
Scalar Mixing in New Physics Models

Francisco Albergaria∗ †

Universidade de Lisboa, Instituto Superior Técnico, Departamento de F́ısica e CFTP,
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Abstract

It is not necessary that the scalar sector of the Standard Model consists of only one doublet. Theoretical
physicists try to understand what are the consequences of adding more multiplets to that sector, and
whether such extensions would be in agreement with the experimental data. In this work, we study an
extension of the Standard Model including scalar singlets, doublets, and triplets. For this class of models,
we derive prescriptions to obtain finite results for the oblique parameters S and U , we compute the
one-loop corrections to the Zbb̄ vertex, we apply these results to the Georgi–Machacek Model, and we
compare the results of that model to the experimental data.
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1 Introduction

Particle Physics studies the most basic constituents of
Nature and their interactions. Our knowledge of this
field is encapsulated in the Standard Model (SM) [1–
3]. This is an SU(3)×SU(2)×U(1) gauge theory that
describes all the fundamental particles observed until
now (it has, indeed, predicted the existence of some
of them before they were experimentally observed)
and the way they interact with each other. The SM
is one of the most accurate theories in science.

However, there are phenomena that the SM can-
not explain. Since the SM is a very accurate theory,
particle physicists do not want to replace it by a com-
pletely different theory. Rather, they try to complete
it by adding to it features that might help explain
some of the phenomena that it cannot adequately
encompass.

One of the ways to enlarge the SM is by extend-
ing its scalar sector, which, originally, contains only
one SU(2) doublet. The most well-studied extension
is the addition of another SU(2) scalar doublet, ob-
taining a two-Higgs-doublet model (2HDM).1 Exten-
sions of the SM with scalar SU(2) singlets are also
frequent.

In this work, we consider extensions of the SM in-
cluding arbitrary numbers of SU(2) scalar singlets,
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1A review of this type of models can be found in ref. [4]

doublets, and triplets. We develop a formalism to
address scalar mixing in such models. Using that
formalism, we compute both the oblique parameters
and the one-loop corrections to the Zbb̄ vertex in this
class of models. We then apply our results to the spe-
cial case of the Georgi–Machacek (GM) model, which
is a model with SU(2) scalar triplets.

This paper is organized as follows. In section 2 we
present the formalism for scalar mixing. In section 3
we discuss the oblique parameters; we explain how
we have proceeded to obtain a finite result for the
parameters S and U . In section 4 we compute the
one-loop corrections to the Zbb̄ vertex. In section 5
we make a short description of the GM model and
we apply our results from sections 3 and 4 to fit this
model to the experimental data.

2 Scalar Mixing Formalism

Consider a SU(2)×U(1) electroweak model in which
the scalar sector includes

• nd SU(2) doublets with hypercharge Y = 1
2 ,

φk =

(
ϕ+
k

ϕ0
k

)
, k = 1, ..., nd; (1)
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• nt1 SU(2) triplets with hypercharge Y = 1,

Ξp =

ξ++
p

ξ+
p

ξ0
p

 , p = 1, ..., nt1 ; (2)

• nt0 SU(2) real triplets with hypercharge Y = 0,

Λq =

 λ+
q

λ0
q

−λ−q

 , q = 1, ..., nt0 , (3)

where λ0 is a real scalar field;

• ns1 complex SU(2) singlets with hypercharge
Y = 1,

χ+
j , j = 1, ..., ns1 ; (4)

• ns0 real SU(2) singlets with hypercharge Y = 0,

χ0
l , l = 1, ..., ns0 ; (5)

• ns2 complex SU(2) singlets with hypercharge
Y = 2,

χ++
r , r = 1, ..., ns2 . (6)

We have then a total of n1 = nd + nt1 + nt0 + ns1
complex scalar fields with electric charge +1, n0 =
2nd + 2nt1 + nt0 + ns0 real scalar fields with electric
charge 0 and n2 = nt1 +ns2 complex scalar fields with
electric charge +2.

The neutral fields are allowed to have non-zero vac-
uum expectation values (VEVs), such that

〈0|ϕ0
k|0〉 =

vk√
2
, 〈0|ξ0

p|0〉 =
wp√

2
, (7a)

〈0|λ0
q|0〉 = xq, 〈0|χ0

l |0〉 = ul, (7b)

where the VEVs vk and wp are in general complex
and the VEVs xq and ul are real. We can then expand
the neutral fields around their VEVs as

ϕ0
k =

1√
2

(vk + ϕ0′
k ), ξ0

p =
1√
2

(wp + ξ0′
p ), (8a)

λ0
q = xq + λ0′

q , χ0
l = ul + χ0′

l . (8b)

In this class of models, the masses of the W± and Z
bosons are given in terms of the VEVs of the scalar
fields as

m2
Z =

g2

c2W

(1

4
v2 +w2

)
, m2

W = g2
(1

4
v2 +

1

2
w2 +x2

)
,

(9)
where cW is the cosine of the Weinberg angle θW and

we defined v =
√∑nd

k=1 |vk|2, w =
√∑nt1

p=1 |wp|2 and

x =
√∑nt0

q=1 x
2
q. We note that the relation mW =

mZ cos θW is, in general, no longer verified due to
the introduction of triplets in the model.

Calling S++
c (c = 1, ..., n2), S+

a (a = 1, ..., n1) and
S0
b (b = 1, ..., n0) to the fields with electric charges

+2, +1 and 0, respectively, that are eigenstates of
the mass matrices, we can then write

ϕ+
k =

n1∑
a=1

(U1)kaS
+
a , χ+

j =

n1∑
a=1

(U2)jaS
+
a , (10a)

λ+
q =

n1∑
a=1

(U3)qaS
+
a , ξ+

p =

n1∑
a=1

(U4)paS
+
a , (10b)

ϕ0′
k =

n0∑
b=1

(V1)kbS
0
b , ξ0′

p =

n0∑
b=1

(V2)pbS
0
b , (10c)

λ0′
q =

n0∑
b=1

(R1)qbS
0
b , χ0′

l =

n0∑
b=1

(R2)lbS
0
b , (10d)

ξ++
p =

n2∑
c=1

(T1)pcS
++
c , χ++

r =

n2∑
c=1

(T2)rcS
++
c ,

(10e)

where the matrices U1, U2, U3, U4, V1, V2, R1, R2, T1

and T2 have dimensions nd × n1, ns1 × n1, nt0 × n1,
nt1×n1, nd×n0, nt1×n0, nt0×n0, nn×n0, nt1×n2

and ns2 × n2, respectively. The neutral fields S0
b are

reals fields, which means that the matrices R1 and
R2 are real, while the others are complex.

Like in the SM, in this theory we will have three
Goldstone bosons, G± and G0, that we will identify
with S±1 and S0

1 , such that S±1 ≡ G± and S0
1 ≡ G0.

We will denote the masses of the scalars S±a by ma,
the masses of the scalars S0

b by µb and the masses of
the scalars S++

c by Mc.
Applying the operators T3 and T± (which are the

generators of the gauge group SU(2)) to the vacuum,
we get the form of the columns of the mixing matrices
relative to the Goldstone bosons. We can thus write

(V1)k1 =
i vk√

v2 + 4w2
, (U1)k1 =

vk√
v2 + 2w2 + 4x2

,

(11a)

(V2)p1 =
2 i wp√
v2 + 4w2

, (U3)q1 =
2xq√

v2 + 2w2 + 4x2
,

(11b)

(U4)p1 =

√
2wp√

v2 + 2w2 + 4x2
. (11c)

We get then the Feynman rules for the vertices with
scalar and gauge bosons by developing the gauge-
kinetic Lagrangian

L =

nd∑
k=1

(Dµφk)†(Dµφk) +

nt1∑
p=1

(DµΞp)
†(DµΞp)

(12a)
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+
1

2

nt0∑
q=1

(DµΛq)
†(DµΛq) +

ns1∑
j=1

(Dµχ+
j )†(Dµχ

+
j )

(12b)

+
1

2

ns0∑
l=1

(∂µχ0
l )(∂µχ

0
l ) +

ns2∑
r=1

(Dµχ++
r )†(Dµχ

++
r ).

(12c)

3 Oblique Parameters

Let AV V ′(q2) be the coefficients of gµν in the vac-
uum polarization tensors Πµν

V V ′(q) = gµνAV V ′(q2) +

qµqνBV V ′(q2), where V V ′ may be either AA, AZ,
ZZ or WW and q is the four-momentum of the
gauge boson. We define δAV V ′(q2) as δAV V ′(q2) ≡
AV V ′(q2)|NP −AV V ′(q2)|SM , being AV V ′(q2)|NP the
function AV V ′(q2) computed in a New Physics (NP)
model and AV V ′(q2)|SM the function AV V ′(q2) com-
puted in the SM.

An analysis of the “oblique corrections” leads
to the identification of six relevant observables
that allow us to parametrize the effects of New
Physics. Three of those observables are the
oblique parameters S, T and U that were defined
by Peskin and Takeuchi [5, 6] and are given by

T =
1

αm2
Z

( 1

c2W
δAWW (0)− δAZZ(0)

)
, (13a)

S =
4s2
W c

2
W

α

∂ δAZZ(q2)

∂q2

∣∣∣∣∣
q2=0

− ∂ δAAA(q2)

∂q2

∣∣∣∣∣
q2=0

+
c2W − s2

W

cW sW

∂ δAAZ(q2)

∂q2

∣∣∣∣∣
q2=0

 , (13b)

U =
4s2
W

α

∂ δAWW (q2)

∂q2

∣∣∣∣∣
q2=0

− c2W
∂ δAZZ(q2)

∂q2

∣∣∣∣∣
q2=0

− s2
W

∂ δAAA(q2)

∂q2

∣∣∣∣∣
q2=0

+2cW sW
∂ δAAZ(q2)

∂q2

∣∣∣∣∣
q2=0

 , (13c)

where α is the fine-structure constant and sW is the
sine of the Weinberg angle θW .

The other three observables are the oblique

parameters V , W and X that were defined by
Maksymyk, Burgess and London [7] and are given by

V =
1

α

∂ δAZZ(q2)

∂q2

∣∣∣∣∣
q2=m2

Z

− δAZZ(m2
Z)− δAZZ(0)

m2
Z

 , (14a)

W =
1

α

∂ δAWW (q2)

∂q2

∣∣∣∣∣
q2=m2

W

− δAWW (m2
W )− δAWW (0)

m2
W

 , (14b)

X =
sW cW
α

∂ δAAZ(q2)

∂q2

∣∣∣∣∣
q2=0

− δAAZ(m2
Z)− δAAZ(0)

m2
Z

 . (14c)

To compute the oblique parameters, we started by
identifying the relevant Feynman diagrams that con-

tribute to the vacuum polarization tensors in our NP
model and also in the SM. We computed then the
vacuum polarization tensor both in our NP model
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and also in the SM and subtracted both results. This
subtraction is not trivial as in the SM the masses
of the W and Z gauge bosons obey the relation
mW = mZcW and in a general model with triplets
this relation is not verified. Thus, to compute the SM
vacuum polarization tensors, we did not use the usual
SM Feynman rules (which can be found, for exam-
ple, in [8] or in [9]). For the triple vertices with only
gauge and Goldstone bosons, we used the Feynman
rules obtained by requiring gauge invariance without
assuming mW = mZcW . Namely, to obtain the Feyn-
man rule for the vertex ZW±G∓, we required gauge
invariance in the process e− → νe Z W−. Knowing
this Feynman rule, we can obtain the Feynman rule
for vertex ZG−G+ by requiring gauge invariance in
the process Z → e− ν̄e µ

+ νµ and the Feynman rule
for the vertex G0W±W∓ by requiring gauge invari-
ance in the process W− → e− ν̄e νµ ν̄µ. These Feyn-
man rules obtained by gauge invariance can be found
in figure 1. Using the usual SM Feynman rules for the
other SM vertices, we got a divergent and gauge de-
pendent result for parameter T (as expected, because
T should be divergent for models that violate custo-
dial symmetry [10,11]), we got a divergent and gauge
independent result for parameters S and U and we
got finite and gauge independent results for parame-
ters V , W and X.

To get a finite result for the oblique parameters S
and U , we must multiply the SM Feynman rules for

the vertices ZG0H and ZZH by

√
1−

(
c2Wm2

Z

m2
W
− 1
)2

(which is equal to one for mW = mZcW ) and the
SM Feynman rules for the vertices W±G∓H and

W±W∓H by

√
4− 3

c2Wm2
Z

m2
W

(which is also equal to

one formW = mZcW ). The SM Feynman rules multi-
plied by these factors (i.e., in the form they were used

to compute the oblique parameters) can be found in
figures 2 and 3. Doing these multiplications we get
finite results for parameters S and U without compro-
mising their gauge independence. By multiplying the
SM Feynman rules by these factors, we get a finite re-
sult for these two oblique parameters in a model with
any scalar content, as can be shown by generalizing
the formalism so that it allows us to work with mod-
els with scalar multiplets of any dimension and using
this generalized formalism to compute the divergent
diagrams that contribute to each of the oblique pa-
rameters.

Using all the diagrams that contribute to Πµν
AA at

one-loop level, we can show that, for our class of NP
models, we have AAA(q2 = 0) = 0 as required by the
Ward-Takahashi identities [12,13].

4 One-loop corrections to the
Zbb̄ vertex

Another way to indirectly detect heavy scalars can
be through radiative corrections to the Zbb̄ vertex.
At tree-level, the left- and right-handed b-quark cou-
plings are given by g0

Lb = s2
W /3 − 1/2 and g0

Rb =
s2
W /3. These couplings will have one-loop contribu-

tions that will be different for models with differ-
ent scalar content. As such, we should be able to
probe for New Physics through these one-loop correc-
tions. The two observables which are influenced by
these corrections due to New Physics are the hadronic
branching ratio of Z to b quarks:

Rb =
Γ(Z → bb̄)

Γ(Z → hadrons)
, (15)

and the b quark asymmetry (mea-
sured in the process e−e+ → bb̄),

Ab =
σ(e−L → bF )− σ(e−L → bB) + σ(e−R → bB)− σ(e−R → bF )

σ(e−L → bF ) + σ(e−L → bB) + σ(e−R → bB) + σ(e−R → bF )
, (16)

where e−L,R are left and right handed initial-state elec-
trons and bF,B are final-state b-quarks moving in the
forward and backward directions with respect to the
direction of the initial-state electrons [14].

In our calculations, we will use the approximation
where the CKM matrix element Vtb = 1 and we will
neglect the mass of the bottom quark mb.

We follow the on-shell renormalization scheme from
Hollik [15,16]. We are looking for terms that change

the tree-level couplings, which, after renormalization
may be written as

iΓZbbµ = iγµ
g
cW

(
(g0
Lb + ∆gL)PL + (g0

Rb + ∆gR)PR
)
,

(17)
where ∆gℵ (ℵ = L,R) are the one-loop corrections
to the couplings gℵb after renormalization, including
the corrections that are also present in the Standard
Model. Thus, we are not interested in terms propor-
tional to pµi , being pi, with i = 1, 2, 3, the momenta
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Figure 1: Feynman rules for the triple vertices with gauge and Goldstone bosons that are obtained by
requiring gauge invariance and without assuming mW = mZcW .

of each of the external particles in the vertex.

According to Hollik’s renormalization scheme [15,
16], ∆gℵ (ℵ = L,R) have a contribution from, not
only the one-loop diagrams of the Zbb̄ vertex, but
also from the one-loop diagrams of the b quark self-
energy. Consider the part of the b quark self-energy
proportional to /p, which we may write as Σ(p) =

/p
(
ΩL(p2)PL + ΩR(p2)PR

)
. Then, we will have a con-

tribution from the self-energy of the b quark to the
one loop corrections to the couplings given by ∆gLb =
−g0

LbΩL(p2 = m2
b) and ∆gRb = −g0

RbΩR(p2 = m2
b).

We can then compute the contributions to the one
loop corrections to the couplings from the diagrams
with charged scalars and from the diagrams with neu-
tral scalars separately. Both of those give, separately,
a finite result for models with triplets.

To obtain a gauge independent result, we should
change from the couplings gℵb (ℵ = L,R)
parametrized as gℵb = g0

ℵb+∆gℵb, being g0
ℵb the tree-

level coupling and ∆gℵb the one-loop contribution; to
a parametrization gℵb = gSMℵb +δgℵb, where gSMℵb is the
SM part and δgℵb is the NP part. To do that, we must
subtract the SM one-loop contribution to the cou-
plings from ∆gℵb. In the limitmb → 0, the SM results
for ∆gcRb, ∆gnLb and ∆gnRb (where the superscripts c
and n refer to the contributions from the diagrams
with charged and neutral scalars, respectively) are
equal to 0, because these SM results are proportional
to m2

b . Thus, we get δgcRb = ∆gcRb, δg
n
Lb = ∆gnLb

and δgnRb = ∆gnRb and these three quantities are fi-
nite and gauge independent. In the case of gcLb, by
subtracting the SM result (computed using the Feyn-
man rules for the SM triple vertices with gauge and
Goldstone bosons obtained by requiring gauge in-
variance), we get a gauge independent but divergent
result for δgcLb for models in which mW 6= mZcW .
This happens because, although the result for ∆gcLb
is finite, its gauge dependent terms are divergent for
mW 6= mZcW . Furthermore, when we use the Feyn-
man rules required by gauge invariance to compute
the SM result, we cancel the gauge dependent terms
of the result in our NP model by subtracting the SM
result. Thus, we are subtracting a divergent quantity
from a finite one, such that we get a divergent re-
sult for δgcLb. If, otherwise, we had computed the SM
result using the usual SM Feynman rules, we would
get a finite result for δgcLb but it would be gauge de-
pendent. This would happen because this way we
would be subtracting two finite quantities but now
their gauge dependent terms would be different for
mW 6= mZcW .

5 The Georgi-Machacek Model

Having computed the oblique parameters and the
one-loop corrections to the Zbb̄ vertex to a general
model with scalar singlets, doublets and triplets, next
we apply these results to the concrete case of the
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Figure 2: SM Feynman rules for the vertices ZG0H and ZZH multiplied by

√
1−

(
c2Wm2

Z

m2
W
− 1
)2

. This

quantity is equal to 1 when we have mW = mZcW and by performing this multiplication, we get a finite
result for the oblique parameter S in models in which mW 6= mZcW .

Figure 3: SM Feynman rules for the verticesW±G∓H andW±W∓H by

√
4− 3

c2Wm2
Z

m2
W

. This quantity is equal

to 1 when we have mW = mZcW and by performing this multiplication, together with the multiplication
performed to obtain the Feynman rules in figure 2, we get a finite result for the oblique parameter U in
models in which mW 6= mZcW .

Georgi-Machacek model [17] with an additional Z2

symmetry which will eliminate the cubic terms, mak-
ing the model simpler without changing significantly
the physics [10].

This model contains:

• one complex doublet with hypercharge Y = 1
2 ,

φ =

(
ϕ+

ϕ0

)
; (18)

• one real triplet with hypercharge Y = 0,

Λ =

 λ+

λ0

−λ−

 ; (19)

• one complex triplet with hypercharge Y = 1,

Ξ =

ξ++

ξ+

ξ0

 . (20)

These fields can be written in the matrix form

Φ =

(
ϕ0∗ ϕ+

−ϕ− ϕ0

)
, Ψ =

 ξ0∗ λ+ ξ++

−ξ− λ0 ξ+

ξ−− −λ− ξ0

 .

(21)
These matrices transform under a global SU(2)L ×
SU(2)R symmetry as Φ → UL2ΦU†R2 and Ψ →
UL3ΨU†R3, where UR,L 2 = exp

(
itaθaL,R

)
and

UR,L 3 = exp
(
iT aθaL,R

)
, being ta and T a the two and

three dimensional generators of SU(2), respectively.
The most general potential which is invariant un-

der the global SU(2)L × SU(2)R symmetry and also
under a Z2 symmetry Ψ→ −Ψ is [18]

V =
α2

2

2
Tr
(
Φ†Φ

)
+
α2

3

2
Tr
(
Ψ†Ψ

)
+ β1(Tr

(
Φ†Φ

)
)2 + β2 Tr

(
Φ†Φ

)
Tr
(
Ψ†Ψ

)
+ β3 Tr

(
Ψ†ΨΨ†Ψ

)
+ β4(Tr

(
Ψ†Ψ

)
)2 − β5 Tr

(
Φ†taΦtb

)
Tr
(
Ψ†T aΨT b

)
,

(22)
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where αi for i ∈ {2, 3} and βj for j ∈ {1, ..., 5} are all
real parameters because each trace term is also real.

This potential admits a vacuum structure such that
〈0|ϕ0|0〉 = a/

√
2, 〈0|λ0|0〉 = b and 〈0|ξ0|0〉 = b,

where a, b ∈ R and are related to the parameters
couplings of the model by

α2
2

2
+ 2a2β1 + 3b2β2 −

3

2
b2β5 = 0, (23a)

α2
3 + 2a2β2 + 4b2β3 + 12b2β4 − a2β5 = 0. (23b)

This means that, in our notation, we have nd = 1,
nt1 = 1, nt0 = 1, ns1 = 0, ns0 = 0, ns2 = 0, n0 = 5,
n1 = 3, n2 = 1. We also have v = v1 = a, x = x1 = b,
w = w1 =

√
2b. We can then write the masses of the

W and Z bosons as m2
W = g2

4 (a2 + 8b2) and m2
Z =

g2

4c2W
(a2 + 8b2), such that we have mW = mZcW .

From the potential in equation 22, we get the form
of the matrices Ui (i = 1, 3, 4), Vj (j = 1, 2) and R1

in the GM model. The matrix T1 is equal to 1 as
there is only one doubly charged scalar, which means
that it cannot mix. The matrices U2, R2 and T2 are
not defined in this model because it does not contain
scalar singlets.

The masses of the scalars are given in terms of the
VEVs of the neutral fields and the parameters of the
potential bym2

2 = 1
2β5(a2+8b2), m2

3 = 8b2β3+ 3
2a

2β5,
µ2

2 = 1
2β5(a2 + 8b2), µ2

3 = 8b2β3 + 3
2a

2β5,

µ2
4 = 4a2β1 + 4b2(β3 + 3β4)− 2

√
(2a2β1 − 2b2(β3 + 3β4))2 + 3a2b2(β5 − 2β2)2, (24a)

µ2
5 = 4a2β1 + 4b2(β3 + 3β4) + 2

√
(2a2β1 − 2b2(β3 + 3β4))2 + 3a2b2(β5 − 2β2)2 (24b)

and M2
1 = 8β3b

2 + 3
2β5a

2.
Computing the oblique parameters for the GM

model, we get a divergent and gauge dependent result
(as expected, once again) and we get finite and gauge
independent results for the oblique parameters S, U ,
V , W and X. In this model, the subtraction of the
SM results for the vacuum polarization tensors from
the NP ones is trivial as the relation mW = mZcW
is verified. This means that we would get a finite
results for the oblique parameters S and U in this
model even if we had not multiplied the SM Feyn-
man rules by the factors mentioned in section 3.

In this model, as we have only one doublet, then,

similarly to what happens in the SM, we will have
δgcRb = ∆gcRb = 0, δgnLb = ∆gnLb = 0 and δgnRb =
∆gnRb = 0 in the limit mb → 0, because these quan-
tities are proportional to m2

b . Furthermore, as the
relation mW = mZcW is verified, the we get a finite
and gauge independent result for δgcLb. Our result
for δgcLb depends only on the mass m2, such that it
is independent of the masses of the other scalars.

To compare our results for the GM model with
experiment we must relate the couplings gℵb (ℵ =
L,R) with the observables Ab and Rb. We can relate
these quantities by [19]

gLb
gRb
≡ % =

√
1− 4µb

(
1±

√
1− (1 + 2µb)A2

b

)
+ (1 + 2µb)Ab

√
1− 4µb

(
1±

√
1− (1 + 2µb)A2

b

)
− (1 + 2µb)Ab

, (25a)

g2
Rb =

sc + su + ss + sd
cQCDcQED ((2− 6µb)(1 + %2) + 12µb%)

Rb
1−Rb

, (25b)

where µb =
(
mb(m

2
Z)
)2
/m2

Z , sc+su+ss+sd = 1.3184
and cQCD = 0.9953 and cQED = 0.99975 are QCD
and QED corrections, respectively.

The Standard Model predictions for the couplings

gL,R b are gSML = −0.420875 and gSMR = 0.077362
[20], such that we get ASMb = 0.9347 and RSMb =
0.21581.

An overall fit of various electroweak observables
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gives [21] Rfit
b = 0.21629 ± 0.00066, Afit

b = 0.923 ±
0.020. However, making the average of two direct
measurements of Ab done at LEP1 and SLAC in two
different ways, we get [22] Aaverage

b = 0.901 ± 0.013.
We have then that Rfit

b deviates from its SM value
by 0.7σ and Afit

b deviates from its SM value by 0.6σ,
while Aaverage

b deviates from its SM value by 2.6σ.

According to equation 25a, we get two solutions

for %. According to equation 25b, gRb can either be
positive or negative. Thus, we get four solutions for
gLb and gRb for the two pairs of experimental val-
ues (Rfit

b , A
fit
b ) and (Rfit

b , A
average
b ). Using the central

values for the experimental results of Ab and Rb and
equations 25a and 25b, we get the values displayed
in table 1 for gLb, gRb, δgLb = gLb + 0.420875 and
δgRb = gRb − 0.077362.

solution gLb gRb δgLb δgRb

1fit −0.420206 0.084172 0.000669 0.006810
2fit −0.419934 −0.082806 0.000941 −0.160168
3fit 0.420206 −0.084172 0.841081 −0.161534
4fit 0.419934 0.082806 0.840809 0.005444

1average −0.417814 0.095496 0.003061 0.018134
2average −0.417504 −0.094139 0.003371 −0.171501
3average 0.417518 −0.095496 0.838688 −0.172858
4average 0.417504 0.094139 0.838379 0.016777

Table 1: Results for gLb and gRb computed from the experimental values for Ab and Rb. Solutions labelled
by “fit” were computed using Afit

b , while solutions labelled by “average” were computed using Aaverage
b .

We can see that in solutions 3 and 4 the value of
δgLb is too large, which indicates that solutions 1 and
2 might be preferred over solutions 3 and 4.

To make the numerical fit to the experimental data,
we make a further simplification: we put β5 = 2β2 on
the scalar potential. In this case, we get alignment.
We identify then S0

5 with the SM Higgs boson, such
that µ2

5 = 8a2β1 ≡ m2
h = (125.09 GeV)2.

The strategy used to fit the experimental data was
to scan the allowed regions for the potential parame-
ters by the BFB conditions and the unitarity condi-
tions and select the ones for which the deviation of
the oblique parameters S and U from their experi-
mental values were less than 1σ. For each of those
points, we computed δgL (δgR is equal to 0). We
fitted only solution number 1 from table 1 as in the
GM model we have δgRb = 0, which means that we
will not be able to get a good fit to the other solu-
tions. We have used LoopTools [23, 24] to perform
the numerical integration of the Passarino-Veltman
functions.

We do not get a better agreement with solution 1
than in the SM. In fact, we cannot even reach the
2σ interval of Aaverage

b . This happens because in this
model, as in any model with only one scalar doublet
(and possibly other additional SU(2) multiplets of
higher dimension), in the limit mb → 0, we will have
δgRb = 0, such that only gLb will be changed by the
additional scalar content of the GM model. However,
the result for gLb in the GM model is always bigger

than the SM one (i.e., δgLb is always positive), such
that the GM fit is always worse than the SM one.

6 Conclusion

In this paper we have presented a formalism that al-
lows to study a general class of models with SU(2)
scalar singlets, doublets, and triplets. For this class
of models we have computed the oblique parame-
ters. We have found that a special prescription is
needed for the parameters S and U to be finite
one needs to multiply some Feynman rules of the
SM by extra factors, that become equal to 1 when
mW = mZ cos θw. On the other hand, for the pa-
rameter T we got a divergent and gauge-dependent
result, because our models do not contain any custo-
dial symmetry that preserves mW = mZ cos θw. For
the parameters V , W , and X our results are finite
and gauge-independent. Still using the same formal-
ism, we have computed the one-loop corrections to
the Zbb̄ vertex. We obtained a gauge-independent
but divergent result for the contribution to gLb from
the diagrams with charged scalars; we have been un-
able to eliminate this problem. On the other hand,
both the contribution to gLb from the diagrams with
neutral scalars and all the contributions to gRb are
finite and gauge-independent.

We have applied our results to the concrete case
of the Georgi–Machacek model; this is a model with

8



scalar triplets in which the relation mW = mZ cos θw
holds because of an ad hoc custodial symmetry. We
have obtained a divergent and gauge-dependent re-
sult for the oblique parameter T , because the cus-
todial symmetry is not a genuine symmetry of the
model; the other oblique parameters are both finite
and gauge-independent. The one-loop corrections to
the Zbb̄ vertex in this model are all finite because the
relation mW = mZ cos θw holds at the tree level. We
have made a fit to the experimental data by using the
oblique parameters S and U and the observables Ab
and Rb. This fit turned out to be no better than the
SM one.
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