
A Procedural Quest Generator for Mount & Blade II:
Bannerlord

Marco António dos Santos Cabral

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Pedro Alexandre Simões dos Santos
Prof. João Miguel de Sousa de Assis Dias

Examination Committee

Chairperson: Prof. Mário Jorge Costa Gaspar da Silva
Supervisor: Prof. Pedro Alexandre Simões dos Santos

Member of the Committee: Prof. Carlos António Roque Martinho

November 2021

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

I would like to first give my thanks to my dissertation professors Pedro Santos and João Dias for

giving me the opportunity to face this difficult project. The guidance, insights and advice they provided

proved indispensable for the development of this project and the constant feedback helping improve it.

To my parents, I would like to express my deepest gratitude, for being there for me with constant

support, in the ups and downs, through all the tears and laughs. For teaching me to fight for what I want

to accomplish and for staying by my side throughout the whole journey and for helping me to finally see

the end of it, so a new one can be started.

I would like to thank my family for their unconditional support no matter the distance and hardships

we faced. To my aunt, Lilina and my grandfather, Raul, whom I won’t be able to see anymore, a final

thank you for the constant support and encouragement in pursuing higher education.

To my friends and colleagues, thank you for your support as well. For always being there to listen to

my complaints and for helping me laugh them off every time.

And last but not least, a special thanks to the colleagues that joined me on this journey, David

Ricardo, Filipe Silveira, Joaquim Quadrado and Marcos Pêgo. The mutual help we provided each other

and comradeship pushed all our thesis to become great projects.

To each and every one of you – Thank you.

i

Abstract

We propose for a procedural quest generator for the game Mount & Blade II: Bannerlord. Although

Bannerlord is a game that already has a questing system, the quest it presents are repetitive, leading to

a gameplay experience with a tendency to become dull. With the procedural quest generator, we aimed

to implement a questing system that can create an almost endless amount of quests that seem different

from one another, providing the player with a prolonged and varied experience. This generator can also

allow for a lower cost of production when creating quests since a game developer wouldn’t have to spend

so much time creating every single individual quest. The implemented system was based on a group of

grammar rules that were inspired by the work developed by Doran and Parberry for quest generation.

We will also analyze the different state-of-the-art engines made towards interactive storytelling to make

sure the developed quests are coherent and believable in the storyline of the game. To properly evaluate

the developed system, we conducted user tests and published the resulting mod online. These tests,

which evaluated the quality and enjoyment of the quests, showed that our system was able to generate

quests that could be enjoyed by players and presented a quality comparable to the Bannerlord quests.

Keywords

Mount & Blade II: Bannerlord; Procedural Generation; Quests.

iii

Resumo

Proposta para um gerador de quests procedimental para o jogo Mount & Blade II: Bannerlord. Em-

bora Bannerlord seja um jogo que já possui um sistema de missões, as missões que apresenta são

repetitivas, levando a uma experiência de jogo com tendência de se tornar monótona. Com o gerador

de missões procedimentais, pretendemos implementar um sistema de missões que pode criar uma

quantidade quase infinita de missões que parecem diferentes umas das outras, proporcionando ao jo-

gador uma experiência prolongada e variada. Este gerador também pode permitir um menor custo de

produção ao criar missões, já que um programador de jogos não teria que gastar tanto tempo a criar

cada missão individual. A nossa principal inspiração será o trabalho anterior desenvolvido por Doran

e Parberry. Também analisaremos os diferentes engines de última geração desenvolvidos para a nar-

rativa interativa para garantir que as missões desenvolvidas sejam coerentes e verossı́meis no enredo

do jogo. Estes testes, que avaliaram a qualidade e a satisfação das missões, mostraram que o nosso

sistema era capaz de gerar missões que podiam ser apreciadas pelos jogadores e apresentavam uma

qualidade comparável às missões do Bannerlord.

Palavras Chave

Mount & Blade II: Bannerlord; Geração Procedimental; Missões;

v

Contents

1 Introduction 1

1.1 Problem Definition and Thesis Goals . 3

1.2 Organization of the Document . 4

2 Related Work 5

2.1 Doran and Parberry’s Prototype Quest Generator . 7

2.2 Towards a Procedurally Generated Experience: A Structural Analysis of Quests 8

2.3 Procedural Quest Generator for Conan Exiles . 11

2.4 Quest Generation and Interactive Storytelling . 13

2.4.1 Mimesis . 14

2.4.2 CONAN . 16

2.4.3 IMPRATical . 18

3 The Game - Mount & Blade II: Bannerlord 23

3.1 Bannerlord Quest System . 26

3.2 Modding in Bannelord . 29

3.2.1 Harmony . 29

4 Bannerlord Quest Generator - BQG 31

4.1 A General Overview . 33

4.2 The Generator module . 37

4.2.1 Quest Generator Algorithm . 38

4.2.1.A CreateQuest algorithm . 38

4.2.1.B Expand algorithm . 39

4.2.1.C WeightedChoice algorithm . 41

4.2.1.D UpdateWeights algorithm . 42

4.2.1.E BindParameters algorithm . 43

4.2.2 Subquests . 46

4.2.3 Alternative way to complete a quest . 48

4.3 The Instantiator module . 49

vii

4.4 The Monitor module . 54

4.4.1 Save and Load system . 58

5 Evaluation 59

5.1 Metrics . 61

5.2 Nexus Mods publication . 62

5.2.1 Mod advertisement . 63

5.2.2 Mod Community . 64

5.3 User Tests . 64

5.3.1 Procedure . 65

5.3.2 Results . 66

5.3.2.A Demographics . 66

5.3.2.B Quest Quality . 66

5.3.2.C Quest Length . 67

5.3.2.D Quest Cohesion . 67

5.3.2.E Quest Step Clarity . 68

5.3.2.F Quest Description Clarity . 69

5.3.2.G Quest Dialogue Immersion . 70

5.3.2.H Quests made by humans . 70

5.3.2.I Quest Enjoyment . 71

5.4 Discussion . 73

6 Conclusion and Future work 75

6.1 Future Work . 77

Bibliography 79

A Questionnaires 83

A.1 Nexus Mod Questionnaire . 83

A.2 User Test Questionnaire . 96

viii

List of Figures

2.1 Example tree quest generated by the system [3] . 8

2.2 Table with all the actions and their conditions, added changes in bold [6] 9

2.3 Table with all the motivations and respective strategies, added changes in bold [6] 10

2.4 Table with all the rules and respective actions, added changes in bold [6] 11

2.5 Conan Exiles Quest Example [5] . 13

2.6 Mimesis Virtual Aquarium [9] . 15

2.7 Aladdin world Character Preference [1] . 17

2.8 Example quests with their respective NPC motivation [1] 18

2.9 Example plan to solve the need for wheat [1] . 19

2.10 Graph of how the best actions are decided [11] . 21

3.1 Mount & Blade II: Bannerlord Gameplay example . 25

3.2 NPC’s with a quest . 26

3.3 Quest Management Screen . 27

3.4 Class Diagram . 28

4.1 Diagram of the implemented system . 34

4.2 Table with all the rules and respective actions . 35

4.3 Table with all the motivations and respective strategies . 36

4.4 Table with all the actions and their conditions . 36

4.5 Set of weights used by the generator . 41

4.6 Parameter values used . 45

4.7 Two small Example quests generated by the module . 46

4.8 Simplified quest tree with a subquest . 47

4.9 Alternative way to complete a quest in game . 48

4.10 Simplified quest tree with an alternative way . 49

4.11 Quest description and title example . 53

ix

4.12 Accepting a new quest . 53

4.13 Motivation and general description example for an NPC with Conquest Motivation and

Attack Enemy Strategy . 54

4.14 Step by step description of a quest . 54

4.15 Quest on the quest screen . 57

4.16 Quest state after completing a step . 57

5.1 Plot Lords logo on the Nexus Mods website . 62

5.2 Plot Lords statistics in the Nexus mods website . 64

5.3 Example of a comment left as feedback . 64

5.4 User Test Procedure . 66

5.5 Quests Length opinion . 67

5.6 Quests Cohesion opinion: 0 - The steps to complete the quest were very messy and

didn’t make sense; 1 - Most steps made sense, but a few of them didn’t seem to fit in; 2 -

Structurally sound, each step being believable and making sense for it to be 68

5.7 Quest Step Clarity opinion: 0 - None of them were clear on what I needed to accomplish

to complete them; 1 - Just a few of them were clear and most of them were confusing;

2 - Most of them were clear, but some of them were a bit confusing; 3 - Clear on what I

needed to accomplish . 69

5.8 Quests Description Clarity opinion . 69

5.9 Quest Dialogue Immersion opinion . 70

5.10 Opinion on ”Were the quests made by humans?” . 71

5.11 Opinion on Quest Enjoyment without order . 72

x

1
Introduction

Contents

1.1 Problem Definition and Thesis Goals . 3

1.2 Organization of the Document . 4

1

2

Gaming has been an ever-increasing market, with each year getting more and more players. With

this increase in demand, game companies have been spending even more time and funds creating their

games than before, however, the consumption of the content present in the games is much faster.

This situation can be especially verified in the Open World Role Playing Games(RPGs) genre of

games. This genre gives the player the possibility to play as a character or more from the game world

that must complete quests, that might be connected or not, and follow the general story to reach an

end goal and the conclusion of the storyline. The players can also develop their characters through the

several decisions presented to them.

These genres are known for being content-heavy, with lots of non-playable characters (NPC’s) to-

gether with a vast open-world to explore. All of this is used to create both the main quests and side

quests of the game. The problem starts when a player completes all the quests and accomplishments

(like collectibles) available to him, since it makes the replay value of the game decrease substantially.

This makes these genres of games some of the perfect candidates to implement a Procedural Quest

Generation System.

With the use of automatically generated quests, the players can both enjoy an almost endless game

experience, and also replay the game without repeating the same quests over and over again. This also

allows the developers to spend less time writing countless quests and more time refining other areas

of the game. With this automatic generation of content, we can furthermore learn the player gameplay

preferences, desires, abilities, and such and have the content presented to them adapted, possibly

giving them a more personalized experience.

1.1 Problem Definition and Thesis Goals

One example of the kind of game talked about above is Mount & Blade II: Bannerlord (commonly referred

to as only Bannerlord). Bannerlord is an Open-World, RPG type of game part of the Mount & Blade

series with a medieval setting, where the player moves its character through the virtual world, completes

quests (or missions) and conquers towns and villages to achieve its goal. At the time of writing this

thesis, it possesses a somewhat limited and repetitive questing system. Each game day, a random

number of quests are randomly chosen and applied to the NPC’s that can receive them, for the player to

complete or ignore. Although this allows for an endless experience for the player, since even though the

main quest ends, the side quests are continuously assigned, it quickly becomes repetitive and tedious.

This is a situation that might however change or improve, since the game is still in development.

So one of the goals here is to have a system that creates somewhat interesting quests, that present

more variation in both type and structure, through the use of an automated algorithm that the game can

then read and transcribe to in-game quests in order to lower the production costs of the quests while

3

maintaining a similar quality to the quests that are manually created. To accomplish this, we took a look

at procedural quest generation systems to better understand how we can apply this concept to the game

Bannerlord.

We analyzed other procedural quest generation systems, and we inspired ourselves in the work done

by Jonathan Doran and Ian Parberry [3] with the modifications applied by António Machado [6]. This

work is a quest system based on RPG games that presents a lot of quest variation, and we made an

adaptation of it to apply in the game Mount & Blade II: Bannerlord.

1.2 Organization of the Document

This thesis is organized as follows: In Chapter 2, Related Work, we review the main work used on this

thesis and the modifications done to it. We also review some storytelling systems. In the next chapter,

Chapter 3, The Game - Mount & Blade II: Bannerlord, we focus on the target game of this thesis, its

architecture and how the modding of the game works. Afterwards, we have Chapter 4, Bannerlord Quest

Generator - BQG. In this chapter, we talk and show the system we implemented on the target game.

Next, in Chapter 5, Evaluation, we present the results of the tests we made to assess the quality of our

system. Finally, we reach Chapter 6, Conclusions and Future Work, where we discuss the test results,

conclude this thesis and talk about possible future work.

4

2
Related Work

Contents

2.1 Doran and Parberry’s Prototype Quest Generator . 7

2.2 Towards a Procedurally Generated Experience: A Structural Analysis of Quests . . 8

2.3 Procedural Quest Generator for Conan Exiles . 11

2.4 Quest Generation and Interactive Storytelling . 13

5

6

The focus of this work will be procedural quest generation, so we first need to define what a quest

is. A quest or mission is a task given to a player, and it’s usually found within role-playing games.

These tasks create some sort of challenge the player needs to overcome to reach a goal and receive

a reward. From the point of view of the author of the game, a quest will introduce much of the difficult

aspects of gameplay and give the players concrete goals. From the player’s point of view, the quest

is a storytelling feature that tells them about the world and helps the player to acquire knowledge and

control. Procedural generation is a means of creating data algorithmically rather than manually, using a

combination of human-generated materials and algorithms, as well as computer-generated randomness

and processing power. Let’s now look at the work that had the most influence on this thesis.

2.1 Doran and Parberry’s Prototype Quest Generator

According to Doran and Parberry’s work on a prototype quest generator derived from the analysis of

quests from MMORPGs (Massively Multiplayer Online Role-Playing Game) [3] a procedural quest gen-

eration system has the potential to increase the variability and replayability of games, leading to an

increase in player interest in these games, since there is never a moment where the player has ex-

perienced and completed everything in the game. Through the analyses of almost 3000 quests from

several games, Doran and Parberry concluded that even human-authored quests display significantly

less structural variety than one might expect. By exploiting this common structure between the quests,

they were able to show a prototype system that procedurally generates random quests appropriate to

be used in RPGs.

The quests analyzed by Doran and Parberry fit into 9 different motivations: Knowledge, Comfort,

Reputation, Serenity, Protection, Conquest, Wealth, Ability, and Equipment. These motivations corre-

spond to the most important concern an NPC has, and the goal of a quest created by the prototype

system would be to resolve this concern. Has the game progresses, this motivation would change

according to the NPC, with the player having a high influence on this change. The motivations have

associated to them strategies that, through the use of actions, dictate how a quest should be followed in

order to reach the goal.

When an NPC delivers a quest to the player, it chooses from 2-7 specific strategies determined by

their current motivation. Each strategy is described by a verb-noun pair: ’kill pests’, ’steal supplies’,

’rescue NPC’, etc. Then, each strategy has a sequence of 1 to 6 actions associated to them, which are

the actions the player needs to tackle to complete a strategy. An action can be a simple atomic action,

or it can be expressed recursively as a sequence of other actions. Therefore, we can represent the

actions as an infinite set of trees, where the leaves are atomic actions that the player can carry out and

the internal nodes represent tasks that need to be achieved along the way.

7

For example, a new quest starts with the choice of the NPC motivation:

< QUEST >::=< Knowledge >|< Comfort >|< Reputation >|< Serenity > (2.1)

|< Protection >|< Conquest >|< Wealth >|< Ability >|< Equipment > (2.2)

After choosing a motivation, it then chooses a strategy. The result can be described in this manner:

<Comfort> ::= <Obtain Luxuries>

<Obtain Luxuries> ::= <get> <goto> <give>

At the end of their work, Doran and Parberry, stated that, although they had built a functional proto-

type quest generator based on NPC motivations, further work would be needed to demonstrate its ability

to generate quests that are as good as quest hand made by developers.

Figure 2.1: Example tree quest generated by the system [3]

2.2 Towards a Procedurally Generated Experience: A Structural

Analysis of Quests

One example of further work on Doran and Parberry quest generator is the work done by António

Machado [6]. Here, António Machado, made an analysis of the main quests from the award-winning

8

single-player RPG game ’The Witcher 3 - The Wild Hunt’ [21] and implemented a grammar that extends

what was previously presented by Doran and Parberry.

This grammar extension is, as claimed by the author, more expressive than the previous, which is

something we agree on. This was accomplished by representing every main quest from ’The Witcher 3’

in the same manner as Doran and Parberry had defined.

What was noticed while representing the quests was that, even though the NPC’s that gave out the

quests had the same or similar motivations as the ones defined by Doran and Parberry, the actions

proved to have limitations making it impossible to fully describe the quests.

So a bigger analysis of the quests was conducted, where, while building the quest line trees as

described by Doran and Parberry, the necessary changes were added. These changes were then

attached to the previously built tables by Doran and Parberry.

These changes can be seen in the tables below.

Figure 2.2: Table with all the actions and their conditions, added changes in bold [6]

9

Figure 2.3: Table with all the motivations and respective strategies, added changes in bold [6]

10

Figure 2.4: Table with all the rules and respective actions, added changes in bold [6]

2.3 Procedural Quest Generator for Conan Exiles

Given the task of implementing a procedural quest generator for the game, Conan Exiles [17] [5] that

lacked any kind of questing system, António Machado, decided to implement an adaptation of the pro-

totype generator model from Doran and Parberry [3].

To do so, he took the previous work he had already developed [6] and that was talked about in a

11

previous section.

Afterward, António implemented the procedural quest generator for the game Conan Exiles, which is

a survival sandbox game that lacked any sort of questing system. The implemented system contained:

• An element to generate quests influenced by the NPC’s motivations;

• An element that tracked the execution of the actions that were part of the quest;

• UI elements to represent the quests when the player and the NPC interacted.

The architecture implemented by António is a distributed architecture, meaning that to generate

quests a generator was given out to each NPC capable of giving out quests. Each NPC then generates

a quest that would satisfy a motivation strategy and is capable of communicating with other NPCs to

generate sub-quests. The NPC motivations can be: randomly generated, predefined at game start, or

they can be given by the game environment. To control the variation of action sequences, weights were

added to each action sequence, based on the frequency that the sequences appeared.

Looking at the more technical side of the system. To generate a quest, the algorithm first needs to

receive a grammar and a knowledge base. The grammar has a set of Nodes (that represent possible

actions) a set of Rules and a set of Strategies. Each Node is divided in a set of Motivation nodes (these

are the root of each quest) and a set of Actions. Each Action is further divided in a set of NonTerminal

Nodes and a set of Terminal Nodes.

Both the Rules and the Strategies are represented as head → body.

The knowledge base is composed of everything a NPC knows and everything that is relevant to it.

It’s defined in four different sets: Characters, Items, Enemies and Locations.

This system was tested with human players and gave out good results, since introducing the quest

system did not harm the player’s overall enjoyment of the game.

12

Figure 2.5: Conan Exiles Quest Example [5]

2.4 Quest Generation and Interactive Storytelling

Besides having to create an entertaining quest for the player, a procedural quest generation system

should also be able to generate a quest that can be inserted in the narrative or story of the game in both

a coherent and believable way. This is where interactive storytelling comes into play.

This sort of system can create credible narratives by simulating a story world with a cohesive storyline

and convincingly directing or managing the characters in the story world.

Although this work doesn’t require the full capabilities of an interactive storytelling system, it’s still

important to analyze the several works presented in this field since the engines they have can provide

a suitable engine (after some adaptation) to this work, since procedural quest generation is part of

interactive storytelling.

So, we’re going to present three different works that differ in the type of architecture they use. This

division was proposed by Broekema [2] and it helps us better understand the inner workings of the

engines.

The architecture types are:

• Centralized Architecture: there is a central entity with complete control over the game world,

choosing all actions for the characters and objects, but not for the player. Due to the player’s

unpredictability, this entity needs to make sure everyone and everything follows the story. To ac-

complish this, it intervenes in the game by slowing down some actions, making them happen later

or blocking them, and by giving some hints to the player. This type of architecture is usually used

in a deliberative, plot-driven system.

• Distributed Architecture: instead of having a central entity controlling the game world, this type

13

of architecture makes use of autonomous agents that each control their character in the story.

This allows for more story variation and the prospect of player autonomy. It’s implemented as a

multiagent system and is generally used in either a simulation-based or an emergent system.

• Mixed Architecture: a combination of distributed and centralized drama management is used.

In this kind of system, a weakened form of the other two systems is used to create a mixed

architecture. A global plot line is followed by a planner, while there are also autonomous agents

that represent story world characters. A central manager is used to handle plot events and direct

the autonomous characters, so they don’t digress from the story.

The works we are going to present for each architecture are, respectively: Mimesis, CONAN and

IMPRATical.

2.4.1 Mimesis

The Mimesis architecture [12] provides the necessary components to incorporate narrative control into

an already existing game environment. The architecture is structured to provide a storyline that the user

will engage within current gaming contexts that would usually rely on fully scripted behaviors. Through

the generation of plan-based behavior for both the characters and objects in the game environment, the

architecture can provide the environment with instructions to implement the behaviors. This architecture

was mainly implemented in the commercial game engine Unreal Tournament (UT) and was divided

through multiple architectures. A part was integrated into the UT server, to give low-level access to

the UT environment. The remaining part controlled the higher levels and created the narrative-based

interactions. It was called the Mimesis Controller. Even though the architecture was distributed and

ran along with different processors, its use was still limited to single-player games due to performance

issues.

One use of this architecture [13] was an educational game where the players could move in a sim-

ulation of the Monterey Bay Aquarium. In this game, the players could learn from animated characters

depicting tour guides, the labels at the habitats, and the animated animals themselves along with their

behavior. The architecture generated plans to control the tour guides and the animals that were adapted

to the environmental details that the player looked at and was focused on the condition of the simulated

world, which included the location of the tour guide and the habitat inhabitants.

The Mimesis controller was divided in three different components:

1. The story planner. It activated when the game engine requested a plan, something that only

happens when the game starts. It received the current state of the world and a set of actions and

goals. Afterward, it created a plan containing all the actions for all the characters and objects of

14

Figure 2.6: Mimesis Virtual Aquarium [9]

the world. These actions could be executed over time. The plan also has a sequence of actions

that satisfy the goals. This plan was then passed to the second component.

2. The discourse planner. The job of this component was to build a plan to control the camera, the

background music, and anything else media-related that the game engine had access to. This

plan, along with the one from before, resulted in a narrative plan, that described all the actions

that both the system and the user could execute. The narrative plan was then passed to the third

component.

3. The execution manager. Having received the narrative plan, this component created a directed

acyclic graph of all the actions and the time constraints associated with them. This graph was

then used to choose the most appropriate action at the correct time. Besides this, the execution

manager also had to communicate with the game engine as it executes the actions and processed

the resulting information from the success of this execution.

Mimesis could handle the impact of the player in the world on two levels. The first level was used to

handle execution conflicts. For example, an NPC could be trying to open a door, but the player could

be blocking it. Something like this could happen because the player is capable of influencing the state

of the world, and the player can influence it during the execution of a primitive action (like opening a

door). The plans created by Mimesis can tell the difference between the preconditions that establish

15

the necessary state that the environment should be in effect immediately before the action is taken

and the continuous preconditions that must be maintained after the action before the action is done.

These continuous preconditions are constantly controlled in the component that is embedded with the

game server to ensure that the machine will respond to a situation where the user interrupts a primitive

operation. The second level was used to handle story conflicts. The player can cause an impact on the

story plot constructed by Mimesis. These types of conflicts are controlled by intervening between the

user commands and the execution of the game environment. They are controlled in two ways: either the

player is prevented from completing its action, or its action is accommodated to the story. For example,

when the player tries to open a door with a specific key, but he’s not yet supposed to learn the information

on the other side of the door, Mimesis can prevent the player from entering the room saying that the key

doesn’t match the lock, or instead it could accommodate to the user trying to open the door and move

the information on the other side to a different room.

2.4.2 CONAN

The engine for the Creation Of Novel Adventure Narrative (or CONAN) proposed by Breault [1], is a

distributed quest generation system. It is capable of creating quests that are cohesive and accomplish

goals that are important to the preferences of the character. So, if we give an NPC the initial state and

the list of all possible actions, it will be able to create plans to reach a goal in line with its preferences.

The quests given to the players are these plans. While resolving these quests and having word-state

altering events, the engine can produce increasingly more context-relevant quests as time goes on.

The initial state is composed of NPC’s characters with predefined interests, locations, monsters and

items, and rules governing the environment (for example: when a tree is cut down, there are fewer trees),

a list of the possible actions with their prerequisites and their outcomes. All of this will be considered

an object, and each one will be defined within the world state by a statement. These statements are a

combination of predicates and the before-mentioned objects (for example, location(Castle) pertaining to

the castle object, defining it as a location).

To exemplify an initial state, Breault presented two initial world states with two different sizes. The

first world is a modified version of the Aladdin world (a small world) and a large world defined by himself,

that contains much more objects and predicates. The Aladdin world had, for example, elements like:

• ’King Jafar who lives in a Castle’

• ’Aladdin, a knight who has cooperative attitude towards King Jafar’

• ’Jasmine Who also lives in The Castle’

• ’A Genie who is in the location ’Magic Lamp’ and unable to get out’

16

• ’A Dragon who lives in the Mountain, is hostile to agents and guards the ’magic lamp”

The world defined by Breault had, for example, elements like:

• Agents: Baker, King Lumberjack, Blacksmith, Merchant, Guard, Daughter

• Locations: Castle, Village, Wheat field, Cave, Bakery, Forge, Forest, Shop

• Items: hammer, wheat, sword, magic spell book, etc.

• Monsters: troll, wolves, slimes, etc

The domain files contain the list of all possible actions, needed for the character to reach their goals.

These actions are the same as the ones established by Doran and Parberry [3] in their structural anal-

ysis and are executed using PDDL. The actions are DoNothing, Capture, Damage, Defend, Escort,

Exchange, Experiment, Explore, Gather, Give, GoTo, Kill, Listen, Read, Repair, Report, Spy, Stealth,

Take and Use. And each action is composed of: a name, the parameters used, preconditions, and the

effects of the action on the world after it has been performed. It’s implemented in the system using PDDL

syntax in the following way:

(:action move

:parameters (?p ?to ?from)

:precondition (and (location ?to)(location ?from)(player ?p) (at ?p ?from))

:effect (and (at ?p ?to)(not (at ?p ?from))(increase (total-cost) 2)))

The actions possess a weight that depends on the character’s likes and dislikes. This is mapped

specifically for each character in the form of an array, and the weights are taken into account when the

plan is developed. So, actions with a lower cost will be more preferred by the character, while actions

with a higher cost will be more undesirable. By having these weights for each character, a more coherent

choice of actions is achieved, and the characters become more believable.

Figure 2.7: Aladdin world Character Preference [1]

The goals of the characters are represented as a set of statements in a combination of predicates

and objects. However, instead of having the object specified, it has variables limited to the type of

17

object. For example: ’(has ’c’ ’i’), where ’c’ is a character and ’i’ is information’, ’(explored ’l’), where ’l’ is

a location’.

CONAN uses two different algorithms to choose the goals of the characters to compare them. The

first algorithm randomly selects goals for each NPC and uses them as a guideline to compare against

the NPC’s preferred goals. To do this, it chooses a random number of predicates from a list of predicates

and afterwards, it goes through each one and assigns a random allowed item in place of the unknown

object in the goal (for example the ’l’ in ’(explored ’l’)’). The second algorithm will start by doing the same

as the first one, by selecting a random number of goals, but after that, it ranks them according to the

characters’ preferences and keeps only the one with the best score, this is, the one that is more suitable

for the character. It accomplishes this by getting the list of goals for each character and figuring out the

plan to reach that goal. During this, the average cost of the actions in that plan is calculated, meaning

that the plan with the average cost closer to 1 is the one more desired by the character. The algorithm

only does this with 4 goals, because, although a higher number of goals would mean a higher chance

of finding the ideal goal, it would also mean it would be more computationally taxing, thus slowing down

the algorithm too much. Finally, the plan with the lowest cost will be given to the player that has a quest.

Breault defined some example quests using the world defined by him paired with the motivations

defined by Doran and Parberry [3], seen in the table below. He also exemplified a plan to solve the need

for wheat of an NPC, seen in the graph below.

Figure 2.8: Example quests with their respective NPC motivation [1]

2.4.3 IMPRATical

A system proposed by Teutenberg [11], the Intentional Multi-agent Planning with Relevant Actions (or

IMPRAtical), has characters that are in charge of arguing around their particular motives and searching

for acceptable behavior about those same motives, while at the same time it also has a single planner

Director that acts as an external guide and creates stories assuring the pertinent action limits. This way,

18

Figure 2.9: Example plan to solve the need for wheat [1]

according to Teutenberg, the system is capable of producing a more efficient and expressive plot when

comparing it to systems of centralized architecture.

The system can model both purpose and cause of action in the narrative, conduct global heuristic

searches, and assign intent to several planning agents. To conduct this method, the system requires

for each narrative action to be causally related to the intent of the particular character and that the

intent needs to be accomplished before the execution of the action, since the actions must be relevant

according to the knowledge of the world story.

The characters have three different types of reasoning behind their intentions:

• If a character is isolated and can’t fulfil its intention by itself, but there is another character with the

same intent as the first one and in the same situation of unfulfillment, then both characters can

cooperate so that they may achieve their intent;

• A character can also anticipate the actions of another character and use those same actions in its

plan;

• A character can also command other characters for them to help it reach its goal. This can be

repeated throughout the characters being issued commands, thus creating a chain of commands.

IMPRATical then creates a group of characters that reason about intent to give the Director all the

relevant actions, after being provided with the current world state and the domain information. The

system afterwards searches through several possible branches. This is done by constructing a relaxed

planning graph with all the reachable actions and applying them to found facts by moving forward from

19

the current state. The solution is drawn out by searching back through the graph.

Bellow, we can better observe how the system works when trying to decide the best actions that lead

to the goal. Teutenberg describes the image:

Determining relevance for a single agent’s actions. Solid lines indicate effect to fact or fact

to precondition relations, dotted lines indicate a no-op.After the backwards step, of the two

actions with their preconditions, met in the current state, one is found to also be relevant to

the actor’s intents.

20

Figure 2.10: Graph of how the best actions are decided [11]

21

22

3
The Game - Mount & Blade II:

Bannerlord

Contents

3.1 Bannerlord Quest System . 26

3.2 Modding in Bannelord . 29

23

24

Figure 3.1: Mount & Blade II: Bannerlord Gameplay example

Bannerlord [15] is the fourth game of the Mount & Blade series, released and developed by Tale-

Worlds Entertainment. It’s a prequel to the game Mount & Blade: Warband having its storyline take

place 210 years before Warband with a setting inspired by the Migration Period 1. It’s an Open-World,

Action, RPG (Role-playing game), Simulation, Strategy game (according to Steam, which is an online

game platform) that was announced in 2012 and had its early access version released on March 30,

2020.

The game features both a single player and a multiplayer mode, but this works only focuses on single

player:

• Single Player: In this mode, the players creates an avatar that you use to control your party con-

taining troops. These troops can either be unnamed NPC’s or named NPC’s with their backstory,

personality, and skills. The general gameplay is walking around the virtual world, fighting other

party’s that are led by NPCs. These NPC lead parties can range from a small group of looters to

a giant army belonging to a faction, so the player needs to improve its power. To do so, he can

recruit more troops for his party and/or level up with the XP (experience points) gained from each

battle. The troops from the player’s party also gain XP, levelling up and even getting promoted

to a different rank. Besides fighting with other parties, the player can also experience the social

side of the game, role-playing with the NPCs by talking to them and accepting quests from them,

getting into the political system existent in the game (interacting with the several factions in the

game world) or even getting married to an NPC and have offspring.

• Multiplayer: Works in the way of a Team death match between two teams, each consisting of 6

1’(...)period in the history of Europe (...) during which there was widespread migration of and invasions by peoples’

25

players. To win, your team needs to occupy specific strategy sites. Having the most sites means

the other team’s score will start decaying and when it reaches zero the battle ends and the team

that still has score wins the battle. To participate in a battle, the game gives a player a party of his

own to command, and the player can choose the type of party and equipment before each battle.

3.1 Bannerlord Quest System

Looking at the single-player quest system in more detail, the quests can be handed out by either an

NPC living in a town, castle or village or an NPC roaming around the virtual world with its army. This

is represented with a blue exclamation mark next to their avatar. When talking with these NPC’s with

quests they have extra dialog, in comparison with the other NPC’s, so they can explain the quest to the

player. After accepting a quest it appears on the quest management screen with the title of the quest, a

small description, our current progress and step, and how many days there are left to complete it. There

are currently (29 October 2021) over 25 different quests, all with a different goal and a different way to

achieve said goal. In the examples below, we accepted a quest from an NPC that asked the player to

train some soldiers.

Figure 3.2: NPC’s with a quest

26

Figure 3.3: Quest Management Screen

Taking a general look at the inner workings of Bannerlord: there is a central class called Campaign

that initializes everything and adds the behaviors responsible for the detection and creation of the quests.

The initialized classes QuestManager and IssueManager are responsible for keeping a list of all current

quests and issues, each one being of the type QuestBase and IssueBase, respectively. The way a

quest is implemented is: first an event listener is added, detecting when an issue is requested and

creating a new object of the type IssueArgs. If the issue is requested, then it checks if a certain

number of conditions are met and if they are, the PotentialIssueData of the IssueArgs is set and

a new object is created extending IssueBase. The new issue is then defined through several either

general functions or issues specific functions and a new object is created extending QuestBase. Of

the several added behaviors, one is the class IssuesCampaignBehavior, which is responsible for the

creation and allocation of new issues (and therefore the creation of new quests). It creates a controlled

random number of issues for the heroes (the name given to the NPC’s capable of handing out quests,

represented by the class Hero) existing in the settlements (the name given to the villages and towns

present in the game map) and for the existing clans. It does this at the start of a new game and

afterwards once every day.

To handle the character interactions, a class called DialogFlow is used. There the dialogues are

given to the characters, either taken from the XML files or directly from the code. It is also through this

that the player has the liberty to decide the outcome of a quest (for example: Given the task to deliver

some products, upon arriving at the NPC to deliver the products, the player can instead choose to keep

them to himself), having all the different paths and consequences delegated through conditions.

27

Figure 3.4: Class Diagram

28

3.2 Modding in Bannelord

To implement the questing system, we made use of modding 2. Bannerlord is relatively easy to start

modding and there are plenty of tutorials on how to do it. To start, we first need to create the Mod

folder in the Module’s directory in the game files. Afterwards, all we need to do is set up a project in

the environment of our choice (for example Visual Studio) and compile the code to the mod folder (more

information can be consulted in the Bannerlord documentation page [16]). To distribute our mod, we

only need to share the Mod folder with other players. One of the main challenges when designing the

mod came from the fact that, since it’s a recent game (still in early access at the time of writing this

thesis), there is no available documentation of the game, and we had to make use of our IDE (integrated

development environment) and trial and error to know what methods we had available to implement the

quest system.

3.2.1 Harmony

We made use of the Harmony Library [18]. This is a library used for patching, replacing and decorating

.NET methods during runtime. Since we didn’t have access to the source code of the game and altering

the game’s dll’s could cause legal issues, we had to use Harmony when wanting to affect Bannerlord

methods. Harmony allows us to execute our code before or after the original method through the use of

either a Prefix or a Postfix.

Bannerlord didn’t trigger all the events we needed or had them implemented, so we had to add

some Postfix methods to cover for that. These methods run after the original method. For example:

Bannerlord has a smiting mechanic in the game where there are three possible actions: create a new

weapon, dismantle a weapon or refine a new material (i.e. make Iron and Steel). There are events that

get triggered when a new weapon is created and when it’s dismantled, but there isn’t any event for the

refinement of a new material, so we had to use a Postfix method to run after the original method that

handles the refinement so that we could detect when the player did this action.

2’an alteration by players or fans of a video game that changes one or more aspects of a video game, such as how it looks or
behaves’ [10]

29

30

4
Bannerlord Quest Generator - BQG

Contents

4.1 A General Overview . 33

4.2 The Generator module . 37

4.3 The Instantiator module . 49

4.4 The Monitor module . 54

31

32

The goal is to implement a procedural quest generation system for Bannerlord, a game that already

has a questing system. With this new system, we aim to improve Bannerlord by providing quests that

are less repetitive and have a different more varied structure, while at the same time reducing the effort

needed to make every single individual quest. With the new system, we can produce an almost infinite

number of different quests. To accomplish this, three modules have been developed: the Generator

module, the Instantiator module and the Monitor module.

4.1 A General Overview

The Generator module is responsible for building a behavior tree-like quest with placeholder names for

the world objects (such as ”place1”, ”npc1”, ”item1”) similarly to what was proposed by Ian Parberry

and Jonathon Doran with the modifications made by António Machado. The generated quests present

a lot of variation in both quest type and structure. The Motivations selected for the quest are chosen

at random, this allows the next module to have plenty of different quests with different motivations to

assigned to the correct NPC’s.

The Instantiator module, as said before, is responsible for taking the quests generated by the previous

module and assigning them to NPC’s with the same Motivation. This is module is also responsible for

assigning the Motivations to the NPC’s, that are randomly assigned depending on the type of NPC (i.e.:

if it’s a noble NPC it can have Reputation type quests, but a farmer NPC can’t). After assigning a quest to

a NPC, it then takes the placeholder world objects of each action and replaces them with world objects

that currently exist, this is, it replaces ”place1” with a settlement, ”npc1” with an NPC and ”item1” with

an item.

Finally, the Monitor module starts when the player accepts the quest. Its job is to update the quest

logs that appear on the quest screen by monitoring the player progress throughout the quest. This is

done by listening to the several events the game launches every time certain actions happen. It also

assigns dialogue to the NPC’s so that the player can progress in the quest.

Strategies, Rules and Actions used can be seen on the tables below.

33

Figure 4.1: Diagram of the implemented system

34

Figure 4.2: Table with all the rules and respective actions

35

Figure 4.3: Table with all the motivations and respective strategies

Figure 4.4: Table with all the actions and their conditions

We’re now going to take an in-depth look at each module and each terminal action.

36

4.2 The Generator module

This generator is an extension of what the generators made by António Machado and Ian Parberry

and Jonathon Doran. Besides the grammar based generation of the previous system, we also create

a behavior tree during the generation process of a quest, implemented an option to give the player

alternative ways to complete the quests, adapted the grammar to fit Bannerlord and . It was written

using C#, which is the language used by the Bannerlord engine.

These behavior trees allow us to more easily traverse the quest tree when needed. They also allowed

us to implement a new feature, an alternative way to complete quests. This is, when an NPC gives a

quest to the player, there is a chance that besides having the regular path to complete the quest, the

player can receive an alternative path that also leads to the completion of the quest (e.g.: If the regular

way to complete a give quest is “Visit settlement X”, the alternative way can be “Visit settlement Y”). The

player can choose either way to follow, and can even proceed to play out both ways at the same time

and choose later which one to complete. The different node types of the behavior tree allow us to do

these actions more efficiently and easily.

The generator is similar to what António Machado implemented. The Initial Input that is composed of

a grammar and a knowledge base has a similar grammar, however, the knowledge base works differently.

For the grammar, we first had to see what actions were possible, which ones made sense to imple-

ment in a game like Bannerlord and what could actually be accomplished in the time we had. After that

analysis, we reached the conclusion that: the same 9 motivations could be kept, however not all the

Strategies could be used, and neither could all the Rules. This was because we cut down the number

of possible terminal actions from 24 to 13. The actions that we decided to implement were: capture,

damage, exchange, explore, free, gather, give, go to, kill, listen, report, take and use. The other actions

weren’t added mostly due to limitations from Bannerlord itself and partly because some of them were

already present in a lot of the quests from the base game.

This implementation of 13 actions, together with subquests and alternative ways to complete the

quest, present an improvement to the system António Machado implemented in Conan Exiles by devel-

oping quest structures much more complex and varied. This module can generate quests for any other

game, as long as the game can translate them into quests fitting to it.

The grammar contains a set of Nodes that are divided into Motivation Nodes (9 of them) and Action

nodes that further divide into NonTerminal Nodes (12 of them) and Terminal nodes (13 of them) that

represent the actions the player makes in-game, a set of Rules and a set of Strategies. Every Action

also contains a set of parameters that make a reference to the game objects.

The Rules are represented in the manner of head → body, where the head is always a NonTerminal

node and the body is a sequence of Action nodes. Every time a rule is selected, the body is added to

the quest structure.

37

The Strategies are also represented as head → body, however the head must be a Motivation node

instead. The body is still a sequence of Action nodes.

The knowledge base is where our implementation differs the most. Instead of having direct access

to all the game objects, the generator instead goes through four simple lists of tags:

• Character list: npc1, npc2, npc3, npc4, npc5, etc.

• Items list: item1, item2, item3, item4, item5, etc.

• Enemies list: enemy1, enemy2, enemy3, enemy4, enemy5, etc.

• Locations list: place1, place2, place3, place4, place5, etc.

So, when filling in the parameters, the names above are used instead of directly using the settlements,

NPC’s, items and enemies names. In the end, all the actions with the parameters filled in order of a

quest look similar to this example: Protection,goto place3,quest npc2,explore place5,gather item2,quest

npc4,goto place7,kill enemy2,explore place9,report npc5,goto place6,explore place10,give npc3,give

item1,goto place4,explore place11,capture enemy1,goto place12,report npc1. Having the same name

means it will refer to the same game object.

Parallel to this, the generator is also creating the previously mentioned behavior tree [8]. It uses

4 node types. A Selector (represented by an ”?”) and Sequence (represented by an ”→”) nodes from

a usual behavior tree and two custom ones, Motivation and Action node, where the Motivation node

usually represents the head of the tree (except when there is an alternative way to complete the quest)

and the Action nodes are the leaves. The Sequence node is used to guarantee that each Action is

executed in the correct order. The Selector node is used for the event where there is an alternative way

to complete a quest, its children will be two different quests and only one of them needs to be completed.

The Motivation node will act similarly to a Sequence node. The Action node represents the action the

player needs to perform to complete the quest. It acts parallel to the usual generation because the usual

generation is the one responsible to allocate the right game objects substitutes to the parameters.

4.2.1 Quest Generator Algorithm

Will now take an in depth look at how a quest is created.

4.2.1.A CreateQuest algorithm

The first step is to call the CreateQuest algorithm. This starts the generation process by first deciding

if there’s going to be an alternative way to complete the quest or not. Depending on the decision it

either creates one or two instances of a quest and assigns root nodes to them, these root nodes are

the motivation the NPC needs to have this quest. This motivation is randomly generated, so that, when

38

the Instantiator module needs a quest for an NPC with a certain Motivation, if there is a large number of

pre-generated quests, it’s very likely that there is one available for the NPC. After the assignments, the

expansion phase begins. Also, depending on the decision, either one or two behavior trees are created

with a motivation node as the head. When the two trees are created, they are added as children of a

Selector node, so that later only one of the trees is completed when completing the quest.

4.2.1.B Expand algorithm

Afterwards, we call the recursive algorithm Expand(node, BT). It is called every time a node is generated

and added to the quest structure, with a different behavior depending on the type of node that is selected:

• NonTerminal - If a NonTerminal node is selected, its children will be selected from the Rules

Table from Chapter 3. The rules are chosen stochastically to assure a certain variety exists in the

generated quests. To accomplish this, weights were attributed to each rule and a rule is chosen

using the WeightedChoice algorithm. Each rule is given a weight ranging from [0,1]. This list of

rules is then added to the quest structure and to the behavior tree as Sequence nodes.

• Terminal - If a Terminal node is selected, it means we’ve reached a leaf of the tree and this node

can not be expanded. This node represents the actual action the player has to perform, and it’s

added to a list belonging to the quest in the order the player has to complete them. It’s also added

to the behavior tree as an Action node.

• Motivation - If a Motivation node is selected, its children will be selected from the Strategies Table

39

from Chapter 3. The selected Strategy is chosen randomly.

When a rule/strategy is selected, a node is generated for every action (both Terminal and NonTermi-

nal) in it. The action parameters are then associated with world object tags. To create the subquests we

simply generate a new Motivation node and place it as the child of an action like node with the name of

”quest” (this represents a subquest so that the translator can know there is one) and add a Motivation

node to the behavior tree too. Then when the Expand algorithm reaches this node, it develops a new

quest attached to the original one.

The Expand algorithm calls another three methods: WeightedChoice,UpdateWeights and BindPa-

rameters. Let’s first take a look at the WeightedChoice algorithm.

40

4.2.1.C WeightedChoice algorithm

Each rule has weights associated with its sequence of actions so that we can have control over the

variety of actions sequences. The purpose of the WeightedChoice algorithm is to generate an index

based on a range of weights so that we can then use that index to select the sequence of actions from

the rules table. To obtain that index, a random number between 0 and 1 is first generated, and then

it’s compared to a set of ranges. This set of ranges is based on the weights shown in the table below,

and the sum of all the weights of a sequence of actions must always be 1. These values were reached

through trial and error, and are adapted for Bannerlord. The values were determined empirically and

can later be revised. The value for the ”explore” rule, in particular, was chosen because the generator

kept choosing that route that lead to having quests with a lot of unnecessary and inexplicable explore

actions. The null actions are at a very low value so that the chance of being chosen at the start of a

quest is very low, but it increases throughout the quest generation. The other were derived from what

António Machado had in his work.

Figure 4.5: Set of weights used by the generator

41

4.2.1.D UpdateWeights algorithm

We’ll now take a look at the UpdateWeights algorithm.

After selecting the index to select the action sequence, the set of weights of the selected sequence

will be updated. To do so, the algorithm receives the sub-set of rules, the sub-set of weights, the index

chosen and the current depth of the tree.

First, the algorithm reduces the weight of the selected sequence of actions. It accomplishes this by

dividing the weight by the value of a converge function. This function can be defined in different ways

that allow to control how big a quest can be. For example:
√
depth for bigger quests, 2depth−1 for medium

quests and depth2 for smaller quests. Meaning that this is the function that ends up controlling the size

of a quest. For our system, the converge function was set at depth2 because we found that generated

the right size quests for Bannerlord, this is, quests that took an appropriate amount of time to complete.

With the weight of the chosen sequence update, now the sum of all the weights doesn’t equal 1.

Therefore, the rest of the weights needs to be updated so that the sum is equal to 1 again. The missing

portion is divided between all the rules in the sub-set that contain Terminal actions.

It’s important to update the weights so that the quest doesn’t grow out of control. When the algorithm

reaches a certain depth, we want it to avoid choosing a sequence of actions that contain NonTerminals

and favors choosing one that either contains Terminal actions or reaches the ∈ (none) action.

42

4.2.1.E BindParameters algorithm

Finally, we’re going to see the BindParameters algorithm.

When the process of creating nodes for each action from the sequence of actions is completed, we

selected we have to bind each parameter from the actions to a world object tag before adding them to the

quest structure and call the Expand algorithm for each of them. To do this, we use the BindParameters

algorithm. This algorithm is necessary to ensure there is coherent logic between sequential actions. The

parameters associated with each action can have three different restrictions types (except for the actions

steal, get and give that have specific behaviors): parent node restrictions, sibling node restrictions or

not restricted at all. For the last restriction type, we give the parameter a new object tag that hasn’t

been referenced yet. The encoding for the restrictions is as follows: flag 0 for parent restriction, 1 for no

restriction (also known as new case) and 2 for sibling restriction. As an example, we can take the rule

<capture> → <goto> damage capture. After passing through the algorithm, the rule would end up as

<capture>(enemy1) → <goto>(place1) damage(place1, enemy1) capture(enemy1).

Each parameter needs to have the following properties predefined at the start of the game:

• Parameter type (NPC; item, place, enemy);

• Restriction flag (0,1,2, or -2 for the give);

• Sibling reference if the flag is equal to 2;

At the start, the algorithm will deal with the first two exceptions. These exceptions are for the NonTer-

minal actions steal and get. If either the steal or the get action have as a parent another get NonTerminal

action, then their original restriction flag value of 1 changes to 0. This is because these actions need to

have the restriction flag 1 when they have no parents, and the restriction flag 0 when they have a parent

of the action type get to make sure there is coherent logic between the sequential actions. Afterwards,

the algorithm checks the value of the restriction flag.

If the flag has the value of 1, then a reference to a new world object tag is created. If the flag has

a value of 0, then the algorithm checks if the parent action parameter type is the same as the current

43

action type, and if it is, then it just binds the parent target to the current action. If the flag has a different

value from 0 and 1, then the algorithm first sees the last exception. This is, if it’s dealing with the Terminal

action give, if it is, then it changes the sibling reference of the action to the index of the node prior to the

current action. This is done to make sure there is coherent logic between sequential actions since the

action give parameter always gets its world object from the NonTerminal action get that always comes

prior to it, however, it’s not always in the same index. After this exception the algorithm checks if the

sibling (that has the stored index) action parameter type is the same as the current action type, and if it

is then it just binds the sibling target to the current action.

The parameter values used can be seen in the table below the algorithm.

44

Figure 4.6: Parameter values used

All the generated behavior trees are stored in an XML file called MissionList that the translator module

has access to.

45

Figure 4.7: Two small Example quests generated by the module

4.2.2 Subquests

As said before, when a quest is being generated, there is a chance that a subquest will be added to the

tree structure. For simplicity’s sake, this subquest is considered an action.

A subquest can derive from three different intentions (these are taken from the different Strategies

and Rules): getting an item, learning information or preparing for an upcoming action. Each of these

intentions has the subquest giver say a different line. For example: for the get intention, the subquest

giver can say ”You’re collecting materials for HERO right? That rascal has been owning me a favor for a

while. Do this task for me, and I’ll consider it paid.”; for the learn intention it can say, ”You’re looking for

information? I could give it to you for free... Or you could do something for me first.” and for the prepare

intention (that changes with the strategy of the subquest) it can say ”You should learn a thing or two

before continuing your task. I’ll help you out with it, since I own one to HERO.”

For the subquest to be implemented into Bannerlord, its own ”Issue” (name given in the game code

to a quest that hasn’t been accepted by the player yet) and ”Quest” are generated at the appropriate

time and from the game’s point of view it’s just another regular quest from the mod.

These subquests allow the quests to be much more developed with a better and more varied struc-

ture, resulting in more interesting quests.

46

Figure 4.8: Simplified quest tree with a subquest

47

4.2.3 Alternative way to complete a quest

As mentioned in section 4.2, sometimes quests can be generated with an alternative way to complete

them. This means that when the NPC quest giver gives the player a quest, an alternative way to complete

it is also presented to the player, and they can choose which way to follow to fulfil the quest.

The Instantiator module knows when there is an alternative way when the head node of the behavior

tree is a Selector node instead of a Motivation node. With this, the module separates the tree in two

(the main way and the alternative way), but only creates an ”Issue” for the main way. When the quest is

accepted, the module creates two ”Quest” instances, one for the main way and one for the alternative

way (both with references to each other). When one of them gets completed by the player, the other one

is also automatically completed.

From the game’s point of view, the alternative way to complete the quest is considered a ”Special

Quest”. This allows it to exist as a quest without the need for an ”Issue”.

For the player, these alternative ways allow them to have quests with a lot more structural variety.

Figure 4.9: Alternative way to complete a quest in game

48

Figure 4.10: Simplified quest tree with an alternative way

4.3 The Instantiator module

Taking a look at the Instantiator module. As said before, this module starts by giving each Hero NPC a

motivation that depends on the type of NPC.

Having done this assignment, it waits for the game to request a quest for a given NPC. To give a

quest to the NPC, it searches in the quest file if there is a quest with the same motivation as the NPC. If

there is one, it assigns it to the NPC and creates a new ”Issue”. Afterwards, it deletes the tree from the

file and assigns a new Motivation to the NPC.

Upon creating this ”Issue”, the module goes through the selected behavior tree of the quest and

creates what we called an actionTarget object for each action found in the tree. These actionTarget

objects change depending on the type of action (e.g.: a go to action will lead to the creation of a

gotoAction object that extends the actionTarget class).

At the same time of creating the actionTarget ’s, the module also assigns existing world objects to the

actions by replacing the world object tags. Actions with the same world object tag end up with the same

world object (i.e.: if two actions for example the tag ”place1”, they will both end up with, for example,

the settlement ”Poros”) since after choosing the world object, the action propagates its decision through

all other actions and if they have the same world object tag it replaces it with the chosen world object.

49

The behavior used to search for these world objects changes depending on the action (subquest is

considered an action for the sake of simplicity):

• captureAction - The purpose of this action is to capture a criminal (from the quest givers point of

view). Can have, as targets, either an Hero NPC or an NPC belonging to a bandit faction (e.g.:

Looters). If these targets are still undefined when this action is reached, it searches in the armies

roaming around the game world which ones are both enemies and have their faction at war with

the quest giver for the party leader. If there are any, it chooses one at random. If there are none,

it searches for the armies roaming around the world that are bandit parties and assigns a random

one as a target.

• damageAction - This action requires the player to damage an entity. Can have as targets, either

an Hero NPC, an NPC belonging to a bandit faction (e.g.: Looters) or a settlement. If these targets

are still undefined when this action is reached, it first gets a random number (either 1 or 2), if the

number chosen is 1, there is a village whose faction is at war with the quest giver faction and the

next action in line is not a capture action, then that village is selected as the target. Otherwise, it

searches in the armies roaming around the game world which ones are both enemies and have

their faction at war with the quest giver for the party leader. If there are any, it chooses one at

random. If there are none, it searches for the armies roaming around the world that are bandit

parties and assigns a random one as the target.

• exchangeAction - This action involves a trade of items between the player and the quest giver. Has

three targets, two items (one to give and one to receive) and one Hero NPC. If these targets are

still undefined when this action is reached, it first tries to get an NPC target by seeing what the

previous action is. If it’s a go to action, then it chooses a random NPC from the settlement target

by the go to action. If it’s not a go to action, it chooses a random NPC from the settlement that

the quest giver belongs to. To get targets for the items, the item to give is chosen at random from

a list with all the items in the game. The item to receive is chosen from the items the village has

available. The item amounts are defined in a way so that both items have the same total value.

• exploreAction - This action makes the player explore a certain area by visiting settlements. Has

a dictionary of settlements has a target, each settlement having a tag to indicate if they’ve been

visited already or not. If these targets are still undefined when this action is reached, it searches

for three random settlements around the quest giver settlement that belong to the same faction

(before distances were calculated using a method from Bannerlord, however, for unknown reasons

this could cause the game to crash).

• freeAction - This action asks the player to free one of the quest giver allies that has been impris-

oned. Has its target, it has a Hero NPC. If this target is still undefined when this action is reached,

50

it first gets a list of all the allies and neutrals of the quest giver. Then finds the nearest enemy

settlement whose faction is at war with the quest giver and checks to see if any of its prisoners are

in the previously defined list. The first one it finds, it’s defined as the target. If none is found, it

chooses one at random from the list and imprisons it.

• gatherAction - This actions requires the player to gather a randomly chosen item. Its only target,

it’s an ItemObject item. If this target is still undefined when this action is reached, it defines the

target by choosing a random one from the list of all the items. It also searches settlements that

might contain the item so that it can give a tip to the player. The item amount is set so that the total

value the player needs to collect is near 300 of the game currency.

• giveAction - The goal of this action is to give the requested item to an NPC. The targets of this

action are an ItemObject item and a Hero NPC. If these targets are still undefined when this action

is reached, it first searches for a random NPC from either the quest giver settlement or, if the prior

action is a go to action, from the target settlement of the go to action. The item is chosen at random

from a list with all the items, and the amount is set so that the total value the player needs to collect

is near 300 of the game currency.

• gotoAction - This action just asks the player to go to a settlement. Its target is a Settlement

settlement. If these targets are still undefined when this action is reached, it looks for a random

settlement that belongs to the same faction as the quest giver.

• killAction - This action asks for the player to kill an NPC. Its target can be either a Hero NPC or

a Bandit party. If these targets are still undefined when this action is reached, it searches in the

armies roaming around the game world which ones are both enemies and have their faction at war

with the quest giver for the party leader. If there are any, it chooses one at random. If there are

none, it searches for the armies roaming around the world that are bandit parties and assigns a

random one as the target.

• listenAction - This actions requires the player to talk with an NPC. Its target is a Hero NPC. If this

target is still undefined when this action is reached, the action first checks if the previous action is

a go to action. If it is, the target is chosen at random from the target settlement of the go to action,

otherwise, the target is chosen at random from the quest giver’s settlement.

• reportAction - The purpose of this action is to have the player report to an NPC a certain event.

Its target is a Hero NPC. If this target is still undefined when this action is reached, the action first

checks if the previous action is a go to action. If it is, the target is chosen at random from the target

settlement of the go to action, otherwise, the target is chosen at random from the quest giver’s

settlement.

51

• subquestAction - This is considered an action for the purpose of simplicity, and its goal is to add

a subquest to the quest. Its targets are a Hero NPC and a Settlement settlement. If these targets

are still undefined when this action is reached, the action first checks if the previous action is a

go to action. If it is, the NPC target is chosen at random from the target settlement of the go to

action and the settlement target is defined as the same as the target settlement of the go to action,

otherwise, a random settlement from the same faction as the quest giver is found, defined as the

target settlement and a random NPC is chosen as the target NPC.

• takeAction - The goal of this action is to have the player steal an item from either a Hero NPC, a

bandit party or a settlement. Can have as targets, either an Hero NPC, an NPC belonging to a

bandit faction (e.g.: Looters) or a settlement and a ItemObject item. If the NPC/settlement target

is still undefined when this action is reached, it means the target is going to be and settlement,

so it checks if the prior action is a damage action and if it is, it gets the settlement target from

that action. If the item target is still undefined, it checks what kind of NPC/settlement target it has

and the item target is chosen at random from the NPC/settlement target inventory. The amount is

chosen so that the total value is near 300 in-game currency.

• useAction - The purpose of this action is to have the player level up a skill. Its target, it’s a

SkillObject skill. If this target is still undefined when this action is reached, then a skill from the list

of all the skills is chosen at random and set as the target. The amount of levels needed is set as a

random number between 5 and 10.

Usually, behavior trees are traversed every execution tick, however, we only require for it to be tra-

versed once to define all the world objects.

This module is also responsible for defining the titles, descriptions and quest giver dialogues that the

player interacts with.

The title is made from the chosen Strategy and the world object assigned to the main action of the

Strategy. The description is just the Strategy. When the quest giver gives the quest it first gives out

a sentence related to the Motivation, then gives a general description of the quest depending on the

Strategy and the main action and finally describes the main steps the players needs to take to complete

the quest.

The quest reward is also defined here. It depends on the type of actions of the quest and the amount

of time the quest might take to complete.

52

Figure 4.11: Quest description and title example

Figure 4.12: Accepting a new quest

53

Figure 4.13: Motivation and general description example for an NPC with Conquest Motivation and Attack Enemy
Strategy

Figure 4.14: Step by step description of a quest

4.4 The Monitor module

This is the final module. It starts when the player accepts the quest from the NPC quest giver, and its

main tasks are to track the player progress and to add and update the quest logs that appear on the

quest screen. It’s also responsible for adding the necessary dialogues to the NPC’s the player needs to

interact with to complete some actions.

To track player progress, the module makes use of events. Events are what the game uses to know

when anything happens (for example: when the player enters a settlement, an event is triggered and

any method that is listening to that event is also triggered). Each action makes use of one or several

events to track their progress. For each action they are:

• captureAction - the quest logs are defined as, for example, ”You’ve been requested to capture

HERO”. When the player captures the target, the events that can be triggered are HeroPrisoner-

Taken or OnPrisonerTakenEvent, the quest log changes to, for example, ”Deliver the prisoner to

HERO in QUEST SETTLEMENT.” and a dialogue is added to the quest giver, so it can receive the

target. The action ends as successful when the player delivers the target to the quest giver.

• damageAction - the quest logs are defined as, for example, ”Attack HERO’s party.”. When the

player defeats the target, the events that can be triggered are RaidCompletedEvent, HeroKilledE-

vent or MapEventEnded and the action ends as successful.

• exchangeAction - the quest logs are defined as, for example, ”Exchange ITEM AMOUNT1 ITEM NAME1

for ITEM AMOUNT2 ITEM NAME2 with HERO”. A new dialogue is added to the NPC target so

54

that the trade can be conducted. The dialogue itself can detect if the player has enough items, and

the action ends as successful when the trade is completed.

• exploreAction - the quest logs are defined as, for example, ”Explore the area and visit SETTLE-

MENT1, SETTLEMENT2, SETTLEMENT3.”. When the player enters a settlement, the event Set-

tlementEntered is triggered and the action sees if the settlement is part of the dictionary and if it

has not been visited yet, updating the dictionary accordingly. The action ends as successful when

the player visits the three chosen settlements.

• freeAction - the quest logs are defined as, for example, ”Find a way to liberate HERO from SET-

TLEMENT.”. When the player frees an NPC, the events that can be triggered are HeroPrisonerRe-

leased or PrisonersChangeInSettlement and the action is considered successful when the NPC

is released.

• gatherAction - the quest logs are defined as, for example, ”Gather ITEM AMOUNT ITEM NAME.

You can maybe find some in SETTLEMENT.” The gathering of the item can be detected by the

events: PlayerInventoryExchangeEvent, OnEquipmentSmeltedByHeroEvent, OnNewItemCraftedE-

vent, OnItemProducedEvent or ItemsLooted and the action ends as successful when the desired

amount is reached.

• giveAction - the quest logs are defined as, for example, ”Give ITEM AMOUNT ITEM NAME to

HERO”. The action also adds a new dialogue to the target NPC so that the item can be given. The

dialogue itself can detect if the player has enough items, and the action ends as successful when

the item has been given.

• gotoAction - the quest logs are defined as, for example, ”Visit the settlement of SETTLEMENT.”

When entering a settlement, the event SettlementEntered is triggered and the action checks if it’s

the target settlement. If it is, then the action checks if the next action is also a go to action. When

the next action is also a go to action, a dialogue is added to a random NPC of the settlement

and the quest log changes to ”Talk with HERO”. This dialogue is the NPC telling the player that

whatever they are looking for is not on that settlement, and doing this dialogue ends the action as

successful. If the next action is not a go to action, then the action ends as successful.

• killAction - the quest logs are defined as, for example, ””Kill HERO.” When the player kills the target,

the events that can be triggered are HeroKilledEvent or MapEventEnded and the action ends as

successful.

• listenAction - the quest logs are defined as, for example,”HERO from SETTLEMENT might have

the information you need, listen to what he has to say.” and a new dialogue is added to the target

NPC. The information given by the NPC to the player changes depending on the Strategy chosen

55

for the quest and if there is a subquest action prior to this listen action. Talking with the target NPC

ends the action as successful.

• reportAction - the quest logs are defined as, for example, ”You’ve completed your task. Report the

events to HERO from SETTLEMENT.”. and a new dialogue is added to the target NPC. The report

given by the player through the dialogue changes depending on the Strategy chosen for the quest.

Talking with the target NPC ends the action as successful.

• subquestAction - As mentioned before, the subquests are defined as an action. When a subquest

is reached by the Monitor module, a new ”Issue” is created and assigned to the target NPC with the

generated subquest. The action then defines the quest logs, setting the log text as, for example,

”It appears someone wants to have a word with you. Talk with HERO in SETTLEMENT and find

out what he wants.”. When the subquest is completed, the OnQuestCompletedEvent is triggered

and the action ends as successful.

• takeAction - the quest logs are defined as, for example, ”Take AMOUNT ITEM from HERO.”. The

action ends as successful when the required amount of items as been taken. This is done by

listening to the events MapEventStarted and MapEventEnded.

• useAction - the quest logs are defined as, for example, ”Go train and level up your SKILL by at

least AMOUNT levels.”. Levelling up a skill triggers the HeroGainedSkill event, and the action ends

as successful when the player has levelled up the chosen amount of levels.

In this module, the behavior tree is traversed more than once, on the contrary to the Instantiator

module. Although it’s still not once every single frame, the behavior tree is traversed once when the

quest is accepted and then once every time an action is completed. This is done so that the next action

can be grabbed and its logs and dialogues, if applicable, can be initialized.

56

Figure 4.15: Quest on the quest screen

Figure 4.16: Quest state after completing a step

57

4.4.1 Save and Load system

Due to the limitations of Bannerlord’s own save and load system, we had to implement our own system.

A new XML file is created when the game creates a new ”Issue” and another file is created when the

game creates a new ”Quest” from that ”Issue”. These files contain the quest behavior trees and are

used to store strings of the objects used in the actions. For example, if a quest has the ”go to” action,

then the file is going to contain that action stored with a string representative of the target settlement of

the action. These files are also saved when the player saves the game.

When the player returns to the game, the files are loaded and each action brings back the original

target objects using the stored strings.

58

5
Evaluation

Contents

5.1 Metrics . 61

5.2 Nexus Mods publication . 62

5.3 User Tests . 64

5.4 Discussion . 73

59

60

To evaluate the quality and enjoyment of the mod we made, at first we decided to publicly publish the

mod and later to perform user tests. Publishing the mod online allowed us to have players used to playing

Bannerlord test out our mod, but it was harder to get more concrete results. Performing user tests meant

the players were very unlikely to have experience with Bannerlord, however, we were able to get proper

statistical results. Through this we were able to determine if the generator we made generated more

varied quests with a more diverse structure and if the players got the idea that the quests were made by

humans. This will allow seeing if we can reach our goal of generating quests in an automatic way that

are considered as good as the quests from Bannerlord.

5.1 Metrics

To know how our quests compared with the Bannerlord quests, we evaluated two different metrics, Quest

Quality and Quest enjoyment.

To evaluate Quest Quality, we created a set of questions that would help us better understand what

the player thought. These were:

• Quest Length - using a Likert scale (from 1 to 5, in the form of 5 scalable options) we asked the

players if they thought the length of the quests was suitable;

• Quest Cohesion - using three options (0 - The steps to complete the quest were very messy

and didn’t make sense; 1 - Most steps made sense, but a few of them didn’t seem to fit in; 2

- Structurally sound, each step being believable and making sense for it to be) know what the

players thought about the cohesion of the quests, meaning if they were consistent and made

sense throughout their completion;

• Quest Step Clarity - using 4 options (0 - None of them were clear on what I needed to accomplish

to complete them; 1 - Just a few of them were clear and most of them were confusing; 2 - Most of

them were clear, but some of them were a bit confusing; 3 - Clear on what I needed to accomplish)

to know the opinion of the players on the clarity of each step of the quest, this is, the clarity of every

action the player needed to complete;

• Quest Description Clarity - using a Likert scale (from 1 to 7) to know the opinion of the players

regarding the clarity of the provided quest descriptions and dialogues;

• Quest Dialogue Immersion - using a Likert scale (from 1 to 7) to See the player’s opinion regarding

how immersive the dialogues of each quest felt. This is, how much the players were drawn into the

game world.

61

• Quests made by humans - using a Likert scale (from 1 to 7) to find out what the player thought

about the origin of the quests, if they were made by humans or machine-generated.

To evaluate Quest Enjoyment we used an adaptation of the subscale ”enjoyment” from GUESS; Phan

et al. 2016 [7], that specifically targeted the quests, so that we could know if the players enjoyed the

quests. The questions were: ”I think the quests are fun”, ”I feel bored while completing the quests”, ”If

given the chance, I want to complete more quests”, ”I enjoy completing the quests” and ”I feel like the

quests are repetitive”.

5.2 Nexus Mods publication

Figure 5.1: Plot Lords logo on the Nexus Mods website

The mod was published on the most popular mod website for Bannerlord mods: Nexus mods [19].

It was published on the 22nd August 2021 [20] and in 60 days it reached over 2600 unique downloads,

over 19700 views and over 35 endorsements (a way for users to show their appreciation for a mod).

With this publishing, multiple bugs were found and fixed, and several feedbacks were made, the grand

majority of them positive. The mod page contained a very vague description of the mod to not cause

bias to the players when answering the questionnaire.

One of the goals with the publishing of the mod online was to have players with experience in the

game to answer a questionnaire A.1 that evaluated:

• Demographics (Age, Gender, time spent playing games, if they ever played Bannerlord, etc.);

• Player enjoyment of the game (using the subscale ”enjoyment” from GUESS; Phan et al. 2016)

62

• Bannerlord quests quality (custom questions);

• Bannerlord quests enjoyment (questions derived from the subscale ”enjoyment” from GUESS;

Phan et al. 2016);

• Plot Lords quests quality (custom questions);

• Plot Lords quests enjoyment (questions derived from the subscale ”enjoyment” from GUESS; Phan

et al. 2016);

Even though we had many people downloading the mod, we, unfortunately, only ended up with 8

answers to the questionnaire, meaning that they are not statistically relevant enough for us to analyze,

so we had to resort to in-person user tests to have results. This lack of answers might be due to the fact

that there was no incentive for people to answer the questionnaire.

5.2.1 Mod advertisement

To advertise our mod, all the students working on a thesis related to Bannerlord joined together on a

public discord server and invited people to join said server, in an attempt to boost each other’s visibility

on the mod. We also had a reference to each other’s mods on our mod pages to further boots views. In

total, over 110 people joined the server and a few of them interacted with us through the text channels.

We also got lucky and our mod was featured in the video of a somewhat popular YouTube channel

[14]. This helped us gain a lot of attention and allowed us to have a high number of views and downloads.

63

Figure 5.2: Plot Lords statistics in the Nexus mods website

5.2.2 Mod Community

Most of our interaction with the players that tried out our mod came down to bug fixing. This is, the player

would communicate with us either through the comment section or bug report section of the mod page

or the discord server. The discord server didn’t have much activity, however, the comment section and

bug report section of the mod page presented quite a lot of activity with over 60 comments with players

leaving their feedback and asking questions and even suggestions.

Figure 5.3: Example of a comment left as feedback

5.3 User Tests

The user tests were done in the span of two weeks, the participants were part of the Instituto Superior

Técnico - TagusPark community, which is also where the tests were conducted. Each participant was

given a 5C gift card to use on the steam platform as incentive to participate. One of the reasons to

conduct these user tests was due to the lack of responses to the online questionnaire.

64

5.3.1 Procedure

Accompanying the user tests, we had the players fill out a questionnaire. This test had a duration of

between 30 and 40 minutes. The questionnaire consisted of a Demographics part and then two sections

both used to evaluate the quest quality and quest enjoyment, one section for the first two quests and

the other section for the last two quests (it could either be: First two quests → Bannerlord quests, Last

two quests → Plot Lords quests or First two quests → Plot Lords quests, Last two quests → Bannerlord

quests). The players were also accompanied during the test in case they had any questions regarding

the game since, for most of them, it was their first time playing Bannerlord.

The performed user test was simple. Firstly, if the player hadn’t played any of the Mount & Blade

games before, they would play a small tutorial where its only goal would be to complete one of Ban-

nerlord’s quest entitled ”HERO wants his daughter found”. Afterwards, the player would fill out the

Demographics part of the questionnaire and enter another already prepared save-file. Depending on

their version, the player would either start out by completing two Bannerlord quests (with the titles of

”Landowner needs manual laborers” and ”Extortion by Deserters at SETTLEMENT”) and responding

to the related part of the questionnaire, or start by completing two Plot Lords quests (with the titles of

”Check on HERO” and ”Capture someone from the Looters”) and responding to the related part of the

questionnaire, following with whichever pair of quests they didn’t start with. Unless the players knew the

Bannerlord quests by heart, the two pairs of quests were indistinguishable and all the players played the

same quests.

Our goal with the types of quests was to have them be of a similar type, so has to not cause bias.

To choose the Bannerlord quests, we had to go through trial and error until we found two that were

of similar Motivation and were somewhat close to each other on the map. To choose the Plot Lords

quests, we generated two quests with a Motivation similar to the Bannerlord quests, in this case, either

Protection or Serenity, and that were a bit small so that the time limit of the user test was kept at around

40 minutes. Afterwards, we just forced the game to assign those quests to settlements nearby to the

Bannerlord quests.

65

Figure 5.4: User Test Procedure

5.3.2 Results

We’re now going to analyze the user tests results. Since each tester experienced both types of quests

(Bannerlord and Plot Lords quests), we are dealing with a statistical scenario corresponding to repeated

measures.

5.3.2.A Demographics

Regarding demographics. We had a total of 31 participants, where 87% were male and 13% were

female. The overall age of our participants was between 18-25 years old, and a bit over 60% of them

played games on a daily basis. The rest of them said they played weekly (13%), monthly (13%), once in

6 months (3%), once a year (3%) and either less than once a year or never (6%). Only one participant

had played Bannerlord before, and only 3 participants played M&B Warband before. However, over 87%

claimed to have played other RPGs/Open World games before.

Despite barely having someone with experience with Mount & Blade games, most of our participants

were regular players and had experience with the same type of games as Bannerlord (this is, RPG and

Open World games).

It’s also worth noticing that over 70% of the players noticed that the two pairs of quests were different

from one another.

5.3.2.B Quest Quality

A Cronbach Alpha test was conducted to measure the internal consistency of the questions. It was done

for both the questions related to the Bannerlord quests and to the Plot Lord quests.

• Bannerlord quests - We got a result of 0.487, meaning the internal consistency was unacceptable.

66

• Plot Lord quests - We got a result of 0.638, meaning the internal consistency was questionable.

With these results, we decided to not make the average of the results and instead analyze and

compare each question individually.

To do this analysis, we first needed to find out why kind of data we had, non-parametric or parametric.

So we conducted Tests of Normality, namely the Shapiro-Wilks test. Having conducted this test we had

all levels of significance (the p-value) lower than 0.05, so we conclude that the data does not fit the

normal distribution, and therefore it’s non-parametric.

According to [4], the test that should be done when analyzing repeated measures and non-normal

data is the Wilcoxon’s rank paired test.

5.3.2.C Quest Length

We got a significance value of 0.166, meaning that we should retain the null hypothesis, this is, there is

no statistical significance between the two sets of data.

From the box plot, we can conclude that most players thought the quests had the right size.

Figure 5.5: Quests Length opinion

5.3.2.D Quest Cohesion

We got a significance value of 0.046, meaning that we should reject the null hypothesis, this is, there is

a statistical significance between the two sets of data. This shows that, in terms of Quest Cohesion our

mod was a bit different from the Bannerlord quests.

From the histogram we can conclude that most players thought the quests were structurally sound,

however there were a few that thought some steps didn’t seem to fit in, mainly with the Plot lords quests.

67

Figure 5.6: Quests Cohesion opinion: 0 - The steps to complete the quest were very messy and didn’t make sense;
1 - Most steps made sense, but a few of them didn’t seem to fit in; 2 - Structurally sound, each step
being believable and making sense for it to be

5.3.2.E Quest Step Clarity

We got a significance value of 0.317, meaning that we should retain the null hypothesis, this is, there is

no statistical significance between the two sets of data. This shows that, in terms of Quest step clarity,

our mod was similar to the Bannerlord quests.

From the histogram, we see that the players thought both pairs of quests were good in terms of Quest

step Clarity.

68

Figure 5.7: Quest Step Clarity opinion: 0 - None of them were clear on what I needed to accomplish to complete
them; 1 - Just a few of them were clear and most of them were confusing; 2 - Most of them were clear,
but some of them were a bit confusing; 3 - Clear on what I needed to accomplish

5.3.2.F Quest Description Clarity

We got a significance value of 0.154, meaning that we should retain the null hypothesis, this is, there is

no statistical significance between the two sets of data. This shows that, in terms of Quest Description

clarity, our mod was similar to the Bannerlord quests.

From the box plot, we see that the players thought both pairs of quests were good in terms of Quest

Description Clarity.

Figure 5.8: Quests Description Clarity opinion

69

5.3.2.G Quest Dialogue Immersion

We got a significance value of 0.120, meaning that we should retain the null hypothesis, this is, there

is no statistical significance between the two sets of data. This shows that, in terms of Quest Dialogue

Immersion, our mod was similar to the Bannerlord quests.

From the box plot, we see that the players thought both pairs of quests were good in terms of Quest

Dialogue Immersion, however, the Plot lords got a few negative outliers. Still, these are not enough for

us to consider there is a statistical significance, therefore we can’t say that there is a difference between

both sets of quests.

Figure 5.9: Quest Dialogue Immersion opinion

5.3.2.H Quests made by humans

We got a significance value of 0.773, meaning that we should retain the null hypothesis, this is, there is

no statistical significance between the two sets of data. This shows that, in terms of thinking the quests

were made by humans, our mod was similar to the Bannerlord quests.

From the box plot, we see that there are no statistical differences between the Plot lords quests and

the Bannerlord quests when it comes to thinking the quests were made by humans.

70

Figure 5.10: Opinion on ”Were the quests made by humans?”

5.3.2.I Quest Enjoyment

A Cronbach Alpha test was conducted to measure the internal consistency of the questions. It was done

for both the questions related to the Bannerlord quests and to the Plot Lord quests.

• Bannerlord quests - We got a result of 0.840, meaning the internal consistency was good.

• Plot Lord quests - We got a result of 0.832, meaning the internal consistency was good.

With these results, we decided to make the mean of the results and analyze those means.

To do this analysis, we first needed to find out why kind of data we had, non-parametric or parametric.

So we conducted Tests of Normality, namely the Shapiro-Wilks test. Having conducted this test, we had

all levels of significance (the p-value) lower than 0.05, so we concluded that the data does not fit the

normal distribution, and therefore it’s non-parametric.

According to [4], the test that should be done when analyzing repeated measures and non-normal

data is the Wilcoxon’s rank paired test.

The Wilcoxon rank paired test gave a significance of 0.011, which means we should reject the null

hypothesis, this is, there is a statistical significance between the two sets of data. We got an effect size

of -0.457, meaning the effect is average.

From the box plot, we see that the players enjoyed the Bannerlord quests slightly more than the Plot

lords quests.

71

Figure 5.11: Opinion on Quest Enjoyment without order

To better know the cause for this difference we analyzed each question individually:

• ”I think the quests are fun” - Significance level of 0.026, which means we should reject the null

hypothesis, this is, there is a statistical significance between the two sets of data.

• ”I feel bored while completing the quests” - Significance level of 0.067, which means we should

retain the null hypothesis, this is, there is no statistical significance between the two sets of data.

• ”If given the chance, I want to complete more quests” - Significance level of 0.806, which means

we should retain the null hypothesis, this is, there is no statistical significance between the two

sets of data.

• ”I enjoy completing the quests” - Significance level of 0.166, which means we should retain the null

hypothesis, this is, there is no statistical significance between the two sets of data.

• ”I feel like the quests are repetitive” - Significance level of 0.074, which means we should retain

the null hypothesis, this is, there is no statistical significance between the two sets of data.

From this, we can see that the players thought the Bannerlord quests were simply slightly more fun than

the Plot Lords quests.

72

5.4 Discussion

Discussing now the results, in general, we got what we expected since the testing conditions weren’t

perfect. The ideal tests would have been done with players already experienced with Bannerlord and

capable of testing more than two quests from Plot Lords so that they could experience the variety of

quests the mod is capable of providing. With only two quests, this was an impossible metric to measure.

Even though most of these users had experience with RPG/Open World games (the same type

as Bannerlord), which was an advantage when conducting the tests, most of them had never played

Bannerlord. Since they only played between 30 and 40 minutes, there wasn’t enough time for them

to experience both the base game and the quests of Plot Lords, so it’s possible the test results would

change given more time and experience with the game and the mod. It’s also important to notice that

everything from the mod was automatically generated, and all the NPC dialogues and step descriptions

were written by us, so some English from the descriptions and such could not be perfect, something that

could affect user experience. All these nuisances might have contributed for the Plot lords quest to have

very slightly lower results when in comparison with the Bannerlord quests.

Nevertheless, we think we accomplished our goals of providing the user with an experience almost

as good as the base one, while at the same time we generated quests more varied in an automated way.

In terms of quest quality, since each question targets a different metric to measure, we have to look

at them individually.

Regarding the Quest Length, most players though the quests had the right size and there was no

statistical difference between the two sets of data, there were, however, a few that though the Plot lords

quests were a bit on the small side. This is a great result, since the chosen quests for Plot Lords were

purposely chosen because they were on the smaller side. This was done so that the time spent in the

user test would not go beyond the 40 minutes. Due to being automatically generated, the quest sizes

can vary a lot, and some of them could have a tendency to become a bit time-consuming, especially if

they had sub-quests.

Looking at Quest Cohesion, there was a statistical difference, meaning the players thought the Ban-

nerlord quests were a bit more structurally sound than the Plot Lords quests. This was also expected,

because there was more time spent to refine each one of Bannerlord quests, while with the Plot lords

quest, since they were automatically generated, it’s possible some steps weren’t perfectly fit into the

quest generation.

Taking a look at the Quest step Clarity. There was no statistical difference between the two sets of

data, so both quest pairs had good step clarity, this is, each step in the quests was easy for the player

to understand, and they knew what they needed to do.

Next, Quest Description Clarity. Again, there is no statistical difference between the two sets of data,

so both quest pairs had good description clarity, this is, the dialogue and descriptions provided by the

73

quest giver to the player were good and understandable.

Afterwards, the Quest Description Immersion. Once again, there is no statistical difference between

the two sets of data, so both quest pairs had good dialogue immersion, this is, the dialogues proved to

be immersive to the players. It’s important to notice the negative outliers on the plot lords quests. They

might be due to the automated generation of text that might have some problems that affected the user

experience. Still, they are not enough for us to consider there is a statistical significance.

Finally, the opinion on the quest origin, this is, if they were made by humans. Once again, there is no

statistical difference between the two sets of data, so the players didn’t notice any difference between

the quests, and they thought both of them were made by humans. This result is great to see, since

this means that there’s a possibility that a system like this could be implemented in another game, and

players might not even notice that the quests from the game are being procedurally generated.

Concerning the quest enjoyment. We didn’t get the expected results, but they were still positive

considering the challenge we had to face, since the quests were automatically generated and from what

we saw above there are a few problems with the quest cohesion that might have affected the user

experience. There was a statistical significance between the two sets of data, so the players enjoyed

the Bannerlord quests slightly more than the Plot lords quests. The main reason for this, from the

analysis we did afterwards of each individual question related to the enjoyment, seems to be that the

players thought the Bannerlord quests were slightly more fun than the Plot Lords quests. The reason for

this might be because the chosen Bannerlord quests involved more fighting (one of the most attractive

features in Bannerlord) than the Plot lords quests that made the player walk a bit more around the map

(a feature some players might find less fun). Since for the vast majority of the players it was the first

time they played Bannerlord they might have become more captivated with the combat, that was more

present in the Bannerlord quests, so they found the Bannerlord quests a bit more fun.

74

6
Conclusion and Future work

Contents

6.1 Future Work . 77

75

76

The main goal of this thesis was to implement a generator capable of creating quests that could

match human-made quests and even be mistaken with them, with more diversity and a much more

varied structure.

To achieve this we adjusted the generator envisioned by Jonathan Doran and Ian Parberry with the

modifications done by António Machado to fit a game with a quest system already in place, Mount

& Blade II: Bannerlord. These adjustments consist of: an adaptation of the number of actions to fit

Bannerlord, a change to the algorithm that assigns the world objects to the actions, the addition of a

behavior tree system and the addition of alternative ways to complete the quest.

We believe these changes made the structure of the generated quests more varied, improving the

player experience.

The results we got were overall quite positive. We were able to produce quests that, even though

were slightly inferior to the Bannerlord quests in terms of enjoyment, were comparable in terms of quality,

only noticeably less good when it came to quest cohesion. The automatically generated quests proved

to have a good overall quality and were enjoyed by the players. They also proved to be indistinguish-

able from human-made quests which is our most positive result and, as said before, demonstrates the

system could be applied to another game and the players could not even notice the quests were being

procedurally generated.

With these results, we believe the Bannerlord Quest Generator was able to create quests with great

diversity and varied structure that players enjoyed. We think this is a step forward in the gaming industry,

since the generated quests helped in improving the replayability and enjoyment of Bannerlord, and much

like Bannerlord, this Generator could be applied to other games (with or without a questing system) to

help improve their replayability and reducing the time and financial costs associated with quest creation.

6.1 Future Work

The best way to continue the work we’ve done is to finish implementing all the actions proposed by

Jonathan Doran and Ian Parberry with the modifications done by António Machado. We believe the best

environment to accomplish this would be in a game that was done from the ground up with a procedural

quest generation system.

The system currently has a few issues with making sure all the actions in the quests are coherent, and

all the world objects are correctly assigned when there are chained actions and rules. Our work already

made a few changes to better assure these issues are corrected (with the exceptions implemented in

the ”BindParameters” algorithm 4.2.1.E). However, we believe the algorithm and the flag system used

(flag 0 for parent restriction, 1 for no restriction (also known as new case) and 2 for sibling restriction),

need to be reviewed and receive an overhaul, especially if more actions are added since more actions

77

mean more potential problems. We think, for example, the addition of more flags could help.

The text generation part of the quests is also not perfect. So further work on this component would

also allow for even greater quests to be generated.

78

Bibliography

[1] Breault, V.: Multi-agent planning for interactive emergent narrative systemss. Master’s thesis, Car-

leton University (2015)

[2] Broekema, C.: Drama management implementation for interactive digital storytelling (2013)

[3] Doran, J., Parberry, I.: A prototype quest generator based on a structural analysis of quests from

four mmorpgs. In: Proceedings of the 2nd International Workshop on Procedural Content Gener-

ation in Games. PCGames ’11, Association for Computing Machinery, New York, NY, USA (2011).

https://doi.org/10.1145/2000919.2000920, https://doi.org/10.1145/2000919.2000920, last ac-

cessed 26 October 2021

[4] Flowchart to choose a statistical test, https://www.intro2r.info/unit3/which-test.html, last

accessed 26 October 2021

[5] Machado, A.: A procedural quest generator for Conan Exiles. Master’s thesis, Universidade de

Lisboa - Instituto Superior Técnico (2017)

[6] Machado, A., Santos, P.A., Dias, J.: Towards a procedurally generated experience : A structural

analysis of quests. Universidade de Lisboa - Instituto Superior Técnico (2017)

[7] Mikki, P., Keebler, J.R., S. Chaparro, B.: The development and validation of the game user experi-

ence satisfaction scale (guess). Human Factors The Journal of the Human Factors and Ergonomics

Society (September 2016). https://doi.org/10.1177/0018720816669646

[8] Millington, I., Funge, J.: Artificial Intelligence for Games, Second Edition. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2nd edn. (2009)

[9] Mimesis aquarium image. 21 December 2020, https://www.researchgate.net/figure/

A-screenshot-of-the-Mimesis-Virtual-Aquarium-a-simulation-of-a-portion-of-the-Monterey_

fig1_270960091/, last accessed 26 October 2021

79

https://doi.org/10.1145/2000919.2000920
https://www.intro2r.info/unit3/which-test.html
https://www.researchgate.net/figure/A-screenshot-of-the-Mimesis-Virtual-Aquarium-a-simulation-of-a-portion-of-the-Monterey_fig1_270960091/
https://www.researchgate.net/figure/A-screenshot-of-the-Mimesis-Virtual-Aquarium-a-simulation-of-a-portion-of-the-Monterey_fig1_270960091/
https://www.researchgate.net/figure/A-screenshot-of-the-Mimesis-Virtual-Aquarium-a-simulation-of-a-portion-of-the-Monterey_fig1_270960091/

[10] Poor, N.: Computer game modders’ motivations and sense of community: A

mixed-methods approach. New Media & Society 16, 1249–1267 (11 2013).

https://doi.org/10.1177/1461444813504266

[11] Teutenberg, J., Porteous, J.: Efficient intent-based narrative generation using multiple planning

agents (05 2013)

[12] Young, R.: An overview of the mimesis architecture: Integrating intelligent narrative control into an

existing gaming environment (2001)

[13] Young, R., O. Riedl, M., Branly, M., Jhala, A., Martin, R.J., Saretto, C.J.: An architecture for inte-

grating plan-based behavior generation with interactive game environments. J. Game Dev. 1, 1–29

(2004)

80

Game References

[14] Artem: Mount blade 2 bannerlord mods 26: Banners, torches, custom troops more!, https:

//youtu.be/bkC4nKkeTaE?t=44, last accessed 26 October 2021

[15] Mount and blade ii: Bannerlord game. 21 December 2020, https://store.steampowered.com/

app/261550/Mount__Blade_II_Bannerlord/, last accessed 26 October 2021

[16] Bannerlord documentation. 21 December 2020, https://docs.bannerlordmodding.com/_intro/

getting-started.html#tools, last accessed 26 October 2021

[17] Conan exiles game. 21 December 2020, https://store.playstation.com/pt-pt/product/

EP1833-CUSA10486_00-CONANEXILES00001

[18] Harmony library, https://harmony.pardeike.net/articles/intro.html, last accessed 26 Octo-

ber 2021

[19] Nexus mods website, https://www.nexusmods.com, last accessed 26 October 2021

[20] The plot lords mod. 22 August 2021, https://www.nexusmods.com/mountandblade2bannerlord/

mods/3243, last accessed 26 October 2021

[21] The witcher iii: Wild hunt. 4 January 2021, https://store.steampowered.com/app/292030/The_

Witcher_3_Wild_Hunt/, last accessed 26 October 2021

81

https://youtu.be/bkC4nKkeTaE?t=44
https://youtu.be/bkC4nKkeTaE?t=44
https://store.steampowered.com/app/261550/Mount__Blade_II_Bannerlord/
https://store.steampowered.com/app/261550/Mount__Blade_II_Bannerlord/
https://docs.bannerlordmodding.com/_intro/getting-started.html#tools
https://docs.bannerlordmodding.com/_intro/getting-started.html#tools
https://store.playstation.com/pt-pt/product/EP1833-CUSA10486_00-CONANEXILES00001
https://store.playstation.com/pt-pt/product/EP1833-CUSA10486_00-CONANEXILES00001
https://harmony.pardeike.net/articles/intro.html
https://www.nexusmods.com
https://www.nexusmods.com/mountandblade2bannerlord/mods/3243
https://www.nexusmods.com/mountandblade2bannerlord/mods/3243
https://store.steampowered.com/app/292030/The_Witcher_3_Wild_Hunt/
https://store.steampowered.com/app/292030/The_Witcher_3_Wild_Hunt/

82

A
Questionnaires

A.1 Nexus Mod Questionnaire

83

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

1 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

2 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

3 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

4 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

5 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

6 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

7 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

8 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

9 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

10 de 12 22/10/2021, 16:10

M&B II Bannelord mod - The Plot Lords https://docs.google.com/forms/u/2/d/1ySFDUFBMmINiV1sx9hMCub...

11 de 12 22/10/2021, 16:10

A.2 User Test Questionnaire

96

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

1 de 10 28/10/2021, 12:14

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

2 de 10 28/10/2021, 12:14

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

3 de 10 28/10/2021, 12:14

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

4 de 10 28/10/2021, 12:14

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

5 de 10 28/10/2021, 12:14

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

6 de 10 28/10/2021, 12:14

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

7 de 10 28/10/2021, 12:14

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

8 de 10 28/10/2021, 12:14

Plot Lords User Test https://docs.google.com/forms/u/2/d/1HjNO82jAXc0Yr3tA0Sh7t3_P...

9 de 10 28/10/2021, 12:14

107

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures

	1 Introduction
	1.1 Problem Definition and Thesis Goals
	1.2 Organization of the Document

	2 Related Work
	2.1 Doran and Parberry's Prototype Quest Generator
	2.2 Towards a Procedurally Generated Experience: A Structural Analysis of Quests
	2.3 Procedural Quest Generator for Conan Exiles
	2.4 Quest Generation and Interactive Storytelling
	2.4.1 Mimesis
	2.4.2 CONAN
	2.4.3 IMPRATical

	3 The Game - Mount & Blade II: Bannerlord
	3.1 Bannerlord Quest System
	3.2 Modding in Bannelord
	3.2.1 Harmony

	4 Bannerlord Quest Generator - BQG
	4.1 A General Overview
	4.2 The Generator module
	4.2.1 Quest Generator Algorithm
	4.2.1.A CreateQuest algorithm
	4.2.1.B Expand algorithm
	4.2.1.C WeightedChoice algorithm
	4.2.1.D UpdateWeights algorithm
	4.2.1.E BindParameters algorithm

	4.2.2 Subquests
	4.2.3 Alternative way to complete a quest

	4.3 The Instantiator module
	4.4 The Monitor module
	4.4.1 Save and Load system

	5 Evaluation
	5.1 Metrics
	5.2 Nexus Mods publication
	5.2.1 Mod advertisement
	5.2.2 Mod Community

	5.3 User Tests
	5.3.1 Procedure
	5.3.2 Results
	5.3.2.A Demographics
	5.3.2.B Quest Quality
	5.3.2.C Quest Length
	5.3.2.D Quest Cohesion
	5.3.2.E Quest Step Clarity
	5.3.2.F Quest Description Clarity
	5.3.2.G Quest Dialogue Immersion
	5.3.2.H Quests made by humans
	5.3.2.I Quest Enjoyment

	5.4 Discussion

	6 Conclusion and Future work
	6.1 Future Work
	Bibliography

	Bibliography
	Appendix A

	A Questionnaires
	A.1 Nexus Mod Questionnaire
	A.2 User Test Questionnaire

