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Resumo

Durante o desenvolvimento de CubeSats, o sistema de determinação e controlo de atitude (ADCS)

tem tipicamente um custo elevado, sendo normalmente baseado em soluções comercialmente disponı́veis

(COTS). Uma ferramenta de design capaz de simular diferentes arquiteturas de ADCS comuns permite

aos designers testarem diferentes soluções possı́veis para o ADCS, resultando em decisões mais infor-

madas. Além disso, tal ferramenta elimina a necessidade de software comercial criado especificamente

para cada solução particular.

Com este objetivo, uma ferramenta de simulação foi desenvolvida em Matlab/Simulink. A ferramenta

modela um ambiente espacial realista e as caracterı́sticas fı́sicas do CubeSat, permite testar uma ampla

gama de métodos ADCS passivos e ativos e inclui uma gama de algoritmos para estimativa e controlo

de atitude.

Três opções diferentes de estabilização passiva estão disponı́veis atualmente: barras de gradiente

de gravidade, painéis de estabilização aerodinâmica, ı́mans permanentes e hastes de histerese. Além

disso, o utilizador pode simular sensores solares, magnetómetros, giroscópios, sensores terrestres e

estelares e atuadores como magnetorquers, e diversas configurações de volantes de reação e de mo-

mento e giroscópios de controle de momento. O utilizador também pode escolher entre vários algorit-

mos convencionais de determinação e controlo de atitude.

A ferramenta foi usada para avaliar o ADCS do ORCASAT, um projeto da Universidade de Victoria

CubeSat financiado pela Agência Espacial Canadiana. Arquiteturas ADCS alternativas foram testadas

e comparadas em termos de massa, volume, potência, erro de apontamento e estimativa.

Palavras-chave: ADCS, CubeSat, estimação de atitude, controlo de atitude
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Abstract

The Attitude Determination and Control System (ADCS) is one of the most expensive CubeSat sub-

systems and it is usually based on commercial of the shelf options. A design framework and simulation

tool has been developed to evaluate the performance of several common ADCS architectures for Cube-

Sats thus allowing designers and developers to select the most suitable solution in terms of architecture

and components. The proposed design and simulation tool also eliminates the need for expensive and

commercially protected software specifically created for each individual ADCS architecture option. The

Matlab/Simulink design and simulation tool models a realistic orbital space environment and the Cube-

Sat physical constraints in terms of volume and weight. It also enables the evaluation of a wide range of

both passive and active ADCS systems and associated computational algorithms for attitude estimation

and control.

Three different passive attitude stabilization options are currently available: deployable gravity gra-

dient booms and aerodynamic stabilizing panels, permanent magnets and hysteresis rods. Moreover,

the user can experiment with both fine and coarse sun sensors, magnetometers, gyros, Earth sensors

and star trackers, and actuators such as magnetorquers, reaction and momentum wheels and single

gimbal control momentum gyros. Several most common cluster architectures of momentum devices are

available to the user. The user can also choose between conventional static determination, recursive

estimation and control algorithms.

The tool was used to evaluate the ADCS for the ORCASAT, a University of Victoria CubeSat project

funded by the Canadian Space Agency. Currently, ORCASAT has a commercial off-the-shelf ADCS

developed by CubeSpace. Alternative ADCS architectures have been tested and compared in terms of

weight, volume, power required, pointing and estimation error.

Keywords: CubeSat, ADCS, attitude determination, attitude control
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Chapter 1

Introduction

1.1 The CubeSat Project

A CubeSat is a small square-shaped satellite initially introduced in 1999 [1]. The main goal of the

CubeSat project was to provide a standard design for pico and nanosatellites so as to reduce both launch

and construction cost as well as development time and increase accessibility to space [2]. Originally

defined as a 10cmx10cmx10cm cube with a mass of up to 1.33kg [1], also known as a single unit (1U),

modern CubeSats may vary in size by assemblage of multiple units. Some popular configurations are

0.5U, 1U, 1.5U, 2U, 3U and 6U [3].

These characteristics make CubeSats an appealing option, not only to private companies, but also

to universities and high schools. At the time of writing, more than 1500 CubeSats have been launched

and the number of CubeSats launched per year is expected to increase in the next four years [4].

Figure 1.1: Number of nanosatellites launched by year per institution type and forecast until 2025 [4]
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1.2 The ORCASat

The Optical and Radio CAlibration Satellite (ORCASat) is a CubeSat developed at University of

Victoria (UVIC) as part of the Canadian Space Agency’s Canadian CubeSat Project. This satellite

results of the collaboration between UVIC and several other organizations, namely, University of British

Columbia (UBC) and University of Lisbon [5].

The goal of the ORCASat mission is to serve as a reference light source to calibrate astronomical

observatories and its mission requires nadir pointing with a maximum error of 10o and a maximum

estimation error of 2o. The spacecraft is equipped with a Commercial Off-the-Shelf (COTS) attitude and

determination subsystem by CubeSpace which consumed a significant portion of the satellite’s budget.

1.3 Motivation

During the design of the attitude determination and control system (ADCS) the ORCASAT team

struggled with the validation of the chosen ADCS solution. With the increasing innovation in the ADCS

leads to the necessity of a tool capable of realistically simulate the behavior of the satellite in orbit

when equipped with different subsystem solutions. Even though simulations are sometimes provided

by manufactures or, like in the ORCASat case, created by the CubeSat teams, these are frequently

designed so as to validate only one particular architecture and, in case of commercial simulators, may

represent a significant added cost.

To the extent of the knowledge of the author, at the time of writing, there is a lack of publicly available

tools for simulation of CubeSat ADCS, with only two tools available: the Smart Nanosatellite Attitude

Propagator (SNAP) and Aerospace Blockset CubeSat Simulation library. Despite being a simple efficient

tool, the SNAP, only allows the user to simulate magnetic passive attitude stabilization and control.

The Aerospace Blockset CubeSat Simulation library, whose blocks where partially used in this work,

provides realistic environment models as well as useful attitude transformation blocks, but does not

provide detailed ”non-ideal” sensor and actuator models. Moreover, these tools do not provide power

consumption/availability analysis.

The design of a CubeSat ADCS simulator, able to simulate different realistic ADCS architectures,

both passive and active, would enable satellite teams to experiment with different possible solutions

before committing to a specific ADCS architecture. More innovative solutions can also be tested with

”non-ideal” models without requiring teams big time and monetary investments.

Furthermore, such tool can be also of value in educational settings as it provides a way for students

to experiment with different ADCS architectures and visualize their results.

1.4 Literature Review

In an initial phase, a survey was conducted to better access both the commercially available attitude

sensor and actuators currently available in the market as well as the commonly employed architectures
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and requirements of educational CubeSats. The results of this research concerned 60 educational

CubeSats as well as more than 60 commercially available sensors and actuators. More detailed infor-

mation can be found on appendix A, however, some important results are summarized in this chapter.

The most commonly available COTS sensors are sun sensors and magnetometers with most big

companies offering multiple options. These are also some of the lightest and cheapest sensors in the

market with options available with mass lower than 5g for sun sensors and 10g for magnetometers.

These are also some of the cheapest sensors available with prices of flight proven sensors starting at a

few thousand dollars. Star trackers and horizon sensors (also known as nadir sensors or Earth sensors)

are becoming more popular with most main companies offering at least one option of each of these

sensors.

When it comes to actuators, both magnetorquers and flywheels (such as reaction and momentum

wheels) still dominate the market with most industry providers offering multiple options of each. Con-

trol moment gyros are still uncommon with the only solution commercially available being the Honeybee

Robotics’ Microsat Control Moment Gyroscope by Honeybee Robotics [6], however, this solution is start-

ing to appear more as in-the-house-made solution, still representing a new cutting edge technology for

CubeSats.

Figure 1.2: Academic Cubesats on board attitude sensors Figure 1.3: Academic Cubesats on board attitude actuators

Figure 1.2 shows results from the data base regarding the most common architectures employed by

CubeSats. Despite passive attitude solutions still being common, CubeSats are increasingly opting for

more complex ADCS systems.
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Figure 1.4: Academic Cubesats ADCS passive stabilization

methods

Figure 1.5: Academic Cubesats on board passive ADCS

methods

Despite the most common sensors (Figure 1.4) and actuators (Figure 1.5) aligning with the most

commonly available options in the market, some CubeSat teams opt for less conventional architectures

that push the boundaries of the state of the art. Some missions that stand out for the innovative character

of their ADCS solutions are Chasqui-I [7] with a hybrid passive and active magnetic control solution and

Swampsat I [8] and II [9] for their development of a CMG that occupies less than 0.5U.

1.5 Objectives

This thesis has two main goals:

• The creation of a tool capable of simulating different Cubesat ADCS architectures;

• The study of the current ORCASat ADCS solution.

In order to achieve the first objective, the simulation tool designed for the ORCASat is going to be used

as a base. This work aims to improve and complete the existing tool by the addition of:

• further perturbation models;

• methods of passive attitude stabilization;

• alternative sensors’ models;

• multiple momentum exchange devices with diverse configurations;

• alternative commonly used estimation algorithms;

• a control algorithm for momentum exchange devices.

The study of ORCASat’s ADCS encompassed the following objectives:

• study the performance of the spacecraft in event of sensor/actuator failure;

• study the performance of possible alternative architectures.
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1.6 Thesis Outline

This thesis is divided in the following chapters:

Chapter 2 summarizes the necessary theoretical background regarding the frames of reference and

attitude parametrizations used through out this work and introduces the physics behind the spacecrafts’

motion, namely, orbital mechanics, concerned with translation of the spacecraft and attitude kinematics

and dynamics regarding its rotation. The main perturbation forces and torques acting on the spacecraft

are also presented in this chapter.

Chapter 3 presents the different commonly available hardware solutions for CubeSats. Advantages,

disadvantages and the basic working principle of frequently used sensors, actuators and passive devices

are introduced.

Chapter 4 presents the simulation tool developed in this thesis. Firstly, a general overview of the tool

is presented, followed by a detailed explanation of each of the subsystems that constitute it.

Chapter 5 presents the simulations conducted to analyze ORCASat’s ADCS solution and consequent

results. The impact of initial conditions and the failure of a sensor or actuator on the performance of the

ADCS is studied. Finally, alternative architectures are purposed and compared.

Chapter 6 summarizes the thesis conclusions and suggests further development of this work.
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Chapter 2

Theoretical Background

This chapter introduces some basic concepts related to attitude determination and control. In 2.1, the

different reference frames utilized in this work are presented, whereas, 2.2 presents different methods

of attitude parameterization.

2.1 Reference Frames

Reference frames consist of coordinate systems, generally specified by the orientation of a set of

axes and the location of its origin. The attitude of a body can be described as the orientation of a

reference frame with respect to another [10]. The main reference frames used in this work will be

described in this section.

2.1.1 Earth Centered Inertial Frame

An inertial reference frame is a reference frame that is not subjected to any acceleration, that is, a

frame with constant (or null) velocity and without rotation. In inertial reference frames, the Newton’s laws

of motion are valid [10]. Despite what the name may suggest, due to the motion of the Earth around the

sun, the Earth Centered Inertial (ECI) reference frame can not be considered a genuine inertial frame.

Nevertheless, for attitude purposes the acceleration of the ECI frame can be neglected, and this will be

treated as approximately inertial.

The ECI reference frame is constituted by the set of axes {̂i1, î2, î3}, with î3, pointing towards the

Earth’s geographic North pole, î1, directed towards the vernal equinox (the intersection of the ecliptic

and equatorial plane in the direction of the Sun’s position relative to the Earth on spring equinox). The

last axis î2 completes the right-hand triad. Since the direction of both the North Pole and the vernal

equinox are not static in time, this work defines these axes as their mean orientation at the current

standard epoch, the J2000. The ECI frame’s origin coincides with the Earth’s Center of Mass (CM).
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2.1.2 Local-Vertical/Local-Horizon Frame

Also known as the orbital frame, the Local-Vertical/Local-Horizon Frame (LVLH) frame is of special

importance for nadir pointing missions. This is a non-inertial reference frame, centered on the satellite’s

center of mass and defined by the orthogonal triad {ô1, ô2, ô3}. The axis ô3 is aligned with the nadir

direction (directed towards the center of mass of the Earth), while the axis ô2 is oriented along the orbit

normal in the direction opposite to orbital angular momentum vector. ô1 completes the right hand triad.

By definition, the LVLH axes can be written in the ECI frame as:

ô3I = − rI
rI

(2.1)

ô2I = − rI × vI

‖rI × vI‖
(2.2)

ô1I = ô2I × ô3I (2.3)

where rI and vI represent, respectively, the position and the velocity of the spacecraft in the ECI frame.

2.1.3 Body Frame

The body frame is defined by a set of cartesian axes and a origin set on a specified point of the

spacecraft. The choice of origin and axes changes from mission to mission, however, the origin is

typically chosen to coincide with the center of mass of the spacecraft and its axis {b̂1, b̂2, b̂3} are

normally chosen so as to align with the principal axis of inertia of the body [10]. For the ORCASat, the

body frame was chosen so that, in nominal mode, it’s payload is pointing towards nadir, that is, that for

null pointing error the body frame is aligned with the orbit frame.

2.2 Attitude Parameters

The attitude of a body can be represented by several different parameters. In this section, the

main representation methods utilized in this work are presented, alongside with its advantages and

disadvantages.

2.2.1 Direction Cosine Matrix

Given two different reference frames F = {f̂1, f̂2, f̂3} and G = {ĝ1, ĝ2, ĝ3}, there is always a rotation

matrix AGF, such that:

vg = AGFvf (2.4)

where vg and vf are representations of the same vector in reference frames G and F, respectively.

The rotation matrix AGF, known as the attitude matrix or Direction Cosine Matrix (DCM), transforms the
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coordinate reference frame F to G and is defined as:

AGF =


ĝ1 .̂f1 ĝ1 .̂f2 ĝ1 .̂f3

ĝ2 .̂f1 ĝ2 .̂f2 ĝ2 .̂f3

ĝ3 .̂f1 ĝ3 .̂f2 ĝ3 .̂f3

 (2.5)

The DCM AGF, is a 3× 3 orthogonal matrix with positive and unitary determinant, that is

AGF
T = AGF

−1 (2.6)

det(AGF) = 1 (2.7)

As a consequence, the operation 2.4 preserves the length of vectors and angles, independently of the

reference frames. Another important property of the DCM is that, if n ∈ N sequential rotations are

performed, each one individually represented by the matrices A21,A32, ...An(n−1), then:

An1 = An(n−1)...A32A21 (2.8)

In addition to the stated properties, the DCM matrix uniquely defines the attitude while also avoiding

singularities and computationally heavy trigonometric functions. The main disadvantage of this repre-

sentation is the use of nine parameters to define the rotation. The redundant parameters make this

system less effective in terms of required memory.

2.2.2 Euler Angles

An angular displacement can always be described as a sequence of rotations, more specifically, of

three principle rotations. Since matrix multiplication is not commutative, the order in which the rotations

are performed affects the the final result, so, when describing the rotation in such a way, it is necessary

to specify, not only, the rotation angles, but also, the order of rotation.

In this work, it will be considered the 3-2-1 sequence, due to it’s common utilization. Several notations

are used to designate the Euler angles. This work uses the convention which associates the Euler angles

with the spacecraft axis [10]. Therefore, roll (φ) will be associated with the axis e1, pitch (θ) with e2 and

yaw (ψ) with e3:

A321 = A(e1, φ)A(e2, θ)A(e3, ψ) =


cθcψ cθsψ −sθ

−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ

sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

 (2.9)

where c and s represent the trigonometric functions cosine and sine, respectivelly.

Despite being of simple physical interpretation and not involving redundant parameters, the Euler

angle representation involves computationally costly trigonometric functions and has no simple repre-

sentation for sequential rotations. Moreover, singularities may arise. A particular case is gimbal lock,
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which occurs when θ = ±90o. For this reason, the Euler angle representation should only be used in

situations when this condition is sure not to be achieved.

2.2.3 Quaternions

Quaternions were first introduced by Hamilton in the nineteenth century and can be used to represent

rotations. Quaternions can be represented as a 4 × 1 matrix constituted by a vectorial part, q1:3, and a

scalar part, q4 [11].

q =

q1:3

q4

 =


q1

q2

q3

q4

 (2.10)

For attitude purposes, the unit quaternion is used. That is:

‖q‖ = qTq =
√
q21 + q22 + q23 + q24 = 1 (2.11)

Quaternion Algebra

Quaternions follow a specific algebra with some properties important for this work. The complex

conjugate of a quaternion is defined as:

q∗ = q =

−q1:3

q4

 (2.12)

And the inverse can be defined as:

q−1 = q =
q∗

q
(2.13)

Two quaternion product operations can be defined. Consider two quaternions q and p, the product

between the two can be written as:

q� p =

p4q + q4p + q× p

q4p4 − q1:3p1:3

 (2.14)

or as:

q⊗ p =

p4q + q4p− q× p

q4p4 − q1:3p1:3

 (2.15)

It can easily be seen that both product definitions are associative and distributive but not commutative.

In fact, it can be easily shown that:

q� p = p⊗ q (2.16)
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Quaternion products can also be expressed in a matrix form:

[q�] =
[
Ξ(q) q

]
=

q4I3 + [q1:3×] q1:3

−q1:3
T q4

 (2.17)

[q⊗] =
[
Ψ(q) q

]
=

q4I3 − [q1:3×] q1:3

−q1:3
T q4

 (2.18)

where:

Ξ(q) =


q4 −q3 q2

q3 q4 −q1
−q2 q1 q4

−q1 −q2 −q3

 (2.19)

Ψ(q) =


q4 q3 −q2
−q3 q4 q1

q2 −q1 q4

−q1 −q2 −q3

 (2.20)

The product of a quaternion with its conjugate yields:

q� q∗ = q∗ � q = q⊗ q∗ = q∗ ⊗ q = ‖q‖2Iq (2.21)

Iq is the identity quaternion given by:

Iq =

01:3

1

 (2.22)

On the downside, this representation method does not possess an intuitive physical interpretation,

nor is it unique. The quaternion representation is not subject to singularities while using only one re-

dundant parameter. Furthermore, the normalization constraint is easily enforced by (2.11) and the suc-

cessive rotations follow a practical rule. Given two successive rotations represented by the quaternions

p and q, the final total rotation can be represented by a quaternion q such that w = q ⊗ p. Finally,

quaternions can also be easily converted into DCM matrix parameters (and vice-versa).

Quaternion to DCM Transformation

The DCM matrix can be described as a function of the attitude quaternion as:

Aq =


q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q21 + q22 − q23 + q24i 2(q3q2 + q1q4)

2(q1q3 + q2q4) 2(q3q2 − q1q4) −q21 − q22 + q23 + q24

 (2.23)
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2.3 Orbital Mechanics

The motion of two celestial bodies 1 and 2 around their mutual center of mass in an inertial reference

frame as:

r̈ = −G(m1 +m2)

r3
r (2.24)

where G is the universal gravitational constant (G = 6.67408 × 10−11m3kg−1s−2), m1 and m2 are the

masses of body 1 and 2, respectivelly and r is the position vector of body 2 relative to body 1. For the

case where m1 >> m2, such as the case of a satellite orbiting around Earth, the center of mass of the

system ”satellite+Earth” approximately coincides with the center of mass of the planet and (2.24) can be

further simplified:

r̈ ≈ −Gm1

r3
r = − µ

r3
r (2.25)

This simplification is known as the restricted two body problem and for the specific case where the Earth

is the main body, µ = 3.986004418× 1014m3s−2.

It is important to notice, however, that Newton’s equation of universal gravitation (2.24) approximates

the two bodies to two point masses. This model does not account for the influence of the non-symmetric

mass distribution of the Earth (which is not a perfect sphere), perturbations due to other celestial bodies

as well as non-gravitational forces and torques acting on the spacecraft. The effect of these perturbations

will be further discussed in section 2.6.

For an initial condition where six scalar parameters are known, (2.24) can be fully integrated over an

indefinite time period. Typical parametrizations consist of the initial position and velocity vectors (each

being composed of three scalar parameters) or the Kepler classical parameters: semi-major axis, a,

eccentricity e, inclination i, longitude of the ascending node Ω, argument of perigee ω and true anomaly

θ. Alternative versions of the Keplerian parametrization are also commonly used, for instance, the true

anomaly θ, is frequently substituted by the mean anomaly n.

2.4 Attitude Kinematics

This section presents the attitude kinematics related with the rotation matrix and quaternion rep-

resentation as this will be relevant to the study of the attitude of the spacecraft over time. Given two

different reference frames F and G, the angular rate of G with respect to F is represented by ωGF , then

ȦGF = −ωGF
G (t)×AGF = −


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

AGF (2.26)

is the kinematic differential equation that maps the relative orientation of frame G with respect to frame

F over time, with ωGF
G = [ω1, ω2, ω3]T being the representation of ωGF in coordinates of the G frame.
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In quaternion representation the equivalent differential equation is given by [10]:

q̇ =
1

2
q� ω =

1

2
Ξ(q)ω =

1

2
ω ⊗ q =

1

2
Ω(ω)q (2.27)

where

Ω(ω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (2.28)

and Ξ(q) is defined in section 2.2.3.

Finally, the attitude kinematics is of intuitive physical interpretation when represented in vector nota-

tion. Given a vector v with vg and vf representations in reference frames G and F, respectively, it can

be shown from equations 2.4 and 2.26 that the kinematic differential equation can be described as

v̇g = AGFv̇F − ωGF
G × vg (2.29)

Some important properties of the relative angular rates have intuitive physical interpretation, mainly:

ωGF = −ωFG (2.30)

That is, the angular rate of G with respect to F is symmetric of the rate of F with respect to G, when

expressed in the same reference frame [10]. And:

ωGF = ωGH + ωHF (2.31)

which states that given another reference frame H, the angular rate of G with respect to F is equal to

the sum of the angular rate of G with respect to H and the angular rate of H with respect to F.

Finally, by differentiating (2.29), the second order derivative (acceleration) of the vector v as repre-

sented in the two reference frames, can be related as:

v̈g = AGFv̈F − ωGF
G × (ωGF

G × v̇g)− 2ωGF
G × v̇g − ω̇GF

G × vg (2.32)

In the specific case where v represents a position, AGFv̈F represents the relative acceleration between

the reference frames, −ωGF
G × (ωGF

G × v̇g) represents the centriptal acceleration, −2ωGF
G × v̇g relates

to the Coriolis acceleration and −ω̇GF
G × vg to Euler’s acceleration.

2.5 Attitude Dynamics

Attitude dynamics is the study of the relationship between angular motion and the torques that in-

fluence it. For the present analysis, the satellite will be treated as a rigid body. Euler’s second law of
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motion states that the rate of change of a body’s angular momentum about a fixed point in an inertial

reference frame, is equal to the sum of the external torques acting on it. Taking the center of mass of

the body as the reference point and the ECI frame as the inertial reference frame:

ḣcI = τ extI (2.33)

Under the rigid body assumption,

hcI = JcIω
BI
I (2.34)

where J represents the inertia tensor of the spacecraft.

J is a symmetric matrix, dependent on the mass and shape of the satellite. J is defined as:

Jb =


∫
B

(y2p + z2p) dm
∫
B
−(xpyp) dm

∫
B
−(xpzp) dm∫

B
−(xpyp) dm

∫
B

(x2p + z2p) dm
∫
B
−(zpyp) dm∫

B
−(xpzp) dm

∫
B
−(zpyp) dm

∫
B

(y2p + x2p) dm

 (2.35)

where P represents a generic body point with infinitesimal mass dm and coordinates {xp, yp, zp} in the

reference frame. The diagonal elements of the inertia tensor are denominated principal moments of

inertia, whereas the off-diagonal terms are called products of inertia. Since the coordinates of P will

differ for different frames of reference, J will also differ.

Combining equations (2.33) and (2.29), the fundamental equation of angular motion expressed in

body frame coordinates becomes

ḣ = τext − ω × h (2.36)

where ω represents the angular velocity of the body frame with respect to the inertial frame in body

frame coordinates, that is ωBI
B . The subscript B indicating the body reference frame has been omitted

for simplicity of notation. Alternatively, from (2.34)

Jω̇ = τext − ω × Jω (2.37)

where J is defined in the body frame. The main advantage of (2.37) over (2.34) is that, even though

J is usually time varying, it’s representation in the body frame is constant. In the following subsections,

this equation is going to be particularized for the cases where momentum exchange devices are present.

2.5.1 Attitude Dynamics with Momentum Devices

When momentum exchange devices are present, such as reaction/momentum wheels [12, 13] or

Single Gimbal Control Momentum Gyros (SGCMGs) [14–18]:, the total angular momentum of the system

”spacecraft+momentum devices” about its center of mass is given by:

h = Jω + hmed (2.38)
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where hmed represents the angular momentum of momentum exchange device and J represents the

moment of inertia of the system ”spacecraft+momentum exchange device”. Substituting in (2.37), the

equation of angular moment in the body frame, becomes:

Jω̇ = −ω × (Jω + hmed)− τ − ḣmed (2.39)

With τ comprising both perturbation and other control torques.

2.6 Perturbations

The spacecraft is subjected to several external disturbances. The four most significant perturbations

that the satellite is subjected to are caused by the gravitational attraction of a non-spherical Earth and of

other celestial bodies other than the central body, the aerodynamic drag and Solar Radiation Pressure

(SRP). Since the two first correspond to conservative disturbances, they can be expressed as gradients

of potential functions. The last two, however, are dissipative persturbations and other models will be

necessary to describe them.

2.6.1 Nonspherical Mass Distribution of the Earth

The planet Earth is not a perfectly uniform sphere. In fact, due to the presence of an equatorial

bulge and the flatness of the poles, the configuration of the Earth is closer to the one of a oblate sphere.

Other less significant nonuniformities occur due to frequent minor geographic anomalies (i.e. mountains,

continents, oceans etc.). Since gravity is directly correlated with mass, these have an impact on the

gravitational force acting on the spacecraft. A common approach to model this phenomenon approaches

the gravitational force, and consequently, acceleration by an infinite number of harmonics. This model

can be obtained by the gravitational potential function [10]:

U(r) =
µ

r

{
1 +

∞∑
n=1

(
RE
r

)n
n∑

m=0

Pnm(sinλ)[Cnm cos(mφ) + Snm sin(mφ)]
}

(2.40)

where µ is the gravitational constant of the Earth, r, λ, φ are coordinates radius, geocentric latitude and

longitude, respectively. RE is the mean equatorial radius and Pn are the Legendre polynomials. Cnm,

Snm are geopotential coefficients that decrease as the indexes n and m increase.

The gravitational field is conservative and, therefore, can be written as a gradient of this potential

function:

r̈ = −∇U (2.41)

The higher order harmonics (higher n and m) don’t alter the total energy of the orbit, due to its conserva-

tive nature. However, can cause perturbations of the orbital elements. The most significant perturbation

is related to the C20 coefficient, also designated J2 coefficient (Jn = −Cn0) associated with the oblat-

edness of the Earth. This leads to the periodic variation of the longitude of the ascending node and the

argument of periapsis.
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2.6.2 Aerodynamic Perturbations

Drag is a perturbation force caused by the friction of between the satellite and the air molecules that

constitute the atmosphere. This force is opposite to the velocity of the satellite relative to the atmospheric

flow and, therefore, has a decelerating action.

The drag force is not conservative as it decreases the energy of the system and, therefore, can not

be modeled as such. However, some assumptions can be made: the total momentum of the molecules

that contact with the surface is lost, the thermal motion of the atmospheric particles is negligible when

compared with the velocity of the spacecraft, molecules leaving the surface have a negligible impact on

the satellite, the speed of the center of mass of the spacecraft is significantly greater than the relative

motion between surfaces and the spacecraft can be modeled as a set of N flat plates (good approxima-

tion for several CubeSats) [19, 20]. Under these conditions, the drag force experienced by the spacecraft

is given in the body reference frame by:

fdB =

n∑
i=1

fdiB (2.42)

where fdiB is the drag force applied to panel i, given by:

fdiB = −1

2
ρv2relCDApv̂relB (2.43)

where ρ is the atmospheric density, CD is a dimensionless drag coefficient (typically between 1.8 and

2.4) [21], vrelB is the velocity of the spacecraft relative to the air molecules in the atmosphere and Ap is

the total projected area of the satellite in direction of motion:

Ap =

∫
A

H(cos(α)) cos(α)dA (2.44)

where H() is the Heaviside function and α is the angle of attack, defined by:

α = arccos(−v̂rel · n̂i) (2.45)

where n̂i is the unit inward normal of the face i.

Under the assumption that the atmosphere co-rotates with the Earth:

vrelB = vsatellite − vatmosphere = ABIvrelI (2.46)

vrelI = vI − ωE × rI (2.47)

where ωE is the Earth’s velocity vector in the ECI frame:

ωE = ωE î3 (2.48)

The aerodynamic perturbation is also associated with a perturbation torque τd
B. The total torque acting
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on the spacecraft is given by:

τd
B =

n∑
i=1

τdi
B (2.49)

where τdi is given by the cross product between the center of pressure cpiB and the drag force fdi of

each panel:

τdi
B = [cpiB×]fdiB (2.50)

2.6.3 Solar Radiation Pressure

Whenever the satellite is not in eclipse another dissipative perturbation arises. The solar radiation

perturbation is caused by the exchange of momentum between the spacecraft and the photons that

intercept it’s surface. This momentum exchange depends on the illuminated area and can be expressed

as:

f sB = −pApŝB (2.51)

where f sB is the force actuating in the satellite, in body frame coordinates, due to the solar pressure p.

ŝ is the Sun line-of-sight vector, that is, a unit vector pointing form the satellite in the direction of the

Sun and Ap is the illuminated area given by (2.44) with α defined as the angle between the unit inward

normal of the face i, n̂i and the Sun line-of-sight vector:

α = arccos(−ŝB · n̂i
B) (2.52)

Some assumptions were made in (2.52): the solar pressure is assumed constant along the entire orbit,

the absorption of the momentum of the photons is considered total, thermal radiation emitted by both

the spacecraft and other celestial bodies is neglected, self-shadowing of the satellite is not taken into

consideration and the relative velocity of a spinning vehicle is considered negligible compared to the

speed of light.

The solar radiation pressure is also associated with a torque disturbance given by the cross product

between the center of pressure cpB defined in the body reference frame:

cp =
1

A

∫
A

H(cos(α)) cos(α)rcpdA (2.53)

With α defined by (2.52) and the solar radiation pressure perturbation force defined in (2.51):

τ s
B = [cpB×]f sB (2.54)

where τ s
B represents the solar radiation disturbance torque in the body reference frame.

2.6.4 Gravitational Torque

Since the gravitational field acting on the spacecraft is not uniform, as it depends on its action on

each infinitesimal particle that constitutes the spacecraft and the position of said particle, a disturbance
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torque arises about the center of mass of the satellite. In the body reference frame, the gravity gradient

torque is given by:

τ g
B = 3(

µ

r2
)[(ô3)B×]JB(ô3)B (2.55)

This model only accounts for the first order of the gravitational potential function and is based in some

assumptions: the Earth is considered as the only source of gravitational influence and the satellite is

considered to be small compared to its distance from the mass center of the planet.

2.6.5 Magnetic Torque

The geomagnetic field is conservative and, therefore, can be written as a gradient of a potential

function:

B = −∇V (2.56)

Similarly to the gravitational field potential function, V is a potential function with infinite harmonics[10]:

V(r, φ, ψ) = RE

{ ∞∑
n=2

n∑
m=0

(
RE
r

)n+1Pnm(cosφ)[gnm cos(mψ) + hnm sin(mψ)]
}

(2.57)

where Pnm is the Legendre function and gnm and hnm are Gauss coefficients.

Due to it’s internal circuits, current loops, electronic devices and scientific instruments, the space-

craft is imbued of a parasitic magnetic dipole whose interaction with the geomagnetic field generates a

perturbation torque:

τ = m×B (2.58)

where m is the total parasitic magnetic dipole of the spacecraft.

2.6.6 Third-body Perturbations

In reality, the spacecraft interacts with various gravitational fields other than the one from the Earth.

Since these celestial bodies are significantly further away from the spacecraft than planet Earth, the

effect of their gravitational fields on the satellite are less important then the contribution of Earth’s gravi-

tational field. Hence, these interactions can be treated as perturbations known as ”third-body” perturba-

tions.

The influence of n other celestial bodies of mass mi and position ri on a spacecraft with mass ms at

position rs orbiting around planet Earth with mass mE and position rE is given by:

r̈s = − GmE

‖rE − rs‖3
(rs − rE)−

N∑
i=1

Gmi

‖rs − ri‖3
(rs − ri) (2.59)

These n celestial bodies also interact with the planet Earth as:

r̈E = − Gms

‖rE − rs‖3
(rE − rs)−

N∑
i=1

Gmi

‖rE − ri‖3
(rE − ri) (2.60)
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The position of a spacecraft orbiting around Earth is typically described as it’s position relative to the

center of mass of the planet r = rs − rE. Substituting in (2.59):

r̈ = − µ
r3

r−
N∑
i=1

µi

( rE − ri + r

‖rE − ri + r‖3
− rE − ri
‖rE − ri‖3

)
(2.61)

where, µ = G(ms +mE) and µi = Gmi.

For satellites orbiting around the Earth, the main perturbations are due to the Sun and the Moon

[10]. This model follows some assumptions: the Earth, spacecraft and remaining celestial bodies are

assumed to be mass points, therefore, only the first order terms of their gravitational fields are accounted

for.
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Chapter 3

Sensors and Actuators

This chapter summarizes some of the most common actuators and sensors found in CubeSats as

well as typical passive attitude devices and structures commonly utilized. In section 3.1 some of the

most common methods and devices of passive attitude control are presented. Sections 3.2 and 3.3 are

concerned about sensors and actuator devices. The models used to simulate the hardware available in

the simulation tool are further analyzed in chapter 4.1.

3.1 Passive Attitude Control/Stabilization

Passive attitude stabilization and control methods rely on geometric and magnetic properties of the

satellite in order to obtain attitude control. Passive methods do not require power consumption or pro-

cessing and are typically simpler than active methods, which makes them an attractive choice for small

satellites. Despite their typically lower performance, the low resource needs of this type of attitude con-

trol still make it a common choice for Cubesats. Some commonly used techniques are going to be

discussed in the next subsections.

3.1.1 Gravity Gradient Stabilization

Since the gravitational force experienced by a point mass decreases with the increase of the squared

distance, r2, the spacecraft will not experience the same gravity pull in all its parts. This non-uniformity

can be taken advantage off in order stabilize the spacecraft’s axis of least inertia (maximum kinetic

energy state) in the nadir direction.

To achieve this result, gravity gradient stabilization explores the relative equilibrium states in which

the rotation of the spacecraft relative to the orbital frame is constant (ωBO = 0). It can be shown that

in order to attain this equilibrium, the satellite must have all principle inertia axes aligned with the orbital

frame [22].

There is no limitation regarding each inertia axis is pointing towards each orbital frame axis to achieve

this equilibrium, however, not all configurations will be stable. [10, 12].

The stability region Jy ≥ Jx ≥ Jz is typically selected as the design point [10, 12].
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For this effect, elongated spacecrafts with a prominent axis of least inertia are preferred. For nadir

pointing CubeSats, whose structure is standardized, gravity gradient booms are typically used to ”artifi-

cially” create a preferable direction of alignment, that is, a well defined axis of least inertia.

3.1.2 Passive Magnetic Attitude Control

Passive Magnetic Attitude Control (PMAC) makes use of the Earth’s magnetic field. It consist of a

permanent magnet, typically, paired with hysteresis rods which supply restoring and dampening torque,

respectively, to the spacecraft. The PMAC is a robust, simple, low size/mass, no-power required attitude

control system, which makes it an attractive for CubeSats, whose mass, volume and power budget are

reduced. This system is, however, generally limited to an accuracy of 10o around the magnetic field

instantaneous direction [23]. PMAC is specially common among missions where magnetic-pointing is

necessary.

Permanent Magnet

The permanent magnet are devices made from magnetic material whose magnetic dipole moment

produces a torque when interacting with the geomagnetic field. These are passive attitude control de-

vices as they do not require any power, since the material is naturally magnetic, contrary to induced

magnets, such as magnetic torquers. The torque provided by a magnetic dipole moment when interact-

ing with a magnetic field is:

T = m×B (3.1)

where m is the permanent magnet’s magnetic moment vector and B is the geomagnetic flux density

vector. Contrary to magnetic torquers’, permanent magnet’s magnetic moment vector is constant.

Hysteresis Rod

In delayed response to magnetic field changes, a hysteresis rod alters its polarity converting the

rotational energy into heat and, therefore, providing a dampening torque to the spacecraft [24]. The

hysteresis rod’s internal induced magnetic flux density is expressed as a function of an external magnetic

field strength by its hysteresis loop. The area of the loop is associated with the rotational dampening per

cycle per unit volume of the hysteresis rod and its characteristics depend on the material and shape of

the hysteresis rod [23, 25]. The magnetic dipole moment provided by a hysteresis rod is a function of it’s

internal induced magnetic flux density and its volume.
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3.1.3 Aerodynamic Stabilization

Figure 3.1: USS Langley CubeSat with Pumpkin Colony-I bus [8]

Despite frequently being considered an inconvenience, the aerodynamic torque, explained with fur-

ther detail in section 2.6, can be taken advantage of to achieve attitude stabilization. For CubeSats,

fin or panel like structures are typically used for this purpose, normally deployed in a axially symmetric

”shuttlecock” configuration [26], like the one seen in figure 3.1. This configuration achieves stabilization

of rotation around axes orthogonal to the symmetry one through gyroscopic stiffness. The premise be-

hind this method of stabilization is the placement of the center of pressure of the spacecraft behind its

center of mass so that the drag induced torque acts in as restorative torque [26].

Consider, without loss of generality, a ”shuttlecock” configuration around the b̂1 axis. For a positive

pitch angle (”nose up”) the aerodynamic fins tilt downwards. The area of the aerodynamic fin projected

orthogonal to the flow decreases, reducing its drag. Furthermore, this tilt also decreases the vertical

moment arm to the center of mass, and therefore, the aerodynamic torque produced by the upper panel.

The opposite occurs to the lower fin, whose aerodynamic torque will increase. Therefore, a restorative

torque is produced around the center of the mass of the spacecraft, causing the ”nose” of the spacecraft

to go down to its nominal position. A similar situation occurs for rotations around the yaw axis [27].

This configuration has been adopted by CubeSats such as QbX [26, 28], GalacticSky-1 [29] and

Qarman [30]. And a commercial option is offered by Pumpkin Space Systems [26, 31]. This structure is

also commonly adopted as a way to deploy solar arrays [27].

3.2 Sensors

The most commonly attitude sensors are presented in the following table along with their main ad-

vantages and disadvantages. The sensors developed to complement the ADCS design tool are going

to be further described.
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Table 3.1: Reference Sensors [10]

Sensor Measurement Advantages Disadvantages

Gyroscope Body rates

No additional processing needed

Low volume

Low mass

Low cost

Low power budget [32]

Reduced lifetime

Sun Sensor Sun direction

Most commonly used

Simple

Reliable

Specially important for sun pointing modes

Multiple needed

Unusable during eclipse

Magnetometer Instantaneous magnetic field

Low mass

Reliable

Low power

Commonly used

High temperature range

Low accuracy

Star tracker Star Direction High accuracy

Expensive

Heavy

Higher power requirements

Horizon sensor Nadir Direction High accuracy
Expensive

Complex

Earth Sensors

Earth Sensors, also known as nadir or horizon sensors, are not as common as magnetometers and

sun sensors, however, the appearance of the first COTS solutions, as well as it’s appearance in some

more recent satellites, has shown by a survey conducted in the beginning of this work indicates that

this sensors are becoming more prominent solutions for CubeSats. Earth sensors are specially useful

for nadir-pointing missions, as they supply either the nadir vector direction or the pitch and yaw angles

between body and orbit frame.

There are different types of Earth Sensors, such as static Earth sensors and scanning Earth sensors

[32], however, the conducted survey showed that more then 2
3 of the CubeSats equipped with Earth

sensors, chose the COTS available solution CubeSense by CubeSpace [33]. This specific sensor is a

Complementary Metal-Oxide Semiconductor (CMOS) camera which will detect the Earth disk horizon in
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it’s field of view and output the nadir direction in the sensor reference frame. This is extremely useful,

since, by the definition of orbital frame, the direction of nadir corresponds to the axis ô3, whose direction

in the ECI frame is known and given by equation (2.1).

Star Tracker

A star tracker is a digital camera whose focal plane may be composed either of a Charge-Coupled

Device (CCD) or CMOS pixels. Most state of the art star trackers are able to track multiple stars at the

same time and, autonomously match the stars in their field of view with an internal catalog, by evaluating

star light intensity and relative positions [10]. Typically, only one star-tracker is needed, since these are

generally able to provide attitude information relative to three axis [10, 34, 35].

Even though for bigger scale star sensors, accuracy of the order of magnitude of the arcsec are

achieved, this performance necessarily degrades as the size of the sensor is reduced, due to the less

refined optics. Most state off the art star trackers are able to provide three-axis attitude (and occasionally

body rates), usually in the form of a quaternion [32].

3.3 Actuators

In this section, a review of CubeSat actuators is done. Two main actuators, momentum/reaction

wheels and control momentum gyros, are explained in more detail. Other spacecraft actuators are also

mentioned with less detail.

3.3.1 Magnetorquer

Magnetorquers consist of coils or rods (electromagnets), whose magnetic dipole can be controlled,

by means of the alteration of a current. Magnetorquers interact with the geomagnetic field and produce

an acting torque in a similar way to permanent magnets (equation (3.1)).

Since the magnetic control torque can only be applied in a plane orthogonal to the instantaneous

magnetic field, the satellite is always instantaneously under-actuated when magnetorquers are the only

source of control torque [10]. This is the main disadvantage of the active magnetic control system.

However, this systems simplicity and low cost makes it a common choice for either primary or secondary

attitude control.

3.3.2 Reaction/Momentum Wheels

Flywheels actuation is based on the principle of the conservation of inertia. They act on the satellite

attitude not by providing an external torque but by, through spinning, changing it internally and, therefore,

forcing the satellite to rotate in the opposite direction in order to conserve the total angular momentum

of the ”Spacecraft+Flywheels” system [10, 36].

Several flywheels can be used both as reaction wheels or momentum wheels. In momentum wheel

mode, the wheel is usually spun up to the maximum speed so as to provide gyroscopic stiffness to the
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satellite, by increasing the total angular momentum. This phenomenon, makes the satellite less sensitive

to external torques in the direction orthogonal to the spin axis.

When operating as a reaction wheel, the flywheel will possess null nominal angular momentum. This

means that the nominal spin speed of the wheel will be zero, except when a torque control command is

emitted. The momentum wheel mode is mostly used to contrast the environmental disturbance torques,

whereas in the second it is mostly used to perform an attitude maneuver.

3.3.3 Control Moment Gyros

Control Moment Gyros (CMGs) can be divided in dual-gimbal and single-gimbal control moment

gyros, according to the number of gimbal axis present. Due to its complexity, dual-gimbal control moment

gyros are less commonly used in spacecraft attitude control [10, 22]. Single-gimbal control moment

gyros are still not a common solution for CubeSats, nevertheless, a commercial solution by Honeywell

[6] is currently available in the market. Moreover, the initial survey conducted in the beginning of this work

identified the use of in house developed control moment gyros in recent missions such as SwampSat 1

(1U) [8] and 2 (3U) [9] and KAUSAT-5 [37].

Single-gimbal control moment gyros can be devided in variable speed control moment gyros (VS-

GMG), where the spinning disk operates similarly to a reaction wheel, with variable speed and simple

single-gimbal control moment gyros, where the spinning disk is spun up to a nominal operating speed

(similarly to what happens in a momentum wheel) [14]. The solution presented by Honeywell is inserted

in this last category, so this is the type of control momentum gyros that our study will concern about [6] .

Single-gimbal control moment gyros are based on the principle that a rotor spinning at constant

speed can be gimbaled to produce an actuating torque. The output torque is not commanded by chang-

ing the spin rate of the wheel and, therefore, the magnitude of the angular momentum in the spin

direction, like in a reaction wheel, but rather by gimbaling the spin axis and changing the direction of a

momentum vector of angular magnitude [14–17].

The main disadvantages of CMG are its complexity and higher mass and size, as well as the exis-

tence of singularity states in which the actuator fails to provide the required torque. Nevertheless, since

the output torque is proportional to the rate of change of the direction of the angular momentum, the

gyroscopic torque is considerably larger than the input gimbal torque, which makes the CMG a power

efficient solution compared to reaction wheels. Control moment gyros are also associated with better

pointing accuracy [16, 18], agility and maneuverability [38].

Even though CMG can be used in single units, typical configurations of up to four CMG are common.

The commercial available solution by Honeywell can be found in single configurations or in clusters of

four SGCMG [6].
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Chapter 4

Simulation Environment

This chapter presents the simulation tool developed. In section 4.1 makes a general overview of the

tool. Sections 4.2 to 4.8 explain with deeper detail each of the blocks that constitute the simulation tool.

4.1 General Overview

The simulink simulation tool is divided in two main areas: an upper area that comprises all the

environment, spacecraft, sensor and actuator models, as well as a model of the on board computer and

estimation and control algorithms and a lower area devoted to graphical analysis and data output.

Figure 4.1: Simulink ADCS Simulator tool

The upper area is divided into a simulator area, which simulates the interaction of the spacecraft

with the space environment and the ADCS area, which simulates the attitude subsystem on board the

CubeSat. Each of these areas is divided into blocks (figure 4.1) which are explained in sections 4.2 to

4.8. Each section does an overview of functions performed by each block, explaining in depth relevant

models. The interaction between each block is shown in figure 4.2.
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Figure 4.2: Interaction between blocks

4.2 Spacecraft Mechanics Simulator Block

This block simulates the space environment experienced in orbit, namely, the geomagnetic field, the

gravitational field and sun position. This block also reproduces the translation and rotation motion of the

satellite through the orbital and attitude mechanics equations as well as the perturbations presented in

chapter 2. Finally, this block contains models of the passive attitude stabilization structures and devices

whose models are presented in section 4.2.1.

4.2.1 Passive Attitude Stabilization

Gravity Gradient Boom

Since CubeSats have standard bus structures, a common technique used to ensure the gravity

gradient stability condition involves the deployment of one or more gravity gradient booms (figure 4.3).

Figure 4.3: 3U CubeSat with gravity gradient boom [39]
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Gravity gradient booms are small masses attached to a long thin rod (figure 4.3), along the axis that

is desired to be aligned with the nadir direction.

The small tip masses are modeled as solid spheres. In the tip reference frame, T = {t̂1, t̂2, t̂3},

centered in the CM of the mass tip, with axis parallel to the rod’s coordinate system the tensor of inertia

of the mass tip is:

Jtip
T =


2
5mtipr

2 0 0

0 2
5mtipr

2 0

0 0 2
5mtipr

2

 (4.1)

where mtip is the mass of the tip weight and r is its radius.

Whereas the rods are modeled as a thin, slender rod with mass ofmrod and length of l. Its coordinate

system, R = {r̂1, r̂2, r̂3} is centered in its center of mass, with axis r̂3 aligned with the symmetry axis of

the rod. In this reference frame, the inertia tensor of the rod is:

Jrod
R =


1
12mrodl

2 0 0

0 1
12mrodl

2 0

0 0 0

 (4.2)

To obtain the inertia tensor of the mass and tip in the body frame it is first necessary to express it

reference frames centered in their respective centers of mass, but with axes parallel to the body axes,

T′ and R′,respectively. This is obtained by applying the inertia rotation transformation [40]:

Jrod
R′ = ABRJrod

R AT
BR (4.3)

where ABR is the rotation matrix that transforms the rod reference frame in a reference frame with axis

parallel to the body frames. Note that for gravity gradient booms aligned with b̂3, Jrod
R′ = Jrod

R and that,

due to its symmetry, the inertia tensor of the mass tip doesn’t change.

Secondly, the parallel axis theorem is applied to the inertia tensor obtained in (4.3) to obtain the

inertia tensor of each component in the body frame (centered in the center of mass of the spacecraft)

[40–42]:

Jrod
B = Jrod

R′ +mrod(d
2
rodI4×4 − droddT

rod) (4.4)

Jtip
B = Jtip

T′ +mrod(d
2
tipI4×4 − dtipdT

tip) (4.5)

where dtip and drod are the displacement of the center of mass of the spacecraft from the center

of mass of the tip mass and rod, respectively. The deployment of gravity gradient booms will cause the

position of the center of mass of the system spacecraft (”hub+gravity gradient booms”) to change. By

definition, the center of mass of a system of n bodies is given by:

dCM =

∫
ρ(d)ddV∫
ρ(d)dV

≈
∑N
i=1midi∑N
i=1mi

(4.6)
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The total moment of inertia in the body frame is given by: [43]

JB = Jhub
B +

N∑
i=1

Jtipi
B +

N∑
i=1

Jrodi
B (4.7)

where Jhub
B , Jtipi

B and Jrodi
B are the inertia tensors of the hub, mass tip i and rod i, respectively in the

body frame of a spacecraft with n booms.

Both JB and the center of mass will change during the deployment process. In reality, the hub of

the spacecraft is much heavier than the mass tips and the rods, hence the total center of mass of the

system will be very close to the center of mass of the hub.

The gravity gradient boom deployment is modeled as uniform, that is:

dtipi = dtipi0 + d′tipit (4.8)

drodi = drodi0 + d′rodit (4.9)

where dtipi0 and drodi0 are the initial positions of the center of mass of the tip mass i and thin rod i,

respectively, in the stowed configuration. d′tipi and d′rodi are the constant rate of change in the position

of the centers of mass of of the tip mass i and thin rod i, respectively.

The Simulink tool allows the user to insert up to two gravity gradient booms, since the initial survey

conducted showed that the two most common gravity gradient stabilization techniques applied by Cube-

Sats is the deployment of either a single or a pair of symmetric gravity gradient booms along the axis

that is intended to point to nadir.

The contribution of gravity gradient boom to the spacecrafts aerodynamic and solar radiation pertur-

bation assumed to be negligible.

Permanent Magnet

Permanent magnets are devices used in passive magnetic attitude control architectures. These

provide a control torque (figure 4.4) caused by the interaction of a magnetic dipole moment with a

magnetic field of the Earth [10]:

T = m×B (4.10)

where m is the permanent magnet’s magnetic moment vector and B is the magnetic flux density vector.
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Figure 4.4: Permanent magnet model

Note that the torque produced will be orthogonal to both the magnetic dipole moment and the mag-

netic flux density vectors, therefore, at any instant, this system is not able to control the attitude of the

satellite in the magnetic field direction. Nevertheless, since the direction of the magnetic flux density

vector changes during the orbit, globally, all directions will be controllable.

Permanent magnets are usually accompanied by hysteresis rods and are typically placed orthogonal

to them.

Hysteresis Rod

Hysteresis rods are made of a ferromagnetic material and provide passive oscillation-damping and

de-spin torques. Hysteresis rods are characterized by their hysteresis Brod(H) loop, that is, the com-

ponent of the geomagnetic field vector, of magnetic field strength H, parallel to the axis of the rod will

induce a magnetic flux density (Brod) in the rod that produces a magnetic moment parallel to the axis

(figure 4.5) [23]:

m =
BrodVrod

µ0
(4.11)

where µ0 represents the magnetic permeability of vacuum and Vrod is the volume of the rod. Similar to

the permanent magnet, the magnetic dipole moment will interact with the geomagnetic field and supply

a torque given by (4.10).

Figure 4.5: Hysteresis rod model

The phenomenon behind Brod(H) loops is extremely complex, non-linear and dependent on several

variables, such as material and rod length-to-diameter ratio [44]. However, several mathematical models

exist to try and replicate with more or less precision the hysteresis loops. Figure 4.6 shows a hysteresis
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loop boundary modeled according to Flatley’s [44] hysteresis model. Different characteristic parameters

of hysteresis loops, namely, saturation, remanence and coercivity.

Figure 4.6: Hysteresis loop

The Simulink tool presents the magnetic hysteresis model presented in [44]. This model divides the

boundary of the hysteresis loop (Br/H curve) into two distinct boundaries, a left curve and a right curve

and approximates them by arctangent functions:

Brod =
2

π
BS arctan[k(HL +HC)] (4.12)

Brod =
2

π
BS arctan[k(HR −HC)] (4.13)

where Brod stands for the magnitude of the internal induced magnetic flux density of the rod (−BS ≥

Brod ≤ BS) parallel to its elongated symmetry axis BS represents the magnetic flux saturation of the

rod, HC represents the coercivity (HL for Brod = 0) and HL and HR represent the value of the external

magnetic field strength on the left and right boundary curves, respectively. k is a constant given by:

k =
1

HC
tan(

πBr
2BS

) (4.14)

where Br is the magnetic remanence, that is, the value of the induced magnetization Brod when HL = 0.

From (4.12) and (4.13) it is trivial to see that the external magnetic field strength on the left HL and

right HR boundaries of the loop are given by:

HL =
tan(πBrod2BS

)

k
−HC (4.15)

HR =
tan(πBrod2BS

)

k
+HC (4.16)

The behavior inside the boundaries and in the first magnetization phase (H0 = Brod0 = 0) is given as a
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function of the slope of the boundary curves , B′rod, and the fractional horizontal distance between the

left and right boundaries, f :

f =
H −HL

2HC
(4.17)

B′rod =
2

π
BSk cos(

π

2

Brod
BrS

)2 (4.18)

For positive values of
dH

dt
, the behavior inside the boundaries can be expressed as a function of these

parameters as:
dBrod
dH

= [q0 + (1− q0)fp]B′ (4.19)

where q0 and p are shape parameters that can be empirically determined for different rod materials and

shapes.

If
dH

dt
is negative, Brod should be taken from the right side of the boundary and in equation 2.57 the

value f shall be replaced with (1− f).

By applying the chain rule
dBrod
dt

=
dBrod
dH

dH

dt
=

1

µ0

dBrod
dH

dB

dt
(4.20)

Therefore, by integration the internal induced magnetic flux density of the rod and, consequently it’s

magnetic dipole (equation (4.11)) can be expressed as a function of the rate of change of the geomag-

netic field vector in the body reference frame.

By allowing for the definition of several different loops, by the variation of two shape related param-

eters q0 and p, this model allows the user to experiment with several different hysteresis loops and,

therefore, hysteresis rods with different materials and shapes. It also permits the achievement of loops

extremely close to the real ones.

One disadvantage of this model is that there is no explicit relation between the defined parameters

and physical parameters of the hysteresis rods, hence, the selection of this constants has to be achieved

by fine-tuning the hysteresis loop obtained shape with empirical data.

The algorithm that models the hysteresis loop of a rod is summarized in table 5.1.

Table 4.1: Hysteresis Loop model algorithm

Step

1. Compute the value of H on the left boundary curve, HL corresponding to Brod (4.15).

2. Compute the boundary curve slope,, corresponding to Brod (4.18).

3. Compute f (4.17) if
dH

dt
> 0 or (1− f) in other case

4. Compute
dBrod
dH

(4.19)

5. Compute
dBrod
dt

(4.20)
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Validation of the Passive Magnetic Stabilization

To study the behavior of the passive magnetic stabilization system, a satellite with similar body and

orbit to the ORCASat was used. This spacecraft was only equipped with a 0.48Am2 permanent magnet

(aligned with the b̂3 axis) and 2 hysteresis rods with volume equal to 6.2 × 10−5m3, p = 4.75 and

q0 = 0.085.

Figure 4.7: Decrease of the magnitude of the angular rates

Figure 4.8: Angle between the magnetic vector and body axes

As it can be seen in figures 4.7 and 4.8, the passive magnetic system was capable of reduce the an-

gular speed of the spacecraft from 0.3464rad/s to approximately 0.062rad/s in less than 2000s, aligning

the b̂2 orthogonal to the magnetic vector and maintaining a mean angle of approximately 60o and 30o,

respectively, with axes b̂1 and b̂3.

Aerodynamic Stabilization Panels

A ”shuttlecock” configuration (figure 4.9) of panels was modeled. Each panel is modeled as a rectan-

gular flat plate similarly to the spacecraft surfaces in 2.6.2. The aerodynamic effect of the panel structure
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is explained similarly to the one due to body surfaces explained in section 2.6.2.

Figure 4.9: Shuttlecock configuration

For a ”shuttlecock” configuration, the inward normal of the panels is defined as a function of the angle

γ as seen in figure 4.9 [45]:

ni1 =


− sin(γ1)

− cos(γ1)

0

 (4.21) ni2 =


− sin(γ2)

cos(γ2)

0

 (4.22)

ni3 =


− sin(γ3)

0

− cos(γ3)

 (4.23) ni4 =


− sin(γ4)

0

cos(γ4)

 (4.24)

The deployment of aerodynamic panels will impact the tensor of inertia of the spacecraft. The mo-

ment of inertia of each panel of mass m in a reference frame centered in its center of mass and whose

axes P = {p̂1, p̂2, p̂3} aligned with its width, w, length, l, and depth is given by [40]:

Jrod
R =


l2

12m 0 0

0 w2

12m 0

0 0 l2+w2

12 m

 (4.25)

The impact of the panels on the total inertia tensor is, typically, much smaller than the one caused

by gravity gradient booms, but is analogous to the process described by equations (4.3) to (4.7). The

contributions of the panels to the solar radiation perturbation have been neglected.
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The deployment of the panels has been modeled as uniform:

γi = γi0 + γ′it (4.26)

where γi is the initial angle of panel i in the stowed configuration. γ′i is the constant rate of change in the

angle.

Figure 4.10 shows the model of the contribution of these panels to the projected area and center of

pressure of the spacecraft. The contribution of these panels to the total aerodynamic force and torque

are given by equations (2.43) and (2.50), respectively.

Figure 4.10: Contribution of the Shuttlecock aerodynamic panels to the projected area and center of

pressure of the spacecraft

4.3 Sensors Block

The sensors block models the behavior of typical Cubesat attitude sensors, namely, sun sensors,

magnetometers and gyroscopes, which can be found in ORCASat’s ADCS and whose models are ex-

plained in depth in [20, 46], as well as earth sensors and star trackers.

4.3.1 Earth Sensor

Figure 4.11 shows the geometry of a typical Earth sensor problem. The Earth sensor is modeled

mounted along the axis b3 of the body frame. This is a typical configuration as this axis is commonly

desired to be aligned with the nadir direction. Other mounting configurations are possible without loss of

generality, however, conversions between the sensor reference frame and the body reference frame will

be necessary.
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Figure 4.11: Geometry of a typical Earth sensor mounted along the b3 axis

The Earth sensors detect points in the Earth horizon. The direction of these points in the body frame

is given by [34]:

ye =

φe
θe

 =

φ
θ

+

βxo
βyo

+ ve (4.27)

With φe and θe represent the angle between the body roll and pitch axes, respectively, and the horizon

direction and φ and θ represent the true Euler angles that map the relation between body frame and

orbital frame. βxo and βyo are the roll and pitch angular displacements between the Earth’s horizon and

the orbit frame. ve is the white Gaussian noise with null mean and σe standard deviation.

Figure 4.11 evidences the geometry behind this mathematical model. Assuming a perfectly spherical

Earth with constant, uniform radiation, the relative roll βxo and pitch angle βyo will be equal and inde-

pendent of latitude and longitude of the satellite. Note that, even though 4.11 only displays the xz-plane

cross-section, under the stated assumption, the same conditions apply to the yz-plane. Therefore, βxo

and βyo can be determined by [34]:

βxo = βyo =
π

2
− arcsin

RE
RE + h

=
π

2
− arcsin

RE
xi

(4.28)

where RE is the equatorial radius of the Earth and h is the orbit altitude.
RE

RE + h
represents the

radius of ”Earth disk” as seen from the sensor and xi is the magnitude of the position vector in the

inertial frame.

By the definition of the orbital frame and Euler angles provided, the measured nadir direction as seen
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from the body frame is given by:

nB = ABOnO =


− sin θ

sin θ sinφ

cos θ cosφ

 (4.29)

Note that the knowledge of the yaw angle is not necessary to obtain the nadir direction. Therefore,

an estimation of the nadir vector can be obtained from the observed vectors ye and the position vector

estimated by the OBC (on board computer). Most state of the art nadir sensors are capable of calculating

the nadir direction and giving it directly (figure 4.12).

Figure 4.12: Nadir direction measurement

The Earth sensor available in the simulation tool was modeled after the CubeSpace’s CubeSense

Nadir Sensor. This sensor consists of a CMOS based digital camera with a wide field of view.

The model represented in figure 4.13 imitates the geometric problem behind the Earth sensor, as well

as the disturbances of the measurements caused by white Gaussian noise introduced by the electronics,

limited field of view, limited precision/sensitivity determined by the pixel size and sampling.

Figure 4.13: Earth sensor model

4.3.2 Star Tracker

Most state-of-the art star trackers provide the attitude of the satellite directly as a quaternion [10]. In

the current tool, the star tracker is modeled as a ”black box” and the internal processes of this sensor

were not taken into account. The star tracker provides the attitude measurement in quaternions. This
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measurement is corrupted by additive Gaussian white noise that is added to each element of the quater-

nion. As seen in figure 4.14, brute force normalization is required to ensure that the output is a unit

quaternion.

Figure 4.14: Star Tracker model

4.4 Attitude Estimator Block

This block presents multiple options of both static and recursive algorithms. Static determination

algorithms are deterministic methods that, at any given time, require at least two measurements. Re-

cursive determination algorithms resort to stochastic methods so as to be able to provide an estimation

of attitude parameters when less than two measurements are available.

4.4.1 Static Determination

Static determination algorithms that can be used either on their own, to achieve attitude quaternion

knowledge or to initialize recursive methods of estimation. The three options available for the user are

the TRIAD algorithm, utilized in the ORCASat, and explained in depth in [13, 46], the QUEST and

the Q-method. Despite being slightly more complex than the TRIAD, these two last solutions have the

advantages of accepting data from more than two measurements and utilizing complete information

of all the measurements to obtain an estimation [10]. Both the Q-method and QUEST are based on

Whaba’s problem.

Whaba’s Problem

Wahba’s problem tries to find a rotation matrix between two reference frames from a set of weighted

vector observations. This problem is posed as a minimization problem where the cost function is posed

as:

J =
1

2

N∑
k=1

ak‖vkB −ABIvkI‖2 (4.30)

where v1I...vnI is a set of reference unit vectors, that is n known directions, in a reference coordinate

frame, typically the ECI reference frame, and v1B...vnB are the corresponding observation unit vectors,

measured in the body frame and A is the rotation matrix from the reference frame to the body frame.

a1...an is a set of non-negative weights that establish how much each measurement is to be trusted.
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Q-method

The loss function (4.30) can be expanded as:

J =
1

2

N∑
k=1

ak(vkB−ABIvkI)
T (vkB−ABIvkI) =

1

2

N∑
k=1

ak(vkB
TvkB +vkI

TvkI−2vkB
TABIvkI) (4.31)

Since vkB and vkI are unit vectors vkB
TvkB = vkI

TvkI = 1. Substituting in (4.31):

J =

N∑
k=1

ak − g(A) (4.32)

With g(A) =
∑N
k=1 akvkB

TABIvkI. Minimizing J is the same as maximizing g(A).

As presented in section 2.2.3 the attitude matrix ABI can be expressed in terms of quaternions so

the cost function can be re-written in terms of quaternions as [47]:

g(q) = qTK(B)q (4.33)

where K(B) is the traceless symmetric matrix:

K(B) =

B + BT − tr(B)I3 −Z

ZT tr(B)

 (4.34)

with,

B =

N∑
i=1

akvkBvkI
T (4.35)

and

Z =


B23 −B32

B31 −B13

B12 −B21

 (4.36)

To find the value of q that maximizes g(q), its derivative with respect to q must be evaluated. Since the

four elements of the quaternion are not independent, a new gain function is created with this constraint

in mind through the addition of a Lagrange multiplier [47]:

g(q)′ = qTK(B)q− λqTq (4.37)

The differentiation of this gain function yields a stationary point for:

qK(B) = λq (4.38)

This equation can be treated as an eigenvalue problem and, therefore, the optimal quaternion will corre-

spond to a eigenvector of K. Substituting (4.38) in (4.33) it is trivial that the eigenvector that maximizes

the gain function is the one that corresponds to the largest eigenvalue.
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The main fault of this method concerns the case when the two largest eigenvalues are equal, in which

the solution of the Q-method is not unique. This means that there is no sufficient data to determine the

attitude uniquely. Nevertheless, the Q-method remains one of the best ways to solve Whaba’s problem

[10] if eigenvalue decomposition methods are available.

QUEST

This method reformulates this problem in a way that avoids the need to perform iterative operations

on 4×4 matrices like in Davenport’s Q-method. Instead utilizes iterative scalar computations followed by

simple matrix multiplications, a less computationally heavy method [10]. Recalling equation (4.32) and

substituting for a maximum value of g(A) = λopt:

λopt =

N∑
k=1

ak − J (4.39)

Acknowledging the fact the optimal eigenvalue of K the cost function J should be small, such that

[47, 48]:

λopt ≈
∑

ak (4.40)

Starting from this assumption (λ0 given by (4.40)) and since the QUEST algorithm obtains an estimate

value λopt through a Newton-Raphson iteration process [48]:

λi = λi−1 −
f(λi−1)

f ′(λi−1)
(4.41)

where f(λ) is the characteristic equation:

f(λ) = det (K− λI4×4) (4.42)

For most cases, only a single iteration is required [10]. By combining (4.34) and (4.38) and substituting

the known optimal eigenvalue λopt, the optimal quaternion is given by:

q1:3

q4
= [(λopt + trB)I3 − S]−1Z (4.43)

‖q‖ = 1 (4.44)

where 4.44 states the unit quaternion condition.

Even though in theory it is less robust than the Q-method, the QUEST method has been proven

to be extremely robust in practical applications [10]. The QUEST method encounters a singularity for

rotations of 180o about any of the axis (q4 = 0). Nevertheless, this singularity can be avoided by applying

a method of sequential rotations.
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Method of Sequential Rotations

A rotation of an angle greater than 90o can always be described as a rotation of 180o about one of

the coordinate axes followed by a rotation about a new axis of less than 90o [48]. Hence, if the attitude

corresponds to a 180o rotation about one of the body frame axis and a singularity occurs, there is always

an alternative reference frame where the singularity is guaranteed to not occur.

A initial rotation of 180o about one of the coordinate axes is equivalent to changing the signs of two

components of each of the reference vectors. For initial rotations of 180o around the b̂1, b̂2 and b̂3 axes,

the reference vectors in the new reference frame v′kI are, respectively, given by [48]:

v′kI = (v′kI1,−v′kI2,−v′kI3) (4.45)

v′kI = (−v′kI1, v′kI2,−v′kI3) (4.46)

v′kI = (−v′kI1,−v′kI2, v′kI3) (4.47)

and optimal quaternion q in the body frame can be expressed as a function of the quaternion in the new

reference frame q′ as:

q = (q′4,−q′3, q′2,−q′1)T (4.48)

q = (q′3, q
′
4,−q′1,−q′2)T (4.49)

q = (−q′2, q′1, q′4,−q′3)T (4.50)

For initial rotations around the b̂1, b̂2 and b̂3 axes, respectively.

TRIAD vs QUEST vs Q-method

The TRIAD, QUEST and Q-method algorithms where compared for a set of sun and magnetic mea-

surements. The performance of the three algorithms is very similar being virtually indistinguishable in

figure 4.15, nevertheless, the QUEST algorithm achieved the best results with an average 1.4443o es-

timation error, followed by the q-method, 1.4450o, and then TRIAD 1.6524o. The performance of the

algorithms will be affected by the simulation scenario and a Monte Carlo simulation should be used to

compare their performance, this is however, out of the scope of this thesis.
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Figure 4.15: Estimation error of the TRIAD, QUEST and Q-method algorithms

4.4.2 Extended Kalman Filters

Recursive (Stochastic) methods are of special importance when it is not possible to obtain at least

two valuable measurements required by static algorithms (for instance, in eclipse, if the system relies

on sun sensors or when the object whose direction is being used as reference, or a star or Earth is not

within the field of view of the sensor). By combining the sensors’ observations with a prediction step

derived from the satellites dynamics and kinematic equations, recursive algorithms can provide more

reliable attitude estimations [49]

The Extended Kalman Filter (EKF) is a type of Kalman Filter which linearizes the a system about an

estimate of the current mean and covariance. For non-linear systems, the efficacy and low complexity

of the EKF make it a frequent option.

The attitude estimator block is equipped with three different EKF. Two Kalman filters are suitable for

vector measurements: a multiplicative extended Kalman filter for spacecrafts equipped with magnetome-

ters and gyroscopes and an additive extended Kalman filter for satellites equipped with magnetometers,

sun sensors and/or earth sensors. These filters are explained in depth in [46]. The last Kalman filter is

designed for star tracker that output the attitude measurement as a quaternion.

A non-linear system can be represented by the differential equations:

ẋ(t) = f(x(t),u(t)) + G(t)w(t) (4.51)

where x is th n× 1 state vector, u is an m× 1 known input vector, f is a sufficiently differentiable vector

function and w ∼ N (0,Q(t)) is a zero-mean Gaussian white-noise process vector with spectral density

matrix Q. Whereas the measurements can be represented by the model:

y(t) = h(x(t)) + v(t) (4.52)

where, y(t) is the measurement vector, h(x(t)) is the observation vector function and v(t) ∼ N (0,R(t))
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is a zero-mean Gaussian white noise measurement vector.

Predict Step

The predict step propagates the state vector and covariance matrices estimations obtained after the

update step of a previous iteration (or of a initial guess, in the first iteration) and obtains a new predicted

estimated value for the new iteration. An estimated value of the state vector x̂ is defined by:

x̂ = E{x(t)} (4.53)

where the E◦ is the expected value operator. That is:

˙̂x(t) = f( ˙̂x(t),u(t)) (4.54)

The extended Kalman filter (EKF) assumes that the true and estimated states are sufficiently close so

that the error dynamics can be represented by a linearized first-order Taylor series expansion with a

sufficiently high accuracy. Discretizing, through finite difference methods:

x̂−k ≈ F(x̂+
k−1)x̂+

k−1 + Buk−1 (4.55)

where the superscript ”-” indicates an estimate value that has not been updated yet and the superscript

”+” indicates an already updated estimation. The state transition matrix F and the input transition matrix

B are defined as:

F =
∂f

∂x

∣∣∣∣
x̂

(4.56)

B =
∂f

∂u

∣∣∣∣
x̂

(4.57)

The error of the prediction step is, by definition:

e−k = xk − x̂−k (4.58)

This error is not taken account in the predicted state, however, it’s covariance will also be propagated in

the predict step. The covariance matrix of ė−k is given by:

P−k = E{ek[e−k ]T } (4.59)

From equations (4.55), (4.60) and discretizing (4.51), the covariance matrix will be propagated in the

predict step as:

P−k = F+
k−1P

+
k−1(F+

k−1)T + GQGT (4.60)
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Update Step

The update step improves the predicted estimated values by taking into account the data obtained

by the sensor measurements. The measurement model presented in (4.52) is discretized through finite

difference methods as:

yk = h(xk) + vk (4.61)

where h(xk) can be approximated by:

h(xk) ≈ h(x̂k) + Hk(xk − x̂k) (4.62)

H is known as the measurement sensitivity matrix, given by:

H =
∂h

∂x

∣∣∣∣
x̂

(4.63)

In the update stage, the estimated state vector is corrected with the new observation as:

x̂+
k = x̂−k + ∆x̂ = x̂−k + Kk[yk −Hkx

−
k ] (4.64)

where ∆x̂ is a correction applied to the predicted state. This correction reflects the difference between

the predicted estimated state at iteration k and the measured state at this iteration. Kk is the Kalman

matrix, which serves as an index of how much the measurement data can be trusted. The Kalman matrix

is given by the minimization of the cost function:

Jk = tr(P+
k ) (4.65)

where P+
k is the updated covariance matrix given by:

P+
k = E{e+

k [e+
k ]T } (4.66)

where e+
k is the update error defined as:

e+
k = xk − x̂+

k (4.67)

Substituting (4.64) and the discretized (4.51) in (4.67) and applying (4.66):

P+
k = (In −KkHk)P−k (4.68)

Therefore yielding:

Kk = P−k HT
k (HkP

−
k HT

k + R)−1 (4.69)

In the first iteration, an initial guess is necessary for faster conversion. For this purpose, static algo-

rithms can be used to initialize the Kalman filter. Moreover, good knowledge of the process behind the
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propagation of the state system vector and of the measurements conduced by the sensors is necessary.

Therefore, good knowledge of the environment and disturbances applied on the satellite is necessary,

as well as good knowledge of the spacecraft parameters.

The EKF algorithms used in this thesis are summarized in table 4.2.

Table 4.2: General EKF algorithm

Step

1. Calculate F(x̂+
k−1) and +Buk−1

2. Calculate x̂−k = F(x+
k−1)x+

k−1 + Buk−1

3. Calculate P−k = F+
k−1P

+
k−1(F+

k−1)T + GQGT

4. Calculate Hk

5. Calculate Kk = P−k HT
k (HkP

−
k HT

k + R)−1

6. Calculate ∆x̂ = Kk[yk −Hkx
−
k ]

7. Calculate x̂+
k = x̂−k + ∆x̂

8. Calculate P+
k = (In −KkHk)P−k

For each iteration, steps 1. to 8. are followed. The first 3 steps correspond to the predict phase and

the remaining to the update phase. When the quaternion is part of the state vector, q̂+
k is divided by its

norm in step 7. in order to maintain the unit value:

q̂+
kcorrected =

q̂+
k

‖q̂+
k ‖

(4.70)

F(x̂+
k−1) and +Buk−1 depend on the process and on the state vector x and Hk depends on the

sensor measurements and the state vector. Its calculations will be particularized for the star tracker

additive EKF developed in the following subsection.

Additive Extended Kalman Filter

The additive extended Kalman filter treats the four elements of the quaternion as independent of

each other, relaxing the normalization condition and calculating the quaternion error as [50]:

q = q̂ + ∆q (4.71)

where q̂ is the estimated value of q and ∆q is the estimation error. The normalization condition is

enforced in the update state using the ”brute force” approach expressed in (4.70).

The AEKF estimates the state vector:

x =

q

ω

 (4.72)

where q stands for the unit quaternion and ω represents the body rates. The value of ẋ can be calculated
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by combining the previously stated equations of kinematics and dynamics:

q̇ =
1

2
Ω(ω)q (4.73)

Jω̇ = −ω × (Jω + h)− τ − ḣ (4.74)

where h is the angular momentum exchange device hmed, when reaction wheels, momentum wheels

or control moment gyros cluster are present. When the satellite is not equipped with moment devices

h = 0.

Predict

The predict step follows the steps 1-3 in table 4.2, where the error transition matrix is obtained by

substituting (4.73) and (4.74) in (4.55):

Fk−1 = I7 +

F11 F21

F12 F22

 (4.75)

F11 =
∆t

4


0 (ωz)

+
k−1 −(ωy)+k−1 (ωx)+k−1

−(ωz)
+
k−1 0 (ωx)+k−1 (ωy)+k−1

(ωy)+k−1 −(ωx)+k−1 0 (ωz)
+
k−1

−(ωx)+k−1 −(ωy)+k−1 −(ωz)
+
k−1 0

 (4.76)

F12 =
∆t

4


(q4)+k−1 −(q3)+k−1 (q2)+k−1

(q3)+k−1 (q4)+k−1 −(q1)+k−1

−(q2)+k−1 (q1)+k−1 (q4)+k−1

−(q1)+k−1 −(q2)+k−1 −(q3)+k−1

 (4.77)

F21 = 03×4 (4.78)

F22 = ∆t


0

(ωz)
+
k−1(Jy − Jz)− (hz)

+
k−1

2Jx

(ωy)+k−1(Jy − Jz)− (hy)+k−1
2Jx

(ωz)
+
k−1(Jz − Jx)− (hz)

+
k−1 −H0

2Jy
0

(ωx)+k−1(Jz − Jx)− (hx)+k−1
2Jy

(ωy)+k−1(Jx − Jy)− (hy)+k−1 +H0

2Jz

(ωx)+k−1(Jx − Jy)− (hx)+k−1
2Jz

0


(4.79)

where H0 is the orbit angular momentum.

As previously stated in (4.55):

x̂−k = F(x+
k−1)x+

k−1 + Buk−1 (4.80)

With

Buk−1 =

 04×1

J−1[τk−1 − ḣk−1]δt

 (4.81)
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The efficiency accuracy of this EKF is strongly dependent on robust environment models and strong

estimation of the satellite parameters as this significantly affect (4.81)

Update

Most commercially available star trackers output directly the attitude of the satellite as a quaternion:

ŷk = h(xk) = q̂−k (4.82)

applying (4.63) to (4.82) the sensitivity matrix in step 4. of table 4.2 is simply given by [34]:

Hk =
[
I4x4 04x3

]
(4.83)

After this calculation, the algorithm follows steps 5. to 8. of table 4.2, with normalization of q̂+
k (equation

(4.70) ), for each iteration.

4.4.3 Validation of the Algorithm

This algorithm was tested with a token star tracker with sampling rate of 0.1s and white gaussian noise

with standard deviation of σ = 1.2×10−3. The results can be seen in figures 4.16 and 4.17. The mean es-

timation error achieved was 0.0864o and body rate errors of
[
4.2406× 10−4 −4.5248× 10−5 −3.0209× 10−5

]T
.

Figure 4.16: Angular rate estimation error: detailed view
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Figure 4.17: AEKF estimation error

4.5 On Board Computer Block

The On Board Computer (OBC) block uses data obtained by the attitude sensors and/or the attitude

determination algorithms in conjunction to position measurements obtained by the Global Positioning

System (GPS) to compute an estimate of all the kinematic and dynamic variables.

This block contains an environmental model subsystem that, similarly to the spacecraft environment

block, models the gravitational and magnetic fields and calculates the both the sun direction and eclipse

occurrence and a perturbation model subsystem that estimates the disturbance forces and torques

experienced by the spacecraft in any instance (explained in depth in section 2.6). Finally, a propagator

subsystem propagates both the position and attitude of the spacecraft along its orbit (section 2.3). This

propagator is reset at regular intervals (defined by the OBC controller in the attitude control block, section

4.8) by the GPS measurements in order to reduce the accumulation of estimation errors propagated over

time.

4.6 Power Analysis Block

As suggested by the name, this block analyses the power consumption and availability of the satellite.

The power consumption is obtained by adding the power consumed by all the actuators at any time

instance. The power availability (figure 4.18) of a spacecraft with N solar panel covered surfaces (either

body mounted or deployable solar arrays) is calculated as:

P =

N∑
i=1

max{Pmaxi cosαi, 0} (4.84)

where P is the total power available and αi is the angle between the sun unit vector, computed in the

spacecraft mechanics block, and the panel inward normal. Pmaxi is the peak power of the solar panel

for a constant power density of 1350W/m2. For surfaces with no solar panels, Pmaxi = 0.
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Figure 4.18: Power analysis for body mounted solar panels

This analysis does not take into account self-shadowing caused by other parts of the satellite.

4.7 Actuators Block

This block models different attitude actuators available for CubeSats, namely, magnetometers and

momentum wheels, whose models are further explained in [46], reaction wheels and control moment

gyros, whose models are going to be further explained in sections 4.7.1 and 4.7.2, respectively. Several

cluster architectures for each momentum exchange device.

4.7.1 Reaction Wheel Model

Reaction wheels consist of a rotating disk (flywheel), normally supported by ball bearings, an internal

Brushless Direct Current (BLDC) electric motor, and electronics. Configurations of one or two reaction

wheels, are commonly used, but full three-axis attitude control requires the use of three or more wheels.

The actuator model allows the user to simulate clusters of up to 3 orthogonal reaction wheels.

The angular momentum of a cluster of reaction wheels given in the body frame by:

h =

N∑
i=1

h =

N∑
i=1

JRWΩRW ĝsi (4.85)

where JRW
i , ΩRW and ĝsi represent, respectively, the moment of inertia, the magnitude of the spin rate

and a unit vector in the direction of the spin axis of the ith wheel in the body frame.

Applying (2.33) the torque of a cluster of reaction wheels in the body frame is:

τ =

N∑
i=1

τi = JRWΩ̇RW ĝsi (4.86)
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Torque Transfer

The actuator block allows for architectures of up to 3 orthogonal reaction wheels to be modeled.

Due to the orthogonality of the reaction wheels, a torque command issued in the body frame, is simply

expressed in the wheel i reference frame as:

τWi = τB · ĝsiB (4.87)

where τB is the commanded torque in the body frame, ĝsiB is a unit vector in the direction of the spin

axis of the ith wheel in body frame coordinates and τWi is the magnitude of the command torque of the

ith reaction wheel.

Note that, equation (4.87) highlights the fact that in order for 3-axis control to be achieved, at least 3

reaction wheels are necessary.

Motor Model

A basic Direct Current (DC) motor (figure 4.19) can be modeled as an armature circuit, constituted of

a resistence (Ra) and an inductance (La) connected in series, and a voltage source (eb) associated with

the back electromotive force (emf) induced in the armature during rotation [51, 52]. While the torque of

a DC motor tM is proportional to the armature current ia:

τm = Kiia (4.88)

Its speed is proportional to the voltage [52]:

eb = Kb
dθ

dt
(4.89)

In (4.88), the proportionality constant Ki is denominated torque constant and, in (4.89), Kb represents

the back emf constant.

Combining Newton’s and Kirchoff’s laws, the behavior of the motor can be described by:

La
dia
dt

+Raia = ea −Kb
dθ

dt
(4.90)

J
d2θ

dt2
+ τd = Kiia (4.91)

where τd is the friction disturbance torque modeled as a combination of viscous and Coulomb friction

contributions [10]:

τd = Bm
dθrel
dt

+ csign(
dθrel
dt

) (4.92)

where Bm is the viscous friction coefficient, c is the Coulomb friction coefficient. And dθrel
dt is the relative
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velocity between the moving parts of the motor and the static ones (fixed to the spacecraft):

dθrel
dt

=
dθrel
dt

ĝsi − ωsat · ĝsi (4.93)

Disturbances caused by eccentricity of the wheel have been modeled as gaussian white noise.

Figure 4.19: BLDC motor driver

The power consumption is calculated as:

P = RaI
2
a (4.94)

Reaction Wheel Motor Control

Figure 4.20: Reaction wheel with motor driver and motor driver controller

The motor driver of reaction wheels typically accept a torque command [10, 22], as seen in figure

4.20. A proportional integral derivative controller was developed for this effect. The parameters of the

developed controller can always be altered by the user in order to obtain results that better suit the

particular case.

Both the time response to a step input and the saturation of a single reaction wheel are presented in

figure 4.21. Details regarding this analysis can be found in annex B.1.
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Figure 4.21: Time response to a step input and saturation of the reaction wheel

As a response to a 4× 10−6Nm step input in the reaction wheel reference frame, the steady state is

achieved under 5s and saturation occurs after 360s.

4.7.2 Single Gimbal Control Moment Gyro model

To better understand the behavior of a cluster of single gimbal control moment gyros it is important

to introduce two reference frames.

Figure 4.22: Cluster of four SGCMG in pyramid configuration [16]

• CMG reference frame: given by the triad of unit vectors {ĝs, ĝt, ĝg}. ĝs is a vector in the direction

of spin of the spinning wheel (direction of the angular momentum of the spinning wheel), ĝg has

the direction of the gimbal axis and ĝt completes the right hand triad. Out of this three unit vectors,
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only ĝg is constant in time. Given an initial gimbal angle δ0 [12]:

ĝs(t) = cos(δ(t)− δ0)ĝs(t0) + sin(δ(t)− δ0)ĝt(t0) (4.95)

ĝt(t) = − sin(δ(t)− δ0)ĝs(t0) + cos(δ(t)− δ0)ĝt(t0) (4.96)

• Cluster reference frame: represented in figure 4.22 by the axes X,Y, Z, provides a common

reference frame for all the CMGs in the cluster. Contrary to the CMG reference frame, the cluster

reference frame is constant in time and can be easily related to the body reference frame through

a constant attitude matrix. It relates to the individual CMG reference frames through the current

gimbal angle and constant shape parameters.

Typical CMG clusters are constituted by equal individual CMG.

h =

N∑
i=1

hi (4.97)

where hi (i = 1, ..n where n is the number of CMGs of the cluster) is given by [9]:

hi = hf
i + hg

i = hfi ĝsi + hgi ĝgi = Jf
iω

f
i + Jg

i δ̇i = Jf
iω

f
i ĝsi + Jg

i δ̇iĝgi (4.98)

where Jf
i and Jg

i represent the inertia of the flywheel (spinning disk) and the gimbal, respectivelly and

hf
i and hg

i represent the angular momentum of the flywheel and gimbal. ĝsi and ĝgi are the spin and

gimbal axis.

Substituting in (2.33), the torque acting on the system can be obtained as:

dhi

dt
= Jf

i
˙
ωfi ĝsi + Jf

iω
f
i

˙̂gsi + Jg
i δ̈iĝgi = Jf

i
˙
ωfi ĝsi + δ̇iJ

f
iω

f
i ĝti + Jg

i δ̈iĝgi (4.99)

dhi

dt
= Jf

i
˙
ωf

i + Jg
i δ̈i + δ̇i × (Jf

iω
f
i ) = τd

i (4.100)

where Jf
i

˙
ωf

i is the torque due to the acceleration of the flywheel i, Jg
i δ̈i is the torque due to the accel-

eration of the gimbal i, δ̇i × (Jf
iω

f
i ) is the gyroscopic (control) torque of the CMG i and τd is the total

dynamic torque of the CMG i.

Contrary to the control (gyroscopic) torque, the torque caused by the accelerations of both flywheel

and gimbal are undesirable. For small satellites, these torques are considerable and cannot be ne-

glected.

Moreover, since real motors are subject to friction and other disturbances, as explored in subsection

4.7.1, the total torque acting on the spacecraft due to one CMG is:

τi = τ control + τ fa
i + τ ga

i + τ ff
i + τ gf

i (4.101)

τ ff
i and τ gf

i are the disturbance/friction torques experienced by the flywheel and the gimbal, respec-

tively, and were modeled as a combination of viscous and Coulomb friction described in (4.92). The total
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torque due to the cluster of N control moment gyros is:

τ =

N∑
i=1

τi (4.102)

Since each CMG of the cluster will possess its own individual reference and the direction of the

axes of each CMG reference frame varies with time (except for ĝg), the definition of a cluster reference

simplifies the computation of (4.86) and (4.102). The definition of these parameters in the cluster refer-

ence frame is dependent on the configuration. Table 4.3 presents the CMG reference frame axes in the

cluster reference frame for the different configurations available in the actuator block. The definition of

the torque and angular momentum vector in the cluster reference frame will be further explained for the

pyramid configuration (figure 4.22), without loss of generality.

For a pyramid configuration equations (4.98) and (4.97) in the cluster reference frame are given by:

hg
C =

N∑
i=1

hg
iC = Jg

1δ̇1


cosβ

0

sinβ

+ Jg
2δ̇2


0

cosβ

sinβ

+ Jg
3δ̇3


− cosβ

0

sinβ

+ Jg
4δ̇4


0

− cosβ

sinβ

 (4.103)

hf
C =

N∑
i=1

hf
iC = h1


− cosβ sin δ1

cos δ1

sinβ sin δ1

+ h2


− cos δ2

− cosβ sin δ2

sinβ sin δ2

+ h3


cosβ sin δ3

− cos δ3

sinβ sin δ3

+ h4


cos δ4

cosβ sin δ4

sinβ sin δ4

 (4.104)

β is a constant parameter defined by the architecture. Typically, for pyramid architecture, β = 54.73o

[53]. δi (with i = 1, 2, ...n with n equal to the number of CMGs in the cluster) are the gimbal angles.

Normally, the individual CMGs are operating with the same flywheel nominal speed, that is, h1 =

h2 = h3 = h4 = ... = hn = h. For a cluster of CMG acting with the same angular momentum, hcmg,

(4.104) is reduced to:

hf
C = hcmgA (4.105)

where A is a 3× n matrix, n is the number of CMGs of the cluster, resulting by summing the directional

matrices of each individual CMG axis. That is:

A =
[
ĝs1 ĝs2 .... ĝsn

]
(4.106)

Substituting ĝsiC and ĝgiC according to table 4.3, the flywheel and gimbal acceleration components of
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the torque in equation (4.99) can be analogously obtained in the cluster frame:

(Jgδ̈)C =

N∑
i=1

(Jg
i δ̈i)C =Jg

1δ̈1


cosβ

0

sinβ

+ Jg
2δ̈2


0

cosβ

sinβ

+ Jg
3δ̈3


− cosβ

0

sinβ



+ Jg
4δ̈4


0

− cosβ

sinβ

 (4.107)

(Jf ω̇f )C =

N∑
i=1

(Jf
i

˙
ωf

i )C =Jf
1ω̇

f
1


− cosβ sin δ1

cos δ1

sinβ sin δ1

+ Jf
1ω̇

f
2


− cos δ2

− cosβ sin δ2

sinβ sin δ2

+ Jf
3ω̇

f
3


cosβ sin δ3

− cos δ3

sinβ sin δ3



+ Jf
4ω̇

f
4


cos δ4

cosβ sin δ4

sinβ sin δ4

 (4.108)

Finally, the control torque can also be obtained in the pyramid cluster reference frame:

τ control
C =

N∑
i=1

Ji(δi)δ̇i =h1


− cosβ cos δ1

− sin δ1

sinβ cos δ1

 δ̇1 + h2


sin δ2

− cosβ cos δ2

sinβ cos δ2

 δ̇2 + h3


cosβ cos δ3

sin δ3

sinβ cos δ3

 δ̇3

+ h4


− sin δ4

cosβ cos δ4

sinβ cos δ4

 δ̇4 (4.109)

For a cluster of CMG acting with the same angular momentum, (4.109) is reduced to:

τ control
C = J(δ)δ̇ (4.110)

where J is the Jacobian Matrix:

J =
∂hf

C

∂δ
(4.111)

For clusters where all CMGs have the same flywheel nominal angular momentum:

J = hcmg
∂A

∂δ
(4.112)

Note that even though these results have been particularized for the pyramid cluster, analogous re-

sults can be obtained for the other architectures, by substituting the expressions in table 4.3 in each

component of equations (4.98) and (4.100).
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Table 4.3: CMG axes in cluster reference frame coordinates for different architectures

Architecture No.CMG ĝs ĝt ĝg

Single 1 ĝs1 =


cos δ1

sin δ1

0

 ĝt1 =


− sin δ1

cos δ1

0

 ĝg1 =


0

0

1


Twin

Scissored

Pair [54]

2 ĝs1 =


− cos δ1

sin δ1

0

 ĝs2 =


cos δ2

sin δ2

0

 ĝt1 =


sin δ1

cos δ1

0

 ĝt2 =


− sin δ2

cos δ2

0

 ĝg1 =


0

0

−1

 ĝg2 =


0

0

1



Pyramid [16] 4

ĝs1 =


− cosβ sin δ1

cos δ1

sinβ sin δ1



ĝs2 =


− cos δ2

− cosβ sin δ2

sinβ sin δ2



ĝs3 =


cosβ sin δ3

− cos δ3

sinβ sin δ3



ĝs4 =


cos δ4

cosβ sin δ4

sinβ sin δ4



ĝt1 =


− cosβ cos δ1

− sin δ1

sinβ cos δ1



ĝt2 =


sin δ2

− cosβ cos δ2

sinβ cos δ2



ĝt1 =


cosβ cos δ3

sin δ3

sinβ cos δ3



ĝt2 =


− sin δ4

cosβ cos δ4

sinβ cos δ4



ĝg1 =


cosβ

0

sinβ



ĝg2 =


0

cosβ

sinβ



ĝg3 =


− cosβ

0

sinβ



ĝg4 =


0

− cosβ

sinβ



Box-90 [53] 4

ĝs1 =


cos δ1

sin δ1

0



ĝs2 =


cos δ2

sin δ2

0



ĝs3 =


cos δ3

0

sin δ3



ĝs4 =


cos δ4

0

sin δ4



ĝt1 =


− sin δ1

cos δ1

0



ĝt2 =


− sin δ2

cos δ2

0



ĝt3 =


− sin δ3

0

cos δ3



ĝt4 =


− sin δ4

0

cos δ4



ĝg1 =


0

0

1



ĝg2 =


0

0

1



ĝt1 =


0

−1

0



ĝt2 =


0

−1

0



Finally, the net angular momentum and torque vectors can be obtained in the body frame as:

hB = ABChC (4.113)
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τB = ABCτC (4.114)

where ABC is the rotation matrix that transforms a vector in the cluster coordinate frame in the same

vector in the body frame.

The CMG structure was modeled as a momentum wheel spun up to a nominal speed, in appendix

B.2, (whose motor driver and motor driver control follow the model developed in [46] and can be seen

in appendix B.2) whose spin axis direction rotates about a gimbal direction. The gimbal of the CMG is

driven by a BLDC motor similar to the one explained in 4.7.1.

A big disadvantage of CMGs is that singularities may arise for certain values of J. A singular state is

defined as the range of gimbal angles for which the CMG system is not able to generate torque along a

desired direction.

For a redundant system of four CMGs (for example, a pyramid or Box-90 configurations) this occurs

when the rank of the Jacobian matrix is lower than three. In order to have 3-axis control the rank of the

Jacobian matrix must be three, and the minimal rank is two because the gimbal axes are not positioned

co-planar [54]. Internal singularities can be partially or totally avoided by employing the correct steering

laws.

Steering Law

Contrary to reaction wheels, most CMG do not receive the motor torque as a control input but rather,

the gimbal angle rate as a control input [12]. This fact makes the existence of a steering law algorithm

necessary. Steering laws can also be used to avoid or pass some singular configurations of the control

momentum gyro. The typical feedback loop of a control moment gyro is presented in figure 4.23.

Figure 4.23: CMG control loop

The current Simulink actuator block presents three different options of steering laws: pseudo-inverse

steering law, singularity avoidance steering law [55] and singularity passing steering law [54].

Pseudo-inverse steering law This law simply computes the desired gimbal rates from the com-

manded torque by multiplying both sides of (4.110) by the inverse of the Jacobian, J(δ). Because
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isn’t necessarily a square matrix, the Moore Penrose J(δ)? pseudo-inverse is used instead:

J(δ)? = J(δ)T [J(δ)J(δ)T ]−1 (4.115)

Therefore, the commanded gimbal rates are given by:

δ̇ = J(δ)?ḣcommand
C (4.116)

The Moore-Penrose pseudo-inverse is valid for all CMG configurations and it’s the default steering law

of the Box-90 architecture of the commercially available Microsat CMG by Honeybee Robotics [6]. Nev-

ertheless, this steering law does not grant protection against singularities.

Singularity robust inverse law The singularity robust inverse law is part of the singularity avoidance

category. As suggested, steering laws from this group solve the singularity problem by completely

avoiding singular states. The singularity robust inverse law avoids singularities by introducing small

torque errors when the CMG cluster is near singular configurations. The closeness to a singularity

evaluated by the parameter m [55]:

m =
√

det [J(δ)J(δ)T ] (4.117)

And the commanded gimbal rates are given by:

δ̇ = J(δ)T [J(δ)J(δ)T + kI]−1ḣcommand
C (4.118)

with k given by:


k = 0, m > mcr

k = k0
m , m < mcr and k0

m < kmax

k = kmax, m < mcr and k0
m > kmax

(4.119)

where k is the torque error introduced for values of m smaller than a critical threshold, m < mcr. kmax is

the maximum error introduced and k0 is a constant that correlates the size of the torque error introduced

to the proximity to a singularity state.

The singularity robust inverse law has been showed in [55] to be successful in avoiding singularities

for redundant configurations (more than three CMG). This is not an effective method to avoid singularities

for scissored pairs of control moment gyros.

Singularity passing steering law The singularity robust steering law is not effective in avoiding sin-

gularities for non-redundant configurations such as singular or 2-CMG scissored pair architectures, so
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a singularity escaping steering law was used as an alternative for this architecture. This steering law

is a modified version of the modified singularity robust [56] developed in [54]. In which the inverse is

calculated as:

J(δ)# = WJ(δ)T [J(δ)WJ(δ)T + kΦ]−1 (4.120)

Note that, despite offering protection against singularities, this steering law normally introduces a bigger

torque error.

For 2-CMG scissored pair architectures a different parameterization is useful for steering law pur-

poses [54]. Table 4.4 summarizes the parameters δ,A, J and ḣcommand
C used for steering law purposes

in different architectures.

Table 4.4: Steering law parameters for different architectures

Architecture δ A J ḣcommand
C

Single δ1

cos δ1

sin δ1


− sin δ1

cos δ1


τx
τy



Twin

Scissored

Pair [54]

α
γ

, where

α = π−δ1+δ2
2 and

γ = π−δ1−δ2
2

2

cosα cos γ

sinα cos γ

 2

− sinα cos γ − cosα sin γ

cosα cos γ − sinα sin γ


τx
τy



Pyramid [16]



δ1

δ2

δ3

δ4




−cβsδ1 −cδ2 cβsδ3 cδ4

cδ1 −cβsδ2 −cδ3 cβsδ4

sβsδ1 sβsδ2 sβsδ3 sβsδ4




−cβcδ1 sδ2 cβcδ3 −sδ4

−sδ1 −cβcδ2 sδ3 cβcδ4

sβcδ1 sβcδ2 sβcδ3 sβcδ4




τx

τy

τz



Box-90 [53]



δ1

δ2

δ3

δ4




cδ1 cδ2 cδ3 cδ4

sδ1 sδ2 0 0

0 0 sδ3 sδ4




−sδ1 −sδ2 −sδ3 −sδ4

cδ1 cδ2 0 0

0 0 cδ3 cδ4




τx

τy

τz



The steering laws available in the actuator block for each architecture are presented in table B.4
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Table 4.5: Steering laws available in the actuator block [10]

Architecture Moore Penrose pseudo-inverse Singularity robust inverse Singularity passing inverse

Single ×

Twin

Scissored Pair

× ×

Pyramid × ×

Box-90 × ×

Gimbal Motor Control

Contrary to the CMGs flywheel motor, which similarly to momentum wheels are normally spun up

to their maximum speed and kept at a nominal angular momentum equal to their maximum momentum

storage, the gimbal motor drives of reaction wheels typically accept a speed command, as seen in figure

4.24.

Figure 4.24: Gimbal with motor drive and motor drive controller

A linear quadratic regulator controller (LQR) was designed for this purpose.

Linear Quadratic Regulator (LQR)

Neglecting the contributions of Coloumb friction and eccentricity disturbances, equations (4.90) and

(4.91) can be written in matrix form as: i̇a
ω̇m

 =

−Ra/La −Kb/La

Ki/J −Bm/J

 ia
ωm

+

1/La

0

 ea (4.121)

From (4.121) it is trivial that a possible state-space representation of the BLDC motor is:

ẋ = Ax + Bu (4.122)
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with

x =

 ia
ωm

 (4.123) A =

−Ra/La −Kb/La

Ki/J −Bm/J

 (4.124)

B =

1/La

0

 (4.125) u = ea (4.126)

The feedback controller

u = −Kx (4.127)

is going to be designed in order to minimize the performance index

J =

∫ ∞
0

(xTQx + Ru2) (4.128)

where Q is a positive semi-definite matrix and R is a positive definite matrix. The cost function (4.128)

is minimized for an optimal feedback control gain:

K = R−1BTP (4.129)

For a symmetric positive definite matrix P, defined by the solution off the algebraic Ricatti equation:

ATP + PA−PBR−1BTP + Q = 0 (4.130)

4.8 Attitude Control

This block contains both an OBC controller and actuator controllers.

The OBC controller consists of a set of conditional if statements that determine the operational

pointing mode (nadir pointing, sun pointing or detumble) of the on board computer. This controller is

also responsible for toggling actuators such as momentum exchange devices, switching the on-board

computer propagator on and off as well as commanding the performance of the reset of its value with

periodic GPS measurements. Finally, it determines when should determination algorithms be used for

attitude determination and when is the attitude considered to be acquired.

The set of available controllers can be divided into detumbling and nominal pointing algorithms.

The actuator block is equipped with 4 detumbling algorithms developed in [46], that will not be further

explained in this work, as well as two nominal pointing algorithms: a constant gain linear quadratic

regulator developed by [57] and a feedback controller for CMG equipped spacecrafts further detailed in

subsection 4.8.1.
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4.8.1 Feedback Controller for CMG

Since obtaining an optimal controller for a specific case wasn’t the objective of this thesis, a generic

feedback controller [58] was developed. Recall the dynamics equation:

Jω̇ = −ω × (Jω + h)− τext − ḣ (4.131)

Where τext is the net disturbance torque and h is the angular momentum of the control moment gyro

cluster such that:

− τ = ω × h + ḣ (4.132)

A feedback control law was developed in [58] such that:

τreq = −Kpqe
1:3 −Kdω

e (4.133)

Where τreq stands for the requested torque, qe
1:3 and ωe are the quaternion and body-rate vector errors

of the spacecraft:

qe = qBI ⊗ q−1desired =

qe
1:3

qe4

 (4.134)

ωe = ωBI
B − ωdesired

B (4.135)

Where qBI and ωBI
B describe the current attitude and body rates of the spacecraft and q−1desired and

ωdesired
B refer to their desired values.

Kp and Kd are the gain matrices of the controller. The gain matrices can be determined with a

Lyapunov stability analysis.

For a positive definite matrix KP:

V = Kp[(q4 − 1)2 + qT
1:3q1:3] +

1

2
ωT Jω (4.136)

is a positive definite function. The derivative of this Lyapunov’s candidate function is:

V̇ = Kp[2(q4 − 1)q̇4 + 2qT
1:3 ˙q1:3] + ωT Jω̇ (4.137)

Recall that:

q̇4 = −1

2
ωT q1:3 (4.138)

q̇1:3 =
1

2
[ω×]q1:3 +

1

2
q4ω (4.139)

Substituting in 4.137:

V̇ = Kp[−(q4 − 1)ωT q1:3 + qT
1:3([ω×]q1:3 + q4ω)] + ωT Jω̇ (4.140)
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Invoking the mathematical the following mathematical properties:

• The triple product of a vector with another and itself is null, that is, a · (b× a) = a · (a× b);

• Given two matrices A and B such that ATB is a scalar, than BTA;

(4.140) can be reformulated as:

V̇ = Kpω
T q1:3 + ωT Jω̇ (4.141)

Substituting (4.131) and (4.132) in (4.143):

V̇ = Kpω
T q1:3 + ωT JJ−1(−ω × Jω + τ ) (4.142)

Resorting once again to the stated triple product and substituting (4.133) in (4.143):

V̇ = Kpω
T q1:3 −Kpω

T q1:3 −Kdω
Tω = −Kdω

Tω (4.143)

Since for any x 6= 0, where x =
[
q1:3 ω

]T
, ωTω > 0, for any positive definite Kd, V̇ < 0. Therefore,

for positive define gain matrices Kd and Kp, the x shall be asymptotically stable.

CMG Controller Performance Analysis

As control moment gyros are complex devices, that involve several control structures, disturbance

torques, as well as singularity configurations, the performance of the CMG controller was tested in a

realistic scenario. Using the ORCASat spacecraft as the base, the both the magnetorquers and the

momentum wheel of the spacecraft were substituted with a CMG pyramid configuration with parameters

detailed in appendix B.2 and cluster frame parallel to the body frame.

Starting from the initial conditions (realistic conditions for the spacecraft after detumbling):

• qe = [0.0851; 0.0181;−0.0375; 1.0551]

• we = [2.041× 10−5;−0.001; 3.57× 10−5]rad/s

The initial gimbal angles were also chosen to guarantee that a singular state occurs (figure 4.26) so

as to test the singularity robust inverse steering law’s ability to avoid singularities (details in appendix

B.2):

• δ1 = 0

• δ2 = 0

• δ3 = π

• δ4 = 0

In an initial phase (first 500s) the satellite is commanded to point towards nadir. At 500s, the satellite

is commanded to perform a rest-to-rest maneuver, of 30o around the pitch axis, and maintaining this

attitude for the remaining time.
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The objective of this maneuver was to test: the transitory response of the CMG immediately after

being turned on, when the response is heavily influenced by the CMG, flywheel motor and gimbal motor

controllers as well as increased disturbance torques due to the acceleration from rest of the gimbal and,

mainly, the flywheel, the agility of the spacecraft after an initial stabilization and the steady state pointing

error.

Figure 4.25: Pointing error

In figure 4.25, it is visible that immediately after being turned on, the CMG cluster torque causes

the spacecraft to spin abnormally, causing the pointing error to spike. Despite undesirable, this result is

expected as the disturbance torque necessary to accelerate one flywheel alone to its nominal speed can

achieve a order of magnitude similar to the command torque. This erratic behavior is exacerbated by the

control error introduced by the singularity robust inverse steering law when proximity to the singularity is

detected at t = 36s.
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Figure 4.26: Index of proximity to a singular state m

Nevertheless, the controller manages to stabilize the motion of the spacecraft, regaining a pointing

error lower than 10o in 186s. When a new pointing direction is commanded at 500s, the spacecraft

managed to perform this maneuver smoothly achieving the ORCASats 10o pointing error requirement in

39s and a steady state error of approximately 0.7o. Further results can be found in appendix B.2.
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Chapter 5

Simulations and Results

In this chapter the ADCS solution selected for the ORCASat is going to be analyzed using the sim-

ulator tool. Section 5.1 summarizes ORCASat’s ADCS solution and mission phases. In section 5.2 the

impact of the initial conditions on the ADCS performance is analyzed. Section 5.3 studies the capability

of achieving the ADCS requirements in case of failure of different sensors and actuators. Finally, section

5.4 compares ORCASat’s ADCS solution with possible alternative solutions.

5.1 ORCASat’s Mission and ADCS

5.1.1 ORCASat’s ADCS

ORCASat utilizes a COTS solution by CubeSpace, visible in figure 5.1. This solution comprises a

3-axis Fluxgate Magnetometer, a 180o FOV CubeSense sun sensor with bore sight axis pointing towards

−b̂3, aided by 10 photodiods, as well as a 3-Axis MEMS rate sensor (gyroscope). Regarding actuators,

OrcaSat is equipped with 3-axis Magnetic torquers as well as CubeSpace’s Y-axis CubeWheel Small

momentum wheel. The commercial solution is complemented with CubeSpace’s CubeComputer.

Figure 5.1: ORCASat’s ADCS solution with visible magnetometer (1), momentum wheel (2), magnetor-

quers (3) and sun sensor (4)
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As suggested in [46], the TRIAD algorithm makes use of the sun sensor and magnetometer mea-

surements to initialize a AEKF. Finally, detumbling is achieved with a Fast detumbling B-dot algorithm

purposed in [46]. In nominal mode, control is achieved via a constant gain LQR purposed in [20, 57].

5.1.2 ORCASat’s Mission Phases

ORCASat’s mission can be divided in the following sequential phases initiated by the OBC computer:

Table 5.1: ORCASat’s ADCS mission phases
Phase Start Condition Description

Fast detumbling ω ≥ 0.15rad/s

Fast detumbling controller detumbles the spacecraft

The wheel is turned off

No attitude knowledge

Body rates measured by the gyro

Wheel Toggling 0.13rad/s ≥ ω < 0.15rad/s

Fast detumbling controller detumbles the spacecraft

The wheel is turned on

No attitude knowledge

Body rates measured by the gyro

OBC Propagator initialization 0.11rad/s ≥ ω < 0.13rad/s

Wheel toggling phase conditions are maintained

The OBC propagator is toggled on

The OBC starts computing orbit and attitude reference variables

Estimator Toggling 0.02rad/s ≥ ω < 0.11rad/s
The estimator is turned on

Body rates are still given by the gyro measurement

Estimation Aquisition
ω < 0.02rad/s

(θe ≥ 25o ∨ θ̇e ≥ 0.05rad/s)

Attitude given by the estimator

Body rates given by the estimator

Fast detumbling controller is still used to detumble the spacecraft

Nominal
ω < 0.02rad/s

(θe < 25o ∧ θ̇e < 0.05rad/s)

Attitude given by the estimator

Body rates given by the estimator

Magnetic dipole command given by the LQR

5.2 Initial Conditions

In order to compare the performance of different ADCS architectures in section 5.4 it was necessary

to first study the impact of the chosen initial conditions in the pointing and estimation errors of the

spacecraft. For that, the different realistic initial conditions in the base simulation scenario (table 5.2)

were studied by changing their values one by one.

The impact of parameters whose real values can be well estimated (such as the orbital parameters),

has been studied by introducing slight variations to their expected value (nominal value in table 5.2),

whereas for parameters whose nominal value can not be predicted (such as initial orientation and an-

gular rates), random values (drawn from the standard normal distribution) within a realistic range, were

used.
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Table 5.2: Base simulation conditions
Parameter Value

Semimajor axis 6768.24km

Eccentricity 0.00005

Inclination 51.64o

Right ascension
of the ascending node

117.76o

Argument of the
Perigee

34.8o

Initial Mean
Anomaly

60o

Initial quaternion
orientation

[
1 0 0 0

]T
Initial angular
rates

[
0.2 0.2 0.2

]T
Mass 3.6kg

Inertia Matrix

0.003 0 0

0 0.007 0

0 0 0.008

 kgm2

Parasitic dipole
moment

[
0.00707 0 0.00707

]T
Am2

Initial epoch 7pm, 1 January 2022

It has been shown that even though most initial conditions impact the detumbling time and the power

consumption during detumble, these do not significantly impact the mission requirements for a realistic

range of values (more results presented in appendix C). The exception is the initial body rates that seem

to have an impact on the estimation error. As seen in figures 5.2 and 5.3 the estimation error depends

on the initial angular rates. The 2o estimation error requirement is mostly satisfied, but can be locally

unsatisfied for certain initial angular rates.

Figure 5.2: Estimation error for different initial angular rates
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Figure 5.3: Estimation error for different initial angular rates: Detail view

It was therefore decided that in order to better study the estimation performance of different architec-

tures, it would be necessary to analyze their performance for different initial body rates.

5.3 Failure of Sensors and Actuators

In this section the performance of ORCASat’s ADCS solution is analyzed in case of failure of the

different components.

5.3.1 Sun Sensor Failure

Two measurement vectors are necessary to execute the TRIAD algorithm, therefore, a sun sensor

failure before the initialization of the EKF would prevent the TRIAD algorithm to obtain an initial attitude

estimation. Nevertheless, multiple sensor measurements are not necessary to obtain an estimation of

attitude and body rates with stochastic methods. Hence, a simulation was performed for the simulation

base scenario where the sun sensor fails after initialization of the EKF. In this scenario, the update step

of the EKF only takes into account magnetometer measurements.
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Figure 5.4: Estimation error in the event of sun sensor failure

Figure 5.5: Pointing error in the event of sun sensor failure

As it can be seen in figures 5.4 and 5.5, the failure of the sun sensor does not seem to affect signifi-

cantly the performance of the ADCS, as the 10o pointing error is globally satisfied and the 2o estimation

error is mostly satisfied. The redundancy provided by the magnetometers seems to be enough to mostly

achieve the mission requirements in case of sun sensor failure.

5.3.2 Magnetometer Failure

The measurement of the magnetic field is necessary not only to achieve attitude estimation but also

as an input for both detumbling and LQR attitude controllers. After attitude knowledge has been ac-
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quired the OBC computes an estimate of the magnetic field in the body frame (without need of magnetic

measurement) that could potentially substitute the real measurement in the LQR controller in case of

magnetometer failure. Nevertheless, the lack of a good attitude estimation before the nominal phase

would prevent the spacecraft to detumble as previous to attitude acquisition, the OBC is not capable of

performing this computation accurately.

The magnetometer failure in the nominal phase was simulated. In this case, after the attitude has

been considered acquired, the magnetometer measurement becomes unavailable, that is, the update

step of the EKF only takes into account the sun sensor measurement and the LQR starts using the OBC

estimated magnetic field in the body reference as input.

Figure 5.6: Pointing error in the event of magnetometer failure

As shown in figure 5.6, even during nominal phase a sun sensor failure could be fatal to the mission.

This is mainly due to the long duration of eclipse phases during which the sun vector measurement is not

available and the EKF is not capable of maintaining an accurate estimation relying only on the predict

step.

5.3.3 Momentum Wheel Failure

The momentum wheel, with spin axis aligned with the b̂2 axis stabilizes the spacecraft by providing

gyroscopic stiffness. Contrary to a magnetorquer failure, which would compromise the mission success,

a momentum wheel failure may not affect significantly the mission requirements.
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Figure 5.7: Estimation error in the event of momentum wheel failure in different mission phases

Figure 5.8: Pointing error in the event of momentum wheel failure in different mission phases

Figures 5.7 and 5.8 show that whether a momentum wheel failure is fatal to the mission or not

depends on the instant in which it occurs. For errors occurring at 3000s and 10000s, pointing and

estimation error requirements were mostly satisfied and the ADCS performance was not significantly

affected, however, in all other cases, the mission has been severely compromised. It is not possible to

establish a correlation between the mission phase/time of failure and the performance of the ADCS.

5.3.4 GPS failure

The OBC is equipped with a orbit and attitude propagator that is reset every hour by a GPS position

and velocity measurement. This GPS measurement is also used to initialize the propagator. A GPS

failure before the OBC propagator initialization phase is completed compromises the entire mission,
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however, since the periodically resets only reduce the accumulation of errors in the OBC propagator, it

was tested whether in the event of a failure of the GPS post this phase the mission requirements would

still be satisfied.

Figure 5.9: Pointing error in the event of GPS failure

Figure 5.9 shows that in case of GPS failure, despite pointing requirements being maintained in the

first 3.5 orbits (19040s), on the long run, the accumulation of errors in the OBC propagator is enough to

prevent the mission requirements from being satisfied.

5.4 Alternative Architectures

In this section, alternatives to the current ADCS solution for the ORCASat are studied. In subsection

5.4.1 alternatives to the sun sensor are tested whereas in subsection 5.4.2 a smaller, less powerful

momentum wheel is tested as an alternative to CubeSpace’s Cubewheel.

5.4.1 Sensor Alternatives

In sections 5.3.2 and 5.3.1 the cases of magnetometer and sun sensor failure have been studied. In

these sections it has been shown that not only the mission requirements are mostly satisfied in case of

sun sensor failure, but also, this sensor does not provide redundancy in case of magnetometer failure.

This result lead to the study of two possible alternative architectures: one where the sun sensor is

removed and the EKF algorithm is not initiated by the TRIAD algorithm, other, where the Cubesense

sun sensor (aligned with the −b̂3 axis) is replaced by the Cubesense nadir sensor (aligned with the +b̂3

axis) as this sensor has the same mass and volume as the sun sensor version [33].

Since, as seen in section 5.2 the initial body rates affect the estimation error, each architecture was

tested for 5 different ramdomly generated initial angular rates (the same 5 for each architecture). Table

5.3 summarizes the results obtained in terms of average steady state estimation and pointing error and
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compares the different architectures in terms of mass. More detailed results can be found in appendix

C.

Table 5.3: Different architectures comparison

Architecture Mass difference Mean estimation
error

Mean pointing
error

Sun sensor +
Magnetometers 0g 0.54o 3.8o

Magnetometers −30g 0.54o 3.9o

Earth sensor +
Magnetometers 0g 0.80o 4.1o

Finally, for the solution equipped with a nadir sensor the redundancy capabilities of the solution in

case of failure of the magnetometer in nominal phase where studied. A simulation similar to the one

described in section 5.3.2 was conducted for this purpose. As seen in figures 5.10 and 5.11, even after

magnetometer failure in the nominal phase of the mission, when equipped with a earth sensor instead

of a sun sensor, the spacecraft is capable of achieving the mission requirements.

Figure 5.10: Pointing error in the event of magnetometer failure in nominal mission phase
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Figure 5.11: Estimation error in the event of magnetometer failure in nominal mission phase

Since the present sun sensor does not provide redundancy in case of magnetometer failure and its

performance is not significantly better than the architecture with only magnetometers, this second option

would be preferable due to the reduced mass and volume.

On the other hand, the nadir sensor could be a preferable option as the redundancy provide by this

sensor reduces the risk of mission failure.

5.4.2 Cubewheel Alternative

In this subsection the Cubewheel momentum wheel is compared with a possible alternative flywheel.

The RW210 (Version 1) flywheel by Hyperion Technologies [59] is studied as a possible lower mass,

mass and power alternative. Details regarding this flywheel as well as more detailed results can be

found in appendix C.

Table 5.4 compares the two solutions in terms of mass, power consumption, volume, momentum

storage, as well as in terms of average pointing and estimation error.

Table 5.4: Different flywheels comparison [59, 86]

Flywheel Mass Volume
Momentum

storage
Mean power
consumption

Mean estimation
error

Mean pointing
error

Cubewheel 60g 28mm× 28mm× 26.2mm 1.77mNms 0.36W 0.45o 3.76o

RW210 21g 25mm× 25mm× 15mm 1.5mNms 0.47W 0.57o 5.1o

It can be seen that the average power consumption is larger in the RW210 flywheel architecture

than the Cubewheel option, in the first case. This occurs mostly due to the fact that the nominal power

consumption of the RW210 is higher, however, the power consumption of the magnetometers, mainly

during detumbling, is also impacted by the gyroscopic stiffness achieved.
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Figure 5.12: Pointing error for different flywheels

Figure 5.13: Estimation error for different flywheels

Nevertheless, as seen in figures 5.12 and 5.13 the smaller flywheel is enough to mostly maintain

pointing and estimation requirements with substantial mass and volume savings. The smaller flywheel

also allows for a faster detumble as the lower momentum storage and associated lower gyroscopic

stiffness facilitates the detumbling of the spacecraft. More detailed graphics can be found in appendix

C.
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Chapter 6

Conclusions

The present research had two main goals: the development of a conceptual design framework tool

capable of simulating several different ADCS architectures and using this tool, analyzing ORCASats

current ADCS solution and compare it with possible alternative architectures.

Regarding the first objective, a simulator created in the past by [46] and [20] with the objective to sim-

ulate the specific ORCASat architecture was used as the base for this tool. The work developed on this

thesis completed the simulator allowing it to simulate alternative architectures. This thesis contributed

to the simulator with the following models:

• Third body perturbations;

• Deployable gravity gradient booms;

• Deployable aerodynamic panels;

• Hysteresis rods and permanent magnets;

• Earth sensor;

• Star tracker;

• AEKF for star track measurements;

• QUEST and Q-method algorithm;

• Reaction wheel clusters of up to 3 orthogonal wheels and associated motor control;

• Multiple (4) cluster configurations of CMGs, associated motor control and steering laws;

• A CMG feedback controller;

• Power analysis for spacecraft with body mounted and/or deployable solar panels.

Regarding the second objectives, an initial study on how the simulation initial conditions affect the

results of the simulation was performed so as to better chose the simulation base environment. On

a second instance, the performance of the ADCS in event of sensor/actuator failure was studied. It
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has been found that a sun sensor failure does not strongly impact the mission requirements whereas a

magnetometer failure would be fatal.

Based on this result, alternative solutions to the current architecture where studied. It has been

shown that the presence of the sun sensor does not significantly impact both pointing and estimation

accuracy. Moreover, it has been shown that, in spite of not being as accurate, the Cubesense nadir

sensor provides redundancy in case of failure of the magnetometer in nominal mission phase, while

having the same mass and volume of the Cubesense sun sensor.

Finally a lower mass, lower volume flywheel (RW210 by Hyperion Technologies) was tested as an

alternative to Cubewheel. It was shown that even though the pointing and estimation accuracy are not

strongly impacted by this alteration, the total average power consumption increases.

6.1 Future Work

The current developed tool is already capable of modeling with detail multiple models, however, the

current star tracker model could use some improvement in order to account for the internal processes

of the sensor. Moreover, the estimator and controller block could be equipped with extra alternative

algorithms.

Finally, it would be interesting to adapt and complete the current design tool with a Hardware-In-the-

Loop (HIL) test bed for the ADCS hardware. This step was initially a objective of this thesis, however

since the available ORCASat’s ADCS solution is going to be on board of the spacecraft, the impossibility

of working with it limited this process.
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Appendix A

Cubesat’s on board ADCS and COTS

options

Table A.1: COTS CubeSat Sun sensors

Name
Temperature

Range (°C)
FOV (°)

Sampling

Rate (Hz)

Resolution

(°)
Mass (g)

Volume

(mmxmmxmm)

Input

Voltage

(V)

Power (mW) Cost ($) Company

NCSS-SA05 [60] [-25;+50] 114 >10 <0.5 <5 33 x 11 x 6 3300 NewSpace

NFSS-411 [60] [-25;+50] 140 5 <0.1 <35 34 x 32 x 20 37.5 12000 NewSpace

MAI KE [61] 3.5 27.94 x 17.14 x 2.03 5940
Maryland

Aerospace

nanoSSOC-D60 [62] [-30;+85] 120 50 0.5 6.2 43 x 14 x 5.9 3.3 4414 Solar MEMS

Nano-SSOC-A60 [62] [-30;+85] 120 0.5 3.7 27.4 × 14 × 5.9 3.3 2697 Solar MEMS

SSOC-D60 2-Axis [62] [-45;+85] 120 0.3 35.5 50 × 30 × 12 5 14958 Solar MEMS

SSOC-A60 2-Axis [62] [-45;+85] 120 <0.3 25 30 × 30 × 12 5 36 8500 Solar MEMS

MAUS [63] 128 2 8827 Lens RD

SXC-SD-01 [64] [-40;+85] 120 10 <0.5 10 28 x 23 x 11 15 3359
Sputnix

Orbicraft-Pro

BiSon64 [65] [-40;+85] 136 0.5 21.7

NanoSense FSS [66] 120 100 0.5 3 22 x 11 x 5.5 3.3 GOMSPACE

Mini-FSS [67] [-50;+80] 172 1.5 50 50 x 46 x 17 Bradford Space

AdcoleSpace SS [68] 3.5 27.94 x 17.14 x 2.03 Adcole Space

Table A.2: COTS CubeSat magnetometers
Name

Sample

Rate (Hz)

Accuracy

(nT)

Range

(µT)

Noise

(nT rms/Hz)
Mass (g)

Volume

(mmxmmxmm)

Input

Voltage (V)

Power

(mW)
Company

NMRM- [69]

Bn25o485
18 ±60 8 16 85 99 x 43 x 17 5 750 NewSpace

NMRM-001

-485 [69]
18 ±60 8 8 67 96 x 45 x 20 5 550 NewSpace

NanoSense

M315 [70]
140 ±800 15 15 8 20 x 20 x 8 3.2 to 5 8.25 GomSpace

Honeywell

HMC 5983 [71]
160-220 ±1100 - 20 18 3 x 3 x 0.9 1.8 to 2.5 0.25 Honeywell

MM200 [72] <500 ±800 - 1.18 12 33 x 20 x 11.3 0.5 to 10 Hyperion
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Table A.3: COTS CubeSat star trackers
Name FOV(°)

Update

rate (Hz)
Accuracy

Max tracking

rate (°/s)
Power (W) Mass (g)

Volume

(mmxmmxmm)

Input

voltage (V)
Cost (C) Company

NST-3 [73] 10 5”/70” 165 50 x 50 x 50 5 30000 TY-Space

Sagitta [74] 10 10” 1 250 50 x 95 x 45 5 45000 ArcSec

CubeStar [73] 58 x 47 1 0.0154° 0.3 0.142 55 50 x 35 x 55 3.3 11593 CubeSpace

Adcole Space ST [75] 4 5.7” >2.0 1.5 282 55 x 65 x 70 5 Adcole Space

Standard NST [73] 10 x 12 6.0” 1.5 350 100 x 55 x 50
Blue Canyon

Technologies

Star-T3 [73] 20 x 20 5 <2.0” 0.3 1 350 60 x 60 x 100 5 to 12 Space Inventor

ST200 [73] 5 30” >0.3 0.6 42 29 x 29 x 38.1 3.65
Hyperion

Technologies

Table A.4: COTS CubeSat earth sensors
Name FOV(°) Accuracy(°) Mass (g)

Volume

(mmxmmxmm)
Input voltage (V) Power (mW) Cost ($) Company

CubeIR [76] 120 x 90 <1.5 50 26 x 26 x 30 3.3 230 8,500 CubeSpace

MAI-SES [77] 60 x 60 0.25 33 43.3 x 31.8 x 31.8 3.3 132 14,9 MAI

Meisei Earth Sensor [78] 33 x 33 1.5 250 40 x 40 x 55 5 <1000 55,224 Meisei

Table A.5: COTS CubeSat magnetorquers
Name

Residual

Moment (Amˆ2)

Magnetic

Moment (Amˆ2)
Saturation (Amˆ2) Mass (g)

Volume

(mmxmmxmm)

Input

voltage (V)
Power (mW) Cost ($) Company

NCTR-M002 [79] <0.001 >0.2 <30 70 x 9 x 9 5 200 1200 NewSpace

NCTR-M012 [79] <0.005 1.19 <50 94 x 15 x 13 5 <800 NewSpace

EXA MT01 [79] <0.0045 <0.39 >0.85 7.5 50 × 4.3 x 3.2 1.25-7.5 250 to 1750 1194 EXA

NanoTorque GST-600 [80] 0.001 0.340 156 90.5 x 96.9 x 17.2 GomSpace

ISIS iMTQ [81] 0.01 0.2 196 95.9 x 90.1 x 17 5 ISIS

Cubetorquer [80] 0.00048 1.5 28 CubeSpace

NCTR-M016 [82] <0.005 1.60 <53 107 x 15 x 13 5 <1200 NewSpace

MTQ200.20 [83] 0.2 1.0 39.6 10.7 x 10.7 x 80 90
Hyperion

Technologies

MTQ200.10S [83] 0.1 0.25 44.8 19 x19 x 25 225
Hyperion

Technologies

Satbus MTQ [84] 0.3 205 5 NanoAvionics

Table A.6: COTS CubeSat CMG
Name Max Speed (rpm) Torque (mNm) Momentum (mNm-s) Mass (g) Volume (mmxmmxmm) Power (W) Company

Microsat CMG [6] 12000 112 56 600 48 x 48 x 91 1.5 HoneyBee Robotics

Table A.7: COTS CubeSat flywheels
Name

Max
Speed
(rpm)

Max
Torque
(mNm)

Accuracy
(rpm)

Momentum
Storage
(mNms)

Mass
(g)

Volume
(mmxmmxmm)

Input
voltage
(V)

Max
Power
(mW)

Price (C) Company

NanoTorque GSW-600 [85] ±6000 1.5 0.5 19 940 95.0 x 95.0 x 61.6 5 300 GomSpace
CubeWheel small [86] ±8000 0.23 ±5 1.77 60 28 x 28 x 26.2 6.5 to 16 650 3978 CubeSpace
CubeWheel small+[86] ±6000 2.3 ±5 3.6 90 33.4 x 46 x 31.5 6.5 to 16 2300 5036 CubeSpace
CubeWheel medium [86] ±6000 1.0 ±2 10.82 150 46 x 46 x 31.5 6.5 to 16 2300 5797 CubeSpace
CubeWheel Large [86] ±6000 2.3 ±2 30.61 225 57 x 57 x 31.5 6.5 to 16 4500 6643 CubeSpace
MAI-400 [79] ±10000 0.635 11.076 110 33 x 33 x 38.4 5 6010 MAI
RW210 Version 1 [59] ±10000 0.1 ±0.5 1.5 21 25 x 25 x 15 <800 Hyperion
RW210 Version 2 [59] ±15000 0.1 ±0.5 3 32 25 x 25 x 15 <800 Hyperion
RW210 Version 3 [59] ±15000 0.1 ±0.5 6 48 25 x 25 x 15 <800 Hyperion
RW single [87] ±6500 3.2 1 20 137 44 x 44 x 24 5 3250 NanoAvionics
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Table A.8: Hardware components of educational CubeSats
Name Norad ID Size State FS CS MM G ES ST RW MW CMG MT PM HR GGB A Source

ORCASat ——- 2U D 1 0 1 1 0 0 0 1 0 3 0 0 0 0 [5]

QuakeSat 27845 3U I 0 12 0 0 0 0 0 0 0 0 4 2 0 0 [88]

ION ——- 2U LF 0 0 1 0 0 0 0 0 0 3 0 0 0 0 [89, 90]

Delfi-C3 32789 2U O 2 0 0 0 0 0 0 0 0 0 1 4 0 0 [91]

CanX-2 32790 3U I 0 6 1 0 0 0 0 1 0 3 0 0 0 0 [92]

Delfi-n3xt 39428 3U O 0 8 2 3 0 0 3 0 0 3 0 0 0 0 [93, 94]

Antelsat 40034 2U I 0 6 1 3 0 0 0 0 0 3 0 0 0 0 [95, 96]

Exocube 40380 3U O 0 y y y 0 0 0 1 0 10 0 0 2 0 [97, 98]

MinXSS 41474 3U R 1 0 1 1 0 1 3 0 0 3 0 0 0 0 [99]

Aalto-2 42729 2U R 1 0 1 1 0 0 0 0 0 3 0 0 0 0 [100]

Aalto-1 42775 3U O 6 0 1 1 0 1 3 0 0 3 0 0 0 0 [101, 102]

InflateSail 42770 3U R 1 6 1 1 1 0 0 1 0 3 0 0 0 0 [103]

PolarCube 47310 3U O 0 0 2 2 0 1 3 0 0 y 0 0 0 0 [104]

Q-Pace 99756 3U O 0 0 0 0 0 0 0 0 0 0 1 2 0 0 [105]

LORIS ——- 2U D 0 18 1 1 0 0 3 0 0 3 0 0 0 0 [106]

RVSat-1 ——- 2U D 0 y 1 0 0 0 0 0 0 3 0 0 0 0 [107, 108]

CubeSail ——- 3U C 1 0 1 1 1 0 0 0 0 3 0 0 0 0 [109]

IDEASSat 47458 3U O 1 0 1 1 0 1 3 0 0 3 0 0 0 0 [110]

HuskySat 1 45119 3U O 1 0 1 1 0 0 3 0 0 3 0 0 0 0 [111]

SOCRATES 39768 3U O 0 0 y y 0 0 0 0 0 y 0 0 0 0 [112]

Phoenix 42706 2U R 1 6 1 1 0 0 0 1 0 3 0 0 0 0 [113]

SEAM ——- 3U LF 0 9 2 0 0 1 0 0 0 6 0 0 0 0 [114]

EntrySat 44429 2U O 0 y 1 1 0 0 0 0 0 y 0 0 0 0 [115]

AobaVelox-IV 43940 2U O 2 6 0 1 0 0 3 0 0 0 0 0 0 0 [116]

CHOMPTT 43855 3U O 0 y 1 1 0 0 3 0 0 3 0 0 0 0 [117]

MicroMAS-1 ——- 3U R 0 6 1 1 y 0 3 0 0 y 0 0 0 0 [118]

CANYVAL-X jerry 43136 1U I y y 1 1 0 0 0 0 0 3 0 0 0 0 [119]

CANYVAL-X tom 43136 2U I 0 1 1 1 0 0 3 0 0 3 0 0 0 0 [119]

mDOT ——- 6U D 0 2 0 0 0 2 4 0 0 3 0 0 0 0 [120]

CINEMA ——- 3U I 1 y 1 0 0 0 0 0 0 2 0 0 0 0 [121]

Istsat-1 ——- 1U D 0 y y y 0 0 0 0 0 y 0 0 0 0 [122]

Kufasat ——- 1U D 0 6 1 3 0 0 0 0 0 3 0 0 0 0 [123]

Sea Hawk-1 43820 3U O 2 y y y 0 0 3 0 0 3 0 0 0 0 [124]

Snuglite 43784 2U O 0 y 1 1 0 0 0 0 0 3 0 0 0 0 [125]

KAUSAT-5 43135 3U I 1 0 0 0 0 0 0 0 4 3 0 0 0 0 [37]

ZA-AeroSat 42713 3U R 1 6 1 1 1 0 0 1 0 3 0 0 0 0 [126]

CubeSTAR ——- 2U C y 5 1 2 0 0 0 0 0 3 0 0 0 0 [127]

LituanicaSAT-2 42768 3U O 4 0 2 2 0 0 0 0 0 3 0 0 0 0 [128]

CubETH ——- 1U D 0 y y y 0 0 0 0 0 y 0 0 0 0 [129]

Alpha ——- 1U D 0 0 1 1 0 0 0 0 0 3 0 0 0 0 [130]

BeEagleSat 42736 2U R 1 0 1 1 1 0 0 1 0 3 0 0 0 0 [131]

e-star-ii 41459 1U O 0 y 1 1 0 0 0 0 0 3 0 0 0 0 [132]

MeZnSat 46489 3U O 1 10 1 0 1 1 3 0 0 3 0 0 0 0 [133]

ZDPS-2-A 40901 1 5 1 1 1 0 4 1 0 1 0 0 0 0 [134]

IHI-Sat ——- 3U D 0 6 1 1 0 0 1 0 0 3 0 0 0 0 [135]

CanX-7 41788 O 0 0 1 0 0 0 0 0 0 3 0 0 0 0 [136]

CNUSail-1 43133 3U I 1 0 1 1 0 0 3 0 0 1 0 0 0 0 [137]

CSSWE 38761 3U O 0 0 1 0 0 0 0 0 0 0 1 4 0 0 [138]

LUMIO ——- 12U D 2 0 1 1 0 2 3 0 0 0 0 0 0 0 [139]

GeneSat-1 29655 3U R 0 0 0 y 0 0 0 0 0 0 y y 0 0 [140]

Firefly 39404 3U R 0 0 0 0 0 0 0 0 0 0 0 0 y 0 [3]

Cute-1.7+APDII 32785 2U O 0 y y y 0 0 0 0 0 y 0 0 0 0 [141]

RAX-1 37223 3U I 0 0 0 0 0 0 0 0 0 0 y y 0 0 [142, 143]

RAX-2 37853 3U I 0 0 0 0 0 0 0 0 0 0 y y 0 0 [144]

Exocube-2 47319 3U I 0 y y y 0 0 0 1 0 y 0 0 y 0 [145]

QARMAN 45263 3U R 0 0 0 0 0 0 0 0 0 0 0 0 0 y [146]

SONATE 44400 3U UK 0 12 2 2 0 2 3 0 0 6 0 0 0 0 [147]

SWAMPSAT 1 39402 1U I 0 6 1 1 0 0 0 0 4 1 0 0 0 0 [8]

SWAMPSAT 2 45115 3U O 0 0 0 0 0 0 0 0 4 0 0 0 0 0 [9]

QBX ——- 3U R 0 0 1 0 1 0 3 0 0 3 0 0 0 Y [26, 28]
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Appendix B

Momentum exchange devices

B.1 BLDC motor control

Table B.1: BLDC reaction wheel motor parameters

Parameter Value Unit

Excentricity white noise power 1× 10−16 Nm

Ki 3.93× 10−3 Nm/A

Ke 3.93× 10−3 V s/rad

R 1.68 Ω

Voltage Saturation 3 V

L 9 µH

Current Saturation 0.88 A

Speed Saturation 754 rad/s

Inertia 1.9397× 10−6 kgm2

Viscous friction coefficient 1.11× 10−7 Nms/rad

Coulomb friction coefficient 1.1× 10−16 Nm

All the values where based on the DC-Gearmotors Series 2619 S motor [148]. A rough estimation of

a realistic inertia value was obtained based on the motor inertia without load and typical inertia values

of Cubesat flywheels, namely, Hyperion’s RW210 Version 1 [59].
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B.2 CMG performance analysis parameters

Table B.2: BLDC gimbal motor parameters

Parameter Value Unit

Excentricity white noise power 1× 10−16 Nm

Ki 3.93× 10−3 Nm/A

Ke 3.93× 10−3 V s/rad

R 1.68 Ω

Voltage Saturation 3 V

L 9 µH

Current Saturation 0.88 A

Speed Saturation 1 rad/s

Inertia 1.9397× 10−6 kgm2

Viscous friction coefficient 1.11× 10−7 Nms/rad

Coulomb friction coefficient 1.1× 10−16 Nm

All the values where based on the CMG gimbal motor designed in [9]. Inertia values were roughly

estimated based on the inertia of the spinning disk and the motor.

Table B.3: CMG flywheel parameters

Parameter Value Unit

Eccentricity white noise power 1× 10−16 Nm

Ki 6.57× 10−4 Nm/A

Ke 6.57× 1010−4 V s/rad

R 19.4 Ω

Maximum momentum storage 0.0015 Nms

Maximum Torque 0.1 Nm

Maximum Speed 10000 rpm

Maximum Voltage 3.5 V

Moment of Inertia 1.43297× 10−6 kgm2

Viscous friction coefficient 4.35× 10−8 Nms/rad

Coulomb friction coefficient 4.78× 10−4 Nm

Retroactive constant 869.3 Ω/s
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The flywheel was modelled after the commercially available Hyperion’s RW210 Version 1 flywheel

[59] and followed the momentum wheel model developed in [46].

Table B.4: Steering law parameters

Parameter Value

mcr 4.6× 10−10

k0 2× 10−11

kmax 3× 10−10

Figure B.1: Body rates

Figure B.2: CMG flywheel model with motor driver and motor driver controller developed in [46]
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Figure B.3: CMG flywheel motor model developed in [46]
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Appendix C

Simulation results

C.1 Performance of ORCASat’s ADCS with different conditions

Figure C.1: Pointing error for different q0

Figure C.2: Estimation error for different q0
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Figure C.3: Power consumption for different q0

Figure C.4: Power consumption for different initial body rates

C.2 Performance of different architectures: sensors

Figure C.5: Estimation error for different initial body rates: ORCASat architecture

97



Figure C.6: Pointing error for different initial body rates: ORCASat architecture

Figure C.7: Estimation error for different initial body rates: Earth Sensor+magnetometer architecture

Figure C.8: Pointing error for different initial body rates: Earth Sensor+magnetometer architecture
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Figure C.9: Estimation error for different initial body rates: just magnetometer architecture

Figure C.10: Pointing error for different initial body rates: just magnetometer architecture

C.3 Performance of different flywheels

Figure C.11: Power consumption different momentum wheels
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