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Resumo

O número de veı́culos aéreos não tripulados (UAVs) leves disponı́veis no mercado está em cresci-

mento. Devido às suas limitações de carga, UAVs pequenos têm restrições nos sensores que po-

dem transportar e muitos fazem uso de câmeras monoculares ou de profundidade, por serem leves e

energeticamente eficientes. UAVs pequenos são adequados para operar em ambientes com muitos

obstáculos, que apresentam alto um risco de colisão, tornando essencial a capacidade de detectar

obstáculos usando câmeras como sensores.

Adicionalmente, devido à versatilidade e grande disponibilidade deste tipo de UAVs, eles podem

também ser explorados para atividades perigosas ou criminosas. Desta forma, a capacidade de detec-

tar e localizar UAVs maliciosos é desta forma também muito importante.

Este trabalho concentra-se numa primeira parte na avaliação das capacidades de fusão de mapas

de profundidade monoculares e stereo para detecção de obstáculos. Para o efeito, as estimativas de

profundidade de uma rede neural são combinadas com medições de uma câmera de profundidade, a

fim de obter um mapa de profundidade mais preciso e denso.

O segundo foco deste trabalho consiste em avaliar a possibilidade de utilizar um grupo de UAVs

equipados com câmeras monoculares para localizar um UAV intruso. É utilizada uma rede neuronal de

deteção de objetos para detectar o alvo, e de seguida a sua localização é determinada por triangulação,

sendo avaliados e comparados três algoritmos de triangulação distintos.

Palavras-chave: Fusão Sensorial, Triangulação, Localização de UAV Intruso, Deteção de

Obstáculos
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Abstract

The number of lightweight Unmanned Aerial Vehicles (UAVs) available on the market is increasing.

Due to limited payload, small UAVs are restricted in the sensors they can carry, and many make use of

monocular or depth cameras, since they are lightweight and power efficient. These types of UAV are

suitable for operating in cluttered environments, where they are at a high risk of collisions. Therefore,

the ability to detect obstacles with camera sensors is essential.

Additionally, because of their versatility and availability of access, these types of UAV can be ex-

ploited for dangerous or criminal activities. Being able to detect and localize malicious UAVs is then very

important.

This work will focus on evaluating the capabilities of monocular and stereo depth fusion for obstacle

detection. Depth predictions from a neural network will be combined with measurements of a depth

camera, in order to obtain a more accurate and dense depth map.

The second focus of this work will be to evaluate the possibility of utilizing a group of UAVs equipped

with monocular cameras to localize an intruder UAV. An object detector network will be employed for

the task of detecting the target, and then the location of the target will be found by triangulation. Three

distinct triangulation algorithms will be evaluated and compared.

Keywords: Sensor Fusion, Triangulation, Intruder UAV Localization, Obstacle Detection
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Chapter 1

Introduction

1.1 Motivation

Nowadays, there is a large number of affordable, lightweight quadrotors commercially available on

the market. Due to their small size, they are particularly suited for operating at low altitude in cluttered

environments [1], where the risk of colliding against unknown obstacles is much higher. Therefore,

autonomous obstacle detection and, ultimately, obstacle avoidance play a key role in the safety of these

types of unmanned aerial vehicles (UAVs). However, obstacle detection in unknown environments is a

challenging task, especially for small UAVs that are limited in the sensors they can carry due to weight

constraints and power requirements [2].

Visual detection of UAVs, on the other hand, has received increasing attention in recent years since

its use is fast expanding in a wide range of applications, including agriculture [3], 3D mapping [4] and

infrastructure inspection [5]. They have proven to be both autonomous and versatile in a wide range of

tasks, and are also increasingly becoming a part of citizens’ daily lives in the recreational sector, due

to decreasing equipment cost and relatively easy maneuvering [6]. However, because of their versatility

and availability of access, they can be exploited for dangerous or criminal activities. Malicious UAVs, for

example, can endanger key infrastructure or events, or even interfere with manned aircraft. In recent

years, numerous instances involving UAVs flying over restricted areas, around important infrastructure,

or during public events have been reported in the media [7], [8]. The visual identification of unknown

aerial vehicles is a crucial step in the development of necessary UAV defensive systems.

1.2 Related Works

1.2.1 Obstacle Detection for Small UAVs

Considering the limitations of smaller UAVs, many reported studies make use of lightweight and

power efficient sensors like monocular cameras and depth cameras for obstacle detection. In Yang et al.

[9], a probabilistic convolutional neural network (CNN) was designed for monocular depth prediction,
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with the goal of obstacle avoidance. Since only a monocular camera was used, the depth is predicted

up to a scale factor. Deep learning was also used by Wang et al. [10], where a CNN was used in

combination with a depth camera for obstacle avoidance. First, the CNN was employed to obtain the

obstacle’s classification and bounding box. Then, the obstacle’s profile and 3D spatial information are

extracted from the depth map provided by the depth camera.

While depth cameras provide metric information about the localization of the obstacles, their range

is very limited, since the types of cameras possible on a quadrotor have necessarily a small baseline.

Additionally, they may have limited performance in regions with low texture or where objects are partly

occluded [2].

When it comes to monocular cameras, their main advantage compared to stereo vision is that since

only one view is considered, theoretically their only range limitation is imposed by the image resolution.

Thus, monocular cameras should perform well related with very close or very far away objects [11]. On

the other hand, in contrast to the case with depth cameras, depth estimation methods that make use

of monocular cameras are typically unable to provide metric information, and instead rely on additional

sensors for absolute depth retrieval. For example, in Teixeira et al. [12] a neural network that performs

depth completion takes as input the RGB image captured by a monocular camera as well as LiDAR

measurements.

With a depth camera it is possible to take advantage of both the depth map and the RGB image as

complementary information sources, and mitigate some of the limitations of these two sensors individu-

ally. In Fácil et al. [13] a method for the fusion of single- and multi-view depth estimates was developed,

and in Martins et al. [11], a method for the fusion of stereo and monocular depth estimates was pre-

sented. In Zhang and Funkhouser [14], monocular depth estimation was used to complete the depth

channel of an RGB-D image, by making use of surface normal and occlusion boundaries.

1.2.2 Detection and Localization of an Intruder UAV

The detection and localization of intruder UAVs is also an important task, and many reported studies

make use of multi-sensor methods to tackle this problem. Fasano et al. [15] presents a methodology for

radar and electro-optical data fusion, with the goal of non-cooperative sense and avoid. First, a radar

detection defines an image search window, whose size is related to the distance the object was detected

at. Then, the camera is used to detect the potential UAV, and both measurements are combined in a

Kalman filter for track estimation. Another strategy presented in Park et al. [16] consists of the fusion

of vision and LiDAR sensors. An object detector neural network is used to detect aerial vehicles in the

camera image, while a clustering method is utilized to detect objects in LiDAR point cloud data. Both

measurements are then combined to obtain the UAV’s position.

The task of detection and localization of intruder drones is again made especially challenging for

lightweight UAVs, due to the limitations in the type of sensors that they can carry. In Huang and Lai

[17], a method for the distance detection of a UAV using only a monocular camera was proposed. First,

a neural network for object detection called YOLO (You Only Look Once) was used to detect the UAV

2



in the image captured by the camera. Then, another neural network was employed to estimate the

distance to the target. In Zahedi et al. [18], two neural networks were utilized for accurate mobile target

localization and tracking. More traditional methods were used in Husodo et al. [19] and Laurito et al.

[20], were algebraic expressions and prior knowledge of the target’s dimensions were used to calculate

its position. Husodo et al. [19] also proposes a method for following the target UAV, in order to obtain

better results.

The use of multiple cooperative UAVs for the detection of another has also been studied in the

literature. In Shinde et al. [21] a YOLO network was used to detect the target in images captured by the

group of cooperative UAVs, and subsequently its position was ascertained, while in Arnold and Brown

[22] different methods of swarm formation for the purposes of malicious UAV tracking are evaluated.

Moreover, in Khanapuri and Sharma [23] a neural network based approach was proposed to improve

the accuracy in the estimated positions of multiple targets. In this approach, a neural network is used to

predict the required azimuth and elevation angles for each cooperative UAV so that the targets remain

in their fields of view.

1.3 Objectives

The first goal of this thesis is a feasibility study to determine whether monocular depth estimation

strategies, making use of current deep learning methods, are viable to improve the measurements of

an onboard depth camera, for UAV obstacle detection. In particular, the objective is to leverage the

information contained in the RGB image provided by the depth camera to fill in the stereo depth values

missing due to the depth camera’s range limitations.

This thesis also aims to explore the use of triangulation algorithms for the localization of uncoopera-

tive Unmanned Air Vehicles by a group of cooperative UAVs, each equipped with a monocular camera.

The proposed approach utilizes the YOLO algorithm [24] to detect the target in each captured image,

which provides the necessary information for its localization. Simulations should be performed in order

to compare the performance of three triangulation algorithms in diverse situations.

1.4 Contributions

The contributions of this work are:

• Adoption of a multi-sensor fusion methodology for UAV obstacle detection.

• Training and evaluation of a YOLO network for UAV detection.

• Evaluation and comparison of three triangulation algorithms for target UAV localization, using the

AirSim Simulator tool.

• Provided suggestions for the improvement of the triangulation results.

3



1.5 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 presents the current state-of-the-art

algorithms for monocular depth estimation as well as visual obstacle detection. In addition, background

knowledge for the present work is provided. Chapter 3 explains the methods related to the obstacle

detection for lightweight UAVs, as well as detection and localization of a target. Chapter 4 describes

the AirSim Simulation Environment, and discusses the different simulations made to evaluate the target

localization results. Chapter 5 presents and discusses the results obtained, first for the monocular and

stereo depth fusion method and later for the target localization through the triangulation algorithms.

Finally, Chapter 6 summarizes the main conclusions of this thesis and outlines possible directions for

future research.
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Chapter 2

Background and Literature Review

This chapter starts by presenting a literature review on the the use of artificial intelligence methods

for the tasks of monocular depth prediction, in section 2.1, and visual object detection, in section 2.2.

It then presents an overview of some necessary background information, namely camera parameters

(section 2.3), reference frames (section 2.4) and performance metrics (section 2.5).

2.1 Monocular Depth Estimation

Monocular depth estimation is a computer vision research problem that has been explored by several

research groups, with varying degrees of success, over the past decades.

Early work on monocular depth estimation used simple geometric assumptions. In Hoiem et al. [25],

rather than predicting depth explicitly, rudimentary 3D models are generated from outdoor photos by first

labeling parts of the input image as “ground”, “sky” or “vertical”. Using a series of simple assumptions,

these labels are then utilized to “cut and fold” the image into a pop-up model, onto which the original im-

age is then texture mapped. These produced models are necessarily limited by the very strict geometric

constraints that have been imposed.

Ladicky et al. [26] proposed that the problems of depth estimation and semantic segmentation should

be addressed together by taking advantage of a property of perspective geometry, which states that the

perceived size of the objects scales inversely with the distance from the camera. This property was used

to condition the depth of an object on its inferred semantic class, thereby reducing the need for a pixel-

wise depth classifier to a much simpler classifier that predicts only the likelihood of a pixel being at a

given depth. This method effectively addressed one major flaw in classical methods, namely the difficulty

in accurately estimating an object’s depth if it hasn’t been seen at the same depth during training.

More recently, significant progress has been made by directly regressing scene depth from the input

image using convolutional neural networks. Eigen et al. [27] addresses the depth predicting task by

employing two deep network networks, one that produces a coarse global prediction based on the entire

image and another that refines it locally. This model is free of geometric priors and hand-engineered

features, and it learns everything from the training data. In future work [28], a more general multiscale
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convolutional network is employed, which is used for depth prediction, surface normal estimation, and

semantic labeling. This network is able to adapt to each task with only small modifications.

These methods require extensive datasets with ground-truth depth for training, which is commonly

acquired using RGB-D cameras or LiDAR sensors. Such scanning methods have important limitations.

RGB-D cameras are constrained in terms of range, and laser scanners are cumbersome to operate

or produce sparse depth maps. Garg et al. [29] proposed to use multiple views of a scene for self-

supervised learning. The training is done using pairs of stereo images, with known camera motion

between the two. This significantly simplifies the acquisition of training data, since labelled ground-truth

depth is no longer required.

Another way to leverage self supervision is to exploit apparent motion. For example, Zhou et al. [30]

presents an unsupervised learning approach for estimating dense 3D geometry and camera motion from

unstructured video sequences. This method requires only a sequence of images as input, and estimates

the camera pose parameters of the input set, along with the dense depth of the scene. However, due to

the nature of these methods, they are difficult to apply to dynamic scenes.

Nowadays, the success of monocular depth estimation depends upon large and diverse training sets.

Recent improvements have been made from combining datasets with different characteristics. In Ranftl

et al. [31], new tools were developed that enable mixing multiple datasets during training, even if their

annotations are incompatible. In addition to the use of traditional datasets, 3D movies were also utilized

as a data source.

2.2 Visual Object Detection

Existing approaches for visual object detection can be divided into two categories: classical and

deep learning methods.

Classical techniques are comprised of two steps. First it is necessary to extract object features

using a feature descriptor, for example Histogram of Oriented Gradients (HOG), and then categorize the

features using machine-learning techniques such as Support Vector Machine (SVM) or Adaboost.

The HOG feature descriptor, proposed by Dalal and Triggs [32], serves as a foundation for many

object detectors. By analyzing the image’s pixel gradients, it can extract the shape or structure of an

object, since areas with large gradients often represent edges of an object. The image is first divided

into different regions, and for each region a histogram based on the gradients and orientation of the pixel

values is created.

The Deformable Part-based Model (DPM) [33] is one of the detection methods based on the HOG

feature descriptor. In order to tackle the problem of geometric deformations, this model uses various

parts of the image separately in order to determine if and where an object of interest exists. For example,

detections of small parts of a body like “head”, “leg” or “arm” can be used to determine whether an image

contains a person.

In contrast to classical approaches that rely on hand-crafted features, deep-learning-based ap-

proaches rely on CNN features and, as a result, have a greater ability to represent complicated objects.
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The disadvantage of employing a CNN, however, is that it has significant computational requirements

and requires large datasets to train. Deep learning approaches to object detection are broadly classified

into two types: two-stage detectors and single-stage detectors.

An early example of a two-stage detector is Regions with CNN features (R-CNN) [34]. R-CNN

combines region proposals with CNNs. It creates 2000 rectangular regions in the image that might

contain an object via a selective search algorithm, and in each region a CNN acts as a feature extractor.

These features are classified by a SVM, and finally a bounding box is predicted for each identified

object. In future work the Fast R-CNN model [35] is proposed, in which CNNs are used for both feature

extraction and classification. This solution overcomes some of the speed limitations of R-CNN, since

the CNN is fed with one region per image instead of 2000, and generates a convolutional feature map

where the region proposals are identified. A second improvement to R-CNN was made with the Faster

R-CNN model [36]. Instead of using a selective search algorithm on the feature map to identify the

region proposals, a separate network called Region Proposal Network (RPN) is used to predict the

region proposals. This way, the algorithm applied a CNN end-to-end.

Single-stage approaches perform both the object localization and classification in a single step. Com-

pared to two-stage solutions, they have faster processing speeds at the cost of moderate detection

accuracies.

The Single Shot MultiBox Detector (SSD), proposed by Liu et al. [37], completely eliminates region

proposal generation, and is able to detect objects using a single deep neural network. It does so by

creating default bounding boxes over different aspect ratios and scales. The network then generates

a score for the presence of each object category in each default box and produces adjustments to the

box to better match the object shape. Compared to the previously mentioned methods, SSD is less

computationally demanding and still achieves good results.

Another popular single-stage method is the You Only Look Once (YOLO) detection algorithm [38].

YOLO approaches object identification as a straightforward regression problem rather than a classifica-

tion problem with a pipeline in which regions of interest are produced and subsequently categorized.

It separates the input image into a grid, and for each cell, a specific number of bounding boxes are

predicted and assigned a confidence score. The boxes with low confidence can be removed, and the

confidence threshold can be modified, affecting the number of boxes that remain. Furthermore, because

many bounding boxes can be associated with the same object, overlapping boxes are removed as well.

Subsequent improvements were made to the algorithm [39] [24]. The most recent version, YOLOv3,

was selected as the object detector for this thesis due to its accuracy and fast executing speed [40].

2.3 Camera Fundamentals

This section introduces some fundamental knowledge required for the object localization approaches

presented in Chapter 3. Subsection 2.3.1 explains homogeneous coordinates, which are necessary to

describe the pinhole camera projection model, detailed in subsection 2.3.2.
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2.3.1 Projective Space and Homogeneous Coordinates

Any point x = (x1, . . . , xn)T ∈ Rn can be described in the n-dimensional Euclidean space. In partic-

ular, the three-dimensional Euclidean space R3 can be used to describe points in the three-dimensional

environment we live in. The projective space Pn, however, can be utilized to simplify some equations,

particularly in the context of projections. This space extends the Euclidean space by adding an additional

coordinate designated w, and makes use of homogeneous coordinates. A point x̃ = (x̃1, . . . , x̃n, w̃)T in

homogeneous coordinates represents the point

x =

(
x̃1
w̃
, . . . ,

x̃n
w̃

)
(2.1)

in Cartesian coordinates. As a result, when a point’s homogeneous coordinates are multiplied by a

non-zero scalar, the resultant coordinates represent the same point. Thus unlike Cartesian coordinates,

a single point can be represented by infinitely many homogeneous coordinates, therefore w can be

selected arbitrarily when converting a point from Cartesian to homogeneous coordinates. A simple

method is setting w = 1.

The number of coordinates required to represent a point in homogeneous coordinates is one more

than the dimension of the projective space under consideration. For example, a point in the projective

plane P2, of particular importance for this thesis, requires three homogeneous coordinates. In this

thesis, vectors expressed in homogeneous coordinates will have a tilde sign, while the absence of a

tilde indicates that the vector is expressed in Cartesian coordinates.

2.3.2 Pinhole Projection Model

The pinhole camera projection model [41] describes the projection of points in three-dimensional

space onto a two-dimensional image plane. It does so by considering that the camera aperture can

be described as a single point (called pinhole), and that all the light captured by the camera must pass

though it before reaching the optical sensor. Despite its approximations, it is a reasonable description of

how a camera depicts a 3D scene, and is widely used in computer vision applications [42].

This concept is illustrated in Figure 2.1. Let X denote a point with coordinates (X,Y, Z) and u its

image projection with coordinates (u, v, w). Both points are expressed in the camera reference frame.

Since u lies in the image plane, it is known that w = f .

Since points X, u and the pinhole point (represented in the figure as optical center) are collinear,

there is some scalar λ so that


u = λX

v = λY

f = λZ

⇔ λ =
u

X
=

v

Y

f

Z
(2.2)

therefore, the image coordinates of the projecion of point X are given by
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Figure 2.1: Representation of the pinhole camera model, which describes the relationship between a
3D point X = (X,Y, Z)T and its corresponding 2D projection u = (u, v)T onto the image plane [43].


u = f

X

Z

v = f
Y

Z

(2.3)

The result above is only valid when point X is expressed in the camera reference frame. It is often

more useful to be able to find the image projection of a point expressed in the world reference frame

directly.

The camera matrix P ∈ R3×4 describes the relation between a point in the world reference frame

and its projection in the camera reference frame [44]. The projection ũ of a three-dimensional point x̃

onto the two-dimensional image plane is then given by

ũ = P x̃ (2.4)

where ũ and x̃ are both expressed in homogeneous coordinates.

The camera matrix P consists of two camera elements. Firstly, the camera intrinsic parameters are

described by matrix K ∈ R3×3, and include information about camera specifics like its focal length and

principal point. Second, the camera extrinsic parameters express how a point in the world coordinate

system is transformed into the camera coordinate system. This transformation, described by matrix

E ∈ R3×4, is characterized by a rotation matrix R ∈ R3×3 and a translation vector t ∈ R3. Matrix E is

then determined as

E = [R|t] (2.5)

and the camera matrix P , defined as P = KE, thus corresponds to
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P = K[R|t] (2.6)

2.4 Coordinate Systems

For the construction of the camera matrix, described in section 2.3.2, knowledge of the transforma-

tion from world coordinates into coordinates in the camera reference frame is necessary. To make this

calculation easier, other intermediate reference frames are introduced as well [45]. Each of the coordi-

nate systems is depicted in Figure 2.2 and is described next, along with the transformations between

them.

Figure 2.2: Coordinate systems used for the construction of the camera matrix. The X-axis is red, the
Y-axis is green and the Z-axis is blue.

The transformations between frames are expressed as 4 by 4 matrices, where TB
A ∈ R4×4 denotes

the transformation from coordinate system A to coordinate system B. Each transformation matrix can be

constructed from a rotation matrix R and a translation vector t, in such a way that the resulting matrix is

given by

TB
A =


R00 R01 R02 t0

R10 R12 R12 t1

R20 R21 R22 t2

0 0 0 1

 (2.7)

These transformation matrices can be multiplied by points or vectors, expressed in homogeneous

coordinates, in order to obtain their transformed counterpart. Several transformations can also be com-

bined by multiplying their corresponding matrices together.
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2.4.1 Local North-East-Down Coordinate System (NED)

The first coordinate system used is the Local North-East-Down (NED) coordinate system. This

system was used as the world reference frame, and both the cooperative UAVs and the target’s positions

are provided in it. It is constructed according to the following rules:

1. The origin is arbitrarily fixed to a point on the Earth’s surface.

2. The X-axis points toward the North direction.

3. The Y-axis points toward the East direction.

4. The Z-axis is perpendicular to both other axis and points towards the center of the Earth.

2.4.2 Vehicle-Carried North-East-Down Coordinate System

The next coordinate system used is the Vehicle-Carried NED, or UAV NED, coordinate system. This

system is constructed similarly to the local NED system, but in this case its origin is located at the center

of gravity of the flying vehicle it corresponds to.

Rigorously speaking, the axis directions of the vehicle-carried NED frame change slightly according

to the UAV’s current position, and so are not strictly aligned with those of the local NED frame. However,

since the small UAVs that this thesis deals with fly only in a short area, it is acceptable to assume

that the vehicle-carried and local NED coordinate systems always point in the same direction. The

transformation between the local NED and vehicle-carried NED reference frames is then simplified and

corresponds to

T UAV NED
LOCAL NED =


1 0 0 xUAV

0 1 0 yUAV

0 0 1 zUAV

0 0 0 1

 (2.8)

where (xUAV , yUAV , zUAV ) corresponds to the UAV’s position.

2.4.3 Body Coordinate System

The third needed coordinate frame is the Body coordinate system, which has the same origin as

the vehicle-carried system, but its axes match the principle axes of a UAV. This system is therefore

constructed according to the following rules:

1. The origin is is located at the center of gravity of the UAV.

2. The X-axis points forward, lying in the symmetric plane of the UAV.

3. The Y-axis points toward the right side of the UAV.

4. The Z-axis is perpendicular to both other axis and points downward.
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The rotation matrix from the vehicle-carried NED frame to the body frame, R BODY FRAME
UAV NED , is given

by

RBODY FRAME
UAV NED =


cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) sin(φ) cos(θ)

cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ) cos(φ) cos(θ)


where φ, θ and ψ correspond to the UAV’s roll, pitch and yaw angles, respectively. In agreement with

equation (2.7), the full transformation matrix T BODY FRAME
UAV NED corresponds to

T BODY FRAME
UAV NED =

 R BODY FRAME
UAV NED 0

0 0 0 1

 (2.9)

2.4.4 Camera Coordinate System

The final coordinate system used is the camera coordinate system. For simplicity, it was considered

that the camera coordinate system has its origin coincident with the origin of the body reference frame,

that is, the displacement between the UAV’s center of mass and the camera’s principal point was ignored.

Nonetheless, the orientation of the camera system’s axes is fundamentally different than that of the other

systems. The camera coordinate system is built in accordance with the following procedure:

1. The origin is is located at the center of gravity of the UAV.

2. The X-axis points to the right of the camera, matching the direction of the X-axis in the captured

images.

3. The Y-axis points downwards, also matching the direction of the Y-axis in the captured images.

4. The Z-axis points in the view direction of the camera.

As a consequence, the transformation from the body frame to the camera frame corresponds to

T CAMERA FRAME
BODY FRAME =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

 (2.10)

2.5 Performance Metrics

2.5.1 Depth Estimation Metrics

To measure the accuracy of the depth estimation algorithm, error metrics commonly found in the

literature [46] were employed.
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Given a predicted depth map and the corresponding ground truth, where d̂p and dp denote the esti-

mated and ground-truth depths respectively at pixel p, and T is the total number of pixels for which there

exist both valid ground truth and predicted depth, the following metrics can be defined:

• Absolute Relative Error

The absolute relative error corresponds to the average of the relative error obtained across all pixels

that have a valid ground truth and predicted depth, and is given by

1

T

∑
p

|dp − d̂p|
dp

(2.11)

• Linear Root Mean Square Error (RMSE)

Similarly, the linear root mean square error can be defined as

√
1

T

∑
p

(dp − d̂p)2 (2.12)

• Accuracy Under a Threshold

Finally, the accuracy under a threshold corresponds to the percentage of pixels for which the pre-

dicted depth falls under a certain threshold of the ground-truth, and is given by

% of dp s.t. max
(
d̂p
dp
,
dp

d̂p

)
= δ < th (2.13)

where th is a predefined threshold, usually equal to 1.25, 1.252 and 1.253.

2.5.2 Object Detection Metrics

This subsection presents the evaluation metrics relating to object detection, which will later be used

to evaluate YOLO’s performance. These metrics are detailed in Padilla et al. [47] and Padilla et al. [48].

At its most basic level, evaluating the performance of an object detector involves determining whether

or not a given detection is valid. In order to characterize the subsequent evaluation metrics, the following

definitions are necessary:

- True positive (TP): A correct detection of a ground-truth bounding box;

- False positive (FP): An erroneous detection of a nonexistent object or a misplaced bounding box

when detecting an existing object;

- False negative (FN): A ground-truth bounding box missed by the model;

It is worth noting that a true negative (TN) result is not applicable in the context of object detection

since there is an endless number of bounding boxes which should not be detected in any given image.
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• Intersection over Union

The previous definitions require specifying what constitutes a “correct detection” and a “incorrect

detection”. In order to determine the validity of a detection, a supporting metric known as Intersection

over Union (IoU) is required.

The IoU divides the overlapping region between the predicted bounding box Bp and the ground-truth

bounding box Bgt by the area of union between them, that is

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(2.14)

A visual interpretation of the IoU metric is present in Figure 2.3. This metric ranges from 0, signifying

no overlap between the ground-truth and the predicted bounding boxes, and 1, implying perfect overlap

between the two bounding boxes.

Figure 2.3: Illustration of the intersection over union (IOU) metric [48].

Using this metric, a true positive can be redefined as a detection for which IoU ≥ 0.5 and, conversely,

a detection for which IoU ≤ 0.5 can be classified as a false positive.

• Precision

Precision refers to a model’s ability to recognize only the relevant objects, and corresponds to the

percentage of correct predictions. It is given by

P =
TP

TP + FP
=

TP

all detections
(2.15)

• Recall

The ability of a model to find all relevant objects, that is, all ground-truth bounding boxes, is known as

recall. It corresponds to the percentage of all ground-truth bounding boxes that were correctly predicted,

and is given by

R =
TP

TP + FN
=

TP

all ground truths
(2.16)
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• Precision-Recall Curve

A plot of precision as a function of recall is known as the precision-recall (PR) curve, of which Figure

2.4 illustrates an example. It depicts the trade-off between the two metrics for varying model detection

confidence values. If the number of false positives is low, the precision score will be high but more object

instances may be overlooked, resulting in a high number of false negatives and a poor recall score.

Figure 2.4: Example of a precision-recall curve.

Conversely, lowering the model detection confidence threshold to accept more positives would in-

crease the recall value, but false positives may increase as well, lowering the precision score. A suc-

cessful model should maintain high precision and recall scores for varying confidence threshold values.

• F1 Score

The F1-score is a measure of a model’s accuracy on a certain dataset, and is defined as the harmonic

mean of the precision and recall of a given model, that is

F1 score = 2
P ·R
P +R

(2.17)

The F1-score ranges from 0 to 1, with 0 indicating that precision or recall scores (or both) are 0%,

and 1 indicating that both precision and recall are 100%. Because it is calculated for a single confidence

threshold, it can be used to compare a model’s performance for different confidence threshold values.
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Chapter 3

Methodology

This chapter presents the methods of the proposed approaches for both obstacle detection and target

localization, in sections 3.1 and 3.2 respectively. Both sections start with an overview of the proposed

architectures, and then discuss necessary algorithms and concepts.

3.1 Obstacle Detection for Small UAVs

An obvious strategy to take advantage of all the information provided by the depth camera is to use

the RGB-D image (RGB + depth), which encompasses the color image and the depth map, directly

as input of a neural network, and train it so that it can fill in the depth of the missing pixels. However,

according to Zhang and Funkhouser [14], this strategy does not give good results, especially for large

regions with missing distance measurements.

It was then decided to use an architecture similar to the one described in Martins et al. [11], which is

exemplified in Figure 3.1.

Figure 3.1: Proposed architecture for the monocular and stereo fusion.

This architecture can be divided into three blocks: the stereo estimate (blue), the monocular estimate

(orange) and the merging of both estimates (green). The stereo estimate is given directly by the depth

camera, and may have missing values for some pixels. On the other hand, the monocular estimate is

given by a convolutional neural network, which receives the RGB image as an input and outputs the

estimated distance of each pixel to the camera. Because the monocular depth predictions in sky areas
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are unreliable, a sky segmentation step is included, where sky areas are removed from the monocular

estimate.

Then, both estimates are merged, resulting in a more complete and accurate depth map than the

previous ones.

3.1.1 Monocular Depth Estimation

To perform the monocular depth estimation, the MiDaS v2.1 Small [31] neural network was chosen,

due to its robustness to various types of environment and fast execution speed. This network is a CNN

that estimates the distance of each pixel to the camera from an RGB image. Additionally, to evaluate

results, the DIODE dataset [49] was used, since it includes varied environments and types of obstacles

and has dense ground truth measurements over a large range of distances (from 0.6 to 350m).

The output of the CNN corresponds to a relative and inverted depth map. It is then necessary to

align it with the ground truth before analyzing the errors obtained. This procedure is described in Li and

Snavely [50]. Several points from the ground truth depth map are selected, and from their corresponding

points in the monocular depth map, two correction factors necessary to adjust the monocular estimate

are identified. These are the scale and shift factors, a and b respectively. These corrections are then

applied and the monocular estimate is aligned to the ground truth depth measurements. In summary,

this process corresponds to the following steps:

1. Invert the ground truth.

2. Align the monocular estimate with points from the inverted depth camera measurements using the

least squares method, according to the following:

inverted ground truth = a×monocular estimate + b

3. Invert the aligned monocular estimate in order to obtain the depth in meters.

An analogous procedure for the monocular depth map alignment can also be followed in a real-life

situation, simply replacing the ground truth with some other measurements, in the case of this thesis,

the stereo depth map obtained by the depth camera.

A comparison between the monocular estimate before and after the alignment is exemplified in Figure

3.2. In this figure, yellow tones represent larger distances, while blue tones indicate shorter distances.

The depth map of Figure 3.2 (b) is inverted in regards to the ground truth, and relative, that is, it doesn’t

contain metric information. The depth map of Figure 3.2 (c), after alignment, matches the ground truth

in Figure 3.2 (d) in terms of scale much more closely.

3.1.2 Sky Segmentation

Often, the CNN depth predictions in sky areas will be incorrect, and if those areas weren’t removed

there could be false obstacle detections. The adopted procedure for sky segmentation was the one

described in Mashaly [51], due to its fast execution speed. The monocular estimate before and after the

sky removal is exemplified in Figure 3.3.
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(a) RGB image (b) Direct CNN output

(c) CNN output after alignment (d) Ground truth

Figure 3.2: Comparison of CNN depth prediction before and after alignment with the ground truth.

(a) RGB image (b) CNN output after alignment (c) CNN output after sky removal

Figure 3.3: Comparison of CNN depth prediction before and after sky removal.

3.1.3 Fusion of Stereo and Monocular Depth Estimates

The algorithm for the fusion of the two individual depth estimates was adapted from Martins et al.

[11]. The changes made arise from taking into account that in this case the two estimates do not have

the same range of distances, since the stereo estimate is bound by the depth camera limitations in terms

of range, while the monocular estimate is not. For pixels for which only one depth estimate, monocular

or stereo, is available, that estimate is preserved in the final depth map. When for a given pixel both the

stereo and the monocular depth estimates are available, the fusion algorithm can be summarized by the
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following points:

1. When the stereo estimate for a given pixel is considered reliable, it is preserved.

2. When the stereo estimate for a given pixel is missing, the monocular estimate is preserved.

3. When the stereo estimate for a given pixel isn’t considered reliable:

(a) if the two depth estimates are dissimilar then the monocular estimate is trusted more,

(b) otherwise the stereo estimate is trusted more.

In practice, these rules correspond to the following equation

Z(x,y) = Wc(x,y)
× Zs(x,y) +

(
1−Wc(x,y)

)
·
[(

1−Ws(x,y)

)
× Zm(x,y) +Ws(x,y)

× Zs(x,y)

]
(3.1)

where Z(x,y) is the final depth estimate of pixel (x, y), Zm(x,y) and Zs(x,y) are the monocular and stereo

estimates of pixel (x, y), respectively, Wc(x,y)
is a weighting factor dependent on the confidence of the

stereo map at pixel (x, y), andWs(x,y)
is a weighting factor dependent on the ratio between the monocular

and stereo estimates at pixel (x, y).

To calculate the first weighting factor, Wc(x,y)
, it was considered that since the stereo matching op-

eration works well for vertical edges, the confidence of the stereo depth estimate at a certain pixel is

related to the distance of that pixel to the closest edge in the image.

These edges were identified by applying a Canny filter [52] to the image. The output of this filter is 1

if the pixel belongs to an edge, and 0 otherwise, as is represented in Figure 3.4 (b).

The weighting factor Wc(x,y)
is given by

Wc(x,y)
=

1

1 + e0.25×d
(3.2)

where d corresponds to the distance in pixels between pixel (x, y) and the closest edge, until a maximum

distance of 5. A graphic representation is displayed in Figure 3.4 (c).

(a) RGB image (b) Output of Canny filter (c) Wc(x,y)
weighting factor

Figure 3.4: Graphic representation of the steps involved in the attainment of the Wc(x,y)
weighting factor.

In turn, the weighting factor Ws(x,y)
is simply given by
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Ws(x,y)
=


Zm(x,y)

Zs(x,y)
if Zs(x,y) > Zm(x,y)

Zs(x,y)

Zm(x,y)
if Zs(x,y) < Zm(x,y)

(3.3)

As stated earlier, the output of the CNN corresponds to a relative and inverted depth map. Therefore,

before the two depth estimates can be merged, the monocular depth estimate has to be scaled according

to the depth camera measurements. The adopted procedure corresponds to the one detailed in section

3.1.1, where the ground truth data is substituted by the depth camera measurements.

3.2 Detection and Localization of an Intruder UAV

The monocular and stereo vision fusion method presented in the previous section does not yield good

results for the distance estimation of an intruder UAV, since “floating objects” were not contemplated in

the training of the monocular depth estimation network. Therefore, a different method is needed to

localize intruder UAVs. Since the type of depth cameras that can be installed in UAVs have severe

limitations in terms of range, it was decided to use several cooperative UAVs, each equipped with a

monocular camera, for this task. Figure 3.5 illustrates the proposed architecture for the localization of a

target UAV.

Figure 3.5: Proposed architecture for the target localization method.

First, for each cooperative UAV that sees the target, the YOLOv3 [24] algorithm provides the respec-

tive target’s image coordinates. Then that information, along with the position and orientation of each

cooperative UAV, is used by a set of triangulation algorithms in order to estimate the target’s location.

To improve the estimated intruder UAV position, a Kalman filter was used after the triangulation step,

resulting in the final estimated target position.
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3.2.1 Visual Object Detection

Two criteria were used to select the visual detection algorithm to perform the target UAV’s detections:

accuracy and processing speed. To construct a real-time solution, the latter is required. The YOLOv3

algorithm was chosen because it offered a good compromise between both factors [53].

A PyTorch implementation of the algorithm1 was adopted. During the training of the network, a

technique known as transfer learning was used. Transfer learning is a machine learning technique in

which a model created for one task is used as the starting point for a model intended for a different task.

In this case, a model pre-trained on the MS COCO dataset [54], able to recognize objects of 80 different

classes, was used as the starting point to train the network to be able to detect target UAVs.

The Detfly dataset [40], which consists of more than 13,000 labeled images of a flying target UAV

(DJI Mavic2), was chosen for training. This dataset was selected because it includes a variety of realistic

scenarios with an assortment of background scenes, viewing angles, relative distances, flying altitudes,

and lightning conditions. Figure 3.6 presents some example images from this dataset. The images were

divided into training and validation sets in an 80/20 split.

Figure 3.6: Example images from the Detfly dataset [40].

3.2.2 Triangulation Algorithms

Triangulation algorithms [55] deal with the problem of finding the position of a point x ∈ R3 given

its projection u1, . . . ,un ∈ R2 in n images taken with cameras with known calibration and pose, that

is, with known camera matrices P1, . . . , Pn ∈ R3×4. For the triangulation to be possible, at least two

non-collinear detections are necessary.

In the absence of noise, the triangulation problem is trivial, since all rays will intersect. In practice

however, the rays will not generally meet in one single point. This may be due to uncertainties in relative

camera poses or intrinsics (i.e. errors in Pi), or to errors in the detection pixel coordinates (i.e. errors

in ui). Different methods exist that try to find the best point of intersection. In this thesis, three will be

discussed: the linear method, the midpoint method and the L2 method.

• Linear Triangulation

The linear triangulation algorithm, described in Hartley and Sturm [55] and Hartley et al. [56], is a

simple and efficient method to solve the triangulation problem.

1https://github.com/ultralytics/yolov3
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The projection of a point in space into an image plane is can be expressed in homogeneous coordi-

nates by

ũ = w(u, v, 1)T (3.4)

where (u, v) are the observed point coordinates in the image and w is an unknown scale factor. If we

denote by pT
i the ith row of the matrix P , then the projection equation for the pinhole camera ũ = P x̃

can be written as


wu = pT

1 x̃

wv = pT
2 x̃

w = pT
3 x̃

⇔

up
T
3 x̃ = pT

1 x̃

vpT
3 x̃ = pT

2 x̃

(3.5)

where the simplification comes from eliminating w using the third equation.

In summary, each detection results in two linearly independent equations. All these equations can

be combined in the form

Ax̃ = 0 (3.6)

with A ∈ R2n×4.

For example, for the two-view case where the detections are given by ũ = P x̃ and ũ′ = P ′x̃, matrix

A is given by

A =


upT

3 − pT
1

vpT
3 − pT

2

u′p′
T
3 − p′

T
1

v′p′
T
3 − p′

T
1

 ∈ R4×4 (3.7)

where two equations have been included from each detection, giving a total of four equations.

In the presence of noise, equation (3.6) does not have an exact solution. A common approach to find

an approximate solution is to use the Homogeneous method [44], which minimizes ||Ax̃|| subject to the

condition ||x̃|| = 1. This problem can be solved using Single Value Decomposition (SVD) [57].

Although this method is simple and computationally fast, solving the least square solution of equation

(3.6) can lead to large errors, since the minimized algebraic error is not geometrically meaningful [58].

• Midpoint Triangulation

The midpoint triangulation algorithm is described in Beardsley et al. [59] for the two-views case, and

further extended for the general case of n-views in Ramalingam et al. [60].

For every point of view i ∈ {1, . . . , n}, we can construct a detection ray that starts at the camera

position ci = −RT
i ti and passes through a point vi ∈ R3 given in homogeneous coordinates by ṽi =

P̃−1i ũi. We can write this detection ray as
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ri(ti) = ci + tidi (3.8)

with ti ≥ 0 and the direction vector di given by

di =
vi − ci
||vi − ci||

(3.9)

The midpoint triangulation algorithm determines the point x̂ which is closest on average to all rays,

that is

x̂ = argmin
x̂

n∑
i=1

d(x̂, ri)
2 (3.10)

where d(∗, ∗) denotes the Euclidean distance between a point and a line. In the two-view case, x̂

corresponds to the midpoint of the common perpendicular to the two rays.

Ramalingam et al. [60] provides a closed-form solution for x̂ via

x̂ =
1

n
(I3 +DDTA)

n∑
i=1

ci −A
n∑

i=1

didi
Tci (3.11)

where n is the number of detections, I3 is the 3 × 3 Identity matrix, D = [d1| . . . |dn] ∈ R3×n and the

matrix A ∈ R3×3 is given by

A = (nI3 −DDT)−1 (3.12)

The triangulation of a 3D point with the midpoint algorithm can then be carried out very efficiently,

using only matrix multiplications and the inversion of a symmetric 3× 3 matrix.

Unlike the linear method, the midpoint method minimizes an error that has physical meaning. How-

ever, since it operates in the Euclidean space, it does not recognize the projective properties of pinhole

cameras. Therefore, compared to methods that minimize the reprojection error, it might have a worse

performance in situations when some cameras are much closer to the target than others.

• L2 Triangulation

The two previous triangulation algorithms presented do not take into account the projective properties

of pinhole cameras. In contrast, the L2 triangulation method, outlined in Sturm and Hartley [61] and Chen

et al. [58], operates in the two-dimensional space of the image planes.

This method makes use of the fact that the image points ui are likely to be in the correct area of

the image plane, that is, they are a small distance from the ground truth detections. The goal of the L2

algorithm is then to find the x̂ that minimizes the reprojection error, which is corresponds to

x̂ = argmin
x̂

n∑
i=1

d(ui, ûi)
2 (3.13)

where d(∗, ∗) denotes the Euclidean distance between two points, and ûi = Pix̂.
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For two views, in Hartley and Sturm [55] the minimalization problem (3.13) is reformulated to finding

the roots of a polynomial of degree six, but for the general case with n ≥ 2 no linear solution exists. In

the general case, equation (3.13) can be rewritten as

x̂ = argmin
x̂

n∑
i=1

(
ui −

pi1:2 x̂

pi3 x̂

)2

(3.14)

where pi1:2 is the matrix containing the 1st and 2nd rows of matrix Pi and pi3 the 3rd row of the matrix Pi.

Equation (3.14) corresponds to a non-linear least squares problem, therefore is not solvable in a

trivial matter. A common approach to solve this problem is the Levenberg-Marquardt method [62].

Because it minimizes the reprojection error, the L2 method is expected to perform better than the two

methods previously mentioned in cases where some cameras are significantly closer to the target than

others. However, the minimization function (3.13) contains multiple minima [63], which the Levenberg-

Marquardt method is subject to. Therefore, a non-optimal solution may be found.
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Chapter 4

Simulations

This chapter presents the various simulations performed in order to evaluate the method for the

localization of a target UAV. It starts with an introduction on the AirSim Simulation Environment in section

4.1, and then describes the specifics of each simulation in section 4.2.

4.1 AirSim Simulation Environment

Due to the need for a photorealistic environment, the AirSim (Aerial Informatics and Robotics Sim-

ulation) platform [64], developed by Microsoft, was chosen to perform the simulations required to test

the algorithms presented in section 3.2.2. AirSim is an open-source simulator for drones and ground

vehicles, built on Unreal Engine. It supports physically and visually realistic simulations, necessary for

the use of a visual detector like YOLO.

One of the main purposes of AirSim is to function as a platform for AI research, deep learning and

computer vision. It also has the great benefit of hardware abstraction, making it possible to control the

simulated UAVs using simple custom Python or C++ scripts. This makes it very easy to define trajectories

and velocities for each UAV that respect its kinematic and dynamic constraints, for example. Scripts can

also be used to define what data should be recorded during the simulation, like the images captured by

the cameras and the pose of each UAV, as well as to start and stop the recording automatically.

4.1.1 Simulated Environment

Since AirSim was developed as an Unreal plug-in, it can be used with any Unreal environment.

Rather than creating an environment from scratch, the environment from the package City Park Environ-

ment Collection 1 was used for all simulations. Two example scenes from this environment are pictured

in Figure 4.1. It simulates a park and includes realistic features that are important for use with an object

detector like YOLO, for example trees and plants moving with the wind, clouds, and realistic lighting.

Since YOLO was trained on a dataset that features the DJI Mavic 2, the default UAV mesh present

in AirSim was altered to look like the DJI Mavic 2 as well. The simulated UAV is pictured in Figure 4.2.

1www.unrealengine.com/marketplace/en-US/product/city-park-environment-collection
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Figure 4.1: Two examples of scenes from the City Park simulated environment.

Figure 4.2: Simulated UAV.

4.1.2 Data Collection

The recording feature of AirSim allows the recording of data such as position, orientation, and veloc-

ity, as well as the images captured by each camera, at specified intervals. It also allows the recording

of segmentation images, which correspond to the RGB image seen by each camera, yet each object is

assigned a specific color.

For all simulations, it was recorded the position and orientation of all cooperative UAVs, the position

of the target, and the RGB images as seen by the front facing camera of each cooperative UAV. This data

was recorded with a frequency of about 4.5Hz. To make the simulation more realistic, error was added

to the pose of each cooperative UAV, simulating GPS and IMU inaccuracies. A zero-mean Gaussian

error with a standard deviation of 0.5m was added to the UAVs’ position, and a zero-mean Gaussian

error with a standard deviation of 2° was added to the UAVs’ orientation.

For the evaluation of the YOLO detector performance, segmentation images of the target were also

recorded, of which an example is pictured in Figure 4.3 (a). In these images the target appears as white

against a dark background, which allowed a script to be developed that obtains the accurate coordinates

of the target in each image, that later served as ground truth for the evaluation of YOLO on AirSim data.

Figure 4.3 (b) pictures the color image that corresponds to 4.3 (a), overlapped with a red box that

indicates the ground truth coordinates of the target in the image.
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(a) Segmentation image (b) RGB image and detection ground truth

Figure 4.3: Segmentation and corresponding RGB images, captured by the same camera. From the
segmentation image the groud truth for YOLO detections can be obtained (red box).

4.2 Trajectories/AirSim Simulations

This section presents a brief explanation of the different simulations that were executed in the AirSim

simulator. A simplified diagram of the types of simulations that were performed is presented in Figure 4.4.

In order to test the influence of different factors on the performance of the algorithms, three trajectories

for the target and cooperative UAVs were created. These fall under two distinct categories: moving

target, where the cooperative UAVs are stationary in relation to the environment and the target performs

a defined trajectory, and moving sensors, where the opposite is true.

Figure 4.4: Diagram of the AirSim simulations performed.
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4.2.1 Trajectory 1

The first trajectory falls under the moving target category, hence the two cooperative UAVs remain in

hover mode, stationary relative to the surrounding environment for the duration of the simulation, while

the target follows a predetermined zig-zag trajectory, flying at 5m/s. This is represented in Figure 4.5,

where the numbers indicate the cooperative UAVs and the letters indicate the target’s path.

(a) 3D view (b) View from the perspective of the cooperative UAVs

Figure 4.5: Trajectory 1, where two cooperative UAVs (1 and 2) are stationary and the target follows the
path A-B-C-D-E.

The target’s trajectory was designed to be parallel to the y-axis so that it keeps a constant distance

to the plane that contains the cooperative UAVs, indicated in Figure 4.5 (a) by ∆dT . The simulation

was then run for different values of ∆dT , ranging from 10m to 60m, in order to evaluate the relationship

between the distance to the target and the errors obtained in the triangulation.

The relationship between the sensor locations and the triangulation error obtained was also studied.

For this, the distance between the cooperative UAVs, indicated in Figure 4.5 (a) by ∆dC , was changed

across simulations, between a range of 5m to 35m.

The target’s trajectory involves a series of climbs and descents, hence the name zig-zag trajectory.

The purpose of this trajectory is to diversify the vertical detection location of the target, that is, to ensure

that the target passes through many different regions of the captured images, in order to better evaluate

the YOLO performance and have the captured data be more realistic.

In Figure 4.5 (b) are represented the two trajectory parameters, ∆h and ∆d. ∆h refers to the height

that the trajectory is performed at, and was chosen for each simulation in order to keep the target

detections either always above or below the horizon, with the purpose of better evaluating the YOLO

performance under these two different conditions. Additionaly, ∆d refers to the horizontal length of the

trajectory and was adjusted so that in each simulation, the target was always in the field of view of both

cameras, and the the cooperative UAVs could capture it during the entire maneuver.
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4.2.2 Trajectory 2

The second trajectory was developed with the purpose of studying the influence of the number of

cooperative UAVs on the target localization results. It also falls under the moving target category, and like

in the previous trajectory, the cooperative UAVs remain in hover while the target follows a predetermined

trajectory.

In this case, the target flies at 5m/s along a rectangular path, and for each simulation a different

number of cooperative UAVs, between 2 and 5, was used. The cooperative UAVs position themselves

according to two distinct configurations, called formation 1 and formation 2, which are represented in

Figures 4.6 and 4.7, respectively.

(a) 3D view (b) View from above

Figure 4.6: Trajectory 2 and formation 1, where the cooperative UAVs (1-5) are stationary and the target
follows the path A-B-C-D-A.

In the case of formation 1, the cooperative UAVs position themselves relatively close to each other,

along a circle centered around the target’s trajectory. This configuration is represented in Figure 4.6.

The number next to each UAV represents the order in which they are added to the group, so in the

simulation with two cooperative UAVs they will be positioned in positions 1 and 2, in the simulation with

three cooperative UAVs they will be positioned in positions 1, 2 and 3, and so on. UAVs 1 and 2 are

positioned in the extremities of the group so that the effect of adding more viewpoints without increasing

the maximum parallax angle between detections can be studied.

In the case of formation 2, represented in Figure 4.7, the cooperative UAVs position themselves

equally spaced along a circle centered around the target’s trajectory. Again, the number next to each

UAV shows the order in which they are added to the simulation. This configuration is intended to study

the effect that additional varied points of view have in the accuracy of the estimated location of the target.

4.2.3 Trajectory 3

The third and final trajectory was developed with the goal of studying the performance of the triangu-

lation algorithms when the distances between each cooperative UAV to the target are not similar to each
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(a) 3D view (b) View from above

Figure 4.7: Trajectory 2 and formation 2, where the cooperative UAVs (1-5) are stationary and the target
follows the path A-B-C-D-A.

other, that is, when some UAVs are much closer to the target than others. This trajectory falls under the

moving sensors category, meaning that the cooperative UAVs move throughout the simulation, while the

target remains in hover mode and is stationary in relation to the environment.

A depiction of trajectory 3 is present in Figure 4.8. As stated above, the target, represented by the

letter T, remains stationary. Two cooperative UAVs start at the same distance from the target, and move

according to a predetermined path: the first cooperative UAV moves from point A to point B, getting

closer to the target, while the second cooperative UAV moves in the opposite direction, from point C to

point D.

(a) 3D view (b) View from above

Figure 4.8: Trajectory 3, where the target (T) is stationary and two cooperative UAVs follow the paths
A-B and C-D.
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Chapter 5

Results

This chapter starts by presenting the results relating to the obstacle detection problem, in section

5.1. First, the performance of the monocular depth estimation network is discussed, and then the results

from the monocular and stereo depth fusion are presented. Subsequently, section 5.2 approaches

the outcomes of the target UAV localization. Initially, the performance of the YOLO object detector is

evaluated, and follows an analysis on the results obtained for each of the trajectory simulations. This

section finishes with a discussion on the overall performance of this method.

All the evaluation metrics discussed in this chapter are introduced in section 2.5.

5.1 Obstacle Detection for Small UAVs

In order to study the feasibility of using a monocular depth estimation network to complement the

measurements of a depth camera, the possible output of a depth camera was simulated from the ground

truth of the DIODE Dataset. For this, the ground truth measurements smaller than 10 meters, since that

is a common range for depth cameras commonly used in UAVs, were considered, and a Gaussian

zero-mean error with a standard deviation 0.1m was introduced.

A subset of the Diode dataset, containing 446 images, was used to evaluate the results of the fusion

of stereo and monocular depth estimates. For each image, a monocular depth prediction was gener-

ated, and subsequently it was aligned to the simulated depth camera measurements according to the

procedure described in section 3.1.1. Then, after the sky segmentation step, the monocular depth map

and the simulated stereo depth map were combined, following the procedure detailed in section 3.1.3.

All metrics presented in this section are detailed in section 2.5.1.

5.1.1 Monocular Depth Estimation

First, the performance of the monocular depth estimation network, when the ground truth is available

for alignment, was evaluated. As previously stated, the depth estimation CNN outputs a depth map that

is relative and inverted in relation to the ground truth, therefore before comparing the results obtained the

monocular estimate needs to be adjusted according to the steps described in section 3.1.1. Figure 5.1
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depicts the depth estimation network’s performance in regards to two example images from the Diode

dataset. The white regions of figures 5.1 (b) and (e) represent points for which there are no ground truth

measurement available.

(a) RGB image 1 (b) Ground truth (c) prediction

(d) RGB image 2 (e) Ground truth (f) Prediction

Figure 5.1: Monocular depth prediction results for two example images from the Diode Dataset [49].

The results of these two images illustrate a characteristic of the depth prediction network: the pre-

dicted depth maps are much less detailed than the original image, and small shapes with small details,

like the tree branches in Image 1, appear blurred. However, for objects with clear-cut edges, like the

buildings in Image 2, the contours of the predicted depth map are much more precise. Table 5.1 con-

tains the error metrics for these two predictions. As expected the prediction for Image 1, which contains

more detailed shapes, had worse results.

Table 5.1: Error metrics of the predicted depth map for two example images.

RMSE Absolute Relative Error
Threshold Accuracy

δ < 1.25 δ < 1.252 δ < 1.253

Image 1 8.83 0.721 0.489 0.692 0.786
Image 2 6.46 0.251 0.603 0.736 0.801

Figure 5.2 shows a graphical representation of the absolute error obtained for these two example

predictions. In these figures, blue tones indicate a smaller prediction error, and yellow tones indicate

the opposite. As predicted, for Image 1 the sections with the highest error correspond to the areas

surrounding the tree branches, due to the imprecision of the network when dealing with small details. For

Image 2 however, the region with the highest error corresponds to the furthest building. This illustrates

another characteristic of the depth prediction network: even after the alignment described in section

3.1.1 it tends to significantly underestimate how close far away objects are from the camera.
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(a) Image 1 (b) Image 2

Figure 5.2: Graphic representation of the depth estimation errors obtained. Blue represents smaller
errors, while yellow represents larger errors.

Table 5.2 presents the average error metrics for every image in the subset used for evaluation. As

expected, the results are similar to the ones presented in Table 5.1.

Table 5.2: Average error metrics of the predicted monocular depth map.

RMSE Absolute Relative Error
Threshold Accuracy

δ < 1.25 δ < 1.252 δ < 1.253

8.26 0.641 0.543 0.693 0.795

5.1.2 Fusion Results

In this section, the full method for monocular and stereo depth fusion is analyzed similarly to the

monocular depth estimation network in the previous section. Figure 5.3 illustrates the steps taken to

arrive at the final depth prediction. From the comparison of Figure 5.3 (d), which represents the monoc-

ular estimate, with the ground truth depicted in Figure 5.3 (b), it can be exemplified that the monocular

estimate has a tendency to underestimate the distance to faraway objects, like in this case the building

behind the cars. This is in agreement with the results from the previous section. Moreover, in Figure 5.3

(e) it can be observed that the sky segmentation step removed two regions from the estimate wrong-

fully. One of the “holes” in the monocular estimate was filled in Figure 5.3 (f) since there were depth

camera measurements for that area of the image, however the other “hole” remained. Situations like

this happened in several instances and could probably be avoided with the use of a more precise sky

segmentation algorithm.

Finally, it can be seen from the qualitative comparison of Figures 5.3 (c) and (f), depicting the depth

camera simulated measurements and the final depth estimate respectively, that the final depth map is

much more full than the stereo depth map.

More examples of results obtained with this method are pictured in Figure 5.4. Overall, there was

an average 21.16% increase in the number of pixels with depth information for all the evaluated images.
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(a) RGB image (b) Ground truth

(c) Simulated depth camera output (d) CNN output after alignment

(e) CNN output after sky removal (f) Final depth map

Figure 5.3: Representation of the steps taken for the obtainment of the final estimated depth map.

Again, this number could presumably be increased with the use of a more precise sky segmentation

step, since in several instances pixels erroneously classified as sky are removed from the monocular

estimate.

The results obtained for the set of images used for evaluation are shown in Table 5.3. The increase

in the errors seen from Table 5.2 to Table 5.3 can be explained by the worse alignment of the monocular

estimate in the latter case, since when only measurements of a depth camera are available, there is a
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Figure 5.4: Qualitative results on some example images. From left to right, the RGB image, the simulated
depth camera output and the final predicted depth map.

clear bias in the depths of the points available to perform the monocular estimate alignment.

Table 5.3: Average error metrics of the final predicted depth maps.

RMSE Absolute Relative Error
Threshold Accuracy

δ < 1.25 δ < 1.252 δ < 1.253

9.51 0.385 0.524 0.648 0.762
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5.2 Target UAV Localization

This section presents the results obtained with the data collected during the simulations explained in

section 4.2. It starts by presenting the results relative to the YOLO detector performance on the AirSim

environment, in subsection 5.2.1. Then, it continues with an analysis of the influence of the distance to

the target, as well as the distance between the cooperative UAVs, on the results obtained, in subsection

5.2.2, followed by a comparison of the results obtained for different numbers of cooperative UAVs, in

subsection 5.2.3. Finally, the influence of the relative distance between cooperative UAVs to the target

on the results obtained is also presented, in subsection 5.2.4.

5.2.1 YOLO Detector

YOLOv3, presented in section 2.2, is the algorithm responsible for detecting the target in the camera

images of each cooperative UAV. As mentioned in section 3.2.1, the YOLOv3 network was trained on

the Detfly dataset [40]. It was then tested on a selection of representative data collected on the AirSim

simulator, with the objective of ascertaining how well the acquired knowledge translated into the simu-

lated environment. The collected data included images with the target UAV in various positions on the

screen and at various distances away from the camera, as well as the true position of the target so that

the detections could be evaluated.

The following F1-score and precision-recall (P-R) curves were obtained, and are presented in Figure

5.5 (a) and (b), respectively.

(a) F1-score curve (b) P-R curve

Figure 5.5: YOLO detector F1 score and P-R curves, with the highest F1-score point represented by a
red dot.

The F1-score, as explained in detail in section 2.5.2, is a measure of a model’s accuracy on a

dataset. Figure 5.5 (a) represents the F1-score of the model as a function of its confidence threshold.

As can be seen from the figure, the highest F1-score achieved is 60%, for a confidence value of 0.6.
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Therefore it can be concluded that this is the confidence threshold value for which the model has the

best performance.

This point, indicated by the red dot in Figure 5.5 (b), corresponds to a precision of 65% and a recall

of 53%.

In order to compare the performance of the YOLO detector in the cases where the target is above or

bellow the horizon, simulations were run following the trajectory 1 template, explained in detail in section

4.2.1. In these simulations, two cooperative UAVs, separated 10m from each other, captured images of

the target as it followed a zig-zag trajectory. The distance from the target to the cooperative UAVs was

varied between 10m and 60m, and the height at which the target flew was chosen in order to keep the

target either always above or below the horizon. The results obtained are represented in Figure 5.6.

(a) Recall of the YOLO detector (b) Precision of the YOLO detector

Figure 5.6: Performance of the YOLO detector on the trajectory 1 simulations.

This figure presents a stark contrast between the performance of the YOLOv3 algorithm when the

target is above or bellow the horizon, both in terms of recall and precision. In the above-horizon sim-

ulations the recall was above 90% across all target distances, and therefore the algorithm could detect

the target in the majority of cases. However, in the bellow-horizon simulations there was a dramatic

decrease in true target detections, especially as the distance to the target increased. At the highest

distance of 60m, the target was never detected bellow ground.

Contrary to what might be expected, the recall for a target distance of 10m is smaller than for a larger

distance of 20m. This might be a consequence of the lack of images in the Detfly Dataset that depict

the UAV at closer distances to the camera, compared to images where the UAV is farther away.

As for the differences in precision, in both experiments the cameras were in the same pose, therefore

the higher precision in the above horizon case comes from the higher number of true positives that were

detected, that is, since the target was correctly detected more times, the false detections were much

more diluted among the true ones.

The results of Figure 5.6 (b) might lead to the conclusion that, in the bellow-horizon scenario, YOLO

had more false detections than in the above-horizon scenario. However, a closer inspection reveals that

in both cases, since the cameras were in the same pose, YOLO mistook similar amounts of ground clutter
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for the target. The difference in precision might then be explained by the lower number of detections, true

and false, in the bellow-horizon simulations, that caused the false detections to be a higher percentage

of the detections overall.

Due to the much higher performance of the YOLO detector in the above-horizon scenario, all subse-

quent simulations were made with the target above the horizon for all the cameras involved.

5.2.2 Trajectory 1 Simulations

As explained in section 4.2.1, the trajectory 1 simulations had the cooperative UAVs stationary, while

the target followed a predetermined zig-zag trajectory. The simulation was repeated several times with

the target at different distances from the cooperative UAVs, as well as with the two cooperative UAVs at

different distances apart from each other.

After the detection data was collected for each simulation, the triangulation algorithms were run 20

times with a random position and orientation error, as detailed in section 4.1.2, and the RMSE for the

estimated target position was collected. Figure 5.7 shows the average RMSE obtained with each of the

triangulation algorithms considered, for each simulation. So as to increase the readability of the graphs,

the z-axis is in a logarithmic scale.

As we can see from the figure, when the distance between the two cooperative UAVs is small in

comparison to the distance between the two UAVs and the target, the error obtained is very large.

Therefore, to accurately position a target that is far away, the cooperative UAVs should be as far away

from each other as possible, in order to capture varied points of view.

In almost all simulations, the midpoint triangulation algorithm obtained the best results. The linear

triangulation algorithm was the second best, closely followed by the L2 triangulation algorithm. However,

the difference is the most relevant in the yellow portions of the graphs, where the target is located far

away from the cooperative UAVs and these are positioned close together. Here, the midpoint algorithm

clearly outperformed the other two. In the worst case, with the cooperative UAVs separated by only 5m,

and 60m away from the target, the error obtained with the midpoint algorithm (53.4m) was less than half

the error obtained with the linear (158.4m) or L2 (172.9m) algorithms. Although these errors are too

large for any real application in these conditions, they serve to illustrate some of the differences between

the three triangulation strategies.

In the conditions corresponding to the blue areas of the graph, an application of these algorithms

is much more realistic. In the best case scenario, the linear, midpoint and L2 algorithms obtained an

average RMSE of 1.43m, 1.42m and 1.41m respectively.

Figure 5.8 depicts an example of the estimated target trajectory, for the case where the distance to

the target was 30m, and the cooperative UAVs were separated by 15m. This example illustrates how the

obtained error is distributed: the estimated target position is much more accurate in the xz-plane, which

corresponds to the cameras image plane, than in the y-direction, which corresponds to the direction that

the cameras are facing. Judging from these results, the position estimate along the y-axis could possibly

be improved with the addition of target detections from different points of view in regards to the target’s
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(a) (b)

(c)

Figure 5.7: Average RMSE obtained as a function of the distance to the target, and the distance between
the two cooperative UAVs, for each algorithm: (a) linear triangulation, (b) midpoint triangulation and (c)
L2 triangulation.

position in the y-axis.

(a) In the xz-plane (b) Along the y-axis

Figure 5.8: Real and estimated target trajectory for the trajectory 1 simulation where the distance to the
target was 30m, and the cooperative UAVs were separated by 15m.
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5.2.3 Trajectory 2 Simulations

The effect of the number of cooperative UAVs on the obtained results was also studied, making use

of the trajectory 2 simulations detailed in section 4.2.2. As explained previously, all cooperative UAVs

were stationary for the duration of the simulation, while the target followed a predetermined rectangular

path. Configurations with a different number of cooperative UAVs, positioned according to two different

dispositions, were examined. The target was at an average distance of 30m from the cooperative UAVs.

Similarly to the previous case, the results for this experiment were obtained by running the triangu-

lation algorithms 20 times with a random position and orientation error for the cooperative UAVs, and

the RMSE for the estimated target position during the trajectory was collected. The results obtained are

presented in Figure 5.9.

(a) Formation 1 (b) Formation 2

Figure 5.9: Results obtained for the trajectory 2 simulation, with the cooperative UAVs disposed accord-
ing to two different formations.

Figure 5.9 (a) refers to the RMSE obtained with formation 1, where the cooperative UAVs are posi-

tioned close to each other. For this case, the initial two cooperative UAVs are located 10m apart from

each other, and subsequent UAVs are added between them so as not to increase the maximum angle

between detections. The purpose is to study the benefit of adding additional UAVs independently from

the effect of having additional distinct points of view, which is the case when the cooperative UAVs are

placed farther apart.

The results in this figure seem to indicate no meaningful performance increase as a result of the

extra UAVs. A closer inspection revealed that the benefit of having more sensors is outweighed by the

higher probability of having some detections that are not perfectly centered around the target, since

when the detections are close to parallel, even small inaccuracies in the detection coordinates can lead

to considerable errors in the estimated target position. This effect might be mitigated by training the

YOLO detector to provide more accurate detections, that is, bounding boxes that are centered around

the target more accurately.

Figure 5.9 (b) refers to the RMSE obtained with formation 2. In this formation, the cooperative

UAVs surround the target in a circle, with the aim of analyzing the benefit of additional points of view
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for the triangulation of the target location. In this case, as expected, with the increase in the number

of cooperative UAVs the error decreases. Even though with more cooperative UAVs there is a higher

probability that at a certain time step, there will be some detections that are not perfectly centered around

the target, the additional points of view are sufficient to improve results. Since in this circumstance

the detection directions are not close to being parallel with each other, small errors in the detection

coordinates do not affect the final estimated position as significantly.

Nonetheless, it can be infered that increasing the number of cooperative UAVs seems to have a

diminishing return, since the biggest performance gain happens with the increment from two to three

cooperative UAVs, and after that any additional increases lead to smaller improvements. Additionally,

it can also be concluded that in this case the discrepancies observed between the three triangulation

algorithms are not very significant.

Figure 5.10 depicts two examples of the estimated target trajectory, where the detections were made

by two and five UAVs positioned according to formation 1. These examples illustrate how the estimated

trajectory is affected by an increase in the number of cooperative UAVs capturing very similar points of

view.

(a) With 2 cooperative UAVs (b) With 5 cooperative UAVs

Figure 5.10: Real and estimated target trajectory for the trajectory 2 and formation 1 simulation.

As can be seen from the figure, with two cooperative UAVs the estimates from the three triangulation

algorithms are very similar. As expected, the error along the y-axis is more significant, since that is the

direction that all cameras are facing. Additionally, the error is larger in the segment of the trajectory with

y=40m, since that is the point where the target is the farthest away from the sensors.

A similar effect can be seen in the case with five cooperative UAVs performing the target detections.

However, in this case there is a larger difference between the results of the three triangulation algorithms,

with the linear algorithm performing the best. This seems to indicate that when the target detections are

close to parallel, errors in the target detection coordinates or in the cooperative UAVs’ pose have a large

influence on the final estimated target position, in a way that highlights the differences between each

algorithm.

Figure 5.11 illustrates two examples of the estimated target trajectory, where this time the detections

were made by two and five UAVs positioned according to formation 2. These examples showcase how
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the estimated target trajectory is affected by an increase in the number of viewing angles captured by the

cooperative UAVs. In this case, the estimated trajectory improves with the larger number of UAVs seeing

the target. Furthermore, since the predictions are more accurate the difference between the results of

the three triangulation algorithms is not as pronounced.

(a) With 2 cooperative UAVs (b) With 5 cooperative UAVs

Figure 5.11: Real and estimated target trajectory for the trajectory 2 and formation 2 simulation.

5.2.4 Trajectory 3 Simulations

The third and final trajectory has the goal of studying the difference in performance of each triangu-

lation algorithm when the relative distances between each cooperative UAV to the target change. As

explained in section 4.2.3, in this trajectory two cooperative UAVs change their distance to the target,

one moving closer to it and the other moving in the opposite direction.

If we consider that UAV number 1 is moving towards the target and UAV number two is moving away,

we can define the ratio of their respective distances as

Dratio =
d2
d1

(5.1)

where d1 and d2 are the distance from UAVs 1 and 2, respectively, to the target. This ratio quantifies

how much closer one UAV is to the target than the other. The change of Dratio over the course of the

trajectory is plotted in Figure 5.12 (a). At the start of the simulation, both cooperative UAVs are at the

same distance from the target, therefore Dratio = 1. As the simulation progresses, this difference in

respective distances increases until UAV 1 is 9 times closer to the target than UAV 2.

Figure 5.12 (b) depicts the error of each of the three triangulation algorithms throughout the simula-

tion. At the start of the trajectory the midpoint algorithm obtained the best results, which is in agreement

with the results for trajectory 1. However, as Dratio increases, the difference in performance between the

algorithms becomes less apparent, and at the end of the trajectory all algorithms have a very comparable

performance.

The maximum value of Dratio is limited by the ability of the furthest away cooperative UAV to detect

the target. It would be expected that the L2 triangulation algorithm would outperform the other two when
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(a) Cooperative UAVs Distance Ratio (b) Error obtained

Figure 5.12: Results obtained for the trajectory 3 simulation.

some sensors are much closer to the target than others, since it minimizes the reprojection error as

detailed in section 3.2.2. However, the maximum value of Dratio does not seem to be high enough to

see this effect.

5.2.5 Discussion

The YOLOv3 algorithm trained on the Detfly dataset was able to adequately detect the target when it

was above the horizon. The discrepancy in performance when the target was below the horizon might be

due to the lower constrast between the target and the background in this case, as well as differences in

the drone’s appearence between the real photographs in the dataset used for trainning and the images

captured in the AirSim simulations, which can be more significant in situations of lower contrast.

As for the triangulation algorithms, the midpoint algorithm seems to produce the most accurate re-

sults in the majority of the situations studied. In addition, it is a simple and fast algorithm to implement,

which makes it a good candidate for the target UAV localization problem.

The L2 algorithm proved to not be advantageous in the range of realistic cooperative UAV positions.

Although it is meant to have a better performance in comparison with the others when some sensors are

significantly closer to the target than others, due to the limitations in the distance that the cooperative

UAVs can be away from the target while still being able to detect it that effect seemed to not be significant.

Finally, some recommendations can be made to improve the estimated target’s position accuracy.

First, the cooperative UAVs should be as far away from each other as realistically possible, so that they

can capture varied points of view. Additionally, they should position themselves in a way that surrounds

the target, in order to reduce the estimation error in all axis. Furthermore, increasing the number of

cooperative UAVs seems to have a benefit, but not if they are positioned in high proximity to each other.
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Chapter 6

Conclusions

6.1 Findings

This thesis provides a multi-sensor methodology for UAV obstacle detection, as well as for the local-

ization of an intruder UAV, taking advantage of current deep learning algorithms.

The examined results suggest that there is a benefit in using the presented method for the fusion of

monocular and stereo depth, in order to use monocular depth estimation to complement the measure-

ments of a depth camera for UAV obstacle detection. This method is specially usefull when it comes

to filling in the gaps in the depth map provided by the depth camera due to the obstacles being out of

range. This improves the information available to be used by an obstacle avoidance algorithm, for in-

stance. Having information about potential obstacles at greater distances can allow the UAV to fly faster,

for example.

In regards to the target UAV detection, the results also look promising in that monocular cameras are

suitable sensors to detect and localize an intruder UAV. First, the YOLO detector was shown to be ca-

pable of performing the task of detecting a flying UAV above the horizon, and recommendations on how

to improve its performance bellow the horizon were made. This research also evaluated three different

triangulation algorithms in different scenarios. These are the linear triangulation, the midpoint triangu-

lation, and the L2 triangulation methods. It was concluded that the midpoint triangulation algorithm is

the most appropriate for the task from among those considered. It also presented suggestions of how

to minimize the target position error obtained, both in terms of improved YOLO training and cooperative

UAV positioning.

6.2 Future Work

In regards to the monocular and stereo depth fusion method, future steps would include more thor-

ough evaluation, which could be performed with data from the AirSim simulation environment, as well

as evaluation onboard a UAV in real time. Further work could also include the integration of this method

with an obstacle avoidance algorithm.
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When it comes to the intruder UAV localization, potential future work includes improvements in the

YOLO detector training, both in terms of increasing its detection capabilities below the horizon and also

in augmenting its bounding box precision, in order to reduce the error introduced in the triangulation

algorithms. Additionally, the creation of a dynamic region of interest where the target is expected to

be in the captured images, based on previous localization results, would allow YOLO to run faster and

therefore increase the results precision.

Further work for both methods could also include the algorithms optimization for performance on an

onboard computer, and proving their real time capabilities.
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[6] C. Stöcker, R. Bennett, F. Nex, M. Gerke, and J. Zevenbergen. Review of the current state of uav

regulations. Remote sensing, 9(5):459, 2017.

[7] Guardian. Gatwick drone disruption cost airport just £1.4m. https://www.theguardian.com/

uk-news/2019/jun/18/gatwick-drone-disruption-cost-airport-just-14m. Accessed: 2021-

10-10.

[8] T. Age. Prisons struggle to swat drug-smuggling drones. https://www.theage.com.au/national/

victoria/prisons-struggle-to-swat-drug-smuggling-drones-20201115-p56ep1.html. Ac-

cessed: 2021-10-10.

[9] X. Yang, J. Chen, Y. Dang, H. Luo, Y. Tang, C. Liao, P. Chen, and K.-T. Cheng. Fast depth prediction

and obstacle avoidance on a monocular drone using probabilistic convolutional neural network.

IEEE Transactions on Intelligent Transportation Systems, 2019.

[10] D. Wang, W. Li, X. Liu, N. Li, and C. Zhang. Uav environmental perception and autonomous obsta-

cle avoidance: A deep learning and depth camera combined solution. Computers and Electronics

in Agriculture, 175:105523, 2020.

47

https://www.theguardian.com/uk-news/2019/jun/18/gatwick-drone-disruption-cost-airport-just-14m
https://www.theguardian.com/uk-news/2019/jun/18/gatwick-drone-disruption-cost-airport-just-14m
https://www.theage.com.au/national/victoria/prisons-struggle-to-swat-drug-smuggling-drones-20201115-p56ep1.html
https://www.theage.com.au/national/victoria/prisons-struggle-to-swat-drug-smuggling-drones-20201115-p56ep1.html


[11] D. Martins, K. Van Hecke, and G. De Croon. Fusion of stereo and still monocular depth estimates

in a self-supervised learning context. In 2018 IEEE International Conference on Robotics and

Automation (ICRA), pages 849–856, 2018. doi: 10.1109/ICRA.2018.8461116.

[12] L. Teixeira, M. R. Oswald, M. Pollefeys, and M. Chli. Aerial single-view depth completion with image-

guided uncertainty estimation. IEEE Robotics and Automation Letters, 5(2):1055–1062, 2020.
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