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Abstract

During the development of CubeSats, the attitude determination and control system (ADCS) is
one of the most expensive subsystems and it is usually based on commercial of the shelf options. A
design tool capable of simulating several common ADCS architectures for CubeSats allows designers
to test and evaluate different options of ADCS architectures resulting in a more educated selection of
components. Furthermore, the tool eliminates the need for commercially protected software specifically
created for each individual ADCS architecture option. To this end, a simulation tool based on
Matlab/Simulink has been developed. The tool models a realistic orbital space environment, and the
CubeSat physical constraints to test and evaluate a wide range of both passive and active ADCS
selected and includes a range of computational algorithms for attitude estimation and control. Three
different passive attitude stabilization options are currently available: deployable gravity gradient
booms and aerodynamic stabilizing panels, permanent magnets and hysteresis rods. Moreover, the
user can experiment with both fine and coarse sun sensors, magnetometers, gyros, Earth sensors and
star trackers, and actuators such as magnetorquers, reaction and momentum wheels and single gimbal
control momentum gyros. Different popular cluster architectures of momentum devices are available
to the user. The user can also choose between various conventional static determination, recursive
estimation and control algorithms. The tool was used to evaluate the ADCS for the ORCASAT.
Alternative ADCS architectures were tested and compared in terms of weight, volume, power, pointing
and estimation error. Keywords: CubeSat, ADCS, attitude determination, attitude control

1. Introduction

During the design of the attitude determination and
control system (ADCS) the ORCASAT team strug-
gled with the validation of the chosen ADCS solu-
tion. With the increasing innovation in the ADCS
leads to the necessity of a tool capable of realisti-
cally simulate the behavior of the satellite in orbit
when equipped with different subsystem solutions.

The design of a CubeSat ADCS simulator, able
to simulate different realistic ADCS architectures,
both passive and active, would enable satellite
teams to experiment with different possible solu-
tions before committing to a specific ADCS archi-
tecture. More innovative can also be tested with
”non-ideal” models without requiring teams big
time and monetary investments.

2. Reference Frames

The attitude of a body can be described as the ori-
entation of a reference frame with respect to an-
other [1]. The main reference frames used in this
work will be described in this section.

2.1. Earth Centered Inertial Frame

The ECI reference frame is constituted by the set
of axes {̂i1, î2, î3}, with î3, pointing towards the
Earth’s geographic North pole, î1, directed towards
the vernal equinox. The last axis î2 completes the
right-hand triad. The ECI frame’s origin coincides
with the Earth’s center of mass (CM).

2.2. Local-Vertical/Local-Horizon Frame

The Local-Vertical/Local-Horizon (LVLH) frame is
a non-inertial reference frame, centered on the satel-
lite’s center of mass and defined by the orthogonal
triad {ô1, ô2, ô3}. The axis ô3 is aligned with the
nadir direction (directed towards the center of mass
of the Earth), while the axis ô2 is oriented along
the orbit normal in the direction opposite to or-
bital angular momentum vector. ô1 completes the
right hand triad.

2.3. Body Frame

The body frame is defined by a set of cartesian
axes and a origin set on a specified point of the
spacecraft. The origin is typically chosen to coin-
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cide with the center of mass of the spacecraft and
its axis {b̂1, b̂2, b̂3} are normally chosen so as to
align with the principal axis of inertia of the body
[1]. For the ORCASat, the body frame was chosen
so that, in nominal mode, it’s payload is pointing
towards nadir, that is, that for null pointing error
the body frame is aligned with the orbit frame.

3. Attitude Parameters
The attitude of a body can be represented by several
different parameters. In this section, the main rep-
resentation methods utilized in this work are pre-
sented.

3.1. Direction Cosine Matrix (DCM)
Given two different reference frames F = {f̂1, f̂2, f̂3}
and G = {ĝ1, ĝ2, ĝ3}, there is always a rotation
matrix AGF, such that:

kg = AGFkf (1)

where kg and kf are representations of the same
vector in reference frames G and F, respectively.
The rotation matrix AGF, known as the attitude
matrix or DCM, transforms the coordinate refer-
ence frame F to G and is defined as:

AGF =

ĝ1 .̂f1 ĝ1 .̂f2 ĝ1 .̂f3
ĝ2 .̂f1 ĝ2 .̂f2 ĝ2 .̂f3
ĝ3 .̂f1 ĝ3 .̂f2 ĝ3 .̂f3

 (2)

3.2. Euler Angles
An angular displacement can always be described
as a sequence of rotations. Considered the 3-2-1
sequence, with roll (φ) associated with the axis e1,
pitch (θ) with e2 and yaw (ψ) with e3:

A321 =

 cθcψ cθsψ −sθ
−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ
sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ


(3)

where c and s represent the trigonometric functions
cosine and sine, respectivelly.

3.3. Quaternions
Quaternions can be represented as a 4 × 1 matrix
constituted by a vectorial part, q1:3, and a scalar
part, q4 [2].

q =

[
q1:3

q4

]
=


q1
q2
q3
q4

 (4)

For attitude purposes, the unit quaternion is used:

‖q‖ = qTq =
√
q21 + q22 + q23 + q24 = 1 (5)

3.3.1 Quaternion Algebra

The complex conjugate of a quaternion is defined
as:

q∗ = q =

[
−q1:3

q4

]
(6)

And the inverse can be defined as:

q−1 = q =
q∗

q
(7)

Consider two quaternions q and p, one way to de-
fine the product between the two is:

[q�] =
[
Ξ(q) q

]
=

[
q4I3 + [q1:3×] q1:3

−q1:3
T q4

]
(8)

where:

Ξ(q) =


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3

 (9)

4. Attitude Kinematics
Given two different reference frames F and G, the
angular rate of G with respect to F is represented
by ωGF , then

ȦGF = −ωGF
G (t)×AGF (10)

with

[ωGF
G ×] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (11)

is the kinematic differential equation that maps
the relative orientation of frame G with respect to
frame F over time, with ωGF

G = [ω1, ω2, ω3]T being
the representation of ωGF in coordinates of the G
frame.

In quaternion representation the equivalent dif-
ferential equation is given by [1]:

q̇ =
1

2
q�ω =

1

2
Ξ(q)ω =

1

2
ω⊗q =

1

2
Ω(ω)q (12)

where

Ω(ω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (13)

and Ξ(q) is defined in section 3.3.

5. Attitude Dynamics
Taking the center of mass of the body as the refer-
ence point and the ECI frame as the inertial refer-
ence frame:

ḣcI = τ extI (14)

Under the rigid body assumption,

hcI = JcIω
BI
I (15)

where J represents the inertia tensor of the space-
craft.
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J is a symmetric matrix, dependent on the mass
and shape of the satellite. J is defined as:

Jb =


∫
B(y2

p + z2
p) dm

∫
B −(xpyp) dm

∫
B −(xpzp) dm∫

B −(xpyp) dm
∫
B(x2

p + z2
p) dm

∫
B −(zpyp) dm∫

B −(xpzp) dm
∫
B −(zpyp) dm

∫
B(y2

p + x2
p) dm

 (16)

where P represents a generic body point with in-
finitesimal mass dm and coordinates {xp, yp, zp} in
the reference frame. Since the coordinates of P will
differ for different frames of reference, J will also
differ.

Combining equations (14) and (11), the funda-
mental equation of angular motion expressed in
body frame coordinates becomes

ḣ = τext − ω × h (17)

where ω represents the angular velocity of the body
frame with respect to the inertial frame represented
in the body frame, that is ωBI

B . The subscript B
indicating the body reference frame has been omit-
ted for simplicity of notation. Alternatively, from
(15)

Jω̇ = τext − ω × Jω (18)

where J is defined in the body frame. Even
though J is usually time varying, it’s representa-
tion in the body frame is constant.

5.1. Attitude Dynamics with Momentum Devices
When momentum exchange devices are present,
such as reaction/momentum wheels [3] or sin-
gle gimbal control moment gyros [4, 5], the to-
tal angular momentum of the system ”space-
craft+momentum devices” about its center of mass
is given by:

h = Jω + hmed (19)

where hmed represents the angular momentum
of momentum exchange device and J represents
the moment of inertia of the system ”space-
craft+momentum exchange device”. Substituting
in (18), the equation of angular moment in the body
frame, becomes:

Jω̇ = −ω × (Jω + hmed)− τcp − ḣmed (20)

With τcp comprising both perturbation and other
control torques.

6. Simulation Environment
The Simulink simulation tool is divided in two main
areas: an upper area that comprises all the envi-
ronment, spacecraft, sensor and actuator models,
as well as a model of the on board computer and
estimation and control algorithms and a lower area
devoted to graphical analysis and data output. The
upper area is divided into a simulator area, which
simulates the interaction of the spacecraft with the
space environment and the ADCS area, which simu-
lates the attitude subsystem on board the CubeSat.

Each of these areas is divided into blocks which are
explained in sections 7 to 13.

Figure 1: Simulink ADCS Simulator tool

Each section does an overview of functions per-
formed by each block, explaining in depth rele-
vant models. The interaction between each block
is shown in figure 2.

Figure 2: Interaction between blocks

7. Spacecraft Mechanics Simulator Block
This block simulates the space environment expe-
rienced in orbit, namely, the geomagnetic field, the
gravitational field and sun position. This block also
reproduces the translation and rotation motion of
the satellite through the orbital and attitude me-
chanics equations as well as the perturbations. Fi-
nally, it contains models of the passive attitude sta-
bilization structures and devices whose models are
presented in section 7.1.

7.1. Passive Attitude Stabilization
7.1.1 Gravity Gradient Boom

Gravity gradient booms are small masses attached
to a long thin rod, along the axis that is desired to
be aligned with the nadir direction.

The small tip masses are modeled as solid
spheres. The total moment of inertia in the body
frame is given by:

JB = Jhub
B +

N∑
i=1

Jtipi
B +

N∑
i=1

Jrodi
B (21)

where Jhub
B , Jtipi

B and Jrodi
B are the inertia tensors

of the hub, mass tip i and rod i, respectively in the
body frame of a spacecraft with n booms.

Both JB and the center of mass will change dur-
ing the deployment process. The gravity gradient
boom deployment is modeled as uniform.
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7.1.2 Permanent Magnet

Permanent magnets provide a control torque caused
by the interaction of a magnetic dipole moment
with a magnetic field of the Earth [1]:

T = m×Bgeomag (22)

where m is the permanent magnet’s magnetic mo-
ment vector and Bgeomag is the magnetic flux den-
sity vector.

Permanent magnets are usually accompanied by
hysteresis rods and are typically placed orthogonal
to them.

7.1.3 Hysteresis Rod

Hysteresis rods provide passive oscillation-damping
and de-spin torques. Hysteresis rods are character-
ized by their hysteresis Brod(H) loop, that is, the
component of the geomagnetic field vector, of mag-
netic field strength H, parallel to the axis of the
rod will induce a magnetic flux density (Brod) in
the rod that produces a magnetic moment parallel
to the axis [6]:

m =
BrVrod
µ0

(23)

where µ0 represents the magnetic permeability of
vacuum and Vrod is the volume of the rod. Similar
to the permanent magnet, the magnetic dipole mo-
ment will interact with the geomagnetic field and
supply a torque given by (22).

Several mathematical models exist to try and
replicate with more or less precision the hystere-
sis loops. The Simulink tool presents the magnetic
hysteresis model developed in [7].

7.1.4 Aerodynamic Stabilization Panels

A ”shuttlecock” configuration of panels was mod-
eled. Each panel is modeled as a rectangular flat
plate. The total contribution of the panels to the
total drag force is given by:

fdB =

n∑
i=1

fdiB =

n∑
i=1

−1

2
ρv2relCDApv̂relB (24)

where ρ is the atmospheric density, CD is a dimen-
sionless drag coefficient, vrelB is the velocity of the
spacecraft relative to the air molecules in the at-
mosphere and Ap is the total projected area of the
satellite in direction of motion:

Ap =

∫
A

−H(−v̂rel · n̂i)v̂rel · n̂idA (25)

where H() is the Heaviside function and n̂i is
the unit inward normal of the face i defined as a
function of the aperture angle.

The aerodynamic torque τd
B acting on the space-

craft due to the panels is given by:

τd
B =

n∑
i=1

τdi
B =

n∑
i=1

[cpiB×]fdiB (26)

The deployment of aerodynamic panels will im-
pact the tensor of inertia of the spacecraft. The
deployment of the panels has been modeled as uni-
form.

8. Sensors Block
The sensors block models the behavior of typical
Cubesat attitude sensors, namely, sun sensors, mag-
netometers and gyroscopes, which can be found in
ORCASat’s ADCS and whose models are explained
in depth in [8], as well as earth sensors and star
trackers.

8.1. Earth Sensor
The Earth sensors detect points in the Earth hori-
zon. The direction of these points in the body frame
is given by [9]:

ye =

[
φe
θe

]
=

[
φ
θ

]
+

[
βxo
βyo

]
+ we (27)

With φe and θe represent the angle between the
body roll and pitch axes, respectively, and the hori-
zon direction and φ and θ represent the true Euler
angles that map the relation between body frame
and orbital frame. βxo and βyo are the roll and pitch
angular displacements between the Earth’s horizon
and the orbit frame. we is the white Gaussian noise
with null mean and σe standard deviation.

Assuming a perfectly spherical Earth with con-
stant, uniform radiation, the relative roll βxo and
pitch angle βyo can be determined by [9]:

βxo = βyo =
π

2
− arcsin

RE

RE + a
(28)

where RE is the equatorial radius of the Earth
and a is the orbit altitude.

The measured nadir direction as seen from the
body frame is given by:

nB = ABOnO =

 − sin θ
sin θ sinφ
cos θ cosφ

 (29)

Note that the knowledge of the yaw angle is not nec-
essary to obtain the nadir direction. Therefore, an
estimation of the nadir vector can be obtained from
the observed vectors ye and the position vector es-
timated by the OBC (on board computer). Most
state of the art nadir sensors are capable of calcu-
lating the nadir direction and giving it directly.

The Earth sensor available in the simulation
tool was modeled after the CubeSpace’s CubeSense
Nadir Sensor. This sensor consists of a CMOS
based digital camera with a wide field of view.
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8.2. Star Tracker

Most state-of-the art star trackers provide the at-
titude of the satellite directly as a quaternion [1].
The star tracker is modeled as a ”black box” and
the internal processes of this sensor were not taken
into account. This measurement is corrupted by
additive Gaussian white noise. Brute force normal-
ization is required to ensure that the output is a
unit quaternion.

9. Attitude Estimator Block

This block presents multiple options of both static
and recursive algorithms.

9.1. Static Determination

The three options available for the user are the
TRIAD algorithm, utilized in the ORCASat [8], the
QUEST and the Q-method. Both the Q-method
and QUEST are based on Whaba’s problem [1].

9.1.1 Whaba’s Problem

Wahba’s problem is posed as a minimization prob-
lem where the cost function is posed as:

E =
1

2

N∑
k=1

ak‖vkB −ABIvkI‖2 (30)

where v1I...vnI is a set of reference unit vectors in
the ECI reference frame, and v1B...vnB are the cor-
responding observation unit vectors, measured in
the body frame and A is the rotation matrix from
the reference frame to the body frame. a1...an is a
set of non-negative weights.

9.1.2 Q-method

The loss function (30) can be expanded as:

E =
1

2

N∑
k=1

ak(vkB −ABIvkI)
T
(vkB −ABIvkI) =

1

2

N∑
k=1

ak(vkB
T
vkB + vkI

T
vkI − 2vkB

T
ABIvkI)

(31)

Since vkB and vkI are unit vectors vkB
TvkB =

vkI
TvkI = 1. Substituting in (31):

E =

N∑
k=1

ak − g(A) (32)

With g(A) =
∑N
k=1 akvkB

TABIvkI. Minimizing J
is the same as maximizing g(A).

The attitude matrix ABI can be expressed in
terms of quaternions so the cost function can be
re-written in terms of quaternions as [10]:

g(q) = qTK(B′)q (33)

where K(B,) is the traceless symmetric matrix:

K(B′) =

[
B′ + B′T − tr(B′)I3 −Z

ZT tr(B,)

]
(34)

with,

B′ =

N∑
i=1

akvkBvkI
T (35)

and

Z =

B′23 −B′32B′31 −B′13
B′12 −B′21

 (36)

To find the value of q that maximizes g(q), its
derivative with respect to q must be evaluated.
Since the four elements of the quaternion are not
independent, a new gain function is created with
this constraint in mind through the addition of a
Lagrange multiplier [10]:

g(q)′ = qTK(B′)q− λqTq (37)

The differentiation of this gain function yields a sta-
tionary point for:

qK(B′) = λq (38)

The optimal quaternion is given by to the eigen-
vector that corresponds to the largest eigenvalue of
K.

9.1.3 QUEST

Recalling equation (32) and substituting for a max-
imum value of g(A) = λopt:

λopt =

N∑
k=1

ak −E (39)

The optimal eigenvalue of K the cost function E
should be small, such that [10]:

λopt ≈
∑

ak (40)

Starting from this assumption (λ0 given by (40))
and since the QUEST algorithm obtains an esti-
mate value λopt through a Newton-Raphson itera-
tion process [10]:

λi = λi−1 −
f(λi−1)

f ′(λi−1)
(41)

where f(λ) is the characteristic equation:

f(λ) = det (K− λI4×4) (42)

For most cases, only a single iteration is required [1].
By combining (34) and (38) and substituting the
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known optimal eigenvalue λopt, the optimal quater-
nion is given by:

q1:3

q4
= [(λopt + trB′)I3 − S]−1Z (43)

‖q‖ = 1 (44)

where (44) states the unit quaternion condition.
The QUEST method encounters a singularity for

rotations of 180o about any of the axis (q4 = 0)
[1]. Nevertheless, this singularity can be avoided
by applying a method of sequential rotations.

9.2. Extended Kalman Filters
The EKF algorithms used in this thesis are summa-
rized in table 9.2.

Table 1: General EKF algorithm
Step
1. Calculate F(x̂+

k−1) and +Buk−1
2. Calculate x̂−k = F(x+

k−1)x+
k−1 + Buk−1

3. Calculate P−k = F+
k−1P

+
k−1(F+

k−1)T + GQGT

4. Calculate Hk
5. Calculate Kk = P−k HT

k (HkP
−
k HT

k + R)−1

6. Calculate ∆x̂ = Kk[yk −Hkx
−
k ]

7. Calculate x̂+
k = x̂−k + ∆x̂

8. Calculate P+
k = (In −KkHk)P−k

For each iteration, steps 1. to 8. are followed.
The first 3 steps correspond to the predict phase
and the remaining to the update phase. When the
quaternion is part of the state vector, q̂+

k is divided
by its norm in step 7. in order to maintain the unit
value:

q̂+
kcorrected =

q̂+
k

‖q̂+
k ‖

(45)

F(x̂+
k−1) and +Buk−1 depend on the process and

on the state vector x and Hk depends on the sensor
measurements and the state vector. Its calculations
will be particularized for the star tracker additive
EKF developed in the following subsection.

9.2.1 Additive Extended Kalman Filter

The additive extended Kalman filter treats the four
elements of the quaternion as independent of each
other, calculating the quaternion error as [11]:

q = q̂ + ∆q (46)

where q̂ is the estimated value of q and ∆q is the
estimation error. The normalization condition is
enforced in the update state using the ”brute force”
approach expressed in (46).

The AEKF estimates the state vector:

x =

[
q
ω

]
(47)

where q stands for the unit quaternion and ω rep-
resents the body rates. The value of ẋ can be calcu-
lated by combining the previously stated equations
of kinematics and dynamics:

q̇ =
1

2
Ω(ω)q (48)

Jω̇ = −ω × (Jω + h)− τ − ḣ (49)

where h is the angular momentum exchange device
hmed, when reaction wheels, momentum wheels or
control moment gyros cluster are present. When
the satellite is not equipped with moment devices
h = 0.

9.2.2 Predict

The predict step follows the steps 1-3 in table 9.2,
where the error transition matrix is obtained by
substituting (48):

Fk−1 = I7 +

[
F11 F21

F12 F22

]
(50)

F11 =
∆t

4


0 (ωz)

+
k−1

−(ωy)
+
k−1

(ωx)
+
k−1

−(ωz)
+
k−1

0 (ωx)
+
k−1

(ωy)
+
k−1

(ωy)
+
k−1

−(ωx)
+
k−1

0 (ωz)
+
k−1

−(ωx)
+
k−1

−(ωy)
+
k−1

−(ωz)
+
k−1

0

 (51)

F12 =
∆t

4


(q4)

+
k−1

−(q3)
+
k−1

(q2)
+
k−1

(q3)
+
k−1

(q4)
+
k−1

−(q1)
+
k−1

−(q2)
+
k−1

(q1)
+
k−1

(q4)
+
k−1

−(q1)
+
k−1

−(q2)
+
k−1

−(q3)
+
k−1

 (52)

F21 = 03×4 (53)

F22 = ∆t


0

(ωz)
+
k−1(Jy − Jz)− (hz)

+
k−1

2Jx

(ωy)+k−1(Jy − Jz)− (hy)+k−1
2Jx

(ωz)
+
k−1(Jz − Jx)− (hz)

+
k−1 −H0

2Jy
0

(ωx)+k−1(Jz − Jx)− (hx)+k−1
2Jy

(ωy)+k−1(Jx − Jy)− (hy)+k−1 +H0

2Jz

(ωx)+k−1(Jx − Jy)− (hx)+k−1
2Jz

0


(54)

where H0 is the orbit angular momentum.
As previously stated in 9.2:

x̂−k = F(x+
k−1)x+

k−1 + Buk−1 (55)

With

Buk−1 =

[
04×1

J−1[τk−1 − ḣk−1]δt

]
(56)

9.2.3 Update

Most commercially available star trackers output
directly the attitude of the satellite as a quaternion:

ŷk = h(xk) = q̂−k (57)

The sensitivity matrix in step 4. of table 9.2 is
simply given by [9]:

Hk =
[
I4x4 04x3

]
(58)

After this calculation, the algorithm follows steps
5. to 8. of table 9.2, with normalization of q̂+

k

(equation (46) ), for each iteration.
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10. On Board Computer Block

The on board computer (OBC) block uses data ob-
tained by the attitude sensors and/or the attitude
determination algorithms in conjunction to position
measurements obtained by the GPS to compute an
estimate of all the kinematic and dynamic variables.

This block contains an environmental model sub-
system that, similar to the spacecraft environment
block. A propagator subsystem propagates both
the position and attitude of the spacecraft along its
orbit. This propagator is reset at regular intervals
by the GPS measurements in order to reduce the
accumulation of estimation errors propagated over
time.

11. Power Analysis Block

This block analyses the power consumption and
availability of the satellite. The power consumption
is obtained by adding the power consumed by all the
actuators at any instance in time. The power avail-
ability of a spacecraft is a function of the number
of solar panels, their peak power for the expected
solar power density and the angle between the sun
line of sight and the inward normal of the panel.

12. Actuators Block

This block models different attitude actuators avail-
able for CubeSats, namely, magnetometers and mo-
mentum wheels [8], reaction wheels and control mo-
ment gyros (CMG), whose models are going to be
further explained in sections 12.1 and 12.2, respec-
tively. Several cluster architectures for each mo-
mentum exchange device.

12.1. Reaction Wheel Model

Reaction wheels consist of disks with null nomi-
nal angular momentum which are spun up by a
motor driver. Configurations of one or two reac-
tion wheels, are commonly used, but full three-axis
attitude control requires the use of three or more
wheels. The actuator model allows the user to sim-
ulate clusters of up to 3 orthogonal reaction wheels.

The angular momentum of a cluster of reaction
wheels given in the body frame by:

h =

N∑
i=1

h =

N∑
i=1

JRWΩRW ĝsi (59)

where JRW
i , ΩRW and ĝsi represent, respectively,

the moment of inertia, the magnitude of the spin
rate and a unit vector in the direction of the spin
axis of the ith wheel in the body frame.

Applying (14) the torque of a cluster of reaction
wheels in the body frame is:

τ =

N∑
i=1

τi = JRWΩ̇RW ĝsi (60)

12.1.1 Motor Model

A basic direct current motor can be modeled as an
armature circuit, constituted of a resistance (Ra)
and an inductance (La) connected in series, and a
voltage source (eb) associated with the back elec-
tromotive force (emf) induced in the armature dur-
ing rotation [12, 13]. Combining Newton’s and Kir-
choff’s laws, the behavior of the motor can be de-
scribed by:

La
dia
dt

+Raia = ea −Kb
dθ

dt
(61)

Jm
d2θ

dt2
+ τd = Kiia (62)

where τd is the friction disturbance torque modeled
as a combination of viscous and Coulomb friction
contributions [1]:

τd = Bm
dθrel
dt

+ csign(
dθrel
dt

) (63)

where Bm is the viscous friction coefficient, c is the
Coulomb friction coefficient. And dθrel

dt is the rela-
tive velocity between the moving parts of the motor
and the static ones. Disturbances caused by eccen-
tricity of the wheel have been modeled as gaussian
white noise.

The power consumption is calculated as:

P = Rai
2
a (64)

The motor drives of reaction wheels typically ac-
cept a torque command [1]. A proportional integral
derivative controller was developed for this effect.

12.2. Single Gimbal Control Moment Gyro model
To better understand the behavior of a cluster of
single gimbal control moment gyros it is important
to introduce two reference frames.

� CMG reference frame: given by the triad of
unit vectors {ĝs, ĝt, ĝg}. ĝs is a vector in the
direction of spin of the spinning wheel, ĝg has
the direction of the gimbal axis and ĝt com-
pletes the right hand triad. Out of this three
unit vectors, only ĝg is constant in time. Given
an initial gimbal angle δ0 [3]:

ĝs(t) = cos(δ(t)−δ0)ĝs(t0)+sin(δ(t)−δ0)ĝt(t0) (65)

ĝt(t) = − sin(δ(t)− δ0)ĝs(t0) + cos(δ(t)− δ0)ĝt(t0)
(66)

� Cluster reference frame: common reference
frame for all the CMGs in the cluster. It is
constant in time and relates to the individ-
ual CMG reference frames through the current
gimbal angle and constant shape parameters.
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Typical CMG clusters are constituted by equal
individual CMG. In the cluster frame:

hC =

N∑
i=1

hiC (67)

where hiC (i = 1, ..n where n is the number of
CMGs of the cluster) is given by [4]:

hiC = hf
iC + hg

iC = hfiC ĝsiC + hgi ĝgiC =

Jf
iCω

f
iC + Jg

iCδ̇i = Jf
iCω

f
iC ĝsiC + Jg

iCδ̇iĝgiC

(68)

where Jf
iC and Jg

iC represent the inertia of the fly-
wheel (spinning disk) and the gimbal, respectively
and hf

iC and hg
iC represent the angular momentum

of the flywheel and gimbal. ĝsiC and ĝgiC are the
spin and gimbal axis.

Substituting in (14), the torque acting on the sys-
tem can be obtained as:

dhi

dt
= Jf

iC
˙
ωfiC ĝsiC + Jf

iCω
f
i

˙̂gsiC + Jg
iCδ̈iĝgiC =

Jf
iC

˙
ωfiC ĝsiC + δ̇iJ

f
iCω

f
iC ĝtiC + Jg

iCδ̈iĝgiC

(69)

dhiC

dt
= Jf

iC
˙
ωf

iC + Jg
iCδ̈iC + δ̇iC × (Jf

iCω
f
iC) = τd

iC

(70)

where Jf
iC

˙
ωf

iC is the torque due to the acceleration

of the flywheel i, Jg
iCδ̈iC is the torque due to the

acceleration of the gimbal i, δ̇iC × (Jf
iCω

f
iC) is the

control torque of the CMG i.

Real motors are subject to friction and other dis-
turbances (subsection 12.1.1), the total torque act-
ing on the spacecraft due to one CMG is:

τi = τ control + τ fa
i + τ ga

i + τ ff
i + τ gf

i (71)

τ ff
i and τ gf

i are the disturbance torques experi-
enced by the flywheel and the gimbal. The total
torque due to the cluster of N CMGs is:

τ =

N∑
i=1

τi (72)

For a cluster of CMG acting with the same an-
gular momentum, hcmg, (67) is reduced to:

hf
C = hcmgM (73)

where M is a 3×n matrix, n is the number of CMGs
of the cluster, resulting by summing the directional
matrices of each individual CMG axis. That is:

M =
[
ĝs1 ĝs2 .... ĝsn

]
(74)

Finally, the control torque can also be obtained as:

τ control
C =

N∑
i=1

JiC(δi)δ̇i (75)

For a cluster of CMG acting with the same angular
momentum, (75) is reduced to:

τ control
C = J∗(δ)δ̇ (76)

where J∗ is the Jacobian Matrix:

J∗ =
∂hf

C

∂δ
(77)

A big disadvantage of CMGs is that singularities
may arise for certain values of J∗. Internal singu-
larities can be partially or totally avoided by em-
ploying the correct steering laws.

12.2.1 Steering Law and Motor Control

Table 2 summarizes the steering laws available in
the Simulink tool.

Table 2: Steering laws available in the actuator
block [1]

Architecture
Moore Penrose

pseudo-inverse

Singularity

robust inverse

Singularity

passing inverse

Single ×

Twin

Scissored Pair
× ×

Pyramid × ×

Box-90 × ×

The gimbal motor drives of reaction wheels typi-
cally accept a speed command, so a linear quadratic
regulator controller (LQR) was designed.

13. Attitude Control
This block contains both an OBC controller and
actuator controllers.

The set of available controllers can be divided
into detumbling and nominal pointing algorithms.
The actuator block is equipped with 4 detumbling
algorithms developed in [8], as well as two nom-
inal pointing algorithms: a constant gain linear
quadratic regulator developed by [14] and a feed-
back controller for CMG equipped spacecrafts fur-
ther detailed in subsection 13.1.

13.1. Feedback Controller for CMG
Recall the dynamics equation (49). A feedback con-
trol law was developed in [15] such that:

τreq = −Kpqe
1:3 −Kdω

e (78)

with

−τ = ω × h + ḣ (79)
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Where τreq stands for the requested torque, qe
1:3

and ωe are the quaternion and body-rate vector
errors of the spacecraft:

qe = qBI ⊗ q−1desired =

[
qe
1:3

qe4

]
(80)

ωe = ωBI
B − ωdesired

B (81)

Where qBI and ωBI
B describe the current attitude

and body rates of the spacecraft and q−1desired and
ωdesired

B refer to their desired values.
Kp and Kd are the gain matrices of the con-

troller and were determined with a Lyapunov sta-
bility analysis.

14. Simulations and Results
The ORCASat is going to be analyzed using
the simulator tool. Section 15 summarizes OR-
CASat’s ADCS solution and section 17 compares
ORCASat’s ADCS solution with possible alterna-
tive solutions.

15. ORCASat’s ADCS
15.1. ORCASat’s ADCS
ORCASat utilizes a COTS solution by Cubespace.
This solution comprises a 3-axis Fluxgate Magne-
tometer, a 180o FOV CubeSense sun sensor with
bore sight axis pointing towards −b̂3, aided by 10
photodiods, as well as a 3-Axis MEMS rate sensor.
Regarding actuators, ORCASat is equipped with 3-
axis magnetic torquers as well as Y-axis CubeWheel
Small momentum wheel.

As suggested in [8], the TRIAD algorithm makes
use of the sun sensor and magnetometer measure-
ments to initialize a AEKF. Finally, detumbling
is achieved with a Fast detumbling B-dot algo-
rithm purposed in [8]. In nominal mode, control
is achieved via a LQR purposed in [14].

16. Initial Conditions
The simulation base scenario used for the simula-
tions is summarized in table 3.

Table 3: Base simulation conditions
Parameter Value

Semimajor axis 6768.24km
Eccentricity 0.00005
Inclination 51.64o

Right ascension
of the ascending node 117.76o

Argument of the
Perigee 34.8o

Initial Mean
Anomaly 60o

Initial quaternion
orientation [1 0 0 0]

T

Initial angular
rates [0.2 0.2 0.2]

T

Mass 3.6kg

Inertia Matrix

[
0.003 0 0

0 0.007 0
0 0 0.008

]
kgm2

Parasitic dipole
moment [0.00707 0 0.00707]

T
Am2

Initial epoch 7pm, 1 January 2022

Even though most initial conditions impact the
detumbling time and the power consumption dur-
ing detumble, these do not significantly impact the
mission requirements for a realistic range of values.
The exception is the initial body rates that seems
to have an impact on the estimation error. It was
therefore decided that in order to better study the
estimation performance of different architectures, it
would be necessary to analyze their performance for
different initial body rates.

17. Alternative Architectures

In subsection 17.1 alternatives to the sun sensor are
tested whereas in subsection 17.2 an alternative to
CubeSense’s Cubewheel is tested.

17.1. Sensor Alternatives

The mission requirements have been shown to be
mostly satisfied in case of sun sensor failure, but
also, this sensor does not provide redundancy in
case of magnetometer failure. This result lead to
the study of two possible alternative architectures:
one with only a magnetometer and one where the
sun sensor is substituted by the Cubesense nadir
sensor (aligned with the +b̂3 axis) [16].

Table 4 summarizes the obtained results:

Table 4: Different architectures comparison [16]
Architecture Mass difference Mean estimation

error
Mean pointing

error
Sun sensor +

Magnetometers 0g 0.54o 3.8o

Magnetometers −30g 0.54o 3.9o

Earth sensor +
Magnetometers 0g 0.80o 4.1o

For the solution equipped with a nadir sensor the
redundancy capabilities of the solution in case of
failure of the magnetometer in nominal phase where
studied. Even after magnetometer failure in the
nominal phase of the mission, when equipped with a
Earth sensor instead of a sun sensor, the spacecraft
is capable of achieving the mission requirements.

Since the present sun sensor does not provide re-
dundancy in case of magnetometer failure and its
performance is not significantly better than the ar-
chitecture with only magnetometers, this second
option would be preferable due to the reduced mass
and volume.

However, the nadir sensor could be a preferable
option as the redundancy provide by this sensor re-
duces the risk of mission failure.

17.2. Cubewheel Alternative

In this subsection the Cubewheel momentum wheel
is compared with a possible alternative flywheel
(RW210 flywheel by Hyperion Technologies) Table
5 compares the two solutions:
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Table 5: Different flywheels comparison [17]
Flywheel Mass

Mean power
consumption

Mean estimation
error

Mean pointing
error

Cubewheel 60g 0.36W 0.45o 3.76o

RW210 21g 0.47W 0.57o 5.1o

The smaller flywheel is enough to mostly main-
tain pointing and estimation requirements with sub-
stantial mass and volume savings, however, it can
be seen that the average power consumption is
larger in the RW210 flywheel architecture.

18. Conclusions

The present research had two main goals: the de-
velopment of a conceptual design framework tool
capable of simulating several different ADCS archi-
tectures and using this tool, analyzing ORCASats
current ADCS solution and compare it with possi-
ble alternative architectures.

Regarding the first objective, the tool created is
capable of modeling most conventional and state-
of-the-art CubeSat ADCS architectures. Regard-
ing the second objectives, alternative solutions to
the current architecture where studied. It has been
shown that the presence of the sun sensor does not
significantly impact both pointing and estimation
accuracy. Moreover, it has been shown that in spite
of not being as accurate, the Cubesense nadir sensor
provides redundancy in case of failure of the mag-
netometer in nominal mission phase, while having
the same mass and volume of the Cubesense sun
sensor.

Finally, the RW210 flywheel by Hyperion Tech-
nologies was tested as an alternative to Cubewheel.
It was shown that even though the pointing and es-
timation accuracy are not strongly impacted by this
alteration, the total average power consumption in-
creases.

19. Future Work

The current developed tool is already capable of
modeling with detail multiple models, however, the
current star tracker model could use some improve-
ment and the estimator and controller block could
be equipped with extra alternative algorithms.

Finally, it would be interesting to adapt and com-
plete the current design tool with a hardware-in-
the-loop test bed for the ADCS hardware.
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