
Next-Gen Pure Function Synthesis

Joana Maria Leal Coutinho

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Maria Inês Camarate de Campos Lynce de Faria

Dr. Miguel Ângelo da Terra Neves

Examination Committee

Chairperson: Professor Nuno João Neves Mamede

Supervisor: Professor Maria Inês Camarate de Campos Lynce de Faria

Member of the Committee: Professor Pedro Miguel dos Santos Alves Madeira Adão

October 2021

ii

Acknowledgments

First and foremost, I would like to thank my advisors, Professor Inês Lynce and Miguel Neves, for guiding

me through this thesis from the start and always giving me the support and advice I needed. I always

felt I could count on you and I am certain this chapter would have been significantly harder without you.

I would like to thank my family for all the support and patience throughout this process, always being

there to listen to me and push me to be my best self. Your kind words and encouragement made the

past five years possible.

I am very grateful to my friends for being there for me, especially in a time of pandemic, by always

finding ways to take everyone’s mind off work and other worries around us. Our time together playing

games virtually made the pandemic much less lonely. I would also like to thank specifically my best friend

Pedro, who I could always count on for brain storming ideas, words of encouragement and reassurance

throughout this thesis.

This work was supported by OutSystems, by national funds through Fundação para a Ciência e

Tecnologia under project UIDB/50021/2020, and project GOLEM (reference ANI 045917) funded by

FEDER and FCT.

iii

iv

Resumo

A OutSystems é uma plataforma de automatização de software que permite aos utilizadores criar as

suas próprias aplicações, utilizando interfaces gráficas em vez de uma linguagem de programação.

No entanto, a lógica subjacente à interface gráfica da plataforma utiliza um grafo para ilustrar o seu

comportamento, o que continua a exigir que o utilizador consiga pensar como um programador tradi-

cional. Assim, torna-se útil para utilizadores sem essa capacidade a automatização deste mecan-

ismo. A sı́ntese de programas consiste na criação automática de um programa a partir de uma dada

especificação. Uma função pura é uma função que retorna sempre o mesmo valor de output para o

mesmo input, tendo também a propriedade de não ter efeitos colaterais.

Esta tese tem como objetivo estender o trabalho na automatização dos grafos da plataforma de Out-

Systems, aumentando a sua eficiência e eficácia, e permitindo operações mais complexas. A solução

baseia-se na sı́ntese de funções puras utilizando Programação-por-Exemplo como especificação e uma

técnica de procura que combina Teorias do Módulo de Satisfação e enumeração de sketches.

Nesta tese, introduzimos PUFS-X, um sintetizador que suporta a geração de atribuições, condicion-

ais, operações de listas e queries de SQL. Começamos por criar uma versão melhorada do trabalho

realizado na área, o sintetizador PUFS+, que suporta a geração de atribuições e condicionais. De

seguida, estendemos o sintetizador em duas formas distintas: operações de listas criando o sintetiz-

ador PUFS-L e queries de SQL, criando o sintetizador PUFS-SQL. Por fim, o sintetizador PUFS-X foi

criado com todas as capacidades num só. Uma análise extensiva é realizada para observar o desem-

penho de cada sintetizador.

Keywords: Sı́ntese de Programas, Teorias do Módulo de Satisfação, Programação-por-Exemplo

v

vi

Abstract

OutSystems is a low-code platform that allows users to create their applications through graphical inter-

faces instead of hand-coded computer programming. However, in the OutSystems platform, business

logic is implemented through action flows, a graph that illustrates the intended logic, which requires the

user to think like a traditional developer when implementing such flows leaving one desiring to automate

it. Program synthesis consists of automatically deriving a program from a specification. Pure functions

always return the same value for the same input, without side effects such as altering databases.

In this work, we seek to extend previous work of automating logical flows in the OutSystems platform,

increasing the performance and allowing more complex operations and domains. The solution focuses

on pure function synthesizing using programming by example as the specification method and the search

technique is a combination of sketch enumeration and satisfiability modulo theories.

In this dissertation, we introduce PUFS-X, a framework that supports generation of assignments,

conditionals, list manipulation operations and data aggregation queries. We start by creating an im-

proved version of the work done in pure function synthesis, the PUFS+ framework, which is able to

synthesize programs with assignment and conditional capabilities. We then extend the framework in

two distinct manners: the addition of list manipulation capabilities, creating the PUFS-L framework; and

the addition of data aggregation capabilities, creating the PUFS-SQL framework. Finally, the PUFS-X

framework was created by joining all features into a single synthesizer. An extensive analysis is made to

observe the performance of each framework and the impact on the benchmarks when a more complex

framework is used.

Keywords: Program Synthesis, Programming by Example, Satisfiability Modulo Theories

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Figures . xii

List of Tables . xv

1 Introduction 1

1.1 Motivating Example . 2

1.2 Contributions . 2

1.3 Organization . 3

2 Fundamental Concepts 5

2.1 Program Synthesis . 5

2.1.1 User specification . 5

2.1.2 Program Space . 6

2.1.3 Search Techniques . 7

2.2 Programming by Examples . 9

2.2.1 Version Space Algebra . 10

2.2.2 Ambiguity Resolution . 10

2.3 Satisfiability Modulo Theories . 10

2.4 The Sketching Approach to Program Synthesis . 12

3 Related Work 13

3.1 Pure Function Synthesis in the OutSystems Platform . 13

3.1.1 Specification . 13

3.1.2 Program space . 13

3.1.3 Search technique . 14

3.2 SQL Synthesis . 15

3.2.1 SQUARES . 16

3.2.2 CUBES . 17

ix

4 Next-Gen Pure Function Synthesis 19

4.1 PUFS+ Framework . 19

4.1.1 Fine-grained DSL Types . 20

4.1.2 Node Connectivity Constraint . 21

4.1.3 Other Improvements . 22

4.1.4 SMT constraints . 23

4.2 PUFS-L framework . 26

4.2.1 PUFS-L-Ordered . 27

4.2.2 PUFS-L-Assisted . 28

4.2.3 Changes in Implementation . 30

4.3 PUFS-SQL framework . 31

4.3.1 PUFS-SQL . 31

4.3.2 PUFS-SQL-Ordered . 32

4.3.3 Changes in Implementation . 33

4.4 PUFS-X framework . 34

4.4.1 PUFS-X-Ordered . 34

4.4.2 Changes in Implementation . 36

4.5 User input . 36

5 Evaluation 38

5.1 Benchmark Description . 38

5.1.1 Assign and conditional nodes . 38

5.1.2 List manipulation nodes . 39

5.1.3 Assign, conditional and list manipulation nodes . 40

5.1.4 Data aggregation nodes . 41

5.1.5 Assign, conditional and data aggregation nodes 41

5.1.6 List manipulation and data aggregation nodes . 42

5.1.7 Assign, conditional, list manipulation and data aggregation nodes 43

5.2 Evaluation Method . 44

5.3 Experimental Results . 45

5.3.1 PUFS+ framework . 45

5.3.2 PUFS-L framework . 49

5.3.3 PUFS-SQL framework . 57

5.3.4 PUFS-X framework . 62

6 Conclusions and Future Work 74

6.1 Future Work . 74

Bibliography 80

A Tables of DSL operations 81

x

List of Figures

1.1 Ilustration of the motivating example . 4

2.1 Program Synthesis process . 6

2.2 Enumerative Search process . 7

2.3 Deductive Search process . 8

2.4 Constraint Solving process . 9

3.1 Pure Function Synthesizer (PUFS) framework . 14

3.2 A partial flow . 15

3.3 An example of an AST . 15

3.4 A partial flow with corresponding tree . 16

3.5 DSL of the SQUARES framework . 16

3.6 PUFS framework . 17

3.7 DSL of the CUBES framework . 17

4.1 Example of the lack of connectivity between nodes in the PUFS framework 20

4.2 Previous nodes used in Multi-Gen encoding for the PUFS+ framework 21

4.3 Previous nodes used in Single-Gen encoding for the PUFS+ framework 21

4.4 Example of a configuration . 37

5.1 Example of a PUFS benchmark . 40

5.2 Example of a PUFS-L benchmark . 41

5.3 Example of a list manipulation and data aggregation benchmark 42

5.4 Example of a PUFS-X benchmark . 43

5.5 Precision and recall metrics1 . 44

5.6 PUFS framework versions: Runtime per instances solved 46

5.7 PUFS-L framework versions: list manipulation benchmarks 50

5.8 PUFS-L framework versions: assignment and conditional benchmarks 52

5.9 PUFS-L framework versions: assignment, conditional and list manipulation benchmarks . 55

5.10 PUFS-SQL framework versions: data aggregation benchmarks 56

5.11 PUFS-SQL framework versions: assignment and conditional benchmarks 59

5.12 PUFS-SQL framework versions: assignment, conditional and data aggregation benchmarks 61

xi

5.13 PUFS-X framework versions: assignment and conditional benchmarks 62

5.14 PUFS-X framework versions: list manipulation benchmarks 65

5.15 PUFS-X framework versions: assignment, conditional and list manipulation benchmarks . 66

5.16 PUFS-X framework versions: data aggregation benchmarks 68

5.17 PUFS-SQL framework versions: assignment, conditional and data aggregation benchmarks 70

5.18 PUFS-X framework versions: list manipulation and data aggregation benchmarks 71

5.19 PUFS-X framework versions: assignment, conditional, list manipulation and data aggreg-

ation benchmarks . 72

xii

List of Tables

1.1 Professors . 2

1.2 Support staff . 2

1.3 Specification . 3

2.1 Example of inputs/outputs for PBE . 9

4.1 PUFS-L frameworks: Number of sketches by depth . 27

4.2 Added assign DSL operations to PUFS-L . 28

4.3 Added DSL enums to PUFS-L . 29

4.4 Input/output set for example 9 . 29

4.5 PUFS-SQL frameworks: Number of sketches by depth . 32

4.6 PUFS-X frameworks: Number of sketches by depth . 35

5.1 Summary of benchmarks used . 39

5.2 Evaluation metrics for the PUFS frameworks . 47

5.3 Total runtime of same benchmarks for the PUFS frameworks 47

5.4 Evaluation metrics for the PUFS-L framework versions: list manipulation benchmarks . . 51

5.5 Total runtime of same benchmarks for the PUFS-L frameworks: list manipulation bench-

marks . 51

5.6 Evaluation metrics for the PUFS-L framework versions: assignment and conditional bench-

marks . 53

5.7 Total runtime of same benchmarks for the PUFS-L frameworks: assignment and condi-

tional benchmarks . 53

5.8 Evaluation metrics for the PUFS-L framework versions: assignment, conditional and list

manipulation benchmarks . 54

5.9 Total runtime of same benchmarks for the PUFS-L frameworks: assignment, conditional

and list manipulation benchmarks . 55

5.10 Evaluation metrics for the PUFS-SQL framework versions: data aggregation benchmarks 57

5.11 Total runtime of same benchmarks for the PUFS-SQL frameworks: data aggregation

benchmarks . 57

5.12 Evaluation metrics for the PUFS-SQL frameworks: assignment and conditional benchmarks 60

xiii

5.13 Total runtime of same benchmarks for the PUFS-SQL frameworks: assignment and con-

ditional benchmarks . 60

5.14 Evaluation metrics for the PUFS-SQL frameworks: assignment, conditional and data ag-

gregation benchmarks . 61

5.15 Total runtime of same benchmarks for the PUFS-SQL frameworks: assignment, condi-

tional and data aggregation benchmarks . 61

5.16 Evaluation metrics for the PUFS, PUFS-L and PUFS-SQL framework versions: assign-

ment and conditional benchmarks . 63

5.17 Evaluation metrics for the PUFS-X frameworks: assignment and conditional benchmarks 63

5.18 Total runtime of same benchmarks for the all frameworks: assignment and conditional

benchmarks . 63

5.19 Evaluation metrics for the PUFS-X frameworks: list manipulation benchmarks 66

5.20 Total runtime of same benchmarks for the PUFS-X frameworks: list manipulation bench-

marks . 66

5.21 Evaluation metrics for the PUFS-X frameworks: assignment, conditional and list manipu-

lation benchmarks . 67

5.22 Total runtime of same benchmarks for the PUFS-X frameworks: assignment, conditional

and list manipulation benchmarks . 68

5.23 Evaluation metrics for the PUFS-X frameworks: data aggregation benchmarks 69

5.24 Total runtime of same benchmarks for the PUFS-X frameworks: data aggregation bench-

marks . 69

5.25 Evaluation metrics for the PUFS-X frameworks: assignment, conditional and data aggreg-

ation benchmarks . 70

5.26 Total runtime of same benchmarks for the PUFS-X frameworks: assignment, conditional

and data aggregation benchmarks . 70

5.27 Evaluation metrics for the PUFS-X frameworks: list manipulation and data aggregation

benchmarks . 71

5.28 Total runtime of same benchmarks for the PUFS-X frameworks: list manipulation and data

aggregation benchmarks . 72

5.29 Evaluation metrics for the PUFS-X frameworks: assignment, conditional, list manipulation

and data aggregation benchmarks . 73

5.30 Total runtime of same benchmarks for the PUFS-X frameworks: assignment, conditional,

list manipulation and data aggregation benchmarks . 73

A.1 Numeric DSL operations of PUFS+ . 82

A.2 Text DSL operations of PUFS+ . 83

A.3 Boolean DSL operations of PUFS+ . 84

A.4 Outsystems built-in DSL operations of PUFS-L . 85

A.5 Custom DSL operations of PUFS-L . 86

xiv

A.6 PUFS-SQL freeform operations . 86

A.7 PUFS-SQL template operations . 87

A.8 Added DSL enums to PUFS-SQL . 88

xv

xvi

Chapter 1

Introduction

Nowadays, more and more people have access to technology devices, such as smartphones or com-

puters. However, the learning curve needed for a person to program such devices is significant. OutSys-

tems is a software automation platform that allows users to create their applications through graphical

interfaces instead of traditional text-based programming. The goal of OutSystems is to provide efficient

tools that are easy to use and responsive in just a few seconds, not requiring the user to acquire new

skills. However, in the OutSystems platform, business logic is implemented through action flows, a

graph that illustrates the intended logic, which requires the user to think like a traditional developer when

implementing such flows leaving one desiring to automate it.

Program synthesis consists of automating the creation of a program according to a certain specific-

ation. Program synthesis enables one to build computer programs without any knowledge of program-

ming, by shifting the effort from writing an implementation to providing a specification of the intended

semantics instead. Hence, program synthesis seems like a good form of automating the implementation

of action flows used in the OutSystems platform.

A pure function is a function that always returns the same value for the same input and produces

no side effects, such as the modification of global variables or databases. For program synthesis, pure

functions can simplify the reasoning process significantly by removing the need to reason about side

effect. This scenario fits naturally into the programming-by-example paradigm because pure functions

allows us to be confident the output is consistent.

In this work, we seek to extend previous work by creating a new generation of pure function synthes-

izers that support more complex scenarios and have a more efficient performance. More specifically,

the goal is to add support for synthesizing list manipulations and data aggregation on the OutSystems

platform. To the best of our knowledge, this is the first work that integrates this kind of operations

into a single framework targeting action flow synthesis, taking us one step closer to a fully declarative

development experience.

The proposed solution uses programming by example as the specification method and the search

technique is a combination of sketch enumeration and satisfiability modulo theories.

1

1.1 Motivating Example

Suppose there is a director of a faculty who wants to present a list of the working personnel. The dir-

ector wants a function that, by default, returns a list of the professors. However, when the function

receives a Boolean include support staff as True, the function should also return the remaining person-

nel, such as the human resources department. If we decompose this problem, assuming there is a

database of professors and one for support staff, we can see that we want to, depending on the value of

include support staff, either obtain only the professors, or obtain both the professors and support staff

joining them into a single list.

One of the goals of OutSystems is to allow citizens to, without any knowledge of programming or SQL

querying, develop enterprise-grade applications. The implementation of this logic in OutSystems might

not be easy for such a user, given that this problem requires the knowledge of SQL querying and the

logic of the OutSystem’s platform. Instead, our framework allows the user to just provide a specification

composed of input/output examples, which is more natural for the user.

For this problem, the director would need to provide at least two examples: the case where the argu-

ment include support staff is True and the case when the value is False. The specification is presented

in Table 1.3.

Id Name Age

1 Joao 35

2 Pedro 47

3 Matilde 31

Table 1.1: Professors

Id Name Age

5 Maria 25

6 Patricio 46

8 Miguel 53

Table 1.2: Support staff

According to the specification presented above, the synthesizer should be able to find a solution,

such as the one seen in Figure 1.1.

1.2 Contributions

In this thesis, we propose PUFS-X, a framework for synthesizing action flows with assignment, condi-

tional, list manipulation and data aggregation operations. We build upon previous work on pure function

synthesis, the PUFS framework. The main contributions are as follows:

• Several performance improvements to the PUFS framework creating PUFS+, such as:

– pruning of redundant or invalid sketches and programs by considering symmetries in the

action flows and more fine-grained type information;

– efficient modelling of constants;

– rarity threshold to reduce the operations of the synthesizer;

2

Input Output

Table 1.1, Table 1.2, True [{”Id”: 1, ”Name”: ”Joao”, ”Age”: 35}

{”Id”: 2, ”Name”: ”Pedro”, ”Age”: 47}

{”Id”: 3, ”Name”: ”Matilde”, ”Age”: 31}

{”Id”: 5, ”Name”: ”Maria”, ”Age”: 25}

{”Id”: 6, ”Name”: ”Patricio”, ”Age”: 46}

{”Id”: 8, ”Name”: ”Miguel”, ”Age”: 53}]

Table 1.1, Table 1.2, False [{”Id”: 1, ”Name”: ”Joao”, ”Age”: 35}

{”Id”: 2, ”Name”: ”Pedro”, ”Age”: 47}

{”Id”: 3, ”Name”: ”Matilde”, ”Age”: 31}]

Table 1.3: Specification

• Creation of the PUFS-L framework, which adds onto the PUFS+ framework list manipulation cap-

abilities;

• Creation of the PUFS-SQL, which adds onto the PUFS+ framework data aggregation capabilities;

• Creation of the PUFS-X, which joins all features into a single synthesizer.

1.3 Organization

This document is organized as follows. In chapter 2 we define the relevant concepts necessary to un-

derstand the remaining of the document, such as Program Synthesis and Satisfiability Modulo Theories.

Then, in chapter 3 we present existing work related to the topic of this thesis. In particular, we describe

previous work on Pure Function Synthesis and the SQL synthesizers SQUARES and CUBES.

In chapter 4 we introduce our solution, starting with the PUFS+ framework, then the PUFS-L and

the PUFS-SQL frameworks, and finally the PUFS-X framework that combines all features into a single

synthesizer. In chapter 5 we evaluate the different configurations and versions of the frameworks using

several sets of benchmarks based on real-world examples. Finally, chapter 6 concludes this document

and discusses possible future work directions.

3

Figure 1.1: Ilustration of the motivating example

4

Chapter 2

Fundamental Concepts

In chapter 2, the main concepts needed to comprehend the remaining of this document are described.

First, program synthesis is introduced in section 2.1, where its main challenges and techniques are

specified. Then, the Programming by Examples and Satisfiability Modulo Theories are presented in

sections 2.2 and 2.3, respectively. Finally, the sketching method is defined in section 2.4.

2.1 Program Synthesis

Over the years, there has been an increasing interest in Program Synthesis. We can define Program

Synthesis by understanding what a program and what synthesis is: a program is a sequence of instruc-

tions that will be executed, whereas synthesis, by its definition, is the combination of components into a

whole. Thus, when we refer to Program Synthesis, we are considering the task of automatically finding

components of a program to reach a complete version that matches the user’s intent. Consider the pos-

sibilities if we could specify our intent and have a computer figure out how to compose the corresponding

program. Programming would no longer require years of study and experience, and the only real limit

would be imagination.

Definition 1 (Program Synthesis). Program synthesis consists of automatically deriving a program from

a specification through search techniques and a defined program space.

The Program Synthesis process consists of choosing a method for the user specification, defining a

program space, and a search technique, as observed in Figure 2.1.

2.1.1 User specification

The first step in Program Synthesis is the specification, where the user describes the program’s intended

behavior.

Definition 2 (Specification). Given an input x = (x1, x2, ..., xn) and output y, φ is a specification such

that φ(x, y) is True, if and only if y is the desired output of x.

5

Figure 2.1: Program Synthesis process

There exist multiple types of user intent specifications, ranging from formal specifications, such as

formulations, to more informal ones such as input-output examples or natural language.

A formal approach is known as deductive synthesis. The main idea is to use theorem provers to build

a proof from which it is possible to extract a program that satisfies the specification. Examples of this

approach are the first innovative papers in the late 60s [5], and early 70s [12]. Despite these innovative

early works, the required knowledge of mathematics and formulation for the user can prove to be as

hard as writing the program itself.

An alternative approach is a more informal specification, known as inductive synthesis. This ap-

proach uses incomplete specifications, such as input-output examples or natural language descriptions,

to specify user intent, which is considered more intuitive.

Example 1. An input-output example specification can be the input (1, 2, 3, 4) with the corresponding

output (2, 4, 6, 8). A program that satisfies this specification would receive an input and multiply it by

two.

A challenge of an informal approach is finding the perfect balance between completeness and sim-

plicity for the specification. If too specific, the synthesizer may take a much longer time to create the

program than needed. However, if too broad, the synthesizer might return a program that satisfies the

specification but not the user’s true intentions. In an informal approach, another challenge is ambiguity

because examples can have multiple interpretations, depending on the context, which is difficult for a

computer to comprehend correctly.

Example 2. An example of ambiguity is the interpretation of the sentence ”I made her duck”, which

might mean ”I made a duck dish for her” or ”I made her crouch”.

2.1.2 Program Space

Program Synthesis is an undecidable problem, one for which it is impossible to find an algorithm that

can always give the correct answer. Hence, a search needs to be performed in the program space to

find a program that satisfies the user’s intent.

Definition 3 (Program space). A program space is the set of all programs that can be written using a

given defined language.

The program space grows exponentially with the number of possible candidates within and their

corresponding size. Thus, if we search every possible combination, there are no guarantees of efficiency

nor termination of the search. Consider the example of the Python programming language, where the

6

Figure 2.2: Enumerative Search process

number of possible different variables, libraries, or structures is vast. We can understand how big the

program space would become.

To minimize the program space’s size, instead of using full-featured programming languages such as

Python, Domain Specific Languages (DSLs) are used.

Definition 4 (DSL). A DSL is a language for a specialized domain, with restrictions that simplify the

program space.

Example 3. A simple DSL of operations over lists, where N is the start symbol, is specified below.

This DSL allows us to synthesize programs that use operations such as the filtering or sorting of lists.

Suppose we want to synthesize a program that only performs list manipulations. In that case, we could

significantly increase a synthesizer’s performance by providing this DSL instead of a full-featured lan-

guage.

N → 0 | ... | 9 | head(L) | last(L) | sum(L) | max(L) | min(L)

L→ get(L,N) | sort(L) | filter(L,F)

F → geq | leq | eq

A DSL is a means of balancing expressiveness and efficiency. On the one hand, we want a program

space that enables the synthesis of as many programs as possible. On the other hand, if the program

space proves itself too large, we lose efficiency.

2.1.3 Search Techniques

There are multiple search techniques that can be pursued, given an user specification and a program

space.

Enumerative search: Enumerative search is the most common technique and consists of ordering the

program space according to a heuristic, followed by iterating through it to find a program that matches

the specification. Figure 2.2 illustrates the enumerative search process. The enumerator step chooses a

candidate program, and the decision step verifies whether the candidate satisfies the user’s intent. The

process repeats until a satisfiable program is found.

Despite the simplicity of this method, it is often a very effective strategy. However, when we scale

the program space, its main obstacle is that there might not exist a good enough heuristic to efficiently

reach a candidate program that satisfies the specification.

7

Figure 2.3: Deductive Search process

Examples of successful enumerative search algorithms are Unagi [2], an Offline Exhaustive Enumer-

ation over the DSL program space, or the synthesizing of geometry constructions [7].

Deductive search: A deductive search is a top-down search, where the idea is to use the principle of

divide-and-conquer to reduce the problem into smaller sub-problems (Figure 2.3). A certain problem P is

divided into sub-problems p1, p2, ..., pn where each one is recursively divided into their own sub-problems

such as p11, p12, ...p1k. All sub-problems are then solved individually and combined by a function F into

a complete working program. Being a top-down search, the deductive approach fixes the top part of an

expression and then searches for its sub-expressions.

An advantage of deductive search against the enumerative approach is that, since it is a top-down

search, if the grammar contains a rich set of constants, the enumerative search could get lost by guess-

ing the constants, whereas the deductive approach can deduce which constants are correct based on

the current partial program.

Examples of successful deductive search approaches are the automation of string processing in

spreadsheets [6] and a framework for inductive program synthesis named FlashMeta [19].

Constraint Solving search: The constraint solving search technique involves two main steps, as seen

in Figure 2.4: the generation of constraints that encode the synthesis problem and then the solving of

said constraints.

The first step is the generation of a logical constraint that encodes the specification, which usually re-

quires making assumptions regarding the unknown program’s control flow. There are different possible

approaches, ranging from invariant-based methods [23] to input-based [22]. On the one hand, invariant-

based methods generate constraints that ensure the program is correct according to the specification.

This approach has the disadvantage of often creating sophisticated constraints since the inductive invari-

ants are often more complicated than the program itself. On the other hand, an input-based approach

generates constraints that ensure a subset of inputs is satisfied, simplifying the constraints significantly

but possibly compromising the user specification since informal approaches are considered incomplete.

A more balanced approach is the path-based method [24], which generates constraints that assert the

program satisfies the given specification on all inputs that execute a specific set of paths.

The last step is the process of solving the constraints generated, using Boolean Satisfiability (SAT)

or Satisfiability Modulo Theory (SMT) solvers, which is described more deeply in section 2.3.

Examples of constraint solving techniques are, as early as 1991, the automatic inference of logical

8

Figure 2.4: Constraint Solving process

Input Output

[10, 29, 8, 14, 2] 29

[-1, 30, 41, 5, 89] 89

[-70, 2, 6, 3] 6

Table 2.1: Example of inputs/outputs for PBE

programs from examples [15], or, in 2013, the idea of solver-aided programming [25], which tries to re-

duce the complexity of the constraint generation with the framework ROSETTE. The framework receives

an interpreter representing a language and develops the corresponding synthesis and verification tools.

Statistical search: The statistical search uses probabilistic models to solve the synthesis problem.

These probabilistic models represent the likelihood of a function or non-terminal symbol to be used

at a certain program point. Within this field, there are multiple different possible approaches, such as

machine learning or genetic programming.

Machine learning is typically integrated with an enumerative or deductive search process because it

allows us to calculate each possible choice’s likelihood. An example of this approach is a system that

tries to infer a program only with examples [13].

Genetic programming is based on biological evolution, starting with a population of individual pro-

grams and introducing random changes. Each new program is evaluated using a user-defined fitness

function, and the most successful programs pass to the next phase, where the process repeats. Ex-

amples of successful uses of genetic programming are the discovery of mutual exclusion algorithms [10]

or the automated repair of imperative programs [27].

2.2 Programming by Examples

One approach for specifying user intent, as seen in section 2.1.1, is inductive synthesis and, one of its

sub-fields, is Programming by Examples (PBE) which relies on an input-output example based specific-

ation.

Example 4. A possible PBE specification, which represents the identification of the maximum value in

the input list, can be seen in Table 2.1.

As explained in more detail in section 2.1.1, the main advantage of this approach is its simplicity for

the user and, its main disadvantage, is the ambiguity that may be incurred by the usage of an incomplete

specification. In this section, different approaches for dealing with these challenges are addressed.

9

2.2.1 Version Space Algebra

The ambiguity of input-output examples means that the feasible program space easily reaches up to

several powers of ten [8], which makes it impractical to represent them explicitly. However, the possible

candidates usually have several common sub-expressions, which allows us to use specialized data

structures for representing several programs using a compact representation, namely Version Space

Algebra (VSA).

The first definition of this concept was proposed by Tom Michell in the area of machine learning [14],

which was then picked up by Tessa Lau in its application to programming by demonstration [11].

A VSA data structure is a directed graph where each node represents a set of program expressions.

A leaf node is a set of expressions, whereas a parent node can be either a union of its leaves or the joint

of them using an operator F . This operator can perform an intersection, clustering, ranking, or projection

of leaves [19]. Using this structure, VSA allows us to encode exponential sets of candidate programs

in polynomial space. Another advantage of a VSA is its ability to efficiently perform operations between

leaves since these operations are proportional to the number of nodes instead of possible candidates.

2.2.2 Ambiguity Resolution

Given multiple possible program candidates for a given synthesis problem due to the ambiguity of the

user’s specification, the question lies in how to choose the one that is more likely to satisfy the user

intent.

Ranking: One possible approach is ranking [8], where every candidate has attributed a value of

likelihood, using a heuristic. The heuristic choice usually requires significant knowledge of the domain,

which is retrieved from the input/output examples. There have been several attempts to automate this

process, from machine learning algorithms that use the specification data [20], to machine learning

algorithms that try to find features independent of the program structure, instead of relying on learned

biases [4].

Active Learning: Another approach is Active Learning [8] which consists of asking the user for clarific-

ation or confirmation regarding the desired program. The traditional approach tries to find two programs

that satisfy the specification, P1 and P2, such that for an input i, they have a different output o. Then, the

user is presented with the example and chooses the correct output. Another approach includes showing

the candidate programs to the user or, for non-programmers, natural language versions of them. Finally,

the user can be asked to provide incorrect examples in order to prune the candidate space.

2.3 Satisfiability Modulo Theories

Given a set of Boolean variables, a propositional formula ϕ in Conjunctive Normal Form (CNF), is a

conjuntion of clauses, where each clause is a disjunction of literals. A literal can be a variable x or its

10

complement ¬x. A unit clause is a clause with a single literal.

Given a propositional formula ϕ with n variables, the Propositional Satisfiability (SAT) problem con-

sists in deciding whether there exists an assignment to the variables that satisfies ϕ.

The Satisfiability Modulo Theories (SMT) problem is a generalization of SAT. Solvers that use SMT

check the satisfiability of first-order logic formulas with use of theories such as theory of real numbers,

theory of integer arithmetic, theory of strings.

The set of predicate and function symbols, each with an non-negative arity, corresponds to a signa-

ture Σ = ΣF ∪ΣP , where ΣF represents the function symbols and ΣP represents the predicate symbols.

Predicates with 0-arity are called propositional symbols, and functions with 0-arity are called con-

stants.

A term t is defined as:
t ::= c

| f(t1, ..., tn)

| ite(ϕ, t1, t2)

(2.1)

Where c and f are in the set of function symbols with arity 0 and arity n > 0 respectively and ite

corresponds to if-then-else.

A formula ϕ is defined as:

ϕ ::=A

| p(t1, ..., tn)

| t1 = t2| ⊥ |> | ¬ϕ1

|ϕ1 → ϕ2 |ϕ1 ↔ ϕ2

|ϕ1 ∨ ϕ2 |ϕ1 ∧ ϕ2

(2.2)

Where A and p are in the set of predicate symbols with arity 0 and arity n > 0 respectively.

Considering a theory T , a T -atom is a ground atomic formula in T of the form A, p(t1, ..., tn), t1 = t2,

⊥, >.

On the other hand, a T -literal is a T -atom a or its complement (¬a) and a T -formula is composed of

T -literals.

Given a signature Σ = ΣF ∪ ΣP , where ΣF represents the function symbols and ΣP represents the

predicate symbols, a Σ-model M is composed by M , a non-empty set which represents the universe of

the model, and a mapping function ()M which maps each constant a ∈ ΣF to an element aM ∈M , each

function f ∈ ΣF with arity n > 0 to a total function fM : Mn →M , each propositional symbol A ∈ ΣP to

an element AM ∈ {true, false}, each p ∈ ΣP with arity n > 0 a total function pM : Mn → {true, false}.

Satisfiability in SMT SMT focuses on models that belong to a given theory T that constrains the

interpretation of the symbols in Σ.

11

Given a modelM, the model satisfies a formula ϕ if ϕ is true for the semantics.

A formula ϕ is T -satisfiable, i.e. satisfiable in a given theory T , iff there is an element of T that

satisfies ϕ.

For given a theory T , a formula ϕ is T -satisfied by a modelM if the model satisfies ϕ and T .

So, given a T -formula, the SMT problem consists of deciding if there is an assignment of the variables

of ϕ such that ϕ is satisfied.

Example 5. Consider that T is the Linear Integer Arithmetic (LIA) theory.

φ = (x+ y > 2)∧ (x > 4)∧ (y < 1), is an example of an SMT formula in LIA, where x and y are integers.

We can see that φ is satisfiable and a possible solution would be x = 5, y = 0.

2.4 The Sketching Approach to Program Synthesis

Automatically creating a program combines high-level insight about the problem and low-level imple-

mentation details. The latter comes naturally to computers. However, the former is much easier for a

human than a computer. Thus, Solar-Lezama introduced the concept of sketching [21, 22], a form of

program synthesis that allows programmers to specify their high-level insight about a program, leaving

the computer to determine the low-level details.

Definition 5 (Sketch). A sketch or a partial program is a program with holes.

The core SKETCH language uses only integers to fill the holes. However, multiple syntactic ex-

tensions allow more complex sketches such as regular expression generators and repeat statements.

Regular expression generators allow a much bigger set of possible variables to attribute to a hole, en-

abling the creation of more complex sketches. Repeat statements can be used when a programmer

does not know how many iterations should be in a loop, e.g., repeat(n) c is n repetitions of c where both

n and c can have holes, allowing complex loops.

Example 6. An example of a program synthesized using SKETCH, where the holes are represented

with ??, is:

i n t f u n c t i o n (i n t x) :

i n t r e s u l t = x * ??

asser t r e s u l t == x + x + x

return r e s u l t

A solution for this sketch is to fill the whole with the number 3 since it would validate the assertion made.

12

Chapter 3

Related Work

In chapter 3, previous work related to this document is discussed. First, in section 3.1, we describe the

previous work done in pure function synthesis for the OutSystems platform. Then, in section 3.2, we

present two synthesizers that perform SQL queries: the SQUARES and CUBES frameworks.

3.1 Pure Function Synthesis in the OutSystems Platform

Catarina Coelho proposed the first attempt at a pure function synthesizer for the OutSystems platform in

her MSc thesis 1. The proposed solution relies on input-output examples as the specification (in detail in

section 2.2) and a sketch-based approach as a search technique to find the correct program efficiently

(in detail in section 2.4). These techniques were integrated into the PUFS framework, as illustrated in

Figure 3.1 retrieved from the thesis.

The PUFS framework represents a program using a graph where a node can be an Assign node,

which assigns a value to a given variable, or an If node which, according to a Boolean condition, allows

two different paths depending on whether the condition is true or false. The usage of graphs as a method

of representation parallels the representation used in the OutSystems platform.

3.1.1 Specification

The first step in the PUFS framework is the user specification, which is a set of input-out examples and

a set of constants. The latter is used to guide the synthesizer to a more efficient search. The use of PBE

is expected due to the context of the problem, i.e., one of the main goals of the OutSystems platform is

cut in development effort and time for the user.

3.1.2 Program space

The DSL used in the PUFS framework is composed of operands and operators provided by the OutSys-

tems expression language. The operands can be literals (such as strings, numbers or Booleans), local

1The MSc thesis is awaiting publication

13

Figure 3.1: PUFS framework

variables, built-in functions or sub-expressions. The operators are unary or binary such as +, − or =.

Example 7. An example of a valid OutSystems expression:

n+ 1 (3.1)

where both n and 1 are operands joined by the addition operator +.

We must note that, due to pure function synthesizing, the DSL is constrained to operators that are

considered pure, i.e., for the same inputs, the output is always the same not producing side effects such

as changes to databases or global variables. The supported operators are simple Integer, Decimal, Text,

and Boolean operators, such as addition, comparisons, power, length of a text, or substring matching of

a text.

3.1.3 Search technique

The sketching approach is divided into two main steps: sketch generation and sketch completion. As

seen in Figure 3.1, the main idea is that a candidate sketch is generated in the first step and then is

completed in the second step if possible. Otherwise, a new candidate sketch is created, repeating the

process.

The sketch generator enumerates through partial flows, i.e., flows composed of Assign and If nodes

such that its assignment expressions and condition expressions are holes to be filled. An example is

presented in Figure 3.2, where we have a sketch with an Assign node that needs to be filled.

The sketch completion step is where the holes of a sketch are filled.

An Abstract Syntax Tree (AST) is a tree representation of the abstract syntactic structure of a pro-

gram, where each node is an operator and its leaves are the respective operands. An example can be

observed in Figure 3.3, where there is a tree with two nodes, add and div, and three leaves, a, b and c.

A k-tree is a recurrent tree representation used in enumeration-based program synthesis because

of its ability to represent every possible program for a given DSL, where k is the largest arity among

production rules. The PUFS framework uses k-trees as the tree representation, where each k-tree

represents the AST of an enumerated program, and each internal node has precisely k children. The

14

Figure 3.2: A partial flow

Figure 3.3: An example of an AST

k-tree enumerator enumerates through several trees, where each tree represents an expression that fills

each hole.

The PUFS framework encodes the tree as an SMT formula in order to obtain a concrete program by

assigning a symbol of the DSL to each node. The method chosen to encode each hole in the sketch

was line-based representation [17] primarily because the sketch is represented through several trees.

Another reason is because, between other methods that use the same representation, this one does not

increase the number of tree nodes and, consequently, the number of variables and constraints in the

SMT formula with more depth of the enumerated trees.

In Figure 3.4, we have an example of a completed sketch in continuation of the example shown in

Figure 3.2, which, in this case, represents the multiplication of two input values.

When a sketch is completed, the decider checks if the respective candidate program satisfies the

user’s specification by comparing the output of the program ran on the input examples with the expected

outputs. If the candidate does not satisfy, it returns to the k-tree enumerator to obtain a new candidate.

3.2 SQL Synthesis

One of the new features we want to implement with this thesis is data aggregation by performing SQL

queries and, due to the nature of our problem, we want to use a PBE synthesizer. In this section two

PBE SQL synthesizers will be presented: the SQUARES framework and the CUBES framework.

15

Figure 3.4: A partial flow with corresponding tree

table −→ input | inner join(table, table) | inner join3(table, table, table)

| inner join4(table, table, table, table)

| anti join(table, table) | left join(table, table)

| bind rows(table, table) | intersect(table, table)

| filter(table, filterCondition)

| filters(table, filterCondition, filterCondition, op)

| summariseGrouped(table, summariseCondition, cols)

tableSelect −→ select(table, selectCols, distinct)

op −→ or | and
distinct −→ true | false

Figure 3.5: DSL of the SQUARES framework

3.2.1 SQUARES

SQUARES [18] is a PBE synthesizer for SQL queries and, besides the input/output examples, uses

extra information from the user to improve the performance of the synthesizer, which includes a list of

aggregation functions, a list of constants and the column names that can be used as arguments.

SQUARES uses a DSL to specify the space of possible programs, which correspond to opera-

tions available in the libraries dplyr and tidyverse of the R programming language [1] that allow data-

manipulation. According to the input/output examples and extra information, SQUARES creates the DSL

variables cols, filterCondition and summariseCondition, which correspond to the columns used in quer-

ies, the filter conditions allowed and the summarise conditions allowed, respectively. Furthermore, the

operations and remaining variables of the DSL are presented in Figure 3.5. SQUARES also supports

aggregation functions, such as sum and avg.

Using the DSL described and as presented in Figure 3.6, SQUARES performs an enumerative search

until either a solution is found or a the time limit is reached. Then, if a solution is found, the R program

is transformed into a usable SQL query and returned to the user. For the search, SQUARES uses the

same method described for the Pure Function Synthesis in section 3.1, the line-based encoding.

16

Figure 3.6: PUFS framework

table −→ input | natural join(table, table) | natural join3(table, table, table)

| natural join4(table, table, table, table) | left join(table, table)

| inner join(table, table, joinCondition)

| cross join(table, table, crossJoinCondition)

| union(table, table) | intersect(table, table)

| anti join(table, table, cols) | semi join(table, table)

| filter(table, filterCondition)

| summarise(table, summariseCondition, cols)

| mutate(table, summariseCondition)

Figure 3.7: DSL of the CUBES framework

3.2.2 CUBES

CUBES [3] was built upon the SQUARES framework and is recognized for the addition of new operations

and the speed-up of the synthesis process by making use of multi-core processing. This synthesizer

has three different versions: sequential synthesis and two parallel synthesis variations.

CUBES-Seq is a sequential SQL synthesizer that extends the SQUARES DSL to reach a wider

variety of SQL queries (the new DSL is in Figure 3.7). CUBES-Seq also supports new aggregation

functions such as n distinct, str count and median. Besides the added functionality, the synthesizer

introduces a new form of pruning of queries which attempts to first remove possible redundant attempts

and then, from incorrect programs, learn to remove redundant future attempts. For the former, the

synthesizer annotates all arguments with a pair of sets of columns in bit-vectors to enforce consistency

between columns of operations. For the latter, the synthesizer looks at the number of rows of the final

table to deduce which queries would not make sense to even attempt.

Example 8. For instance, the operation filter of a table based on a column being ”Panda” only makes

sense if the value is in the table. CUBES-Seq takes this into account with the goal of removing redundant

attempts. Another example of the pruning is when a program that filters a table results in a table with

k rows. If we know the final program should have r rows, where k < r, then we can deduce that any

filter condition that further reduces the number of rows by being more restrictive is always going to be

an incorrect solution.

CUBES-Port is a parallel SQL synthesizer which uses portfolio solving [9] to improve the performance

of the CUBES-Seq synthesizer. With the portfolio approach, the goal is to diversify the exploration of the

search space by searching the same space in different ways, which can be reached by running each

17

thread with different SMT solver configurations.

CUBES-DC is also a parallel SQL synthesizer but instead of the portfolio approach, it tries the divide-

and-conquer method, which divides the synthesis problem into several sub-problems and then solves the

sub-problems in parallel. The strategy to split the program search space into sub-problems follows the

work done in Propositional Satisfiability formulas [26]. Each sub-problem is represented by a cube, i.e.,

a sequence of operations from the DSL such that the arguments for the operations are undetermined.

Then, in parallel, each cube is filled in and verified whether it is a solution. For example, a valid cube

is the program filter(inner join(??), ??), which represent the problems that inner join two tables and

then filter according to a condition. For this cube, both operations are filled by the possible arguments

according to the DSL until the cube is either exhausted or a solution is found.

18

Chapter 4

Next-Gen Pure Function Synthesis

In chapter 4, the proposed solution is presented and described in detail. First, in section 4.1, we describe

the PUFS+ framework, which supports generation of assignments and conditionals and builds upon the

PUFS framework with the goal of improving the performance. Then, in section 4.2, the PUFS-L frame-

work is introduced, which adds list manipulation capabilities to the PUFS framework. In section 4.3, the

PUFS-SQL framework integrates the PUFS framework with an SQL synthesizer, allowing the generation

of SQL queries. Then, in section 4.4 we describe the final version of the synthesizer, PUFS-X, which

combines all features into a single framework. Finally, in section 4.5, the details of the implementation

are described including the sketch generation process and the SMT solver constraints.

4.1 PUFS+ Framework

The initial PUFS framework had two different modes of operations: one with only assignment capabilities

and one with conditional and assignment capabilities. The latter was not functioning properly because

it was missing the decider step, i.e., the verification of whether a program is valid according to the

specification, and the respective SMT constraints. Thus, the first step was completing the functionality

and combining both modes into a single synthesizer, as intended. The synthesizer contains two types of

nodes: the Assign node, which performs an assignment, and the If node, which, depending on a given

condition, allows the execution of a program to follow one of two paths.

With a fully working PUFS synthesizer, several different potential improvements were identified and

implemented. We refer to the improved version of PUFS as PUFS+. In the following sections, the major

changes are presented. First, in section 4.1.1, we present the new types of variables the DSL contains

and the expected performance impact. Then, we describe the necessity of guaranteeing the connectivity

between nodes of sketches in section 4.1.2. In the section 4.1.3, three additional improvements are

described: a new encoding for constants, the removal of several redundant sketches and operators and

the introduction of a new configuration parameter to the framework, a rarity threshold.

19

Figure 4.1: Example of the lack of connectivity between nodes in the PUFS framework

4.1.1 Fine-grained DSL Types

The PUFS framework uses a single type in its DSL named BuiltInType. The usage of a single type

allows the synthesizer to attempt operations that are not allowed by the synthesizer language, such as

summing an Integer with a Boolean. Thus resulting in the generation of many more invalid programs

that have to be rejected by the decider.

The PUFS+ framework introduces 3 types to the DSL: Numeric, Text and Boolean. The type Numeric

represents all numbers from integers to decimals. The Text type refers to any string. Finally, the type

Boolean refers to True or False. All of the operators in the original PUFS framework were changed to

their respective types, such as the operation not which changed from having the input and output as

a value of type BuiltInType to of type Boolean. The new versions of the operators are summarized in

Tables A.1, A.2 and A.3. Note that the size of the DSL increased, since operators such as add or gt

allow inputs of different types. Despite this increase, the number of combinations that the synthesizer

can attempt decreases significantly, because it no longer consider operators with non-matching types.

The PUFS framework, with a specification containing only integers in its input-output examples,

attempts operators such as substr or not which cannot be applied to integers. In contrast, the PUFS+

framework now defines operators according to its type. Thus, with the same specification, the only

operators considered are ones that have input and outputs of the Numeric type. Therefore, in this

scenario, the operators in Tables A.2 and A.3 are not considered since these require Text and/or Boolean

values in order to be applicable.

20

Figure 4.2: Previous nodes used in Multi-Gen encoding for the PUFS+ framework

Figure 4.3: Previous nodes used in Single-Gen encoding for the PUFS+ framework

4.1.2 Node Connectivity Constraint

The PUFS framework allows nodes of a sketch to not be connected in their operators, which permits

cases where a node performs an operation that is never used. In Figure 4.1, we can observe an example

where the first node’s operation is redundant since the following node does not use it as an argument.

Note that, in order for the synthesizer to consider sketches with 2 nodes, all single node sketches must

have already been exhausted. Thus, when multiple nodes are used, allowing unused nodes results in

the generation of redundant programs.

The PUFS+ framework ensures the connectivity between nodes of a sketch by adding a constraint

to the SMT solver. This change forbids solutions such as the one seen in Figure 4.1, thus reducing sig-

nificantly the number of possible attempts the synthesizer performs before finding the correct program.

There are two possible encodings to ensure the connectivity of nodes: the Multi-Gen encoding and the

Single-Gen encoding. The former allows a node to use any of the previous nodes whereas the latter only

allows a node to use the immediate previous node. Thus, the Single-Gen encoding should increase the

performance of the synthesizer when only the immediate previous node is required, because the search

space reduces with the removal of solutions that use multiple previous nodes. However, it removes some

possible solutions that would use more than one of the previous nodes at once, resulting in a trade-off

between performance and completeness.

Assuming the worst case scenario and not considering the improvement described in the section

4.1.1, let N be the number of attempts you can can perform for a single node, i.e., the number of

combinations of the operators and inputs from the DSL, and Kd the number of combinations you can

attempt that always use previous nodes, for a depth d. Both the PUFS and PUFS+ frameworks make

N attempts for a 1-node sketch. For a 2-node sketch, the PUFS+ framework performs K2 attempts. In

contrast, the PUFS framework would perform the same K2 attempts with an extra N2 attempts where

the nodes are not connected, having a total of N2 + K attempts to exhaust the search. If we consider

d to be the depth of a sketch, the PUFS framework always attempts Nd more times than the PUFS+

framework in order to exhaust the search of a sketch.

21

TheKd combinations of the nodes can have heavily depends on whether the Multi-Gen or the Single-

Gen encoding is used. With the Multi-Gen encoding, as we can observe in Figure 4.2, node 2 must use

node 1, node 3 must use node 2, node 1 or both, and so forth. To get an idea of how Multi-Gen compares

to Single-Gen encoding in terms of complexity, lets assume each node only uses a single previous node.

In this case, with the Multi-Gen encoding and for N nodes, the last node has N − 1 options to use the

as a previous node, then the next node has N − 2 options and so forth until the first node. Thus, in

total, we have (N − 1)! combinations to use previous nodes. In contrast, with the Single-Gen encoding

as seen in Figure 4.3, each node has only one option since it must use its immediate previous node.

Thus, the total number of combinations are 1. All in all, the Single-Gen encoding reduces the search

space significantly, specially the more complex a sketch is, by not considering solutions that use multiple

previous nodes.

4.1.3 Other Improvements

Besides the two main alterations of the framework, three additional improvements where implemented:

a new encoding for constants, the removal of redundant sketches and operators and the introduction of

a new configuration parameter to the framework, a rarity threshold.

Constants as Inputs

The addition of constants to the specification of the PUFS framework significantly improved its perform-

ance, since the synthesizer does not need to search for the constants itself to find the intended solution.

However, when a constant is used, it requires an extra node to transform it from the type Const to the

usable type BuiltInType. Thus, given N constants, N extra nodes must be added to each sketch and

then K nodes for the actual operators.

The PUFS+ framework no longer considers a constant to be of type Const and simply models it as

an extra input in the input-output examples. With this change, the extra constant nodes are no longer

required. Thus, in contrast to the PUFS framework that requires N +K nodes, the new framework only

requires K nodes for the same solutions.

Pruning of Redundant Sketches and Operators

The PUFS+ framework removes sketches whose final nodes of a sketch are If nodes, because the

pure function property requires all of the flows to return an output. An If node, depending on a given

condition, allows the execution of a program to follow one of two paths and Assign nodes effectively

return an output.

The new framework also removes redundant operators from the DSL as follows:

• The operators Lesser Than (lt) and Lesser or Equal Than (lte) can be trivially implemented using

the operators Greater Than (gt) and Greater or Equal Than (gte), respectively, by simply swapping

the left and right-hand sides. Thus, the Lesser Than operators were removed from the DSL,

removing a total of 12 operators.

22

• Equal (eq) and Different (diff) with the new DSL were both duplicated to have 6 operators each

for the different type combinations. However, the operators eq text boolean and eq boolean text

are equivalent. The same occurs with the comparison of types Text and types Numeric. Thus, 4

operators in total can be removed from the DSL, 2 variants of Equal and 2 variants of Different.

• Adding two values of type Text (add text text) is equivalent to the concatenation operator (Concat).

Thus, add text text is redundant.

Rarity threshold

Some of the operators in the DSL are used more frequently than others. For example, operators such

as add or mul are significantly more frequent than operators such as sqrt or power. Therefore, a new

configuration parameter was implemented in the synthesizer that allows one to ignore sets of operators

based on rarity.

4.1.4 SMT constraints

This section describes how the SMT line-based encoding of the PUFS+ frameworks was adapted from

the work done by Orvalho et. al. [16] and Catarina Coelho, where each line of the encoding is considered

a node of a sketch.

The encoding represents a program as a graph of nodes where each node represents an operator

from the DSL. Each node is represented using a k-tree of depth one, where k represents the largest arity

among the DSL operators, which can use as arguments any of the inputs or the result of operators used

in previous nodes. To perform the enumeration of programs using a tree representation, the synthesizer

encodes the tree as an SMT formula such that a model for that formula corresponds to a concrete

program by assigning an operator of the DSL to each node.

Encoding Variables

Let D be the DSL. The set of production rules Prod(D) in D consists of the productions AssignProd(D)

(presented in Tables A.1, A.2, A.3), i.e., Prod(D) = AssignProd(D). Furthermore, we useBooleanProd(D)

to denote the set of productions that return a Boolean value. Besides the productions, we use Term(D)

to denote the set of terminal symbols in D. Furthermore, Types(D) represents the set of types used in

D and Type(s) the type of symbol s ∈ Prod(D) ∪ Term(D). If s ∈ Prod(D), then Type(s) corresponds

to the return type of production rule s.

Consider a program with n nodes, where the maximum arity of the operators used in the expressions

is k, we have the following variables:

• O = {opi : 1 ≤ i ≤ n} : each variable opi represents the production rule used in node i;

• T = {ti : 1 ≤ i ≤ n} : each variable ti represents the return type of node i;

23

• A = {aij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} : each variable aij represents the symbol corresponding to

argument j of node i;

Let Σ denote the set of all symbols that may appear in the program. Besides the production rules and

terminal symbols, we introduce one additional symbol ret for each node in the program. LetRet = {reti :

1 ≤ i ≤ n} represent the set of return symbols in the program, then Σ = Prod(D)∪Term(D)∪Ret. The

usage of the ret symbol is necessary to represent the use of previous nodes in a sketch, i.e., a node

may use as an argument of an operator the returning value of a previous node.

Each symbol is assigned a unique positive identifier. Let id : Σ → N0 be a one-to-one mapping

function that maps each symbol in Σ to a unique positive identifier and tid : Types(D) → N0 be a one-

to-one mapping function that maps each symbol type to a unique positive identifier. Finally, since some

operators in the DSL have a smaller arity than k and hence will never use all k leaves, the empty symbol

ε is introduced so that every leaf node has an assigned symbol. For instance, the operator not uses a

single argument, thus, the remaining k − 1 leaves are assigned the symbol ε. We assume id(ε) = 0.

There exists a configuration parameter that influences the SMT constraints, use single gen, which

when True, the synthesizer uses the Single-Gen encoding and, when False, the synthesizer uses the

Multi-Gen encoding. Let PreviousHoles(i) be a set of nodes. In the Multi-gen encoding, PreviousHoles(i)

is the set of nodes that contain all previous holes from the same execution path as node i, ignoring If

nodes. In contrast, in the Single-Gen encoding, PreviousHoles(i) is only the last previous node of i also

ignoring If nodes.

Constraints

.

The SMT constraints that encode the problem are as follows.

Operations. The symbol of each node must be a production rule.

∀ 1 ≤ i ≤ n :
∨

p∈Prod(D)

opi = id(p) (4.1)

Let HoleType(i) be the node type of hole i. If a node i corresponds to an If node, then the node’s

hole must be a production with a Boolean return type.

∀ 1 ≤ i ≤ n : HoleType(i) = If =⇒
∨

p∈BooleanProd(D)

opi = id(p) (4.2)

If a node i corresponds to an Assign node, then the respective symbol must be a production in

AssignProd(D).

∀ 1 ≤ i ≤ n : HoleType(i) = Assign =⇒
∨

p∈AssignProd(D)

opi = id(p) (4.3)

24

The return type of each node is the same as the return type of its production rule.

∀ 1 ≤ i ≤ n, p ∈ Prod(D) : (opi = id(p)) =⇒ (ti = tid(Type(p))) (4.4)

Arguments. Given a sketch with more than one hole to fill, the arguments of an operator i used in a

hole must be either terminal symbols or return symbols from previous holes.

∀ 1 ≤ i ≤ n, r ∈ PreviousHoles(i), 1 ≤ j ≤ k :
∨

s∈Term(D) ∪ retr:r<i

aij = id(s) (4.5)

The arguments of an operator i must have the same types as the respective parameters of the

production rule used in the operator. Let Type(p, j) be the type of parameter j of production rule p,

where p ∈ Prod(D). If j > arity(p) then T (p, j) = ε.

∀ 1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p), 1 ≤ r < i :

((opi = id(p)) ∧ (aij = id(retr))) =⇒ (tr = tid(Type(p, j)))
(4.6)

A terminal symbol t ∈ Term(D) cannot be used as argument j of an operator i if it does not have

the correct type:

∀ 1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p),

s ∈ {r ∈ Term(D) : Type(r) 6= Type(p, j)} :

(opi = id(p)) =⇒ ¬(aij = id(s))

(4.7)

The arity of an operator i can be smaller than k, in that case, the empty symbol is assigned to the

arguments that exceed the production’s arity:

∀ 1 ≤ i ≤ n, p ∈ Prod(D), arity(p) < j ≤ k :

(opi = id(p)) =⇒ (aij = id(ε))
(4.8)

Output. Let Type(out) be the type of the program’s output and Pout ⊆ Prod(D) be the subset of

production rules with return type equal to Type(out), i.e., Pout = {p ∈ Prod(D) : Type(p) = Type(out)}.

Given that a flow can have multiple nodes pointing to an End node, there is more than one possible

output result. Let L denote the set of all nodes that point to an End node. Since the last nodes of a

program correspond to the program’s output, the operator of each one of the nodes in L must be one of

the productions in Pout:

∀ l ∈ L :
∨

p∈Pout

(opl = id(p)) (4.9)

Input. Let I be the set of symbols the represent the inputs provided by the user. We want to guarantee

that all such inputs are used in the generated programs:

∀s ∈ I :
∨

1≤i≤n

∨
1≤j≤k

(aij = id(s)) (4.10)

25

Must use previous nodes A node i must use any previous node in PreviousHoles(i). Hence,

one of the children must use the result of any previous node. Depending on the configuration, the

PreviousHoles(i) can be either the list of previous nodes from the same execution path (Multi-Gen

encoding) or the last previous node (Single-Gen encoding).

∀1 ≤ i ≤ n, r ∈ PreviousHoles(i) :
∨

1≤j≤k

(aij = id(ret r)) (4.11)

4.2 PUFS-L framework

The PUFS-L framework integrates list manipulation operators in PUFS+. There exist 12 built-in OutSys-

tems operators we want to synthesize (described in Table A.4), such as ListAppend or ListFilter, and a

custom operator ListMap that is not built-in, but is included in our DSL and then compiled to OutSystems

code (described in Table A.5).

There are two different methodologies that could be pursued in the implementation of the new feature:

add to the sketch enumeration each operator as a new node type, or add just the ExecuteAction node

type to the sketch enumeration, which can then be filled with a concrete operator by the SMT solver.

There are two different components that should be analysed in order to determine the best method: the

sketch enumerator and the SMT solver.

A sketch enumerator, with N different possible nodes types and a depth d, creates Nd sketches.

Currently, the PUFS framework has 2 different types of nodes. Considering L list manipulation operat-

ors, if we choose to add a new node per operator, the sketch enumerator would create (2+L)d sketches.

Thus, considering the first version, for the 13 new operators we would have 15d sketches. In contrast,

with the second version we would only add one more node, ending with a total of 3d sketches. Consider-

ing a baseline goal of depth 3, since it is the maximum depth for which PUFS+ was able to consistently

provide solutions, the first version would generate 153 = 3375 sketches whereas the second version

would generate 33 = 27 sketches.

In the first approach, the pressure on the SMT solver would be reduced since it would not need to

infer the concrete operator that should be applied in the ExecuteAction node. However, the process of

creating the constraints for the solver will need to occur regardless and already creates an impact on the

performance of the synthesizer. A disadvantage for the first version compared to the second is that when

the SMT solver decides how to fill in a node, it discards a series of operators due to their input and output

types. The enumerator does not have that capability, which means it would unnecessarily enumerate

through sketches for which there can never be a solution. To fix this, we would need to implement a way

to verify whether the sketches generated matched the outputs with the next node’s inputs.

Considering the impact on both the sketch enumerator and the SMT solver, the PUFS-L framework

follows the methodology of the second method: add a single node of type ExecuteAction, which is then

filled by the SMT solver with the list manipulation operators.

After the implementation of the base PUFS-L framework with the chosen methodology, two variants

were created: PUFS-L-Ordered, which aims to create a more intelligent sketch enumeration (described

26

Depth PUFS-L PUFS-L-Ordered

1-node 2 1

2-nodes 4 1

3-nodes 12 2

(a) Assignment and conditional benchmarks

Depth PUFS-L PUFS-L-Ordered

1-node 2 1

2-nodes 4 2

3-nodes 12 5

(b) PUFS-L benchmarks

Table 4.1: PUFS-L frameworks: Number of sketches by depth

in section 4.2.1); and PUFS-L-Assisted, which builds upon the PUFS-L-Ordered framework by allowing

the user to provide assistance in more complex functions (described in section 4.2.2). Independently of

the version of the frameworks, it is important to note that in the case that the input-output examples do

not contain elements of type List, the list manipulation operators are not included in the DSL. The goal

is to remove all known operators from the DSL that will never be used before enumerating through the

sketches.

4.2.1 PUFS-L-Ordered

The PUFS-L-Ordered framework has the same capabilities as the PUFS-L framework, the difference

being that the sketch enumeration is guided by the input and output types.

The first change in the sketch enumeration process was filtering with the goal of minimizing the

redundant attempts that could never satisfy the input/output examples. The filter consists of a set of

rules, described below:

1. If the input/output examples do not contain any element of type list, then all sketches with Execute-

Action nodes are skipped and the list manipulation operators are not added to the DSL.

2. If the input/output examples have an element of type list, then at least one ExecuteAction node

must be in the sketch.

3. If the output is of type list, then all nodes pointing to the End node must be of type ExecuteAction.

The second change to the sketch enumerator was the sorting of sketches. From the analysis per-

formed on real-world user examples of the OutSystem’s platform in the example generation, flows with

list manipulation operators usually were accompanied by other list manipulation operators and not as-

sign and conditional ones. Thus, the sketches are sorted from the largest amount of ExecuteAction

nodes to the smallest.

Table 4.1, shows the number of sketches generated by PUFS-L and PUFS-L-Ordered for the bench-

marks with and without list manipulations. The PUFS-L framework enumerates through every possible

sketch, which means that, for depth 1, it generates 21 = 2 sketches; for depth 2, it generates 22 = 4

sketches; and for depth 3, not considering conditionals, it generates 23 = 8 sketches and, considering

conditionals, it generates an additional 22 = 4 sketches, ending with a total of 12 sketches. In con-

trast, the PUFS-L-Ordered framework reduces significantly the number of enumerated sketches. For

27

Function Signature Description Examples

CreateCmpLambda(x :
ComparisionOp, y : BasicType):

CmpLambda

Returns a lambda with
the operation x and value

y.

CreateCmpLambda(’>’, 0) =
lambda x: x > 0

CreateCmpLambda(”==”,
”John”) = lambda x: x ==

”John”

CreateOpLambda1(x : Operation1):
OpLambda

Returns a lambda with
the PUFS operation x.

CreateOpLambda1(Abs) =
lambda x: Abs(x)

CreateOpLambda1(Trim) =
lambda x: Trim(x)

CreateOpLambda2(x : Operation2Text,
y : Text): OpLambda

CreateOpLambda2(diff, ”a”)
= lambda x: diff(x, ”a”)

CreateOpLambda2(x :
Operation2Numeric, y : Numeric):

OpLambda

Returns a lambda with
the operation x and value

y.

CreateOpLambda2(mul, 2) =
lambda x: mul(x, 2)

CreateOpLambda2(x :
Operation2Boolean, y : Boolean):

OpLambda

CreateOpLambda2(or, True)
= lambda x: or(x, True)

Table 4.2: Added assign DSL operations to PUFS-L

the assignment and conditional benchmarks, the PUFS-L-Ordered framework does not consider the

node ExecuteAction having only 1 possible sketch for the depths 1 and 2, and then 2 sketches for depth

3. For the assignment, conditional and list manipulation benchmarks, the PUFS-L-Ordered framework

forces at least one ExecuteAction node to be present, reducing the possibilities to 1 sketch for depth 1,

2 sketches for depth 2 and a total of 5 sketches for depth 3.

The PUFS-L-Ordered framework is expected to perform more efficiently than the PUFS-L framework

due to the removal of redundant sketches.

4.2.2 PUFS-L-Assisted

The PUFS-L-Assisted framework introduces the possibility for the user to provide assistance in more

complex functions. Operators such as ListFilter or ListMap iterate through a list and apply an operation

to each element, which resulted in the need for a new type. This new type is similar to a traditional

programming lambda (an anonymous function that can be dynamically defined), in that a dynamically

chosen operation is performed to each element of a list. PUFS-L-Assisted allows the user to provide the

lambda operations as a constant to guide the synthesizer to a more efficient search.

There are two types of lambdas: CmpLambda and OpLambda. The former allows a comparison

operation to be performed to each element of a list, which is used by operators such as ListIndexOf and

ListAll. The latter allows an arithmetic operation to be performed to each element of a list, which is used

by the operator ListMap. In case the user does not provide the lambda operation as a constant, the new

types CmpLambda and OpLambda can be instantiated through new operations (described in Table 4.2),

28

Enum Signature Description

ComparisionOp [’>’, ’<’, ’>=’, ’<=’, ’==’, ’!=’].

Operation1 Operations of PUFS framework with one parameter.

Operation2Text Operations of type Text of PUFS framework with two
parameters.

Operation2Numeric Operations of type Numeric of PUFS framework with
two parameters.

Operation2Boolean Operations of type Boolean of PUFS framework with
two parameters..

Operation3 Operations of type Text of PUFS framework with three
parameters.

Table 4.3: Added DSL enums to PUFS-L

Input Output

[3] [2]

[7, 3] [6, 2]

[9, 1, 0, 3] [8, 0, -1, 2]

[9, 0] [8, -1]

[7, 8, 2] [6, 7, 1]

Table 4.4: Input/output set for example 9

which are Assign nodes (introduced in section 4.1). However, this adds an extra node, which, depending

on the size of the example, can greatly increase the complexity of the problem and, therefore, the time

required to find a solution. As we can observe, each of the lambda functions allows for a specific subset

of operations (described in Table 4.3). For instance, CreateOpLambda1 allows for any operation of the

PUFS framework, which receives a single parameter.

Example 9. Lets assume the user wants a program to decrement every element of a list by one. This

can be achieved using the ListMap operator with a lambda as defined in Table 4.2. Therefore, the user

must provide a set of input/output examples, such as the one defined in Table 4.4, as well as a set of

constants. Without PUFS-L-Assisted, the user must provide the constant integer 1, but, with the new

framework, the user is able to provide the OpLambda ”sub;1”, which means an operation of subtraction

with the constant 1 must be used in the final solution. The new synthesizer will no longer need an

extra node to find the correct operation to perform with ListMap and can immediately discard a series of

possible solutions that do not make use of a variable of type OpLambda.

.

29

4.2.3 Changes in Implementation

This section describes the changes in encoding variables and SMT constraints the PUFS-L framework,

in the sketch enumeration process with the new type of node ExecuteAction and to the DSL and inter-

preter.

Encoding Variables

Remember that we let D be the DSL and Prod(D) the set of production rules. In the PUFS-L framework,

D consists of the productions AssignProd(D) (presented in Tables A.1, A.2, A.3, and 4.2), and the pro-

ductions ExecuteActionProd(D) (presented in Tables A.4 and A.5), i.e., Prod(D) = AssignProd(D) ∪

ExecuteActionProd(D). Furthermore, BooleanProd(D), which is used to denote the set of productions

that return a Boolean value, is extended to have the list manipulation operators that return a Boolean.

Constraints

The PUFS-L framework introduces a single constraint: if a node i corresponds to an ExecuteAction

node, then the respective symbol must be a production in ExecuteActionProd(D).

∀ 1 ≤ i ≤ n : HoleType(i) = ExecuteAction =⇒
∨

p∈ExecuteActionProd(D)

opi = id(p) (4.12)

Sketch Enumerator

The original framework consisted in two different types of nodes: the Assign node and the If node. The

new framework adds one more type of node ExecuteAction. The main difference is that Assign nodes

may be replaced by the new node type. Thus, in the end, we create a list of sketches with all possible

combinations of the nodes for each depth.

DSL and Interpreter

PUFS-L introduces a series of new types and operators, which need to be present in the DSL and have a

corresponding interpreter specifying their behaviour. Thus, both the DSL and interpreter were extended

to have the new values and operators.

Furthermore, a grammar builder was created to dynamically build the grammar from the DSL ac-

cording to the type of framework configured and the input/output example types. To achieve this, we

have a grammar builder with only the PUFS+ framework’s values and operators and a grammar builder

with only the list manipulation’s new values and operators. Then, there is a main grammar builder that,

according to the configuration and example types, builds the final grammar from the individual builders.

For instance, for the PUFS and PUFS+ frameworks and when the input/outputs do not have any list,

the grammar must only have the values and operators of the PUFS framework, i.e., no type list nor any

operator that makes use of lists.

30

4.3 PUFS-SQL framework

The PUFS-SQL framework combines the PUFS framework (PUFS+ version) with data aggregation cap-

abilities. The goal of this framework is to allow the synthesis of aggregation queries using input/output

examples. The operations introduced are described in the Table A.6 and Table A.7 and are accepted in

a new type of node named DataSet.

Two variants of PUFS-SQL were implemented: PUFS-SQL#FreeForm, which synthesizes free-form

SQL queries; and PUFS-SQL#Templates, which only generates programs with queries that follow spe-

cific patterns that were observed to be highly frequent in real-world OutSystems code by the OutSys-

tem’s AI R&D team.

Similarly to PUFS-L-Ordered, ordered versions of PUFS-SQL#FreeForm and PUFS-SQL#Templates

were also implemented, described in section 4.3.2. Independently of the version of the frameworks, it is

important to note that in the case that the input/output examples do not contain elements of type Table,

the DSL will not have any of the data aggregation operations and only the assignment ones. The goal

is to remove all known operations from the DSL that will never be used before enumerating through the

sketches.

4.3.1 PUFS-SQL

The PUFS-SQL framework joins the PUFS framework (PUFS+ version) with data aggregation capabilit-

ies and is divided into two possible configurations: PUFS-SQL#freeForm and PUFS-SQL#Templates.

The PUFS-SQL#FreeForm framework consists in the integration of an SQL synthesizer into our

synthesizer. From the ones presented in section 3.2, we decided to use the CUBES synthesizer since it

seems to be the most complete in terms of the range of SQL queries supported. The integration with the

DSL and interpreter is described in detail in section 4.3.3. The new DSL has 2 new different types: Table

and Structure. The former is a table that can be provided by the user. The latter is a python dictionary

that corresponds to a row of a table, where the keys are the columns of the table and the values of the

dictionary are the values of the row. A table with multiple rows is represented through a list of elements

of type Structure. Besides the new types, the DSL now has new possible types that come from the

CUBES specification, such as Col and FilterCondition, which are described in Table A.8. All of these

types are generated by the CUBES framework and correspond to operators used in SQL queries.

The PUFS-SQL#Templates variant relies on an internal analysis performed on a dataset of real-

world applications implemented in OutSystems. The analysis concluded that certain types of templates

represent the majority of the data aggregation operations performed using the OutSystems platform.

The templates that were implemented, further described in Table A.7, represent a total of 82.79% of all

aggregates. An advantage of using templates versus the free form version is that complex operations

that would require more than one node, can be fulfilled with a single one and, as previously established,

the more we are able to minimize the number of nodes in the sketch, the more likely the framework is

to find a solution. Thus, it is expected that the PUFS-SQL#Templates framework has an overall better

performance than the PUFS-SQL#FreeForm framework.

31

Depth PUFS-SQL PUFS-SQL-Ordered

1-node 2 1

2-nodes 4 1

3-nodes 12 2

(a) Assignment and conditional benchmarks

Depth PUFS-SQL PUFS-SQL-Ordered

1-node 2 1

2-nodes 4 1

3-nodes 12 2

(b) PUFS-SQL benchmarks

Table 4.5: PUFS-SQL frameworks: Number of sketches by depth

Independently of the version, a new operation was added referred to as getStructureElement, which

retrieves the value of a column of a given Structure object. This operation is is used in an Assign

node. In assignment, conditional and data aggregation benchmarks, the node of type Assign can never

be present, since the output of a query is a list of structures, which implies the need of a node of type

ExecuteAction to obtain an element of the list before performing any assignment operations on the value.

4.3.2 PUFS-SQL-Ordered

The PUFS-SQL-Ordered framework introduces the ordering and filtering of sketches, using the input and

output types, and, similarly to the PUFS-SQL framework, it supports both the FreeForm and Templates

variants.

The first change in the sketch enumeration process for the PUFS-SQL-Ordered framework was fil-

tering, with the goal of minimizing the redundant attempts that could never satisfy the input/output ex-

amples. The filter consists of a set of rules, described below:

1. Any sketch with nodes of type Assign are skipped since PUFS-SQL benchmarks do not make use

of this type of node.

2. If the input and output do not have any tables, then all sketches with DataSet nodes are skipped

and the data aggregation operations are not added to the DSL.

3. If the input/output examples contain a table, then at least one DataSet node must be in the sketch.

4. If the output is of type list, then all nodes pointing to the End node must be of type DataSet.

The second change to the sketch enumerator was the sorting of sketches. From the analysis per-

formed on real-world user examples of the OutSystem’s platform in the example generation, flows with

data aggregation operations usually were accompanied by other data aggregation operations, condi-

tional nodes or list manipulations. Thus, considering only assignment, conditional and data aggregation

nodes, the sketches are sorted from the largest amount of DataSet nodes to the smallest.

The impact of the filtering and ordering on the number of generated sketches can be seen in Table

4.5. It shows the number of sketches generated by each framework for assignment and conditional

benchmarks and then assignment, conditional and data aggregation benchmarks. With the former

benchmarks, the PUFS-SQL-Ordered framework removes all sketches with data aggregation nodes

32

leaving only 1 sketch for 1 node and 2 node depths, and then 2 sketches for 3 nodes since it considers

a sketch with a conditional node. With the latter benchmarks, the PUFS-SQL-Ordered framework also

ends up having the same number of sketches, because data aggregation nodes can not be used with

assignment nodes directly. Thus, the sketches generated use only data aggregation and conditional

nodes. The improvement is already clear in 1 node and 2 node benchmarks, but it becomes more

apparent the more complex the sketches become, such as in the 3 node benchmarks.

The PUFS-SQL-Ordered framework is expected to have a better performance than the PUFS-SQL

framework due to the removal of redundant sketches.

4.3.3 Changes in Implementation

This section describes the changes in encoding variables and SMT constraints the PUFS-SQL frame-

work, in the sketch enumeration process with the new type of node DataSet and to the DSL and inter-

preter.

Encoding Variables

Remember that we let D be the DSL and Prod(D) the set of production rules. In the PUFS-SQL frame-

work, D consists not only of the productions AssignProd(D) (presented in Tables A.1, A.2, A.3), but also

of the productionsDataSetProd(D) (presented in Tables A.6 and A.7), i.e., Prod(D) = AssignProd(D) ∪

DataSetProd(D).

Constraints

Similarly to PUFS-L, PUFS-SQL introduces a single constraint: if a node i corresponds to an DataSet

node, then the respective symbol must be a production in DataSetProd(D).

∀ 1 ≤ i ≤ n : HoleType(i) = DataSet =⇒
∨

p∈DataSetProd(D)

opi = id(p) (4.13)

Sketch Enumerator

The original framework consisted in two different types of nodes: the Assign node and the If node.

The new framework adds one more type of node DataSet. The main difference is that Assign nodes

may be replaced by the new node type. Thus, in the end, we create a list of sketches with all possible

combinations of the nodes for each depth.

DSL and Interpreter

Similarly to PUFS-L, PUFS-SQL introduces a series of new types and operators, which need to be

present in the DSL and have a corresponding interpreter specifying their behaviour. Thus, both the DSL

and interpreter were extended to have the new values and operators.

33

The integration with CUBES for free-form queries consisted in creating a parser that transformed our

benchmarks into a format compatible with CUBES. Then, we generated the CUBES’ DSL and parsed

all of the values and operators obtained to our own DSL. Finally, the interpreter of CUBES was added

to the list of interpreters. The decider, when verifying the input/output examples, calls the interpreter

corresponding to the operator used in the solution.

Furthermore, the main grammar builder, which was introduced in the PUFS-L framework (section

4.2.3), depending on the framework configured, creates the corresponding grammar from the DSL. For

instance, for the PUFS-SQL framework, the grammar should contain the operators and values of the

PUFS+ framework and the SQL queries.

We must note that the constants used in SQL queries must be provided in the input of the specifica-

tion because they are used to create the DSL values, such as the filter conditions. Thus, there cannot

be a node of type Assign that performs an operation on an input that is then used in a node of type

DataSet. Therefore, all benchmarks with only Assign, If and DataSet nodes will never have a Assign

node connected to an DataSet node.

4.4 PUFS-X framework

The PUFS-X framework combines all of the features of PUFS+, PUFS-L and PUFS-SQL into a single

framework.

Just like for PUFS-L and PUFS-SQL, an Ordered version of PUFS-X was also implemented and is

further described in section 4.4.1.

4.4.1 PUFS-X-Ordered

The PUFS-X-Ordered framework introduces the ordering and filtering of sketches, using the input and

output types. The filtering of sketches follows the same idea as the one seen in the PUFS-L-Ordered

and PUFS-SQL-Ordered frameworks, i.e., minimize the solutions that could never satisfy the input/output

examples.

The filter has the following set of rules:

1. If the input/output examples do not contain any tables, then all sketches with DataSet nodes are

skipped and the data aggregation operations are not added to the DSL.

2. If input/output examples do not contain any list nor any tables, then all sketches with ExecuteAction

nodes are skipped and the list manipulation operations are not added to the DSL.

3. If input/output examples contain a table, then at least one DataSet node must be in the sketch.

4. If input/output examples contain a list and no tables, then at least one ExecuteAction node must

be in the sketch.

5. If the output is of type list, then all nodes pointing to the End node must be of type DataSet or of

type ExecuteAction.

34

Depth PUFS-X PUFS-X-Ordered

1-node 3 1

2-nodes 9 1

3-nodes 36 2

(a) Assignment and conditional benchmarks

Depth PUFS-X PUFS-X-Ordered

1-node 3 1

2-nodes 9 2

3-nodes 36 6

(b) PUFS-X benchmarks

Table 4.6: PUFS-X frameworks: Number of sketches by depth

Besides the referred set of rules, there is a verification of whether the order of nodes make sense.

Nodes of type If are always accepted independently of where they appear. However, the remaining

nodes should only be accepted if their location in the sketch makes sense. For instance, as explained in

section 4.3.3, a DataSet node only uses input values to perform a query and never an output of another

node. Thus, a DataSet node must always be at the beginning.

Lets start with the first node. If there are any tables in the input, then the first node should be of type

DataSet, because it only uses as arguments the input values. If there are no tables but there are lists

in the input, the first node should be either of type ExecuteAction or of type Assign, because the node

of type DataSet will never be used when no tables are in the input. In case there are no tables nor lists

in the input, then the first node should always be of type Assign since there will be no need for any list

operations nor any SQL queries.

After the first node, if we have a node of type DataSet, we expect to see another DataSet or an

ExecuteAction node, because only these nodes can use an output of a DataSet node. An Assign

node only performs operations on elements that are not lists and not tables. If we have a node of

type ExecuteAction, we expect to see either another ExecuteAction node or an Assign node since both

nodes may use each other. Finally, if we see an Assign node we expect another Assign node or an

ExecuteAction node for the same reason.

With the conjunction of the initial rules and the path verification, we remove a significant amount of

sketches that would never result in a valid solution. In Table 4.6 we can observe the difference in the

number of sketches for assignment and conditional benchmarks and then for PUFS-X bechmarks, i.e.,

benchmarks that use assignment, conditional, list manipulation and data aggregation nodes. Without

considering nodes of type If, the number of sketches for a depth d is Nd sketches. Thus, as we can

see, the PUFS-X framework generates 3 sketches for depth 1 and 9 sketches for depth 2. With depth 3,

besides the 33 = 27 sketches, we have an additional 9 sketches that use If nodes. With the filtering of the

PUFS-X-Ordered framework, for the assignment and conditional benchmarks, the number of sketches

reduces drastically specially for depth 3, where instead of 36 sketches the synthesizer only needs to

enumerate 2. For the PUFS-X benchmarks, the difference is still very significant, with depth 3 resulting

in 6 sketches instead of the 36.

35

4.4.2 Changes in Implementation

This section describes the changes in encoding variables the PUFS-X framework, in the sketch enumer-

ation process and to the DSL and interpreter.

Encoding Variables

Remember that we letD be the DSL and Prod(D) the set of production rules. In the PUFS-X framework,

D consists in the productions AssignProd(D) (presented in Tables A.1, A.2, A.3 and 4.2), the produc-

tions ExecuteActionProd(D) (presented in Tables A.4 and A.5) and the productions DataSetProd(D)

(presented in Tables A.6 and A.7), i.e., Prod(D) = AssignProd(D) ∪ ExecuteActionProd(D) ∪

DataSetProd(D). Furthermore, BooleanProd(D), which is used to denote the set of productions that

return a Boolean value, is has all operators that return a Boolean.

Sketch Enumerator

The PUFS-X framework adds on the the PUFS+ framework the node types ExecuteAction and DataSet,

the main difference being that the Assign nodes may be replaced by the new node types. Thus, we

create a list of sketches with all possible combinations of the nodes for each depth.

DSL and Interpreter

With the PUFS-X framework, the DSL and interpreters do not change. However, the grammar builder

adds a new configuration that creates a grammar with all operators and values mentioned thus far, i.e.,

PUFS+, PUFS-L and PUFS-SQL operators and values.

4.5 User input

In this section, the user input in regards to the configuration of the synthesizer and the benchmarks is

presented.

Synthesizer’s configuration

The synthesizer is configured through a JSON file provided by the user, which contains possible cus-

tomizations and the directory containing the benchmarks.

The first set of configurations for the user is the sketch config, i.e., the different hyper-parameters

that can be customized in the sketch enumeration process. The first hyper-parameter is the sketch type,

which indicates the types of nodes that are allowed in the sketches, such as only Assign nodes or all

the combinations of nodes. The sketch min and the sketch max indicate the minimum/maximum depth

of the sketches, respectively. Finally, the pruning hyper-parameter can be either true or false, indicating

whether the sketches should be ordered and filtered.

36

Figure 4.4: Example of a configuration

The remaining configurations are the version, which corresponds to the version of the framework to

be executed (e.g. PUFS+, PUFS-X) and free form sql, which is true if one wishes to generate free-form

SQL instead of the templates described in section 4.3.

Example 10. An example of a configuration is presented in Figure 5.4, where the PUFS-X framework

is set to run on the PUFS benchmarks with the following settings: sketches contain all types of nodes;

sketches have a minimum depth of 2 and maximum depth of 6; sketches have a maximum of 4 nodes;

and pruning is activated. Furthermore, neither the free-form nor the debug are activated.

Benchmarks specification

A benchmark is provided in a yaml file, where the input and output examples are described and con-

stants are provided to assist the synthesizer. For the synthesizer to provide a solution it requires a set of

input and output examples, which can range from one example to many more. The number of examples

needed for a program depends on the complexity of the desired solution, because the examples need

to be sufficient to capture all kinds of corner cases of the desired solution. For instance, if a program

should perform an operation depending on whether a number is bigger than another, then at least 3

examples should be given: one for the lower limit, one for the higher limit and one for the point of the

change, which differentiates whether the condition includes or excludes the point of comparison.

37

Chapter 5

Evaluation

In chapter 5, the frameworks are evaluated and the results analysed. First, in section 5.1, the benchmark

sets used in the evaluation and respective source are described. Then, in section 5.2, the method of

evaluation used is detailed. Finally, in section 5.3, an analysis is performed on the experimental results

obtained for each framework and their respective versions.

5.1 Benchmark Description

In order to evaluate our synthesizer, a set of benchmarks were retrieved from real-world examples

developed using the OutSystems platform. The set of benchmarks represents the different flows that

our framework should be able to synthesize, and are divided into different groups based on the type

of nodes that appear in the respective solution. For example, one set of benchmarks requires only

assignment and conditional nodes, whereas another set of benchmarks requires only list manipulation

nodes. Then, within their group, the benchmarks are divided into different sub-groups that represent the

number of nodes required by the respective solution. The latter separation allows us to observe how the

synthesizer behaves as the complexity of the problem increases.

The first set of benchmarks requires only assignment and conditional nodes to be synthesized and

will be further described in the subsection 5.1.1. These benchmarks were created using real examples of

the OutSystems platform. However, the remaining benchmarks are not specific examples, but instances

of operations based on the examples observed in the platform. In the following sub-sections the different

types of benchmarks are described. Table 5.1 shows an overview of all the benchmarks used.

5.1.1 Assign and conditional nodes

The examples gathered with assign and conditional nodes were selected from the examples collected

by Catarina Coelho for evaluating the PUFS framework. These benchmarks only contain nodes of type

Start, End, Assign and If and the operations used within the nodes are limited to the ones accepted by

the PUFS framework (described in Tables A.1, A.2 and A.3).

38

Benchmarks # Instances

Assign and conditional 97

List manipulation 127

Assign, conditional and list manipulation 52

Data aggregation 46

Assign, conditional and data aggregation 10

List manipulation and data aggregation 35

Assign, conditional, list manipulation and data aggregation 24

Total 391

Table 5.1: Summary of benchmarks used

A total of 97 examples were selected as benchmarks, ranging from examples containing 1 node up

to 3 nodes. We observed that examples with more than 3 nodes were too difficult for the synthesizer

to solve within the pre-determined runtime limit. The evaluation presented throughout this chapter will

demonstrate the results for examples of 1 node, 2 nodes, 3 nodes and then all together in order to better

understand the evolution of the performance of the synthesizer.

This set of benchmarks is used to evaluate several different frameworks, from the original PUFS

framework to more complex ones that use list manipulation and aggregation capabilities. The goal is to

evaluate the impact of using more complex frameworks on the efficiency and effectiveness.

Example 11. Examples of possible assign and conditional benchmarks are: add(input1, input2), which

requires 1 node of type Assign; replace(toLower(input1), input2, input3), which requires 2 nodes of type

Assign; and If(gt(input1, input2), sub(input1, input2), sub(input2, input1)) (observed in Figure 5.1), which

requires 2 nodes of type Assign and 1 node of type If.

5.1.2 List manipulation nodes

The examples gathered with list manipulation nodes were created manually based on real-world Out-

Systems examples to represent the different operations the PUFS-L framework is capable of solving.

Despite the examples being created manually, it was after an extensive search through OutSystems

real-world examples. These benchmarks contain nodes of type Start, End and ExecuteAction and the

operations used are described in Tables A.4 and A.5.

The resulting benchmark set contains 127 benchmarks that are divided, similarly to the assign and

conditional benchmarks, into three groups from 1 node to 3 node solutions. This set of benchmarks is

used to evaluate the different versions of the PUFS-L framework and the final version of the synthesizer,

the PUFS-X framework.

39

Figure 5.1: Example of a PUFS benchmark

Example 12. Examples of possible list manipulation benchmarks are: ListAppend(input1, input2), which

requires 1 node of type ExecuteAction; ListAppendAll(ListAppendAll(input1, input2), input3), which re-

quires 2 nodes of type ExecuteAction; and ListAny(ListFilter(ListAppend(input1, input2), input3), input4),

which requires 3 nodes of type ExecuteAction.

5.1.3 Assign, conditional and list manipulation nodes

The examples gathered with assign, conditional and list manipulation nodes were created manually

based on real world OutSystems examples to represent the different operations the PUFS-L framework

is capable of solving. Similarly to the list manipulation nodes, despite the examples being created

manually, it was after an extensive search through OutSystems real-world examples. These benchmarks

contain nodes of type Start, End, Assign, If and ExecuteAction and the operations used are described

in Tables A.1 to 4.3.

The resulting benchmark set contains 52 benchmarks separated into two groups: 2 node and 3 node

solutions. Since this is the combination of assign, conditional with list manipulation nodes, benchmarks

with 1-node are already represented in the sets presented in sections 5.1.1 and 5.1.2. These bench-

marks are used to evaluate the different versions of the PUFS-L framework and the final version of the

synthesizer, the PUFS-X framework.

Example 13. Examples of possible assign, conditional and list manipulation benchmarks are: ListAp-

pend(input1, add(input2, input3) (observed in Figure 5.2), which requires 1 node of type Assign and

1 node of type ExecuteAction; ListAppend(input1, replace(toLower(input2), input3, input4)), which re-

quires 2 nodes of type Assign and 1 node of type ExecuteAction; and If(ListAny(input1, input2), ListAp-

pend(input1, mul(input3, input4)), ListAppend(input1, div(input3, input4))) , which requires 2 nodes of

type Assign, 1 node of type ExecuteAction and 1 node of type If.

40

Figure 5.2: Example of a PUFS-L benchmark

5.1.4 Data aggregation nodes

The examples gathered with data aggregation nodes were created manually based on real world Out-

Systems examples to represent the different operations the PUFS-SQL framework is capable of solving.

Despite the examples being created manually, it was after an extensive search through OutSystems real-

world examples. These benchmarks contain nodes of type Start, End and DataSet and the operations

used are described in Tables A.6 and A.7.

The resulting benchmark set contains 46 benchmarks that are divided into two groups: template

benchmarks and free-form benchmarks. The former corresponds to benchmarks that have solutions with

the templates defined in the PUFS-SQL-Templates (described in section 4.3.1). The latter corresponds

to benchmarks whose solution does not have a template. The sets of benchmarks are evaluated against

the different versions of the PUFS-SQL frameworks and the final version of the synthesizer, the PUFS-X

framework.

Example 14. Examples of possible data aggregation template benchmarks are: Select * from table1;

Select * from table1 where name == ”John”; and Select * from join(table1, table2) where name == ”John”.

The number of nodes required for each example will depend on the configuration used (with templates

or free-form). Examples of possible data aggregation free-form benchmarks are: Select avg(age) from

table1; Select sum(age) from table1; and Select * from join(table1, table2).

5.1.5 Assign, conditional and data aggregation nodes

The examples gathered with assign, conditional and data aggregation nodes were created manually

based on real world OutSystems examples to represent the different operations the PUFS-SQL frame-

work is capable of solving. These benchmarks contain nodes of type Start, End, If and DataSet and the

operations used are described in Tables A.1, A.2, A.3, A.6 and A.7. Benchmarks with the node Assign

will not be added since assign operations can not occur directly on the output of a query, i.e., a query

41

Figure 5.3: Example of a list manipulation and data aggregation benchmark

outputs a list of structures and if we want to perform an operation over an element of the list we would

always need an ExecuteAction node.

The resulting benchmark set contains 10 benchmarks whose solution is an if and then a query

depending on a condition. The set of benchmarks is evaluated against the different versions of the

PUFS-SQL frameworks and the final version of the synthesizer, the PUFS-X framework.

Example 15. Examples of possible assign, conditional and data aggregation benchmarks are: If(condition,

Select * from table1, Select * from table2); and If(condition; Select * from join(table1, table2) where name

== ”John”, Select * from join(table1, table2) where name == ”Peter”). Similarly to the data aggregation

benchmarks, the number of nodes required for each example will depend on the configuration used (with

templates or free-form).

5.1.6 List manipulation and data aggregation nodes

The examples gathered with list manipulation and data aggregation nodes were created manually based

on real world OutSystems examples to represent the different operations the PUFS-X framework is

capable of solving. These benchmarks contain nodes of type Start, End, ExecuteAction and DataSet

and the operations used are described in Tables from A.4 to A.7. Benchmarks with the node Assign will

not be added since assign operations can not occur directly on the output of a query.

The resulting benchmark set contains 35 benchmarks that are divided into two groups: 2-node and

3-node complexity. The sets of benchmarks are evaluated against the different versions of the PUFS-X

frameworks.

Example 16. Examples of possible list manipulation and data aggregation benchmarks are: ListAp-

pend(Select * from table1, input1) (seen in Figure 5.3); and ListDistinct(Select * from table1, input1).

Similarly to the data aggregation benchmarks, the number of nodes required for each example will de-

pend on the configuration used (with templates or free-form). However, with the template configuration

42

Figure 5.4: Example of a PUFS-X benchmark

for example, the first example needs 1 node of type DataSet and one node of type ExecuteAction as

seen in Figure.

5.1.7 Assign, conditional, list manipulation and data aggregation nodes

The examples gathered with assign, conditional and data aggregation nodes were created manually

based on real world OutSystems examples to represent the different operations the PUFS-SQL frame-

work is capable of solving. These benchmarks contain nodes of type Start, End, Assign, If, ExecuteAc-

tion and DataSet and the operations used are described in Tables from A.1 to A.7.

The resulting benchmark set contains 24 benchmarks that are divided into two groups: 3-node and

4-node complexity. The sets of benchmarks are evaluated against the different versions of the PUFS-X

framework.

Example 17. Examples of possible assign, conditional, list manipulation and data aggregation bench-

marks are: eq numeric numeric(getElementList(ListMap(Select * from table1, input1), input2), input3),

which needs a node DataSet, then two nodes ExecuteAction and, finally, one node Assign; and If(eq(input1,

input2), Select * from table1 where airport name == ’Bristol’, ListAppend(ListAppend(input3, input4), in-

put5)) (seen in Figure 5.4), where we need a node If, two nodes ExecuteAction and a node DataSet.

43

Figure 5.5: Precision and recall metrics1

5.2 Evaluation Method

The first evaluation metric used is efficiency, which represents the average runtime it takes for the syn-

thesizer to produce a solution. This metric allows us to evaluate not only the impact of the improvements

of the frameworks, but also the impact of adding new features.

Then, we have the metrics precision and recall, which take in consideration true positives, false

positives, true negatives and false negatives (represented in Figure 5.5). For our evaluation, a true

positive is when the synthesizer provides the intended solution; a false positive is when the synthesizer

provides a solution, but due to the ambiguity of the specification, not the intended one; a true negative

is when there is no solution and the synthesizer does not provide one (this will never occur in our

evaluation, because we will only run benchmarks with frameworks that have a solution); finally, a false

negative is when the synthesizer should have found a solution, but it wasn’t able to within the pre-

determined runtime limit.

The precision metric is calculated through the equation 5.1 and represents the percentage of solu-

tions that match the specification of the user. The value ranges from 0 to 1. The closer the value is to

1, the more solutions are the ones intended by the user. On the other hand, the closer the value is to 0,

the more the solutions are valid according to the specification, but not the ones intended by the user.

Precision =
true positives

true positives+ false positives
(5.1)

The recall metric is calculated through the equation 5.2 and refers to the percentage of total solutions

correctly classified by the synthesizer. Similarly to the precision metric, the value ranges from 0 to 1.

The closer the value is to 1, the more intended solutions where found relative to the problems that could

not be solved in the pre-determined runtime limit. On the other hand, the closer the value is to 0, the

1the image was adapted from https://en.wikipedia.org/wiki/Precision and recall

44

more are the problems that were not able to be solved in relation to the ones that were found.

Recall =
true positives

true positives+ false negatives
(5.2)

Finally, a last metric will be used, which distinguishes from the previous three evaluation methods

since it does not characterize all benchmarks, but only the ones where the frameworks returned the

same solution. This metric corresponds to the total runtime spent by each framework on the same

benchmarks.

5.3 Experimental Results

In this section, we discuss the different frameworks created throughout the thesis. First, we have an

analysis of the PUFS framework, where we compare the original framework PUFS with the improved

version PUFS+. Then, we have the PUFS-L, PUFS-SQL and PUFS-X frameworks, where we present

the main different versions of each framework and observe the differences in the performance.

For each framework and complexity of the benchmark, we present the results in a figure with graph-

ics, which correspond to the number of instances solved (x axis) by the runtime passed (y axis). Then,

we have a table where the average runtime and the metrics precision and recall are presented. Finally,

we have a table with the total runtime spent on the same benchmarks for each framework. The goal of

this experimental evaluation is to answer the following questions:

1. How does PUFS+ compare to PUFS? (section 5.3.1)

2. How does the Multi-Gen and Single-Gen encoding compare? (section 5.3.1)

3. How many, how complex and with which accuracy can each framework solve the benchmarks?

4. How does the addition of new features affect the results of simpler benchmarks?

5. How does the pruning and ordering of sketches affect the performance of the frameworks?

Implementation The synthesizer is implemented in Python 3.8 and it uses the Z3 SMT solver with

theory of Linear Integer Arithmetic. The results were obtained using an Intel(R) Core(TM) computer with

an i5-8350U 1.70 GHz CPU, using a memory limit of 2 GB, running Ubuntu 20.04 LTS and with a time

limit of 500 seconds.

5.3.1 PUFS+ framework

The PUFS, the PUFS+#MG and the PUFS+#SG framework were run with the gathered benchmarks of

only assign and conditional nodes, where the respective results are shown in Figure 5.6, Table 5.2 and

Table 5.3. First we discuss the benchmarks according to the number of nodes required by the respective

solutions, and then we show an overall perspective of the results.

45

(a) Examples of 1 node (b) Examples of 2 nodes

(c) Examples of 3 nodes (d) Examples of 1, 2 and 3 nodes

Figure 5.6: PUFS framework versions: Runtime per instances solved

1-node benchmarks

As observed in Figure 5.6a, the PUFS framework immediately shows some difficulty in finding solutions

for the 1-node benchmarks, whereas the PUFS+#MG and PUFS+#SG frameworks maintain a steady

runtime throughout the benchmarks. The performance of the PUFS+#MG and PUFS+#SG frameworks

are expected to have the similar results for 1 node benchmarks and only start to differ with multiple

nodes, because the difference in encoding only applies starting from 3 nodes.

In Table 5.2, we have the average runtime it takes for the frameworks to find a solution and we

observe that the PUFS framework averages around 2.435 seconds whereas the PUFS+#MG and the

PUFS+#SG frameworks maintain an average around 0.28 seconds. The difference in efficiency occurs

in 5 out of the 24 benchmarks which require significantly more runtime for the PUFS framework than the

remaining frameworks. Upon a closer look at the examples, we concluded that this is due to the usage

of constants, which explains the spike in the runtime to find a solution, because, as described in section

4.1.3, the PUFS framework needs an extra node per constant used, whereas the PUFS+ frameworks

do not have this limitation.

The precision metric being 1 for all frameworks shows us that, when the frameworks were able to

find a solution, it was the intended one. This is expected since we are working with 1-node benchmarks

and all the functions of the DSL perform different operations. Ambiguity is only expected to be observed

with more complex benchmarks.

The PUFS framework achieves a recall of 0.9565, because it was unable to find a solution for 1 of

46

PUFS PUFS+#MG PUFS+#SG

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

1-node 2.435 1 0.9565 0.2770 1 1 0.2781 1 1

2-nodes 48.6455 0.7 0.4242 1.0410 0.8205 1 1.0444 0.8205 1

3-nodes 182 0 0 77.2773 0.8846 0.8519 49.1863 0.8519 0.7419

all nodes 31.6018 0.8181 0.4045 23.3657 0.875 0.8953 15.4507 0.8652 0.9059

Table 5.2: Evaluation metrics for the PUFS frameworks

Benchmarks PUFS (s) PUFS+#MG (s) PUFS+#SG (s)

1-node 22 53.57 6.1 6.1

2-nodes 14 839.48 16.58 16.64

3-nodes 19 – 1617.29 1116.06

Table 5.3: Total runtime of same benchmarks for the PUFS frameworks

the 24 benchmarks. As expected, this benchmark uses constants in the specification. Moreover, it uses

2 constants, which implies the need of 2 extra nodes to find a solution. The PUFS+ frameworks were

able to reach a recall of 1, finding the intended solutions to all benchmarks.

All in all, in 1-node benchmarks, performance differences are only noticeable when constants are

used. However, as is shown in Table 5.3, for the 22 benchmarks all of the frameworks were able to

reach the correct solution, the PUFS framework showed a much worse performance needing a total of

53.57 seconds, in contrast to the 6.1 seconds it took the PUFS+ frameworks.

2-node benchmarks

With 2-node benchmarks, as can be observe in Figure 5.6b, the PUFS framework struggles to find

solutions for several instances. In contrast, the PUFS+ framework continues to maintain a steady runtime

for all benchmarks independently on the encoding.

In Table 5.2, we can observe that the average runtime to find a solution for the PUFS framework is

48.6455 seconds, whereas for the PUFS+ frameworks we have an average around 1.04 seconds. In

Table 5.3 the difference between the performance of the PUFS framework against the PUFS+ frame-

works is even more noticeable, with the PUFS framework taking a total of 839.48 seconds to solve 14

benchmarks and the PUFS+ frameworks only taking around 16.6 seconds to solve the same bench-

marks. The significant difference can no longer be just attributed to the use of constants, but also to the

pruning of invalid programs performed by PUFS+ that is enabled by the node connectivity constraints

and the improved DSL. The difference between the Multi-Gen and Single-Gen encoding is not visible

yet, which is expected since, independently of the encoding, both frameworks must have the second

47

node use the first node. A difference is expected starting with 3 node sketches.

The precision metric for the PUFS framework is at 0.7, which shows that, between the solutions

found, 30% were not the intended ones. This is due to the ambiguity of the specification. The PUFS+

framework achieves a higher precision of 0.8205 for both encodings.

The recall metric maintains at 1 for the PUFS+ frameworks showing us that it was able to find a

solution for every benchmarks. However, the PUFS framework was only able get a recall of 0.4242,

since it was not able to find a solution for 19 out of the 39 benchmarks.

3-node benchmarks

For the 3-node benchmarks, the PUFS+ framework starts to show some difficulty in finding solutions,

as we can see in Figure 5.6c. We also start to see the difference in performance between the two

encodings of the PUFS+ framework (Multi-Gen and Single-Gen encoding).

As expected, the PUFS framework performs significantly worse in every metric, as we can observe

in Table 5.2. Out of the two benchmarks it was able to solve, it took an average of 182 seconds. With the

complexity of these benchmarks, the PUFS+ frameworks made a drastic jump of runtime performance

from 1.04 seconds to 77.2773 seconds in the case of the Multi-Gen encoding and to 49.1863 in the

case of Single-Gen encoding. This drastic jump is not surprising due to the combinatorial nature of the

problem, i.e., the exponential complexity of synthesis. The difference between the performance of the

two types of encoding is expected, because the Single-Gen encoding forces a node to use the single

previous node, whereas the Multi-Gen encoding allows solutions where any previous node to be used

creating a larger search space. The difference can be observed further in Table 5.3, where, for the same

benchmarks, the PUFS+#MG framework spent a total of 1617.29 seconds in contrast to the 1116.06

seconds it took the PUFS+#SG framework.

The solutions obtained from the PUFS framework were not the intended ones leaving the precision

and recall at 0 for this framework. In contrast, the PUFS+#MG framework had a precision of 88.46%

and a recall of 85.19%, which shows us that most solutions found were the intended ones and that 9

benchmarks were not able to reach a solution. The PUFS+#SG framework had a slight worse precision

of 85.19% and a worse recall of 74.19%. However, it was able to find one more solution than the

PUFS+#MG framework.

All benchmarks

In Figure 5.6d and in the last row of Table 5.2, the results for all the benchmarks are shown. We can

observe a clear improvement in the results of the PUFS+ framewworks in contrast to the ones achieved

by the PUFS framework.

As shown in Table 5.2, The PUFS framework averages 31.6018 seconds to find a solution, whereas

the PUFS+#MG framework averages 23.3657 seconds and the PUFS+#SG framework 15.4507 seconds.

It is important to note that the difference between the average times between the PUFS framework and

the PUFS+ frameworks is smaller than expected since the PUFS framework was only able to solve 2

48

out of the 35 most complex benchmarks. The average runtime takes into account all solutions found

and, since the PUFS+ frameworks were able to find more solutions to more complex benchmarks, the

average time reaches closer to the PUFS framework.

The precision of the PUFS framework showed to be the worst with 81.81%. In contrast, both PUFS+

frameworks have similar precision around 87%, showing a similar percentage of intended solutions in

relation to non intended ones. The recall metric is another significant difference between the original

PUFS framework and the PUFS+ frameworks since it shows us that the PUFS framework is only able to

find 40.45% intended solutions, in contrast to the 89.53% achieved by the PUFS+#MG framework and

the 90.59% achieved by the PUFS+#SG framework.

Upon a closer look at the examples for each benchmark, the majority of cases where the solution

found by the synthesizer was not the intended one correspond to edge cases. An example of an edge

case with our synthesizer is the operations greater than and greater or equal than for which some

examples did not specify properly the edge case that would differentiate the two operations. Another

edge case is with the operations Trim, TrimStart and TrimEnd, where, similarly to the previous edge

case, some examples allow one or more of these operations to satisfy the specification.

We can conclude that the PUFS+ frameworks achieve by far the best performances in every evalu-

ated metric in comparison to the original PUFS framework. Between the two encodings, the PUFS+#SG

framework showed to be overall more efficient and precise than the PUFS+#MG framework and, hence-

forth, will be the one used to build upon with new features. The difference between the PUFS+ framework

encodings is only expected to be bigger the more complex the solutions are.

5.3.2 PUFS-L framework

In this section we will analyse the different versions of the PUFS-L framework described in section 4.2.

The first version is PUFS-L, where the implementation is simply the addition of a new node ExecuteAc-

tion and the corresponding operations to the DSL (seen in Tables A.4 and A.5). The second version is the

PUFS-L-Ordered framework, which adds a more intelligent way of enumerating through the sketches.

Finally, we have the PUFS-L-Assisted framework that adds-on the PUFS-L-Ordered framework by al-

lowing the user to give assistance in the specification.

The three versions will be tested with list manipulation benchmarks in section 5.3.2, assignment and

conditional benchmarks in section 5.3.2 and assignment, conditional and list manipulation benchmarks

in section 5.3.2. With the first set of benchmarks we will have an idea of how the framework behaves

with benchmarks that require only list manipulation nodes. The second set of benchmarks will allows us

to observe the impact on the framework when we added the new feature, because we will compare the

results in the PUFS-L framework in contrast to the PUFS framework. Finally, the last set of benchmarks

will give us an idea of how the synthesizer behaves with more complex benchmarks.

List manipulation benchmarks

The results for the list manipulation benchmarks can be observed in Figure 5.7, Table 5.4 and Table 5.5.

49

(a) Examples of 1 node (b) Examples of 2 nodes

(c) Examples of 3 nodes (d) Examples of 1, 2 and 3 nodes

Figure 5.7: PUFS-L framework versions: list manipulation benchmarks

The same pattern can be observed throughout the benchmarks in Figure 5.7, from 1 node to more

complex ones of 3 nodes. The PUFS-L framework has considerably worse results than the other frame-

works in every benchmark, ending with a runtime average of 20.4471 seconds. In contrast, the PUFS-

L-Ordered framework has a total average of 14.3375 and the PUFS-L-Assisted of 1.2691 seconds for all

the benchmarks. The difference between the PUFS-L and PUFS-L-Ordered framework can be attributed

to the sketch enumeration process since the PUFS-L version enumerates through every possible sketch

independent on the input and output types, whereas the PUFS-L-Ordered framework, before the enu-

meration, prunes and orders the sketches to remove redundant attempts and maximize the efficiency.

The difference in the average runtime between the PUFS-L-Ordered and PUFS-L-Assisted, as ob-

served in Figure 5.7, is not visible in every benchmark. The only benchmarks where PUFS-L-Ordered

has more difficulty are ones that require types CmpLambda and OpLmabda. This is expected since

PUFS-L-Ordered does have any assistance from the user, which means it not only needs to have an

extra node to create the operation CmpLambda or OpLambda, but it also needs to find the correct one.

With the user providing the complex operation, the PUFS-L-Assisted framework is able to maintain a

steady runtime throughout all benchmarks. The difference in the average time is drastic, specially in 3

node benchmarks, where the PUFS-L-Ordered framework averages 76.4571 seconds in contrast to the

4.9667 seconds it takes the PUFS-L-Assisted.

In regards to precision, in 1 node benchmarks all of the frameworks have the value of 1, which

is expected since solutions of a single operation do not create any ambiguity with a DSL composed

50

PUFS-L PUFS-L-Ordered PUFS-L-Assisted

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

1-node 0.9841 1 1 0.6506 1 1 0.2931 1 1

2-nodes 21.8692 0.9259 1 4.86 0.963 1 0.7648 0.963 1

3-nodes 119.2847 0.7143 0.5263 76.4571 0.7619 0.8421 4.9667 0.9583 1

all nodes 20.4471 0.9496 0.9262 14.3375 0.9524 0.9756 1.2691 0.9845 1

Table 5.4: Evaluation metrics for the PUFS-L framework versions: list manipulation benchmarks

Benchmarks PUFS-L (s) PUFS-L-Ordered (s) PUFS-L-Assisted (s)

1-node 78 76.76 50.75 22.86

2-nodes 22 527.1 111.98 16.93

3-nodes 10 684.66 30.38 42.96

all nodes 110 1288.52 193.11 82.75

Table 5.5: Total runtime of same benchmarks for the PUFS-L frameworks: list manipulation benchmarks

of distinct operations. However, with 2 node and 3 node benchmarks the precision worsens. The

performance in the precision metric improves when the synthesizer has less possible attempts when we

consider an ambiguous specification, because the more different attempts a synthesizer can attempt,

the more likely it will find multiple programs that satisfy said specification. Thus, the results for the PUFS-

L framework, reaching 0.7143 for 3 node benchmarks, in contrast to the PUFS-L-Assisted framework,

which has the highest precision values with 0.9583 for the 3 node benchmarks, are expected.

The recall metric of the frameworks remains at 1 for 1 node and 2 node benchmarks, which tells

us that the frameworks were able to iterate through all of the attempts for depth 2. However, in 3 node

benchmarks, PUFS-L is only able to find solutions to 52.63% of the benchmarks. As established before

in section 4.2.1, the PUFS-L framework needs to iterate through a total of 12 sketches in depth 3. On

the other hand, PUFS-L-Ordered has only 5 possible sketches and was able to have a recall of 84.21%.

Since this was the only change between frameworks, we can observe the impact on the performance

when there are more sketches to enumerate through. The PUFS-L-Assisted framework remained with

a recall of 1 for the 3 node benchmarks, which is attributed to the reduced search space due to the

assistance of the user, and the lack of need of an extra node to find the operation to use with operations

such as ListMap or ListFilter.

In Table 5.5 we are able to observe the total runtime taken by each framework on the same bench-

marks where the solution was correct. As expected and shown throughout the analysis, the PUFS-L

framework has significantly worse results throughout the different complexities of the benchmarks, hav-

ing a total of 1288.52 seconds on all of the same benchmarks. Between the PUFS-L-Ordered frame-

51

(a) Examples of 1 node (b) Examples of 2 nodes

(c) Examples of 3 nodes (d) Examples of 1, 2 and 3 nodes

Figure 5.8: PUFS-L framework versions: assignment and conditional benchmarks

work and the PUFS-L-Assisted, the results are also as expected, with the PUFS-L-Ordered framework

improving significantly compared to the PUFS-L framework ending with 193.11 seconds on all of the

same benchmarks, and the PUFS-L-Assisted framework ending with 82.75 seconds.

Similarly to the analysis of the PUFS+ framework, upon a closer look at the examples for each

benchmark, the majority of cases where the solution found by the synthesizer was not the intended one

correspond to edge cases or, in the case of list manipulation, the confusion between the operations

ListAppend and ListInsert. The former corresponds to the cases where the examples satisfy both the

operation < and <= or > and >=, which can be resolved by making sure these edge cases are in

the examples of the specification. The latter corresponds to the edge case of the operation ListInsert,

which, when provided with an index that is higher than its size, it functions as a ListAppend by inserting

the element at the end of the list. Thus, for a benchmark where the solution is ListAppend, when the

element to be inserted is much higher than the size of the list, a correct solution for the synthesizer is

ListInsert with the index as the element to be inserted. However, this solution becomes incorrect when

the size of the list surpasses the index in the operation ListInsert.

Assignment and conditional benchmarks

The results for the assignment and conditional benchmarks can be observed in Figure 5.8, Table 5.6

and Table 5.7. The frameworks evaluated are the PUFS+#SG framework, the PUFS-L framework and

the PUFS-L-Ordered framework. The PUFS+#SG framework is used to observe the impact on the

52

PUFS+#SG PUFS-L PUFS-L-Ordered

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

1-node 0.2781 1 1 0.3413 1 1 0.2965 1 1

2-nodes 1.0444 0.8205 1 2.0164 0.7949 1 1.3618 0.7692 1

3-nodes 49.1863 0.8519 0.7419 52.2551 0.7407 0.7143 44.6897 0.8966 0.8387

all nodes 15.4507 0.8652 0.9059 16.8245 0.8202 0.9012 14.9003 0.8539 0.9268

Table 5.6: Evaluation metrics for the PUFS-L framework versions: assignment and conditional bench-
marks

Benchmarks PUFS+#SG (s) PUFS-L (s) PUFS-L-Ordered (s)

1-node 23 6.35 7.85 6.82

2-nodes 28 32.5 59.23 41.42

3-nodes 19 1038.09 1225.48 1038.09

all nodes 63 1338.15 1677.18 888.64

Table 5.7: Total runtime of same benchmarks for the PUFS-L frameworks: assignment and conditional
benchmarks

PUFS-L frameworks when running assignment and conditional benchmarks. The framework PUFS-L-

Assisted is not evaluated with these benchmarks, because the user assistance feature is never used with

operations that are not list manipulations. Thus, the PUFS-L-Ordered and PUFS-L-Assisted framework

are equivalent for the assignment and conditional benchmarks. Note that, for these benchmarks, the

pruned framework PUFS-L-Ordered framework is able to only enumerate through sketches with nodes

of type Assign and If. Hence, the number of enumerated nodes, after the filtering, becomes the same

for the PUFS and PUFS-L-Ordered frameworks.

As we can observe in Figure 5.8a and Table 5.6, with 1 node and 2 node benchmarks, the PUFS+#SG

framework is able to have an average runtime of 0.2781 seconds and 1.0444 seconds, respectively, out-

performing the other two frameworks. Between the list manipulation frameworks, PUFS-L framework

proved to have slightly worse results with 0.3413 seconds for 1 node benchmarks and 2.0164 seconds

for 2 node benchmarks, in contrast to 0.2965 seconds and 1.3618 seconds it took the PUFS-L-Ordered

framework. This can be attributed to the unnecessary enumeration of sketches the PUFS-L framework

performs, such as sketches with the node type ExecuteAction, which do not make sense when the input

nor the output have elements of type List. For 1 node benchmarks, both the precision and recall metrics

stayed at the value 1 for every framework as expected due to the simplicity of the benchmarks. However,

for 2 node benchmarks, the precision of the frameworks dropped. The reasoning for the lower precision

is the same as the one discussed for the PUFS frameworks: edge case scenarios where the specifica-

tion does not differenciate between operations such as trim and trimStart or between operations such

53

PUFS-L PUFS-L-Ordered PUFS-L-Assisted

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

2-nodes 2.104 0.9 1 2.46 0.95 1 1.531 0.95 1

3-nodes 76.5064 1 0.6875 46.4227 0.8636 0.6552 18.8422 0.9658 1

Table 5.8: Evaluation metrics for the PUFS-L framework versions: assignment, conditional and list ma-
nipulation benchmarks

as > and >=.

For 3 node benchmarks, the PUFS-L framework continues to show the worst results in every metric.

However, the PUFS-L-Ordered framework catches up to the PUFS+#SG framework, ending with a better

runtime average of 44.6897 seconds in contrast to the 49.1863 seconds. The precision and recall also

improve compared to the PUFS+#SG framework. With 3 node benchmarks is when we start to see

every framework having difficulties in solving some benchmarks. The best precision is by far the PUFS-

L-Ordered framework with 89.66% and the recall was also better than the PUFS+#SG framework with

92.68% in contrast to 90.59%.

In Table 5.7 we can observe the difference in the total runtime spent on the same benchmarks for the

PUFS+#SG, PUFS-L and PUFS-L-Ordered framework. The results previously presented and discussed

are consolidated by these values since the PUFS-L framework throughout the complexity of benchmarks

continued to have the worst results ending with a total of 1677.18 seconds for the same benchmarks.

For 1 node and 2 node complexities, the PUFS framework had a better total runtime than the PUFS-

L-Assisted framework. Finally, for the 3 node benchmarks, the PUFS-L-Assisted framework surpassed

the PUFS+#SG framework ending with 888.64 seconds in contrast to the 1338.15 seconds, which is

consistent with the values observed in Figure 5.8a.

All in all, the PUFS-L framework clearly has worse results than the PUFS-L-Ordered framework

and will not be considered. The PUFS+#SG framework was able to correctly solve 77 out of the 97

benchmarks whereas the PUFS-L-Ordered framework was able to correctly solve 76. However, overall,

the PUFS-L-Ordered framework showed slightly better results in the average runtime ending with 14.9

seconds in contrast to the 15.45 seconds for the PUFS+#SG framework. The reasoning for the similar

performance despite one framework having an additional feature is that both frameworks have the exact

same DSL since the PUFS-L-Ordered framework is able to notice that sketches with list manipulation,

for these benchmarks, will never work. Hence, it not only removes the sketches from the enumerations

process, but also the list manipulation operations from the DSL. The only difference between the frame-

works is the order in which the SMT solver provides candidate solutions. We can conclude that the

impact of having the list manipulation feature is minimal and, thus, is worth pursuing.

54

(a) Examples with 2 nodes (b) Examples with 3 nodes

Figure 5.9: PUFS-L framework versions: assignment, conditional and list manipulation benchmarks

Benchmarks PUFS-L (s) PUFS-L-Ordered (s) PUFS-L-Assisted (s)

2-nodes 18 38.88 45.98 27.15

3-nodes 18 566.34 713.05 627.97

Table 5.9: Total runtime of same benchmarks for the PUFS-L frameworks: assignment, conditional and
list manipulation benchmarks

Assignment, conditional and list manipulation benchmarks

The results for the assignment, conditional and list manipulation benchmarks can be observed in Figure

5.9, Table 5.8 and Table 5.9.

As we can observe in Figure 5.9a, for most of the benchmarks the three frameworks have a similar

performance. The difference can only be observed for benchmarks that use the operations CmpLambda

or OpLambda, which is expected since the PUFS-L and PUFS-L-Ordered framework do not have guid-

ance of the user and require an extra node to successfully find the solution. The PUFS-L-Assisted frame-

work, with the assistance of the user, can maintain the average runtime at 1.531 seconds in contrast

to the 2.104 seconds for the PUFS-L framework and 2.46 seconds for the PUFS-L-Ordered framework.

The recall maintained at 1 for all frameworks due to the simplicity of the benchmarks and the precision

was close to 1 for all benchmarks, with the errors being due to edge case scenarios as explained in the

previous benchmarks.

For 3 node benchmarks, as we can observe in Figure 5.9b, we start to see a major difference

between the frameworks. As expected, the PUFS-L framework has the least efficient results due to

the simplicity of the implementation, averaging 76.5064 seconds per benchmark. However, the PUFS-

L-Ordered framework, even though the efficiency had an improvement to 46.4227 seconds due to the

pruning and ordering of sketches, the precision and recall suffered. The cause for the lower preci-

sion values are the edge cases, which are attributed to the ambiguity of the specification. Despite the

slight worse results, the PUFS-L-Ordered framework continues to be considered better than the PUFS-L

framework since the average runtime was reduced to almost half and the lower precision can be solved

with a more cautious specification. The PUFS-L-Assisted framework, similarly to the 2 node bench-

55

(a) Examples with template benchmarks (b) Examples with free-form benchmarks

Figure 5.10: PUFS-SQL framework versions: data aggregation benchmarks

marks, continues to show better results than any other framework, with an average of 18.8422 seconds,

a recall of 1 and a precision of 0.9658. Due to the natural exponential complexity of the problem, 3 node

solutions are already significantly more efficient than 4 node solutions. The PUFS-L-Assisted frame-

work was able to have much better results because both PUFS-L and PUFS-L-Ordered framework need

an extra node for benchmarks that use operations such as ListFilter or ListMap becoming a 4 node

benchmark.

In Table 5.9, we can observe the total runtime spent by each framework on the same benchmarks.

For 2 node benchmarks, the PUFS-L framework spent a total of 38.88 seconds on the same 18 bench-

marks, whereas the PUFS-L-Ordered framework spent 45.98 seconds, which is similar to the average

runtimes observed in Table 5.8 and can be attributed to the added overhead the PUFS-L-Ordered frame-

work has. The PUFS-L-Assisted framework spent the least amount of runtime with a total of 27.15

seconds. For 3 node benchmarks, the results differ from the previous conclusions with the PUFS-L

framework being the most efficient, followed by the PUFS-L-Assisted framework and, finally, the PUFS-

L-Ordered framework. This occurs in these benchmarks, because all of the more complex benchmarks

that make use of the operations ListMap or ListFilter where the PUFS-L-Assisted framework excels at

are not included in these benchmarks since a solution was not found by at least one of the remaining

frameworks.

All in all, the PUFS-L-Assisted framework is the clear best framework out of all versions by allowing

the user to guide the synthesizer and will be the one used to build upon with new features. Note that

the PUFS-L-Assited framework works whether the user provides assistance or not, in which case the

results should be similar to the ones seen in PUFS-L-Ordered framework.

The addition of the list manipulation capability, creating the PUFS-L framework, does not seem to

have a negative effect on the assignment and conditional benchmarks due to the pruning and ordering of

sketches. Hence, since the new framework is able to solve the same problems with as much if not higher

efficiency than the PUFS+ framework and has an extra feature, it becomes the best of both frameworks.

56

PUFS-SQL#FreeForm PUFS-SQL#Templates PUFS-SQL-Ordered#FreeForm PUFS-SQL-Ordered#Templates

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

Templates 15.91 1 0.5938 5.3072 1 1 11.2237 1 0.5938 5.2422 1 1

Free-form 89.46 1 1 – – – 38.16 1 1 – – –

Table 5.10: Evaluation metrics for the PUFS-SQL framework versions: data aggregation benchmarks

Benchmarks PUFS-SQL#FreeForm (s) PUFS-SQL#Templates (s) PUFS-SQL-Ordered#FreeForm (s) PUFS-SQL-Ordered#Templates (s)

Templates 19 302.27 26.77 206.33 26.77

Free-form 14 1252.37 – 534.22 –

Table 5.11: Total runtime of same benchmarks for the PUFS-SQL frameworks: data aggregation bench-
marks

5.3.3 PUFS-SQL framework

In this section we will analyse the different versions of the PUFS-SQL framework described in section

4.3. The first version is PUFS-SQL#FreeForm, where the implementation is the addition of a new node

DataSet and the integration with the CUBES framework with the corresponding operations to the DSL

(seen in Tables A.6). The second version is the PUFS-SQL#Templates framework, which makes use of a

set of most used templates from the OutSystems platform to simplify the synthesizing of the benchmarks.

Finally, we have the PUFS-SQL-Ordered#FreeForm and PUFS-SQL-Ordered#Template frameworks,

which add a more intelligent way of enumerating through the sketches and use the respective encoding

of free-form or templates.

The four versions will be tested with data aggregation benchmarks in section 5.3.3, assignment and

conditional benchmarks in section 5.3.3 and assignment, conditional and data aggregation benchmarks

in section 5.3.3. With the first set of benchmarks we will have an idea of how the framework behaves

with benchmarks that require only data aggregation nodes. The second set of benchmarks will allows

us to observe the impact on the framework when we added the new feature, because we will compare

the results in the PUFS-SQL framework in contrast to the PUFS framework. Finally, the last set of

benchmarks will give us an idea of how the synthesizer behaves with more complex benchmarks.

Data aggregation benchmarks

The results for the data aggregation benchmarks can be observed in Figure 5.10, Table 5.10 and Table

5.11. The benchmarks are divided into 2 different categories: template benchmarks, which have a

solution using the templates described in section 4.3.1; and freeform benchmarks, which do not have a

solution using templates, but only with free-form SQL queries.

For the template benchmarks we can immediately see a clear difference between running the frame-

work with the template configuration versus the free-form configuration. The PUFS-SQL#Templates

framework, as shown in Table 5.10, averages 5.3072 seconds in solving 32 instances in contrast to the

15.91 seconds it takes for the PUFS-SQL#FreeForm to find a solution for only 19 benchmarks. The later

framework is unable to find solutions to more complex queries or bigger tables, ending with a recall of

57

only 59.38%. Thus, the difference in the average time is even more impactful, knowing that the PUFS-

SQL#Templates framework was able to find solutions to all benchmarks. The results are expected since

the templates of the PUFS-SQL#Templates framework take a complex function and find a solution in a

single node, whereas the PUFS-SQL#FreeForm framework simply uses the operations of the CUBES

framework and can require from 1 node to 3 nodes to find the same solution. Furthermore, in Table 5.11

we can see the total runtime spent by each framework on the same benchmarks and, in 19 benchmarks,

the PUFS-SQL#Templates framework took a total of 26.77 seconds to find the solutions in contrast to

the 302.27 seconds spent by the PUFS-SQL#FreeForm framework. The precision for both frameworks

remains at 1, which means there was no ambiguous solutions for the selected benchmarks.

We can observe the impact of the filtering and ordering of sketches by first comparing the results of

the PUFS-SQL#Templates framework with the PUFS-SQL-Ordered#Templates framework and then the

results of the PUFS-SQL#FreeForm framework with the PUFS-SQL-Ordered#FreeForm framework. For

the first comparison, the difference between frameworks is not visible in Figure 5.10a. The change is not

significant, which is expected since all of the benchmarks have a solution of a single node. The pruning

and ordering of sketches should only show with benchmarks that require more than a single node to find

a solution. With the free-form configuration, the difference is already visible which goes hand in hand

with the solution requiring more than a single node to reach a solution. The average runtime with the

pruning and ordering changed from 15.91 seconds to 11.2237 seconds, as shown in Table 5.10. The

total runtime spent by each framework, as shown in Table 5.11, also demonstrate the difference with

the PUFS-SQL#Freeform framework having a total of 302.27 seconds in contrast to the 206.33 of the

PUFS-SQL-Ordered#Freeform framework.

For the free-form benchmarks, the only frameworks ran were the PUFS-SQL#FreeForm and PUFS-

SQL-Ordered#FreeForm, because the template frameworks could never find a solution since these

benchmarks specifically target the areas that templates can not be used. As observed in Figure 5.10b,

the PUFS-SQL-Ordered#FreeForm framework performs better than the PUFS-SQL#FreeForm frame-

work in their runtime averaging 38.16 seconds in contrast to the 89.46 seconds. In the total time spent

on the same frameworks, which can be seen in 5.11, the same difference can be observed with the

PUFS-SQL-Ordered#FreeForm spending a total of 534.22 seconds in 14 benchmarks in contrast to the

1252.37 seconds spent by the PUFS-SQL#FreeForm framework. The precision maintained at 1 for both

frameworks, which means there was no ambiguity in the selected benchmarks. The recall also main-

tained at 1, because free-form benchmarks with more than 2 node operations start to be too complex

for the frameworks to provide solutions within the pre-determined time limit and, therefore, could not be

evaluated.

All in all, the best performing frameworks follow the template method and, with the pruning and

ordering of sketches, can further improve its performance. Due to the drastic difference in performance

and the representation of majority of benchmarks, the PUFS-SQL-Ordered#Templates framework will

be the version used in the remaining evaluations. However, the configuration to allow free-form queries

will always be present in the framework in case the templates are not enough to find a solution.

58

(a) Examples of 1 node (b) Examples of 2 nodes

(c) Examples of 3 nodes (d) Examples of 1, 2 and 3 nodes

Figure 5.11: PUFS-SQL framework versions: assignment and conditional benchmarks

Assignment and conditional benchmarks

The results for the assign and conditional benchmarks can be observed in Figure 5.11, Table 5.12 and

Table 5.13. The benchmarks were ran with the PUFS+, PUFS-SQL and PUFS-SQL-Ordered frame-

work, using the templates framework since the performance compared to the free-form framework is

significantly better in the metrics evaluated. Note that, for these benchmarks, the pruned framework

PUFS-SQL-Ordered framework is able to only enumerate through sketches with nodes of type Assign

and If. Hence, the number of enumerated nodes, after the filtering, becomes the same for the PUFS+

and PUFS-SQL-Ordered frameworks.

As observed in Figure 5.11, the results for all three frameworks are very similar throughout the

different complexities, with the 3 node benchmarks distinguishing more clearly the differences between

the frameworks in terms of performance. In Table 5.12, we see that the average time spent on the

benchmarks by the PUFS+ framework in 1 node and 2 node benchmarks averaged 0.2781 seconds and

1.0444 seconds, respectively, whereas the PUFS-SQL-Ordered framework had similar but slightly better

results averaging 0.277 seconds and 1.22 seconds, respectively. The PUFS-SQL framework averaged

0.2983 seconds and 1.3551 seconds, respectively, which is slightly worse than the other frameworks.

The results are consolidated by the values in Table 5.13, where the total time spent by each framework

on the same benchmarks is presented. The PUFS-SQL framework and PUFS-SQL-Ordered framework

have the worst results in 1 node and 2 node benchmarks, whereas the PUFS+ framework has the best

performance. We can also observe that the difference between the PUFS-SQL and PUFS-SQL-Ordered

59

PUFS+#SG PUFS-SQL PUFS-SQL-Ordered

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

1-node 0.2781 1 1 0.2983 1 1 0.2770 1 1

2-nodes 1.0444 0.8205 1 1.3551 0.8205 1 1.22 0.8205 1

3-nodes 49.1863 0.8519 0.7419 82.0929 0.7778 0.7241 51.3926 0.8519 0.7419

all nodes 15.4507 0.8652 0.9059 25.5163 0.8539 0.9048 16.1735 0.8736 0.9048

Table 5.12: Evaluation metrics for the PUFS-SQL frameworks: assignment and conditional benchmarks

Benchmarks PUFS+#SG (s) PUFS-SQL (s) PUFS-SQL-Ordered (s)

1-node 23 6.35 6.86 6.37

2-nodes 28 33.61 41.55 35.72

3-nodes 18 966.15 1880.36 1147.41

all nodes 69 1006.11 1928.77 1189.5

Table 5.13: Total runtime of same benchmarks for the PUFS-SQL frameworks: assignment and condi-
tional benchmarks

is more significant than the difference between the PUFS-SQL-Ordered and PUFS+ frameworks.

For 1 node and 2 node benchmarks the precision and recall of the three frameworks is exaclty the

same. The precision remained at 100% for 1 node benchmarks, which is expected since more simple

benchmarks do not have as much ambiguity. However, for 2 node benchmarks, the precision of all

three frameworks lowered to 82.05%. As explained in the previous analysis of assign and conditional

benchmarks, the lower precision is attributed to edge cases where the specification does not properly

differ edge cases to determine if, for example, the solution should be greater than or greater or equal

than.

With 3 node benchmarks, despite the Figure 5.11c showing that the PUFS+ framework seems slightly

worse, the average runtime continued to be lower than the PUFS-SQL-Ordered framework, ending with

49.1863 seconds in contrast to 51.3926 seconds. The difference between the PUFS-SQL and PUFS-

SQL-Ordered frameworks becomes more clear, with the PUFS-SQL averaging 82.0929 seconds to find

a solution. The difference between the frameworks is expected, since the more complex a benchmark

is the more significant the pruning and ordering of sketches should be. The precision and recall of

the PUFS-SQL framework lowered to around 77% and 72%, respectively. The PUFS+ and PUFS-

SQL-Ordered frameworks were able to maintain a high percentage of precision of 85.19%. The recall,

however, took a toll lowering from 100% to 74.19%. In Table 5.13, we consolidate the analysis by

observing the total time spent by each framework on the same benchmarks. The PUFS-SQL framework

spent 1880.36 seconds on 18 benchmarks, whereas the PUFS-SQL-Ordered framework spent 1147.41

seconds and the PUFS+ framework 966.15 seconds.

60

Figure 5.12: PUFS-SQL framework versions: assignment, conditional and data aggregation bench-
marks

PUFS-SQL PUFS-SQL-Ordered

Time (s) Precision Recall Time (s) Precision Recall

3-nodes 69.065 1 1 38.07 1 1

Table 5.14: Evaluation metrics for the PUFS-SQL frameworks: assignment, conditional and data ag-
gregation benchmarks

All in all, the addition of the data aggregation feature slightly affects the performance of assign and

conditional benchmarks when using the most advanced framework PUFS-SQL-Ordered. However, con-

sidering the addition of the new feature, the slight impact seems like a worth while trade-off.

Assignment, conditional and data aggregation benchmarks

The results for the assign, conditional and data aggregation benchmarks can be observed in Figure 5.12,

Table 5.14 and Table 5.15. The benchmarks were ran with the PUFS-SQL and PUFS-SQL-Ordered

framework, using the templates framework since the performance compared to the free-form framework

is significantly better in the metrics evaluated for only data aggregation benchmarks. As explained in

detail in section 5.1.5, the benchmarks consist in only queries and if conditions, which implies that the

number of minimum nodes needed is 3.

As we can observe in Figure 5.12, the PUFS-SQL-Ordered framework is more efficient than the

PUFS-SQL framework, which is expected due to the filtering and ordering of the sketches. The average

runtime for the PUFS-SQL framework is 69.065 seconds in contrast to the 38.07 seconds in average

for the PUFS-SQL-Ordered framework. The same can be observed in Table 5.15, where the PUFS-

Benchmarks PUFS-SQL (s) PUFS-SQL-Ordered (s)

3-nodes 10 690.65 380.7

Table 5.15: Total runtime of same benchmarks for the PUFS-SQL frameworks: assignment, conditional
and data aggregation benchmarks

61

(a) Examples of 1 node (b) Examples of 2 nodes

(c) Examples of 3 nodes (d) Examples of 1, 2 and 3 nodes

Figure 5.13: PUFS-X framework versions: assignment and conditional benchmarks

SQL framework spends a total of 690.65 seconds on the same benchmarks as the PUFS-SQL-Ordered

framework, which spent a total of 380.7 seconds.

The precision and recall is the same for both frameworks, being both 100%, which shows us that

there was no ambiguity in the specification.

All in all, the PUFS-SQL framework’s best configurations are with the template method and with the

pruning and ordering of sketches. With these configurations, the framework is able to solve problems

with SQL queries and the same types of problems the PUFS+ framework can with a small impact on the

performance. Hence, considering the addition of the new feature and that the difference in performance

compared with the PUFS+ framework is small, the framework is worth pursuing.

5.3.4 PUFS-X framework

In this section we will analyse the different versions of the PUFS-X framework described in section

4.4. The first version is the PUFS-X framework, which simply joins the PUFS, PUFS-L and PUFS-SQL

framework into a single one. The second version is the PUFS-X-Ordered framework, which add a more

intelligent way of enumerating through the sketches.

The two versions will be tested with every benchmark set used so far in order to observe the impact

when using a framework that has all of the capabilities proposed. Then, benchmarks with list manip-

ulation and data aggregation capabilities and benchmarks with all three capabilities are run in order to

observe the performance when using more complex benchmarks.

62

PUFS+#SG PUFS-L-Ordered PUFS-SQL-Ordered

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

1-node 0.2781 1 1 0.2965 1 1 0.277 1 1

2-nodes 1.0444 0.8205 1 1.3618 0.7692 1 1.22 0.8205 1

3-nodes 49.1863 0.8519 0.7419 44.6897 0.8966 0.8387 51.3926 0.8519 0.7419

all nodes 15.4507 0.8652 0.9059 14.9003 0.8539 0.9268 16.1735 0.8736 0.9048

Table 5.16: Evaluation metrics for the PUFS, PUFS-L and PUFS-SQL framework versions: assignment
and conditional benchmarks

PUFS-X PUFS-X-Ordered

Time (s) Precision Recall Time (s) Precision Recall

1-node 0.3165 1 1 0.3135 1 1

2-nodes 1.8415 0.8462 1 1.2590 0.8462 1

3-nodes 68.9221 0.8214 0.7667 58.2321 0.8571 0.7742

all nodes 22.3213 0.8778 0.9186 18.7423 0.8889 0.9195

Table 5.17: Evaluation metrics for the PUFS-X frameworks: assignment and conditional benchmarks

Assignment and conditional benchmarks

The results for the assign and conditional benchmarks can be observed in Figure 5.13, Table 5.16, Table

5.17 and Table 5.18. The results presented are from the frameworks PUFS+#SG, PUFS-L-Ordered and

PUFS-SQL-Ordered#Templates, which have already been presented and analysed, but will be reused

here to facilitate the comparison between frameworks. Then, we have the new results obtained by the

PUFS-X and PUFS-X-Ordered frameworks. Note that, for assignment and conditional benchmarks, the

frameworks that are pruned and ordered are able to only enumerate through sketches with nodes of

type Assign and If. Hence, the number of enumerated nodes, after the filtering, becomes the same for

every pruned framework.

For 1 node and 2 node benchmarks, the difference between the performance of the frameworks is

Benchmarks PUFS+#SG (s) PUFS-L-Ordered (s) PUFS-SQL-Ordered (s) PUFS-X (s) PUFS-X-Ordered (s)

1-node 23 6.35 6.82 6.37 7.28 7.21

2-nodes 25 26.25 35.5 32.72 49.03 34.15

3-nodes 16 1006.18 394.48 938.03 1118.31 577.45

all nodes 64 1038.78 436.8 977.12 1174.62 618.81

Table 5.18: Total runtime of same benchmarks for the all frameworks: assignment and conditional
benchmarks

63

not significant with the PUFS+#SG framework having the best runtime average of 0.2781 seconds for 1

node benchmarks and 1.0444 seconds for 2 node benchmarks. The worst performance is the PUFS-X

framework, which is expected since it does not prune or order the sketches. The framework averaged

0.3165 seconds for 1 node benchmarks and 1.8415 seconds for 2 node benchmarks. The precision and

recall is similar for all frameworks for both 1 node and 2 node benchmarks, with the precision lowering

below 1 in 2 node benchmarks. The reasoning for the lower precision maintains the same as explained

in the PUFS frameworks analysis: the cases where the solution found is not the intended one are edge

cases not properly differentiated in the specification.

With 3 node benchmarks the results are not as linear because the best performance in the average

runtime, surpassing the PUFS+#SG framework, is the PUFS-L-Ordered framework, which was already

analysed in section 5.1.3. The PUFS-X framework is the clear worst once again, averaging 68.92

seconds in contrast to the PUFS-L-Ordered framework that averaged 44.6897 seconds. With the pruning

and ordering of sketches that the PUFS-X-Ordered framework provides, the difference in the average

runtime reduces to 58.2321 seconds. It is important to note that the recall of both the PUFS-X and

PUFS-X-Ordered framework are slightly higher than the PUFS+#SG framework, but still lower than the

PUFS-L-Ordered framework.

In Table 5.18 we can observe the total time spent by each framework on the same benchmarks. The

best performance is the PUFS-L-Ordered framework, followed by the PUFS-X-Ordered framework. It is

surprising to not see the PUFS+#SG ahead the PUFS-X-Ordered framework since it does not need to

prune the sketches. Knowing that the DSL and interpreter are identical, the only reason for the difference

in performance is the order in which the candidate solutions are provided by the SMT solver.

All in all, the PUFS-X-Ordered framework shows worse results in comparison to the PUFS+#SG and

PUFS-L-Ordered frameworks in terms of the average runtime. However, the precision and recall, overall,

are slightly higher than the other frameworks, reaching a peak of 88.89% of precision and 91.95% of

recall. With these metrics in mind, with the ability of synthesizing programs with assignment, conditional,

list manipulation and data aggregation, the PUFS-X-Ordered framework loses on efficiency but ultimately

allows much more complex programs and, hence, seems to be worth pursuing.

List manipulation benchmarks

The results for the list manipulation benchmarks can be observed in Figure 5.14, Table 5.19 and Table

5.20. The results presented are from the frameworks PUFS-L-Ordered, which have already been

presented and analysed, but will be reused here to facilitate the comparison between frameworks. Then,

we have the new results obtained by the PUFS-X and PUFS-X-Ordered frameworks. Note that, for list

manipulation benchmarks, the frameworks that are pruned and ordered are able to only enumerate

through sketches with nodes of type Assign, If and ExecuteAction. Hence, the number of enumerated

nodes, after the filtering, becomes the same for the PUFS-L-Ordered and PUFS-X-Ordered frameworks.

As seen in Figure 5.14, for 1 node and 2 node benchmarks, the PUFS-L-Assisted framework per-

forms better than the other frameworks in terms of efficiency. In Table 5.19, we can observe that the

average time for 1 node benchmarks is 0.2931 seconds and, for 2 node benchmarks, is 0.7648 seconds.

64

(a) Examples of 1 node (b) Examples of 2 nodes

(c) Examples of 3 nodes (d) Examples of 1, 2 and 3 nodes

Figure 5.14: PUFS-X framework versions: list manipulation benchmarks

As expected, the PUFS-X framework is the clear worst performing framework due to the lack of pruning

and ordering of sketches, averaging 0.4574 seconds for 1 node benchmarks and 3.005 seconds for 2

node benchmarks. With the pruning and ordering of sketches, the PUFS-X-Ordered framework is able

to reach close to the performance of the PUFS-L-Assisted framework, averaging 0.3194 seconds for 1

node benchmarks and 0.7964 for 2 nodes. The recall maintains at 1 for all benchmarks. However, the

precision lowers with 2 node benchmarks, with the PUFS-L-Assisted framework reaching 96.3%, but the

PUFS-X framework worsening to 88% and the PUFS-X-Ordered framework to 92%.

For 3 node benchmarks, the PUFS-X-Ordered framework is able to surpass the PUFS-L-Assisted

framework, averaging 3.4683 seconds in contrast to the 4.9667 seconds. However, the precision

suffered lowering from 95.83% to 87.5%. If we observe Table 5.20, we can see total time spent by

all frameworks for the instances that were able to reach the correct solution. Here, we can confirm the

previous results of the average times, because for 1 node and 2 node benchmarks, the PUFS-X-Ordered

framework is worse than the PUFS-L-Assisted framework, but in 3 node benchmarks it surpasses it.

All in all, the PUFS-X framework is the clear worst performing synthesizer, averaging 10.7345 seconds

to solve a benchmark and with the lowest overall precision of 95.28%. The PUFS-X-Ordered framework

has a significant increase in its performance, even bettering the PUFS-L-Assisted framework by 0.2

seconds in the total average runtime. In terms of the total precision, the PUFS-X-Assisted framework

continued to best the other frameworks with a total of 98.45%. In Table 5.20, we can observe that, for

the same benchmarks, the PUFS-X-Ordered framework ends up with a more efficient performance than

65

PUFS-L-Assisted PUFS-X PUFS-X-Ordered

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

1-node 0.2931 1 1 0.4574 1 1 0.3194 1 1

2-nodes 0.7648 0.963 1 3.005 0.88 1 0.7964 0.92 1

3-nodes 4.9667 0.9583 1 52.1863 0.875 1 3.4683 0.875 1

all nodes 1.2691 0.9845 1 10.7345 0.9528 1 1.0083 0.9606 1

Table 5.19: Evaluation metrics for the PUFS-X frameworks: list manipulation benchmarks

Benchmarks PUFS-L-Ordered (s) PUFS-X (s) PUFS-X-Ordered (s)

1-node 78 22.86 35.68 24.91

2-nodes 22 16.66 65.3 17.4

3-nodes 21 97.9 907.89 72.28

all nodes 121 137.42 1008.87 114.59

Table 5.20: Total runtime of same benchmarks for the PUFS-X frameworks: list manipulation bench-
marks

the remaining frameworks.

Assignment, conditional and list manipulation benchmarks

The results for the assignment, conditional list manipulation benchmarks can be observed in Figure

5.15, Table 5.21 and Table 5.22. The results presented are from the framework PUFS-L-Ordered, which

has already been presented and analysed, but will be reused here to facilitate the comparison between

frameworks. Then, we have the new results obtained by the PUFS-X and PUFS-X-Ordered frameworks.

Note that, similarly to the list manipulation benchmarks, with these benchmarks, the frameworks that

(a) Examples with 2 nodes (b) Examples with 3 nodes

Figure 5.15: PUFS-X framework versions: assignment, conditional and list manipulation benchmarks

66

PUFS-L-Assisted PUFS-X PUFS-X-Ordered

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

2-nodes 1.5318 0.95 1 1.827 1 1 1.6425 1 1

3-nodes 18.8422 0.9658 1 43.6322 0.9658 1 21.7744 0.9658 1

Table 5.21: Evaluation metrics for the PUFS-X frameworks: assignment, conditional and list manipula-
tion benchmarks

are pruned and ordered are able to only enumerate through sketches with nodes of type Assign, If and

ExecuteAction. Hence, the number of enumerated nodes, after the filtering, becomes the same for the

PUFS-L-Ordered and PUFS-X-Ordered frameworks.

The same pattern can be observed independently of the complexity of the benchmarks. The PUFS-

L-Assisted framework performs better than the remaining frameworks and the PUFS-X framework is the

clear worst. As in the previous benchmarks, there is no surprise in the performance of the frameworks,

since PUFS-X does not prune or order the sketches.

For 2 node benchmarks, the PUFS-L-Assisted averaged 1.5318 seconds in runtime, whereas the

PUFS-X-Ordered framework had slight worse average of 1.6425 seconds. The precision of the PUFS-X

frameworks was slightly better than the PUFS-L-Assisted framework by being able to find the intended

solution to all benchmarks in contrast to the single benchmark the PUFS-L-Assisted was unable to. This

benchmark corresponds to the ambiguity analysed and presented in previous types of benchmarks: the

equivalence of the ListInsert and ListAppend functions if the index of insertion is higher than the size

of the list. The only reason why the PUFS-X frameworks did not fall for this ambiguity is the order of

candidate solutions the SMT solver provides. The recall maintained at 1 for benchmarks, indicating that

there was no difficulty in finding a solution within the pre-determined time limit.

For 3 node benchmarks, we can already see the average time increasing quite significantly, expos-

ing once again the exponential complexity of the problem. The PUFS-L-Assisted framework averaged

18.8422 seconds in the runtime whereas the PUFS-X framework averaged 43.6322 seconds and the

PUFS-X-Ordered framework 21.7744 seconds. Usually the time difference between frameworks that

prune and order sketches and the ones that do not is not double. However, with the PUFS-X frame-

works we see this because it has 4 different types of nodes and, if there is no pruning or ordering, for

a depth d, we have 4d sketches to enumerate through. The precision and recall maintained the same

throughout the benchmarks, with the precision ending with 96.58% and the recall at 100%.

All in all, there is a difference in performance between the PUFS-L-Assisted and PUFS-X-Ordered

framework that is worth noticing. However, the ability to find more complex solutions outweights the slight

loss in performance and, therefore, the PUFS-X framework continues to seem to be worth pursuing.

67

Benchmarks PUFS-L-Assisted (s) PUFS-X (s) PUFS-X-Ordered (s)

2-nodes 19 28.25 34.73 30.31

3-nodes 21 97.9 907.89 72.28

Table 5.22: Total runtime of same benchmarks for the PUFS-X frameworks: assignment, conditional and
list manipulation benchmarks

(a) Examples with template benchmarks (b) Examples with free-form benchmarks

Figure 5.16: PUFS-X framework versions: data aggregation benchmarks

Data Aggregation benchmarks

The results for the data aggregation benchmarks can be observed in Figure 5.16, Table 5.23 and Table

5.24. The results presented are from the framework PUFS-SQL-Ordered, which has already been

presented and analysed, but will be reused here to facilitate the comparison between frameworks. Then,

we have the new results obtained by the PUFS-X and PUFS-X-Ordered frameworks. For the analysis

of the template benchmarks, the PUFS-SQL-Ordered framework is ran with the template configura-

tion, which has proven to produce significantly better results than the free-form method. However, for

the analysis of the free-form benchmarks, the PUFS-SQL-Ordered framework is ran with the free-form

method since these benchmarks represent the percentage of solutions that can never be reached with

only templates and, therefore, require a free-form SQL query synthesis.

Note that, with these benchmarks, the PUFS-X-Ordered framework that is pruned and ordered is not

able to reduce the types of nodes accepted, because, from an SQL query, every other type of node may

be used. The main difference is the guidance, removing sketches that could never work, such as having

a node of type Assign after a node of type DataSet.

For the template benchmarks, as seen in Figure 5.16a, the PUFS-X-Ordered framework was able

to have a better performance than the PUFS-SQL-Ordered framework reaching an average of 3.4025

seconds in contrast to the 5.2422 seconds as detailed in Table 5.23. As we can observe, similarly to

every other analysed benchmark, the PUFS-X framework is the clear worst framework averaging 6.7778

seconds. This framework showing worse results is expected due to the lack of pruning and ordering of

sketches. The PUFS-X-Ordered framework produced better results than the PUFS-SQL-Ordered frame-

work, which could be surprising but we must remember that the template benchmarks have a solution

68

PUFS-SQL-Assisted PUFS-X PUFS-X-Ordered

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

Templates 5.2422 1 1 6.7778 1 1 3.4025 1 1

Free-form 38.16 1 1 129.8658 0.8571 1 97.2192 0.8571 1

Table 5.23: Evaluation metrics for the PUFS-X frameworks: data aggregation benchmarks

Benchmarks PUFS-SQL-Ordered (s) PUFS-X (s) PUFS-X-Ordered (s)

Templates 32 167.75 216.89 108.88

Free-form 12 125.3 1558.75 1166.63

Table 5.24: Total runtime of same benchmarks for the PUFS-X frameworks: data aggregation bench-
marks

of a single node, which means that the PUFS-X-Ordered and PUFS-SQL-Ordered frameworks will both

attempt first the sketch with the single node DataSet. Thus, the difference between the frameworks is

minimal. The main difference is the order in which the SMT solver provides solutions, which, for the case

of the PUFS-X-Ordered framework made it so the average runtime became lower than the PUFS-SQL-

Ordered framework. In Table 5.24, the total time spent by each framework on the same benchmarks is

presented, which consolidates the analysis made. The recall and precision maintained at 1 for every

framework, which is expected since the template method performs queries using a single node. Ambi-

guity and difficulty in finding solutions should only occur in more complex sketches, i.e., sketches with a

larger number of nodes.

For the free-form benchmarks, the PUFS-SQL-Ordered, as seen in Figure 5.16b, showed the best

performance by far. This is expected since when we use the free-form method the sketches may need

between 1 node to 3 nodes to find a solution and, as mentioned previously, for benchmarks with data

aggregation, the PUFS-X-Ordered framework is forced to enumerate sketches with every type of node.

Hence, for 3 node benchmarks for instance, the PUFS-X-Ordered framework has 6 possible sketches

whereas the PUFS-SQL-Ordered framework has only 2 sketches to enumerate through. As a con-

sequence the average runtime of the PUFS-X and PUFS-X-Ordered frameworks is significantly higher

than the PUFS-SQL-Assited framework, reaching 129.86 seconds and 97.2192 seconds, respectively,

in contrast to the 38.16 seconds for the PUFS-SQL-Assited framework. In Table 5.24, we see the total

time spent on the same benchmarks, which further demonstrates the difference in performance, with the

PUFS-SQL-Ordered framework spending 125.3 seconds in 12 benchmarks in contrast to the 1558.75

seconds spent by the PUFS-X framework and the 1166.63 seconds by the PUFS-X-Ordered framework.

We must also note the clear difference between the PUFS-X and PUFS-X-Ordered framework, which

demonstrate the improvement of having pruned and ordered the sketches.

All in all, with template benchmarks, the difference between the pruned frameworks is not significant.

However, with the free-form benchmarks, we start to see the PUFS-X-Ordered framework spending ten

69

Figure 5.17: PUFS-SQL framework versions: assignment, conditional and data aggregation bench-
marks

PUFS-SQL-Ordered PUFS-X PUFS-X-Ordered

Time (s) Precision Recall Time (s) Precision Recall Time (s) Precision Recall

3-nodes 38.07 1 1 168.9688 1 0.8 130.76 1 0.9

Table 5.25: Evaluation metrics for the PUFS-X frameworks: assignment, conditional and data aggrega-
tion benchmarks

times more on the same benchmarks. Recalling that templates should represent a significant percentage

of all possible queries, the PUFS-X-Ordered framework continues to be a framework worth pursuing.

Assignment, conditional and data aggregation benchmarks

The results for the assignment, conditional and data aggregation benchmarks can be observed in Figure

5.17, Table 5.25 and Table 5.26. The results presented are from the framework PUFS-SQL-Ordered,

which has already been presented and analysed, but will be reused here to facilitate the comparison

between frameworks. Then, we have the new results obtained by the PUFS-X and PUFS-X-Ordered

frameworks.

Note that, similarly to the data aggregation benchmarks, with these benchmarks, the PUFS-X-

Ordered framework that is pruned and ordered is not able to reduce the types of nodes accepted,

because, from an SQL query, every other type of node may be used. The main difference is the guid-

ance, removing sketches that could never work, such as having a node of type Assign after a node of

type DataSet.

The performance of the frameworks is as expected. The PUFS-X framework is the clear worst, as

Benchmarks PUFS-SQL-Ordered (s) PUFS-X (s) PUFS-X-Ordered (s)

3-nodes 8 359.38 1351.75 821.41

Table 5.26: Total runtime of same benchmarks for the PUFS-X frameworks: assignment, conditional and
data aggregation benchmarks

70

(a) Examples with 2-node benchmarks (b) Examples with 3-node benchmarks

Figure 5.18: PUFS-X framework versions: list manipulation and data aggregation benchmarks

PUFS-X PUFS-X-Ordered

Time (s) Precision Recall Time (s) Precision Recall

2-nodes 11.6435 1 1 2.8265 1 1

3-nodes 61.18 1 1 8.7578 1 1

Table 5.27: Evaluation metrics for the PUFS-X frameworks: list manipulation and data aggregation
benchmarks

seen in Figure 5.17, averaging 168.9688 seconds and ending with a recall of 80% not being able to

find 2 out of the 10 benchmarks. With the pruning and ordering of sketches, unlike the list manipulation

benchmarks, the PUFS-X-Ordered framework despite having better results than the PUFS-X framework,

is unable to come close to the performance of the PUFS-SQL-Ordered framework averaging a runtime

of 130.76 seconds in contrast to 38.07 seconds. The reason for the big difference in performance is that

the ordering and pruning of the sketches when it comes to benchmarks that involve data aggregation

benchmarks, can not remove as many sketches from the enumeration process. The recall of the PUFS-

X-Ordered framework is of 90% since it was able to find one more solution than the PUFS-X framework.

In Table 5.26, we can observe the total time spent by each framework on the same benchmarks. The

PUFS-SQL-Ordered framework spends 359.38 seconds in 8 benchmarks, the PUFS-X framework is the

clear worst with 1351.75 seconds and, the PUFS-X-Ordered framework takes 821.41 seconds.

All in all, the PUFS-X-Ordered framework is clearly better than the PUFS-X framework. However, its

performance takes a toll for having all features. Considering the increase in the types of programs the

PUFS-X-Ordered can solve and that only the data aggregation benchmarks show a significant difference

in performance, the framework continues to seem to be worth pursuing.

List manipulation and data aggregation benchmarks

The results for the list manipulation and data aggregation benchmarks can be observed in Figure 5.18,

Table 5.27 and Table 5.28. The results presented are from the PUFS-X framework versions.

The same pattern can be observe for 2 node and 3 node benchmarks. The PUFS-X framework has a

71

Benchmarks PUFS-X (s) PUFS-X-Ordered (s)

2-nodes 17 197.94 48.05

3-nodes 18 1101.24 157.64

Table 5.28: Total runtime of same benchmarks for the PUFS-X frameworks: list manipulation and data
aggregation benchmarks

(a) Examples with 2-node benchmarks (b) Examples with 3-node benchmarks

Figure 5.19: PUFS-X framework versions: assignment, conditional, list manipulation and data aggregation bench-
marks

significantly worse performance than the PUFS-X-Ordered framework, specially in 3 node benchmarks,

where the PUFS-X framework averaged 61.18 seconds in contrast to the 8.7578 seconds for the PUFS-

X-Ordered framework2. For 2 node benchmarks, the average runtime for the PUFS-X framework was

11.6435 seconds in contrast to the 2.8265 seconds for the PUFS-X-Ordered framework. The difference

between the pruned and ordered framework and the simple implementation is more drastic with the

PUFS-X framework compared to the other frameworks, which is expected due to the exponential nature

of the problem and because the framework has 4 different types of nodes. The precision and recall

remained at 1 for both frameworks.

All in all, the difference in the results of the frameworks is as expected. We can also observe the

expected time the framework requires to solve benchmarks up to 3 node sketches.

Assignment, conditional, list manipulation and data aggregation benchmarks

The results for the benchmarks that encompass all the features can be observed in Figure 5.19, Table

5.29 and Table 5.30. The results presented are from the PUFS-X framework versions.

For 3 node benchmarks, as seen in Table 5.29, the PUFS-X framework averaged 110.553 seconds in

solving the 17 benchmarks, whereas the PUFS-X-Ordered framework averaged 13.161 seconds. They

both were able to reach all correct solutions to every benchmark resulting in a precision and recall of 1.

In Table 5.30, the difference in performance can be consolidated, with the PUFS-X framework spending

almost 9 times more time on the same 10 benchmarks spending a total of 1105.53 seconds in contrast

to the 131.61 seconds the PUFS-X-Ordered framework needed.

For 4 node benchmarks, the contrast between frameworks increases, which is expected to see in

72

PUFS-X PUFS-X-Ordered

Time (s) Precision Recall Time (s) Precision Recall

3-nodes 110.553 1 1 13.161 1 1

4-nodes 352.639 0.9091 0.7692 38.2071 1 1

Table 5.29: Evaluation metrics for the PUFS-X frameworks: assignment, conditional, list manipulation
and data aggregation benchmarks

Benchmarks PUFS-X (s) PUFS-X-Ordered (s)

3-nodes 10 1105.53 131.61

4-nodes 10 3535.63 413.08

Table 5.30: Total runtime of same benchmarks for the PUFS-X frameworks: assignment, conditional, list
manipulation and data aggregation benchmarks

more complex benchmarks. The PUFS-X framework averaged 352.639 seconds in runtime, was not

able to correctly find one solution out of the 14 benchmarks and also not able to find any solution for 3

out of the 14 benchmarks, ending with a precision of 90.91% and a recall of 76.92%. On the other hand,

the PUFS-X-ORdered framework averaged 38.2071 seconds and was able to find the correct solution

to all benchmarks, ending with a recall and precision of 100%. In Table 5.30, the total time spent on the

same benchmarks shows us once again how the PUFS-X framework spent almost 9 times more time

than the PUFS-X-Ordered framework on the same benchmarks, spending 3535.63 seconds in contrast

to the 413.08 seconds.

All in all, similarly to the list manipulation and data aggregation benchmarks, the difference in the

results of the frameworks is as expected. The results of these benchmarks allows us to observe the

expected time the framework requires to solve benchmarks that make use of all features up to 4 node

sketches.

73

Chapter 6

Conclusions and Future Work

OutSystems is a software automation platform that allows users to create their applications through

graphical interfaces instead of traditional text-based programming. However, in the OutSystems plat-

form, business logic is implemented through action flows, a graph that illustrates the intended logic,

which requires the user to think like a traditional developer when implementing such flows leaving one

desiring to automate it.

In this thesis, we proposed a solution through a new pure function synthesizer PUFS+, which sup-

ports assignments and conditionals and is based on PUFS. We also proposed PUFS-L and PUFS-SQL,

which integrates in PUFS+ the synthesis of list manipulation and data aggregation operators, respect-

ively. Finally, a final version PUFS-X is able to synthesize programs with all mentioned capabilities.

We performed an extensive evaluation of the frameworks, comparing the results between the differ-

ent variants and using the metrics average runtime, precision and recall. We used a total of the 391

benchmarks ranging in complexity and completeness. We show that PUFS+ improved significantly by

being able to solve 90.59% of the benchmarks with a precision of 86.52%, while PUFS was only able

to solve 40% with a precision of 81.81%. We also show that, for the frameworks PUFS-L, PUFS-SQL

and PUFS-X, the variants which prune and order the sketches significantly improve their performance in

all metrics. For instance, for benchmarks ranging all features, when PUFS-X is not pruned nor ordered

averages 352.64 seconds in contrast to 38.21 seconds. We also concluded there was a minimal impact

on the benchmarks for PUFS-L and PUFS-SQL when adding their respective new features due to the

pruning of sketches. However, the PUFS-X framework suffers in performance with benchmarks involving

data aggregation queries since there are not as many sketches that can be pruned.

6.1 Future Work

One of the most interesting and enthusiastic parts of this thesis is the multiple ways the work can be

improved and extended. For instance, the programs which can be synthesized are still very limited to

the number of nodes a sketch has, already showing some difficulty in 3 and 4 nodes. A possible solution

is a user providing a sketch that is already partially completed guiding the synthesizer to a more efficient

74

search. Another possibility is to make use of multi-core processing and have multiple threads separately

trying to find a solution.

The benchmarks used were manually created through the observation of real-world examples, creat-

ing a possible bias. It would be interesting to use real users to test the usability of the synthesizers and

analyze the ambiguity generated by the examples. Ambiguity, as expected due to the use of an informal

specification, can be a problem. A potential solution is to implement user interaction with the synthesizer

to clarify between redundant solutions.

Finally, the synthesizer can be extended to contain more features, such as loops or exception hand-

lers. It is prepared to accept any new types of nodes with their respective DSL operators and values.

The bottleneck is the exponential growth with the number of different nodes a sketch can have.

75

76

Bibliography

[1] Tidyverse. URL https://www.tidyverse.org/.

[2] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama. Search-Based Program Synthesis. Commun.

ACM, 61(12):84–93, nov 2018. URL https://doi.org/10.1145/3208071.

[3] R. Brancas. CUBES: A New Dimension in Query Synthesis From Examples. Master’s thesis, IST

- Universidade de Lisboa, nov 2020. URL https://fenix.tecnico.ulisboa.pt/cursos/meic-a/

dissertacao/846778572212607.

[4] K. Ellis and S. Gulwani. Learning to Learn Programs from Examples: Going Beyond Program

Structure. In C. Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on

Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 1638–1645.

ijcai.org, 2017. URL https://doi.org/10.24963/ijcai.2017/227.

[5] C. C. Green. Application of Theorem Proving to Problem Solving. In D. E. Walker and L. M.

Norton, editors, Proceedings of the 1st International Joint Conference on Artificial Intelligence,

Washington, DC, USA, May 7-9, 1969, pages 219–240. William Kaufmann, 1969. URL http:

//ijcai.org/Proceedings/69/Papers/023.pdf.

[6] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In T. Ball

and M. Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 317–330.

ACM, 2011. URL https://doi.org/10.1145/1926385.1926423.

[7] S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing geometry constructions. In M. W. Hall

and D. A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages

50–61. ACM, 2011. URL https://doi.org/10.1145/1993498.1993505.

[8] S. Gulwani, A. Polozov, and R. Singh. Program Synthesis, volume 4. NOW, aug 2017. URL

https://www.microsoft.com/en-us/research/publication/program-synthesis/.

[9] M. J. H. Heule, O. Kullmann, and A. Biere. Cube-and-Conquer for Satisfiability. In Y. Hamadi and

L. Sais, editors, Handbook of Parallel Constraint Reasoning, pages 31–59. Springer, 2018. URL

https://doi.org/10.1007/978-3-319-63516-3.

77

https://www.tidyverse.org/
https://doi.org/10.1145/3208071
https://fenix.tecnico.ulisboa.pt/cursos/meic-a/dissertacao/846778572212607
https://fenix.tecnico.ulisboa.pt/cursos/meic-a/dissertacao/846778572212607
https://doi.org/10.24963/ijcai.2017/227
http://ijcai.org/Proceedings/69/Papers/023.pdf
http://ijcai.org/Proceedings/69/Papers/023.pdf
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1993498.1993505
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://doi.org/10.1007/978-3-319-63516-3

[10] G. Katz and D. A. Peled. Genetic Programming and Model Checking: Synthesizing New Mutual

Exclusion Algorithms. In S. D. Cha, J.-Y. Choi, M. Kim, I. Lee, and M. Viswanathan, editors, Auto-

mated Technology for Verification and Analysis, 6th International Symposium, ATVA 2008, Seoul,

Korea, October 20-23, 2008. Proceedings, volume 5311 of Lecture Notes in Computer Science,

pages 33–47. Springer, 2008. URL https://doi.org/10.1007/978-3-540-88387-6.

[11] T. A. Lau, P. M. Domingos, and D. S. Weld. Version Space Algebra and its Application to Pro-

gramming by Demonstration. In P. Langley, editor, Proceedings of the Seventeenth International

Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 -

July 2, 2000, pages 527–534. Morgan Kaufmann, 2000. URL https://www.researchgate.net/

publication/2237926.

[12] Z. Manna and R. J. Waldinger. Toward Automatic Program Synthesis. Commun. ACM, 14(3):

151–165, 1971. URL https://doi.org/10.1145/362566.362568.

[13] A. K. Menon, O. Tamuz, S. Gulwani, B. W. Lampson, and A. Kalai. A Machine Learning Frame-

work for Programming by Example. In Proceedings of the 30th International Conference on Ma-

chine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop

and Conference Proceedings, pages 187–195. JMLR.org, 2013. URL http://proceedings.mlr.

press/v28/menon13.html.

[14] T. M. Mitchell. Generalization as Search. Artif. Intell., 18(2):203–226, 1982. URL https://doi.

org/10.1016/0004-3702(82)90040-6.

[15] S. Muggleton and L. de Raedt. Inductive Logic Programming: Theory and methods. The Journal

of Logic Programming, 19-20:629–679, may 1994. URL https://linkinghub.elsevier.com/

retrieve/pii/0743106694900353.

[16] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Manquinho. Encodings for

Enumeration-Based Program Synthesis. In T. Schiex and S. de Givry, editors, Principles and Prac-

tice of Constraint Programming - 25th International Conference, CP 2019, Stamford, CT, USA,

September 30 - October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Computer Sci-

ence, pages 583–599. Springer, 2019. URL https://doi.org/10.1007/978-3-030-30048-7.

[17] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Manquinho. Encodings for

Enumeration-Based Program Synthesis. In T. Schiex and S. de Givry, editors, Principles and Prac-

tice of Constraint Programming - 25th International Conference, CP 2019, Stamford, CT, USA,

September 30 - October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Computer Sci-

ence, pages 583–599. Springer, 2019. URL https://doi.org/10.1007/978-3-030-30048-7.

[18] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. Manquinho. SQUARES: A SQL Syn-

thesizer Using Query Reverse Engineering. Proc. VLDB Endow., 2020. ISSN 2150-8097. URL

https://doi.org/10.14778/3415478.3415492.

78

https://doi.org/10.1007/978-3-540-88387-6
https://www.researchgate.net/publication/2237926
https://www.researchgate.net/publication/2237926
https://doi.org/10.1145/362566.362568
http://proceedings.mlr.press/v28/menon13.html
http://proceedings.mlr.press/v28/menon13.html
https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.1016/0004-3702(82)90040-6
https://linkinghub.elsevier.com/retrieve/pii/0743106694900353
https://linkinghub.elsevier.com/retrieve/pii/0743106694900353
https://doi.org/10.1007/978-3-030-30048-7
https://doi.org/10.1007/978-3-030-30048-7
https://doi.org/10.14778/3415478.3415492

[19] O. Polozov and S. Gulwani. FlashMeta: a framework for inductive program synthesis. In J. Ald-

rich and P. Eugster, editors, Proceedings of the 2015 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part

of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 107–126. ACM, 2015. URL

https://doi.org/10.1145/2814270.2814310.

[20] R. Singh and S. Gulwani. Predicting a Correct Program in Programming by Example. In D. Kroening

and C. S. Pasareanu, editors, Computer Aided Verification - 27th International Conference, CAV

2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture

Notes in Computer Science, pages 398–414. Springer, 2015. URL https://doi.org/10.1007/

978-3-319-21690-4.

[21] A. Solar-Lezama. The Sketching Approach to Program Synthesis. In Z. Hu, editor, Programming

Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16,

2009. Proceedings, volume 5904 of Lecture Notes in Computer Science, pages 4–13. Springer.

URL https://doi.org/10.1007/978-3-642-10672-9.

[22] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, USA, 2008. URL https://dl.

acm.org/doi/book/10.5555/1714168.

[23] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program synthesis. In

M. V. Hermenegildo and J. Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23,

2010, pages 313–326. ACM, 2010. URL https://doi.org/10.1145/1706299.1706337.

[24] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-based inductive synthesis for

program inversion. In M. W. Hall and D. A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,

USA, June 4-8, 2011, pages 492–503. ACM, 2011. URL https://doi.org/10.1145/1993498.

1993557.

[25] E. Torlak and R. Bodik. Growing solver-aided languages with rosette. In A. L. Hosking, P. T. Eugster,

and R. Hirschfeld, editors, ACM Symposium on New Ideas in Programming and Reflections on

Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013, pages

135–152. ACM, 2013. URL https://doi.org/10.1145/2509578.2509586.

[26] P. van der Tak, M. Heule, and A. Biere. Concurrent Cube-and-Conquer - (Poster Presentation).

In A. Cimatti and R. Sebastiani, editors, Theory and Applications of Satisfiability Testing - SAT

2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of

Lecture Notes in Computer Science, pages 475–476. Springer, 2012. URL https://doi.org/10.

1007/978-3-642-31612-8.

[27] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Automatically finding patches using genetic

programming. In 31st International Conference on Software Engineering, ICSE 2009, May 16-24,

79

https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1007/978-3-319-21690-4
https://doi.org/10.1007/978-3-319-21690-4
https://doi.org/10.1007/978-3-642-10672-9
https://dl.acm.org/doi/book/10.5555/1714168
https://dl.acm.org/doi/book/10.5555/1714168
https://doi.org/10.1145/1706299.1706337
https://doi.org/10.1145/1993498.1993557
https://doi.org/10.1145/1993498.1993557
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1007/978-3-642-31612-8
https://doi.org/10.1007/978-3-642-31612-8

2009, Vancouver, Canada, Proceedings, pages 364–374. IEEE, 2009. URL https://doi.org/10.

1109/ICSE.2009.5070536.

80

https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536

Appendix A

Tables of DSL operations

81

Function Signature Description Examples

add(x : Numeric, y : Numeric):
Numeric

Returns the addition of the
Numeric x and Numeric y.

add(20,10) = 30
add(0,5) = 5

sub(x : Numeric, y : Numeric): Numeric Returns the subtraction of x
by y.

sub(20,10) = 10
sub(0,5) = -5

mul(x : Numeric, y : Numeric): Numeric Returns the multiplication of
x by y.

mul(20, 10) = 200
mul(0, 100) = 0

div(x : Numeric, y : Numeric): Numeric Returns the division of x by
y.

div(20, 10) = 2
div(10, 1) = 10

abs(x : Numeric): Numeric Returns the absolute value
of x.

abs(20) = 20
abs(-15) = 15

sqrt(x : Numeric): Numeric Returns the square root of
the number x.

sqrt(4) = 2
sqrt(49) = 7

trunc(x : Numeric): Numeric Returns the truncation of the
number x.

trunc(1.0218) = 1
trunc(0.9999) = 0

round(x : Numeric): Numeric Returns the round of the
number x.

round(1.0218) = 1
round(0.9999) = 1

round2(x : Numeric, y : Numeric):
Numeric

Returns the round of the
number x by y decimals.

round2(1.0218, 2) = 1.02
round2(0.4599) = 0.46

mod(x : Numeric, y : Numeric):
Numeric

Returns the modulus of the
number x by y.

mod(5, 2) = 1
mod(16, 4) = 0

power(x : Numeric, y : Numeric):
Numeric

Returns the power of x over
y.

power(3, 2) = 9
power(2, 3) = 8

max(x : Numeric, y : Numeric):
Numeric

Returns the maximum value
between x and y.

max(-5, 5) = -5
max(1, 20) = 20

min(x : Numeric, y : Numeric): Numeric Returns the minimum value
between x and y.

min(1, 1) = 1
min(-20, 2) = -20

sign(x : Numeric): Numeric If x < 0 then return -1, else if
x > 0 return 1, else return 0.

sign(-10) = -1
sign(99) = 1

Table A.1: Numeric DSL operations of PUFS+

82

Function Signature Description Examples

add(x : Text, y : Numeric): Text
add(x : Text, y : Boolean): Text
add(x : Numeric, y : Text): Text
add(x : Boolean, y : Text): Text

Returns the addition of x
and y

add(”a ” , 1) = ”a 1”
add(”y”, False) = ”yFalse”

add(1, ” a”) = ”1 a”
add(False, ”y”) = ”Falsey”

substr(x : Text, y : Numeric, z:
Numeric): Text

Retrieves first position of y
at or after z characters in x.
Returns -1 if there are no

occurrences of y in x.

substr(”Test”, 1, 2) = ”es”
substr(”123”, 0, 1) = ”12”

replace(x : Text, y : Text, z: Text): Text
Returns Text x after

replacing all Text occurences
of y with z

replace(”aba”,”a”, ”c”) = ”cbc”
replace(”x”,”x”, ”123”) = ”123”

concat(x : Boolean, y : Text): Text Returns the concatenation of
x with y.

concat(”a”,”b”) = ”ab”
concat(”12”,”4”) = ”124”

chr(x : Numeric): Text
Returns a single-character

string corresponding to the x
character code.

chr(88) = ”X”

length(x : Text): Numeric Returns the length of the
Text x.

add(True,”x”) = ”Truex”
add(False,”y”) = ”Falsey”

toLower(x : Text): Text Returns the Text x in
lowercase.

toLower(”AbCd”) = ”abcd”
toLower(”AAA”) = ”aaa”

toUpper(x : Text): Text Returns the Text x in
uppercase.

toUpper(”AbCd”) = ”ABCD”
toUpper(”aaa”) = ”AAA”

trim(x : Text): Text
Removes all the leading and
trailing space characters (’ ’)

from the Text x.

trim(” a ”) = ”a”
add(” 1 2 ”) = ”1 2”

trimStart(x : Text): Text
Removes all the leading

space characters (’ ’) from
the Text x.

trimStart(” a”) = ”a”
trimStart(” a ”) = ”a ”

trimEnd(x : Text): Text
Removes all the trailing

space characters (’ ’) from
the Text x.

trimEnd(”a ”) = ”a”
trimEnd(” a ”) = ” a”

Table A.2: Text DSL operations of PUFS+

83

Function Signature Description Examples

gt/gte(x : Numeric, y : Numeric): Boolean
gt/gte(x : Text, y : Numeric): Boolean
gt/gte(x : Text, y : Boolean): Boolean
gt/gte(x : Numeric, y : Text): Boolean
gt/gte(x : Boolean, y : Text): Boolean

gt/gte(x : Text, y : Text): Boolean

True if x is
greater /greater or equal
than y. False otherwise.

gt(10, 1) = True
gte(”aa”, 1) = True

gt(”aa”, True) = False
gte(1, ”aa”) = False
gt(True, ”aa”) = True

gte(”aaa”, ”aa”) = True

eq/diff(x : Numeric, y : Numeric): Boolean
eq/diff(x : Text, y : Numeric): Boolean
eq/diff(x : Text, y : Boolean): Boolean

eq/diff(x : Text, y : Text): Boolean

True if x is equal /different
than y. False otherwise.

eq(1, 1) = True
diff(”aa”, 2) = False

eq(”aaaa”, True) = True
diff(”aaa”, ”aa”) = True

and(x : Boolean, y : Boolean): Boolean Returns True if both x
and y are True.

and(True, True) = True
and(True, False) = False

or(x : Boolean, y : Boolean): Boolean Returns True if either x or
y are True.

or(True, False) = True
or(False, False) = False

not(x : Boolean): Boolean Returns True if x is False.
Otherwise returns False.

not(True) = False
not(False) = True

Table A.3: Boolean DSL operations of PUFS+

84

Function Signature Description Examples

ListAppend(x : List, y : Numeric): List
ListAppend(x : List, y : Text): List

ListAppend(x : List, y : Boolean): List
ListAppend(x : List, y : Structure): List

Returns the List x with y
appended ListAppend([], 2) = [2]

ListInsert(x : List, y : Numeric, z:
Numeric): List ListInsert([1], 2, 0) = [2, 1]

ListInsert(x : List, y : Text, z: Numeric):
List

Returns the List x with y
inserted in the z index.

ListInsert([”a”], ”b”, 1) = [”a”,
”b”]

ListInsert(x : List, y : Boolean, z:
Numeric): List

ListInsert([id: 1], id: 2, 1) =
[id: 1, id: 2]

ListAppendAll(x : List, y : List): List Returns a List of x with y
appended.

ListAppendAll([1], [2, 2]) =
[1, 2, 2]

ListSort(x : List, y : Boolean): List

Returns the List x ordered in
ascending order if y is True.

Otherwise in descending
order.

ListSort([1, 3, 2], True) = [1,
2, 3]

ListSort([1, 3, 2], False) = [3,
2, 1]

ListRemove(x : List, y : Numeric): List Returns the List x with the
index y removed.

ListRemove([1, 3], 0) = [3]
ListRemove([1, 3, 2], 1) = [1,

2]

ListFilter(x : List, y : CmpLambda): List Returns the List x filtered by
the OpLambda y.

ListFilter([1, 3, 2], x: x > 1) =
[3, 2]

ListIndexOf(x : List, y : CmpLambda):
Numeric

Returns the index of the first
occurrence of the

OpLambda y in the List x.

ListIndexOf([1, 3, 2], x:
x==2) = 2

ListIndexOf([1, 3, 2], x: x¿1)
= 1

ListAll(x : List, y : CmpLambda):
Boolean

Returns True if all elements
of the List x satisfy the

OpLambda y. Otherwise it
returns False.

ListAll([1, 3, 2], x: x¿0) =
True

ListAll([1, 3, 2], x: x¿1) =
False

ListAny(x : List, y : CmpLambda): List

Returns True if any of the
elements in the List x satisfy
the OpLambda y. Otherwise

it returns False.

ListAny([1, 3, 2], x: x¿1) =
True

ListAny([1, 3, 2], x: x¡0) =
False

ListClear(x : List): List Returns an empty List. ListClear([1, 3, 2]) = []

ListDistinct(x : List): List Returns the List x without
any duplicate elements.

ListDistinct([1, 2, 2]) = [1, 2]
ListDistinct([1]) = [1]

ListDuplicate(x : List): List Returns the List x with each
element duplicated.

ListDuplicate([1]) = [1, 1]
ListDuplicate([1, 3]) = [1, 1,

3, 3]

Table A.4: Outsystems built-in DSL operations of PUFS-L

85

Function Signature Description Examples

ListMap(x : List, y : OpLambda): List
Returns the List x with the

OpLambda y applied to
each element.

ListMap([1], x: add(x, 1)) =
[2] ListSort([1, 3],

x: mul(x, 3)) = [3, 9]

getElementList(x : List, y : Numeric):
BasicType

Returns the element of index
y of the List x.

getElementList([”hi”], 0) =
”hi”

getElementList([1, 3], 1) = 3

Table A.5: Custom DSL operations of PUFS-L

Function Signature Description

Select(x : Table): List Returns a list of rows of the table x.

SelectOrderBy(x : Table, y : Col, , z:
ConstBool): List

Returns a list of rows of the table x ordered
by the column y in ascending order if z is

True, otherwise in descending order.

natural join(x : Table, y : Table): Table Returns a table with the natural join of x and
y.

natural join3(x : Table, y : Table, z: Table):
Table

Returns a table with the natural join of x, y
and .

natural join4(x : Table, y : Table, z: Table, w :
Table): Table

Returns a table with the natural join of x, y, z
and w.

inner join(x : Table, y : Table, z:
JoinCondition): Table

Returns a table with the inner join of x and y
and with the condition z.

anti join(x : Table, y : Table, z: Cols): Table Returns a table with the anti join of x and y
and with the columns z.

left join(x : Table, y : Table): Table Returns a table with the left join of x and y.

union(x : Table, y : Table): Table Returns a table with the union of x and y.

intersect(x : Table, y : Table, z: Col): Table Returns a table with the intersection of x and
y on column z.

semi join(x : Table, y : Table): Table Returns a table with the semi join of x and y.

summarise(x : Table, y :
SummariseCondition, z: Cols): Table

Returns a table with summarisation condition
y of table x, grouped by columns z.

mutate(x : Table, y : SummariseCondition):
Table

Returns the table x mutated by the
summarise condition y.

Table A.6: PUFS-SQL freeform operations

86

Function Signature Description

Select(x : Table): List Returns a list of rows of the table x.

SelectCondition(x : Table, y : FilterCondition):
List

Returns a list of rows of the table x filtered by
y.

SelectConditionOrderBy(x : Table, y :
FilterCondition, z: Col, w : ConstBool): List

Returns a list of rows of the table x with the
filter y ordered by the column z in ascending
order if w is True, otherwise in descending

order.

SelectLeftJoinCondition(x : Table, y : Table, z:
FilterCondition): List

Returns a list of rows of the left join of table x
and y, with the filter z.

SelectLeftJoinConditionOrderBy(x : Table, y :
Table, z: FilterCondition, w : Col, v :

ConstBool): List

Returns a list of rows of the left join of table x
and y, with the filter z, ordered by the column
w in ascending order if v is True, otherwise

in descending order.

SelectInnerJoinCondition(x : Table, y : Table,
z: JoinCondition, w : FilterCondition): List

Returns a list of rows of the inner join of table
x and y on the condition z, with the filter w.

SelectInnerJoinConditionOrderBy(x : Table,
y : Table, z: JoinCondition, w :

FilterCondition, v : Col, s: ConstBool): List

Returns a list of rows of the inner join of table
x and y on the condition z, with the filter w,
ordered by the column v in ascending order
if s is True, otherwise in descending order.

SelectCrossJoinCondition(x : Table, y : Table,
z: CrossJoinCondition, w : FilterCondition):

List

Returns a list of rows of the cross join of
table x and y on the condition z, with the

filter w.

SelectCrossJoinConditionOrderBy(x : Table,
y : Table, z: CrossJoinCondition, w :

FilterCondition, v : Col, s: ConstBool): List

Returns a list of rows of the cross join of
table x and y on the condition z, with the

filter w, ordered by the column v in
ascending order if s is True, otherwise in

descending order.

Table A.7: PUFS-SQL template operations

87

Enum Signature Description

Col List of columns of the tables provided by the user. For
example, ”id” or ”name”.

Op Operations | and & for the filter conditions of a query.

FilterCondition Filter conditions for a given table. For
example, ”id == 1” or ”id > 5”.

JoinCondition Join conditions for a join operation between tables.
For example, ”name1 == name2”.

CrossJoinCondition Cross join conditions for a cross join operation
between tables. For example, ”name == name.other”.

SummariseCondition Summarise conditions for a summarise operation in a
table. For example, ”sum(price)”.

Table A.8: Added DSL enums to PUFS-SQL

88

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivating Example
	1.2 Contributions
	1.3 Organization

	2 Fundamental Concepts
	2.1 Program Synthesis
	2.1.1 User specification
	2.1.2 Program Space
	2.1.3 Search Techniques

	2.2 Programming by Examples
	2.2.1 Version Space Algebra
	2.2.2 Ambiguity Resolution

	2.3 Satisfiability Modulo Theories
	2.4 The Sketching Approach to Program Synthesis

	3 Related Work
	3.1 Pure Function Synthesis in the OutSystems Platform
	3.1.1 Specification
	3.1.2 Program space
	3.1.3 Search technique

	3.2 SQL Synthesis
	3.2.1 SQUARES
	3.2.2 CUBES

	4 Next-Gen Pure Function Synthesis
	4.1 PUFS+ Framework
	4.1.1 Fine-grained DSL Types
	4.1.2 Node Connectivity Constraint
	4.1.3 Other Improvements
	4.1.4 SMT constraints

	4.2 PUFS-L framework
	4.2.1 PUFS-L-Ordered
	4.2.2 PUFS-L-Assisted
	4.2.3 Changes in Implementation

	4.3 PUFS-SQL framework
	4.3.1 PUFS-SQL
	4.3.2 PUFS-SQL-Ordered
	4.3.3 Changes in Implementation

	4.4 PUFS-X framework
	4.4.1 PUFS-X-Ordered
	4.4.2 Changes in Implementation

	4.5 User input

	5 Evaluation
	5.1 Benchmark Description
	5.1.1 Assign and conditional nodes
	5.1.2 List manipulation nodes
	5.1.3 Assign, conditional and list manipulation nodes
	5.1.4 Data aggregation nodes
	5.1.5 Assign, conditional and data aggregation nodes
	5.1.6 List manipulation and data aggregation nodes
	5.1.7 Assign, conditional, list manipulation and data aggregation nodes

	5.2 Evaluation Method
	5.3 Experimental Results
	5.3.1 PUFS+ framework
	5.3.2 PUFS-L framework
	5.3.3 PUFS-SQL framework
	5.3.4 PUFS-X framework

	6 Conclusions and Future Work
	6.1 Future Work

	Bibliography
	A Tables of DSL operations

