] looks in more de-
tail at the Interspeech 2019 computational paralinguis-
tics challenge on the prediction of sleepiness ratings
from speech using samples of the Düsseldorf Sleepy
Language Corpus (DSLC). This challenge was notable
because the performance of all entrants was uniformly
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poor, with even the winning system only achieving a
correlation of r=0.37. The authors look at whether
the task itself is achievable, and whether the corpus
is suited to training a machine learning system for the
task.

A listening experiment was performed using samples
from the corpus and show that a group of human listen-
ers can achieve a correlation of r=0.7 on this task, al-
though this is mainly by classifying the recordings into
one of three sleepiness groups. The corpus, because
of its construction, confounds variation with sleepiness
and variation with speaker identity, and this was the
reason why machine learning systems failed to perform
well:

• Through the analysis of the corpus itself in
section 4, the authors have seen that a major
problem is the confounding of speaker identity
and sleepiness ratings in the corpus.

• Each corpus partition contains different speakers,
and each speaker only produced a narrow range
of sleepiness ratings. This makes it very hard
to learn features of sleepiness from the training
set without at the same time learning features of
identity.

• When those features are exploited by the pre-
diction model, they may work well to measure
similarity between speakers in the test set to
speakers in the training set, but it is not neces-
sarily the case that those similar speakers have
similar sleepiness ratings.

It could be concluded from this paper that sleepiness
rating prediction from voice is not an impossible task,
but that good performance requires more information
about sleepy speech and its variability across listeners
than is available in the DSLC corpus.

3.2 Deep Neural Networks in Speaker
Recognition

A third paper, called "X-VECTORS: ROBUST DNN
EMBEDDINGS FOR SPEAKER RECOGNITION"
[13], has some useful information regarding speaker
recognition systems using speech signals.

There were four recognition systems developed for this
study, which consist of two i-vector baselines and the
DNN x-vector system.

The authors found that data augmentation is a strategy
for improving their performance that is easily imple-
mented and effective. They found that two standard
i-vector baselines on SRE16 Cantonese were signifi-
cantly outperformed by the x-vector system.

3.3 Simulated snoring

In this next paper, Michael Herzog et al.[7] carried out
a study on simulated snoring and how it was able to
predict the AHI.

From all the experiments that were conducted in this
work, the following correlations were discovered:

• During simulated snoring, an increase in the AHI
was associated with increased degree of dorsal
movement of the tongue base.

• An increase in pharyngeal collapse at the tongue’s
base level was associated with a rise in the AHI.

• During simulated snoring, pharyngeal collapse at
the velum level was not associated with a high
overnight AHI.

• Mueller maneuver, Mallampati index, tonsil size,
and dorsalization of the tongue base "static" ex-
ams do not correlate with the overnight AHI.

Michael Herzog et al. concluded that in awake pa-
tients with suspected OSA, a "dynamic" evaluation of
the upper airway provided reliable prognostic data for
the prediction of sleep disordered breathing. There is a
significant correlation between the change of the lower
airway during simulated snoring and the AHI.

3.4 Acoustic analysis of cough

William Thorpe et al.[14] conducted a study on the
acoustic analysis of voluntary cough, which showed
that it can be useful in the diagnosis of respiratory dis-
eases.

In this work, it was concluded that cough sound analy-
sis could be used in clinical practice to determine diag-
noses of respiratory disease in children where clinical
measurements would otherwise be difficult to obtain.
Coughs may also be recorded at home when symp-
toms arise, allowing for later study and identification
of cough related with asthma.

4 Proposed Solution

4.1 OSA detection using speech signals

This study focused on using just the speech biomarker
as a possible single indicator of Obstructive Sleep Ap-
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nea.

4.1.1 Corpus

In the current thesis, the original in-the-wild OSA
(WOSA) subset was expanded to more than twice the
number of videos. On total, the WOSA corpus now
includes speech recordings from 40 English-speaking
subjects, 22 OSA patients, and 18 healthy controls.

Table 3: Corpus description.
#male subjects #female subjects

OSA 12 10
Controls 9 9

The OSA subjects reported in their vlogs that they have
either ”obstructive sleep apnea” or ”weight-related
sleep apnea”, implying that their condition is obstruc-
tive rather than central. Other variable to consider is
the age range. The control subjects’ speech recordings
were taken from a random selection of vlogs with un-
related topics. As a result, the corpus may be noisy.

4.1.2 Feature Extraction

We extracted the audio of these vlogs and each au-
dio file was processed by a Voice Activity Detector
(VAD).We then split each audio file into 4 second
segments with an overlapping of 0.5 seconds for fea-
ture extraction. Three feature sets were extracted for
every audio file, eGeMAPS, i-vectors and x-vectors.
These feature sets are normally associated with speaker
recognition, however, we believe that the presence of
OSA symptoms can be associated with the speaker
through these features.

eGeMAPS Features

The Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) contains 88 features: the arithmetic mean
and coefficient of variation of 18 LLDs, 8 function-
als applied to pitch and loudness, 4 statistics over the
unvoiced segments, 6 temporal features, and 26 addi-
tional cepstral parameters and dynamic parameters. [6]

To create this feature set, we used the eGeMAPS con-
figuration of OpenSMILE which is a free and open-
source program for extracting characteristics from au-
dio data.[2]

i-vectors and x-vectors

In order to extract i-vectors and x-vectors[13] from
the audio files, we used pretrained models in kaldi

toolkit [11].

4.1.3 Classifiers and hyperparameter choice

We chose to use a Support Vector Machine be-
cause it has been successfully used in previous works,
namely Catarina Botelho’s work [4], being a frequently
used classifier in scenarios with limited training data.
We performed a grid search with leave-one-speaker-
out cross validation in order to select the best SVM
hyperparameters using the scikit-learn toolkit from
python [1]. The following parameters were tested:

• kernel: linear, sigmoid and radial basis function
(rbf).

• C: 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100, 1000
and 10000.

• γ: 1e-5, 1e-4, 1e-3, 1e-2, 1e-1 and 1 (only varied
for the rbf kernel).

4.1.4 Classification results

The accuracy was measured using majority voting,
meaning that a speaker is considered to be correctly
classified if more than 50% of the respective files are
correctly classified. With that in mind, Table 4 shows
the best hyperparameters found by the grid search for
each feature set. The best results are in Table 5.

Table 4: Best SVM hyperparameters for each feature
set.

Feature set kernel C γ

eGeMAPS sigmoid 0.1 1e-02
i-vectors rbf 100 1e-04
x-vectors linear 0.01 1e-05

Table 5: Best SVM results for each feature set.
Feature set Accuracy (% by majority voting)
eGeMAPS 61.29
i-vectors 74.19
x-vectors 70.97

4.2 OSA detection using different acoustic
biomarkers

This next experiment focused on using four different
acoustic biomarkers as possible indicators of Obstruc-
tive Sleep Apnea.

4.2.1 Corpus

The corpus for this experiment was compiled using
data obtained from a JotForm [9] survey which was
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Table 6: JotForm Corpus description.
#male subjects #female subjects Age

21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71+
OSA 11 2 1 2 1 3 5 1

Controls 11 2 1 2 1 3 5 1

disclosed to the public and to the patients of the CENC
[5] (Centro de Electroencefalografia e Neurofisiologia
Clínica), which was important to gather medically di-
agnosed OSA patients.

Four types of acoustic signals were requested in the
survey:

• Cough: where the subjects recorded themselves
coughing.

• Snore: where the subjects faked snoring while
recording.

• Sustained Vowel: where subjects recorded them-
selves while making the sound of the vowel "a" as
long as they could.

• Read and Spontaneous Speech: where subjects
recorded themselves reading a short tale and de-
scribing an image.

Since 13 subjects were OSA patients, we were able
to create a corpus with 26 subjects, using those pa-
tients and by building a healthy control group with sim-
ilar characteristics and the same number of subjects as
well.

4.2.2 Feature Extraction

The procedure from the previous experiment was re-
peated on this corpus.

4.2.3 Cough Biomarker experiment

The first audio files that were analysed were the
recording of the subjects’ coughs. Since OSA is deeply
related with the upper airways, cough analysis can be
beneficial in its detection.

The accuracy was measured using majority voting, in
the same manner as the previous speech study. Table
16 shows the best hyperparameters found by the grid
search for each feature set extracted from the cough
recordings and the best results are in Table 17.

Table 7: Best SVM hyperparameters for each feature
set from the cough subset.

Feature set kernel C γ

eGeMAPS sigmoid 10 1e-02
i-vectors sigmoid 10000 1
x-vectors linear 0.01 1e-05

Table 8: Best SVM results for each feature set from the
cough subset.

Feature set Accuracy (% by majority voting)
eGeMAPS 91.67
i-vectors 79.17
x-vectors 62.5

4.2.4 Snoring Biomarker experiment

The same procedure as before was applied.

We decided to analyse it in the same context as in these
experiments.

Table 18 shows the best hyperparameters found by the
SVM grid search and the best results are in Table 19.

Table 9: Best SVM hyperparameters for each feature
set from the snore subset.

Feature set kernel C γ

eGeMAPS sigmoid 1000 1e-04
i-vectors sigmoid 10 1
x-vectors linear 100 1e-03

Table 10: Best SVM results for each feature set from
the snore subset.

Feature set Accuracy (% by majority voting)
eGeMAPS 52.0
i-vectors 52.0
x-vectors 60.0

4.2.5 Sustained Vowel experiment

The same experiment was done on the sustained
vowel audios.The Table 20 shows the best hyperpa-
rameters found by the SVM grid search and the best
results are in Table 21.

Table 11: Best SVM hyperparameters for each feature
set from the sustained vowel subset.

Feature set kernel C γ

eGeMAPS sigmoid 10000 1e-03
i-vectors sigmoid 1 1
x-vectors sigmoid 10 1e-03

Table 12: Best SVM results for each feature set from
the sustained vowel subset.

Feature set Accuracy (% by majority voting)
eGeMAPS 72.0
i-vectors 68.0
x-vectors 72.0
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Table 15: Male only JotForm Corpus description.
#male subjects #female subjects Age

21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71+
OSA 11 0 1 2 1 3 4 0

Controls 11 0 1 2 1 3 4 0

4.2.6 Speech experiment

Finally, in order to compare this corpus to the pre-
vious in-the-wild one, speech samples of the subjects
went through the same experimental process. The Ta-
ble 22 shows the best hyperparameters found by the
SVM grid search and the best results are in Table 23.

Table 13: Best SVM hyperparameters for each feature
set from the speech subset.

Feature set kernel C γ

eGeMAPS sigmoid 1000 1e-04
i-vectors sigmoid 0.1 1
x-vectors sigmoid 10000 1e-03

Table 14: Best SVM results for each feature set from
the speech subset.

Feature set Accuracy (% by majority voting)
eGeMAPS 64.0
i-vectors 84.0
x-vectors 84.0

4.3 OSA detection using different biomarkers:
Male only corpus

This experiment focused on using the same four dif-
ferent biomarkers as before to assess them as proba-
ble cues for Obstructive Sleep Apnea detection using a
man only corpus.

4.3.1 Corpus

The corpus for this experiment is the same as the
JotForm corpus described before, however it only con-
tains male subjects. Since the previous JotForm cor-
pus was not balanced gender wise containing only 4
female subjects, using only the male subjects might be
useful to see if the models behave differently or if the
results maintain. The same procedure as before was
performed on this corpus.

4.3.2 Experimental results

Table 16: Best SVM hyperparameters for each feature
set from the cough subset, male only corpus.

Feature set kernel C γ

eGeMAPS rbf 10000 1e-04
i-vectors sigmoid 10 1
x-vectors sigmoid 1 1

Table 17: Best SVM results for each feature set from
the cough subset, male only corpus.

Feature set Accuracy (% by majority voting)
eGeMAPS 77.27
i-vectors 72.72
x-vectors 63.63

Table 18: Best SVM hyperparameters for each feature
set from the snore subset, male only corpus.

Feature set kernel C γ

eGeMAPS sigmoid 1 1e-05
i-vectors sigmoid 10000 1e-02
x-vectors rbf 100 1e-04

Table 19: Best SVM results for each feature set from
the snore subset, male only corpus.

Feature set Accuracy (% by majority voting)
eGeMAPS 54.54
i-vectors 54.54
x-vectors 72.72

Table 20: Best SVM hyperparameters for each feature
set from the sustained vowel subset, male only corpus.

Feature set kernel C γ

eGeMAPS sigmoid 10000 1e-03
i-vectors sigmoid 1 1
x-vectors sigmoid 1000 1e-02

Table 21: Best SVM results for each feature set from
the sustained vowel subset, male only corpus.

Feature set Accuracy (% by majority voting)
eGeMAPS 77.27
i-vectors 81.82
x-vectors 68.18

Table 23: Best SVM results for each feature set from
the speech subset, male only corpus.

Feature set Accuracy (% by majority voting)
eGeMAPS 59.09
i-vectors 81.81
x-vectors 77.27
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Table 22: Best SVM hyperparameters for each feature
set from the speech subset, male only corpus.

Feature set kernel C γ

eGeMAPS rbf 10 1e-01
i-vectors sigmoid 0.1 1
x-vectors sigmoid 1 1e-03

4.4 Result discussion

For the first experiment, the best result is 74.19% of
accuracy with majority voting.This result was obtained
by evaluating the i-vectors extracted from the corpus
data.

The best result overall is 91.67% and it was obtained
from the cough subset in the JotForm corpus however,
the best result obtained from the same subset in the
male-only JotForm corpus is 77.27%. This might be
due to the lack of data in the JotForm corpus and its
trimming in order to form male-only JotForm corpus.

5 Conclusion

This thesis focused on the automatic detection of ob-
structive sleep apnea using different acoustic biomark-
ers.

The best classification results for the in-the-wild cor-
pus were obtained by extracting the i-vectors embed-
ding with a value of 74.19% of accuracy with majority
voting.

The second experiment obtained the highest result of
this work, 91.67% of accuracy with majority voting.

The third experiment obtained as a best result 81.82%
of accuracy with majority voting.

5.1 Limitations

The main limitation in this work was the lack of data in
all the corpora and the uneven number of male subjects
compared to female subjects.

Furthermore, the control subjects were chosen at ran-
dom from the available healthy subjects who did not
necessarily have the risk characteristics and were not
subjected to a PSG test. As a result, we must accept
the likelihood of a noisy data set.

Other impediment was the current global pandemic sit-
uation that prevented us from collecting more informa-
tion about different biomarkers.

5.2 Future Work

We suggest that further experiments varying biomark-
ers should be carried out to see if there is a practicable
method of diagnosing obstructive sleep apnea through
different biomarkers. It is also important to increase all
all corpora size in order to have more reliable results in
all experiments.
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