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ABSTRACT
OutSystems is a low-code platform that allows users to create
their applications through graphical interfaces instead of hand-
coded computer programming. However, in the OutSystems
platform, business logic is implemented through action flows,
a graph that illustrates the intended logic, which requires the
user to think like a traditional developer when implementing
such flows leaving one desiring to automate it.

In this work, we seek to extend previous work of automating
logical flows in the OutSystems platform, increasing the per-
formance and allowing more complex operations and domains.
More specifically, the goal is to add support for synthesizing
list manipulations and data aggregation on the OutSystems plat-
form. The solution focuses on pure function synthesizing using
programming by example as the specification method and the
search technique is a combination of sketch enumeration and
satisfiability modulo theories.

1 INTRODUCTION
Nowadays, more and more people have access to technology de-
vices, such as smartphones or computers. However, the learning
curve needed for a person to program such devices is significant.
OutSystems is a software automation platform that allows users
to create their applications through graphical interfaces instead
of traditional text-based programming. The goal of OutSystems
is to provide efficient tools that are easy to use and responsive
in just a few seconds, not requiring the user to acquire new
skills. However, in the OutSystems platform, business logic is
implemented through action flows, a graph that illustrates the
intended logic, which requires the user to think like a traditional
developer when implementing such flows leaving one desiring
to automate it.

Program synthesis consists of automating the creation of a
program according to a certain specification. Program synthesis
enables one to build computer programs without any knowl-
edge of programming, by shifting the effort from writing an
implementation to providing a specification of the intended se-
mantics instead. Hence, program synthesis seems like a good
form of automating the implementation of action flows used in
the OutSystems platform.

A pure function is a function that always returns the same
value for the same input and produces no side effects, such as
the modification of global variables or databases. For program
synthesis, pure functions can simplify the reasoning process
significantly by removing the need to reason about side effect.
This scenario fits naturally into the programming-by-example
paradigm because pure functions allows us to be confident the
output is consistent.
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In this work, we seek to extend previous work by creating
a new generation of pure function synthesizers that support
more complex scenarios and have a more efficient performance.
More specifically, the goal is to add support for synthesizing list
manipulations and data aggregation on the OutSystems platform.
To the best of our knowledge, this is the first work that integrates
this kind of operations into a single framework targeting action
flow synthesis, taking us one step closer to a fully declarative
development experience.

Motivation Example. Suppose there is a director of a faculty
who wants to present a list of the working personnel. The di-
rector wants a function that, by default, returns a list of the
professors. However, when the function receives a Boolean
include_support_staff as True, the function should also re-
turn the remaining personnel, such as the human resources
department. If we decompose this problem, assuming there is
a database of professors and one for support staff, we can see that
wewant to, depending on the value of include_support_staff,
either obtain only the professors, or obtain both the professors
and support staff joining them into a single list.

One of the goals of OutSystems is to allow citizens to, with-
out any knowledge of programming or SQL querying, develop
enterprise-grade applications. The implementation of this logic
in OutSystems might not be easy for such a user, given that this
problem requires the knowledge of SQL querying and the logic
of the OutSystem’s platform. Instead, our framework allows the
user to just provide a specification composed of input/output
examples, which is more natural for the user.

For this problem, the director would need to provide at least
two examples: the case where the argument include_support
_staff is True were the two tables from the input are joined
and returned in a list; and then the case when the value is False
where a list with only the table of professors is returned.

Contributions. In this thesis, we propose PUFS-X, a frame-
work for synthesizing action flows with assignment, conditional,
list manipulation and data aggregation operations. We build
upon previous work on pure function synthesis, the PUFS frame-
work. The main contributions are as follows:

• Several performance improvements to the PUFS frame-
work creating PUFS+, such as:
– pruning of redundant or invalid sketches and programs
by considering symmetries in the action flows andmore
fine-grained type information;

– efficient modelling of constants;
– rarity threshold to reduce the operations of the synthe-
sizer;

• Creation of the PUFS-L framework, which adds list ma-
nipulation capabilities to the PUFS+ framework;

• Creation of the PUFS-SQL, which adds data aggregation
capabilities to the PUFS+ framework;

• Creation of the PUFS-X, which joins all features into a
single synthesizer.



2 FUNDAMENTAL CONCEPTS
This section provides the fundamental concepts necessary to
understand the remaining of the document.

2.1 Program Synthesis
Definition 2.1 (Program Synthesis). Program synthesis consists

of automatically deriving a program from a specification through
search techniques and a defined program space.

The Program Synthesis process consists of choosing a method
for the user specification, defining a program space, and a search
technique.

Definition 2.2 (Specification). Given an input𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛)
and output 𝑦, a formula 𝜙 is a specification such that 𝜙 (𝑥,𝑦) is
True, if and only if 𝑦 is the desired output of 𝑥 .

There exist multiple types of user intent specifications, rang-
ing from formal specifications, such as formulations, to more
informal ones such as input-output examples or natural lan-
guage. An informal specification is considered more intuitive
for user, whereas a formal specification requires knowledge of
mathematics and formulation for the user, which can prove to
be as hard as writing the program itself. Examples of the lat-
ter approach are the first innovative papers in the late 60s [4],
and early 70s [6]. In this work, we use the programming by ex-
ample method, which relies on an input-output example based
specification.

Example 2.3. An input-output example specification can be
the input (1, 2, 3, 4) with the corresponding output (2, 4, 6, 8). A
program that satisfies this specification would receive an input
and multiply it by two.

A challenge of an informal approach is finding the perfect bal-
ance between completeness and simplicity for the specification.
If too specific, the synthesizer may take a much more time to
create the program than needed. However, if too broad, the syn-
thesizer might return a program that satisfies the specification
but not the user’s true intentions.

Program Synthesis is an undecidable problem, one for which
it is impossible to find an algorithm that can always give the
correct answer. Hence, a search needs to be performed in the
program space to find a program that satisfies the user’s intent.

Definition 2.4 (Program space). A program space is the set of
all programs that can be written using a given defined language.

The program space grows exponentially with the number of
possible candidates and their corresponding size. Thus, if we
search every possible combination, there are neither guarantees
of efficiency nor guarantees of termination of the search. To
minimize the program space’s size, instead of using full-featured
programming languages such as Python, domain specific lan-
guages are used.

Definition 2.5 (Domain Specific Language). A Domain Specific
Language (DSL) is a language for a specialized domain, with
restrictions that simplify the program space.

Example 2.6. A simple DSL of operations over lists, where
N is the start symbol, is specified below. This DSL allows us to
synthesize programs that use operations such as the filtering
or sorting of lists. Suppose we want to synthesize a program
that only performs list manipulations. In that case, we could

Figure 1: Enumerative search process

significantly increase a synthesizer’s performance by providing
this DSL instead of a full-featured language.

𝑁 → 0 | ... | 9 | head(𝐿) | last(𝐿) | sum(𝐿) | max(𝐿) | min(𝐿)
𝐿 → get(𝐿, 𝑁 ) | sort(𝐿) | filter(𝐿, 𝐹 )
𝐹 → geq | leq | eq

There are multiple search techniques that can be pursued,
given a user specification and a program space. In this work,
we use a combination of sketch enumeration and satisfiability
module theories.

Enumerative search is the most common technique and con-
sists of ordering the program space according to a heuristic,
followed by iterating through it to find a program that matches
the specification. Figure 1 illustrates the enumerative search
process. The enumerator step chooses a candidate program, and
the decision step verifies whether the candidate satisfies the
user’s intent. The process repeats until a satisfiable program is
found.

Examples of successful enumerative search algorithms are
Unagi [2], an Offline Exhaustive Enumeration over the DSL
program space, or the synthesizing of geometry constructions
[5].

2.2 The Sketching Approach
Automatically creating a program combines high-level insight
about the problem and low-level implementation details. The lat-
ter comes naturally to computers. However, the former is much
easier for a human than for a computer. Thus, Solar-Lezama
introduced the concept of sketching [10, 11], a form of program
synthesis that allows programmers to specify their high-level
insight about a program, leaving the computer to determine the
low-level details.

Definition 2.7 (Sketch). A sketch or a partial program is a
program with holes.

2.3 Satisfiability Modulo Theories
Definition 2.8 (Satisfiability Modulo Theories). The Satisfia-

bility Modulo Theories (SMT) problem is a generalization of
Boolean satisfiability (SAT). Solvers that use SMT check the
satisfiability of first-order logic formulas with use of theories
such as theory of real numbers, theory of integer arithmetic,
theory of strings. Given a theory𝑇 , a𝑇 -atom is a ground atomic
formula in 𝑇 . A 𝑇 -literal is either a 𝑇 -atom 𝑡 or its complement
¬𝑡 . A 𝑇 -formula is composed of 𝑇 -literals. Given a 𝑇 -formula 𝜙 ,
the SMT problem decides whether a solution exists such that 𝜙
is satisfied.

Example 2.9. Consider that 𝒯 is the Linear Integer Arithmetic
(LIA) theory.𝜙 = (𝑥+𝑦 > 2)∧(𝑥 > 4)∧(𝑦 < 1), is an example of
an SMT formula in LIA, where 𝑥 and 𝑦 are integers. We can see
that 𝜙 is satisfiable and a possible solution would be 𝑥 = 5, 𝑦 = 0.

3 RELATEDWORK
This section describes the first attempt at a pure function syn-
thesizer for the OutSystems platform and SQL synthesizers.



Figure 2: PUFS framework

3.1 PUFS Framework
Catarina Coelho proposed the first attempt at a pure function
synthesizer for the OutSystems platform in her MSc thesis 1, the
PUFS framework. The framework represents a program using
a graph where a node can be an Assign node, which assigns
a value to a given variable, or an If node which, according to
a Boolean condition, allows two different paths depending on
whether the condition is true or false. The usage of graphs as a
method of representation parallels the representation used in
the OutSystems platform.

The first step in the PUFS framework is the user specifica-
tion, which is a set of input-out examples and a set of constants.
The latter is used to guide the synthesizer to a more efficient
search. The DSL used in the PUFS framework is composed of
operands and operators provided by the OutSystems expres-
sion language. The operands can be literals (such as strings,
numbers or Booleans), local variables, built-in functions or sub-
expressions. The operators are unary or binary such as +, − or
=.

We must note that, due to pure function synthesizing, the
DSL is constrained to operators that are considered pure, i.e., for
the same inputs, the output is always the same not producing
side effects such as changes to databases or global variables.

Figure 2 represents the architecture of the framework. As we
can observe, we have two main steps: sketch generation and
sketch completion. The main idea is that a candidate sketch is
generated in the first step and then is completed in the second
step if possible. Otherwise, a new candidate sketch is created,
repeating the process. The sketch generator enumerates through
partial flows, i.e., flows composed of Assign and If nodes such
that its assignment expressions and condition expressions are
holes to be filled.

The sketch completion step is where the holes of a sketch
are filled. A 𝑘-tree is a recurrent tree representation used in
enumeration-based program synthesis because of its ability to
represent every possible program for a given DSL, where 𝑘 is
the largest arity among the operators. The 𝑘-tree enumerator
enumerates through several trees, where each tree represents an
expression that fills each hole. The PUFS framework encodes the
tree as an SMT formula in order to obtain a concrete program
by assigning a symbol of the DSL to each node.

When a sketch is completed, the decider checks if the re-
spective candidate program satisfies the user’s specification by
comparing the output of the program ran on the input examples
with the expected outputs. If the candidate does not satisfy, it
returns to the 𝑘-tree enumerator to obtain a new candidate.

1The MSc thesis is awaiting publication

3.2 SQL Synthesizers
With the intent of integrating SQL queries to our work, in this
sub-section we present two different SQL synthesizers.

SQUARES [7] is a PBE synthesizer for SQL queries and, be-
sides the input/output examples, uses extra information from
the user to improve the performance of the synthesizer, which
includes a list of aggregation functions, a list of constants and
the column names that can be used as arguments. SQUARES
uses a DSL to specify the space of possible programs, which
correspond to operations available in the libraries dplyr and
tidyverse of the R programming language [1] that allow data-
manipulation. SQUARES performs an enumerative search until
either a solution is found or a the time limit is reached. Then, if
a solution is found, the R program is transformed into a usable
SQL query and returned to the user.

CUBES [3] was built upon the SQUARES framework and is
recognized for the addition of new operations and the speed-up
of the synthesis process by making use of multi-core processing.

4 NEXT-GEN PURE FUNCTION SYNTHESIS
In this section we propose the solution. We start by creating an
improved version of the work done in pure function synthesis,
the PUFS+ framework. We then extend the framework in two
distinct manners: the addition of list manipulation capabilities,
creating the PUFS-L framework; and the addition of data aggre-
gation capabilities, creating the PUFS-SQL framework. Finally,
the PUFS-X framework was created by joining all features into
a single synthesizer.

4.1 PUFS+ Framework
The initial PUFS framework contains two types of nodes: the
Assign node, which performs an assignment, and the If node,
which, depending on a given condition, allows the execution of
a program to follow one of two paths. Several different potential
improvements were identified and implemented. We refer to
the improved version of PUFS as PUFS+. In the following sub-
sections, the major changes are presented.

4.1.1 Fine-grained DSL Types. PUFS uses a single type in its
DSL named BuiltInType.The usage of a single type allows the
synthesizer to attempt operations that are not allowed by the syn-
thesizer language, such as summing an Integer with a Boolean,
thus resulting in the generation of many more invalid programs
that have to be rejected by the decider. PUFS+ introduces 3 types
to the DSL: Numeric,Text and Boolean.The type Numeric rep-
resents all numbers from integers to decimals. The Text type
refers to any string. Finally, the type Boolean refers to True
or False.All of the operators in PUFS were changed to their
respective types, such as the operation 𝑛𝑜𝑡 which changed from
having the input and output as a value of type BuiltInType to
type Boolean.

4.1.2 Node Connectivity Constraint. PUFS allows nodes of
a sketch to not be connected in their operators, which permits
cases where a node performs an operation that is never used.
In Figure 3, we can observe an example where the first node’s
operation is redundant since the following node does not use
it as an argument. The symbol 𝜖 is used to represent an empty
node. Note that, in order for the synthesizer to consider sketches
with 2 nodes, all single node sketches must have already been



Figure 3: Lack of connectivity between nodes in the PUFS framework

exhausted. Thus, whenmultiple nodes are used, allowing unused
nodes results in the generation of redundant programs.

PUFS+ ensures the connectivity between nodes of a sketch by
adding a constraint to the SMT solver. This change forbids solu-
tions such as the one seen in Figure 3, thus reducing significantly
the number of possible attempts the synthesizer performs before
finding the correct program. There are two possible encodings
to ensure the connectivity of nodes: the Multi-Gen encoding and
the Single-Gen encoding. The former allows a node to use any of
the previous nodes whereas the latter only allows a node to use
the immediate previous node. Thus, the Single-Gen encoding
should increase the performance of the synthesizer when only
the immediate previous node is required, because the search
space reduces with the removal of solutions that use multiple
previous nodes. However, it removes some possible solutions
that would use more than one of the previous nodes at once,
resulting in a trade-off between performance and completeness.

4.1.3 Constants as Inputs. PUFS requires an extra node for
each constant used to transform it from the type Const to the
usable type BuiltInType. Thus, given 𝑁 constants, 𝑁 extra
nodes must be added to each sketch and then 𝐾 nodes for the
actual operators.

PUFS+ no longer considers a constant to be of type Const
and simply models it as an extra input in the input-output exam-
ples. With this change, the extra constant nodes are no longer
required. Thus, in contrast to the PUFS framework that requires
𝑁 + 𝐾 nodes, the new framework only requires 𝐾 nodes for the
same solutions.

4.1.4 Pruning of Redundant Sketches and Operators. PUFS+
removes sketches whose final nodes of a sketch are If nodes,
because the pure function property requires all of the flows to
return an output. An If node, depending on a given condition,
allows the execution of a program to follow one of two paths
and only Assign nodes effectively return an output.

PUFS+ removes redundant operators from the DSL as follows:
• The operators Lesser Than and Lesser or Equal Than can
be implemented using the operators Greater Than and
Greater or Equal Than, respectively, by simply swapping
the left and right-hand sides. A total of 12 operators were
removed.

• Equal and Different with the new DSL were both dupli-
cated to have 6 operators each for the different type com-
binations. However, the operators eq_text_boolean and

eq_boolean_text are equivalent. The same occurs with
the comparison of types Text and types Numeric.Thus, 4
operators in total can be removed from the DSL, 2 variants
of Equal and 2 variants of Different.

• Adding two values of type Text (add_text_text) is
equivalent to the concatenation operator (𝐶𝑜𝑛𝑐𝑎𝑡 ). Thus,
we remove the operator add_text_text.

4.1.5 Rarity threshold. Some of the operators in the DSL are
used more frequently than others. For example, operators such
as 𝑎𝑑𝑑 or 𝑚𝑢𝑙 are significantly more frequent than operators
such as 𝑠𝑞𝑟𝑡 or 𝑝𝑜𝑤𝑒𝑟 . Therefore, a new configuration parameter
was implemented in the synthesizer that allows one to ignore
sets of operators based on rarity.

SMT constraints
Now we will describe how the SMT line-based encoding [8]

of the PUFS+ frameworks was adapted from the work done by
Orvalho et. al. [9] and Catarina Coelho, where each line of the
encoding is considered a node of a sketch.

The encoding represents a program as a graph of nodes where
each node uses an operator from the DSL. Each node is repre-
sented using a𝑘-tree of depth one, where𝑘 represents the largest
arity among the DSL operators, which can use as arguments any
of the inputs or the result of operators used in previous nodes.

4.1.6 Encoding Variables. Let 𝐷 be the DSL. The set of pro-
duction rules 𝑃𝑟𝑜𝑑 (𝐷) in 𝐷 consists of the production
𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷), i.e., 𝑃𝑟𝑜𝑑 (𝐷) = 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷). The produc-
tions of a node correspond to the operators allowed in its type.
Furthermore, 𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑃𝑟𝑜𝑑 (𝐷) denotes the set of productions
that return a Boolean value. Besides the productions, we use
𝑇𝑒𝑟𝑚(𝐷) to denote the set of terminal symbols in 𝐷 . Further-
more,𝑇𝑦𝑝𝑒𝑠 (𝐷) represents the set of types used in𝐷 and𝑇𝑦𝑝𝑒 (𝑠)
the type of symbol 𝑠 ∈ 𝑃𝑟𝑜𝑑 (𝐷)∪𝑇𝑒𝑟𝑚(𝐷). If 𝑠 ∈ 𝑃𝑟𝑜𝑑 (𝐷), then
𝑇𝑦𝑝𝑒 (𝑠) corresponds to the return type of production rule 𝑠 .

Consider a program with 𝑛 nodes, where the maximum ar-
ity of the operators used in the expressions is 𝑘 . We have the
following variables:

• 𝑂 = {𝑜𝑝𝑖 : 1 ≤ 𝑖 ≤ 𝑛} : each variable 𝑜𝑝𝑖 represents the
production rule used in node 𝑖;

• 𝑇 = {𝑡𝑖 : 1 ≤ 𝑖 ≤ 𝑛} : each variable 𝑡𝑖 represents the
return type of node 𝑖;

• 𝐴 = {𝑎𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘} : each variable 𝑎𝑖 𝑗
represents the symbol corresponding to argument 𝑗 of
node 𝑖;

Let Σ denote the set of all symbols that may appear in the
program. Besides the production rules and terminal symbols,
we introduce one additional symbol 𝑟𝑒𝑡 for each node in the
program. Let 𝑅𝑒𝑡 = {𝑟𝑒𝑡𝑖 : 1 ≤ 𝑖 ≤ 𝑛} represent the set of return
symbols in the program, then Σ = 𝑃𝑟𝑜𝑑 (𝐷) ∪ 𝑇𝑒𝑟𝑚(𝐷) ∪ 𝑅𝑒𝑡 .
The usage of the 𝑟𝑒𝑡 symbol is necessary to represent the use of
previous nodes in a sketch, i.e., a node may use as an argument
of an operator the returning value of a previous node.

Each symbol is assigned a unique positive identifier. Let 𝑖𝑑 :
Σ → N0 be a one-to-one mapping function that maps each
symbol in Σ to a unique positive identifier and 𝑡𝑖𝑑 : 𝑇𝑦𝑝𝑒𝑠 (𝐷) →
N0 be a one-to-one mapping function that maps each symbol
type to a unique positive identifier. Finally, since some operators
in the DSL have arity smaller than 𝑘 , and hence will never use
all 𝑘 leaves, the empty symbol 𝜖 is introduced so that every leaf
node has an assigned symbol. For instance, the operator 𝑛𝑜𝑡 uses



a single argument, thus, the remaining 𝑘 − 1 leaves are assigned
the symbol 𝜖 . We assume 𝑖𝑑 (𝜖) = 0.

There exists a configuration parameter that influences the
SMT constraints, use_single_gen.If it is True, then the synthe-
sizer uses the Single-Gen encoding and, if otherwise False, then
the synthesizer uses theMulti-Gen encoding. Let 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑙𝑒𝑠 (𝑖)
be a set of nodes. In the Multi-gen encoding, 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑙𝑒𝑠 (𝑖)
is the set of nodes that contain all previous holes from the same
execution path as node 𝑖 , ignoring If nodes. In contrast, in the
Single-Gen encoding, 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑙𝑒𝑠 (𝑖) is only the last previous
node of 𝑖 also ignoring If nodes.

4.1.7 Constraints. The SMT constraints that encode the prob-
lem are as follows.

Operations. The symbol of each node must be a production
rule.

∀ 1 ≤ 𝑖 ≤ 𝑛 :
∨

𝑝∈𝑃𝑟𝑜𝑑 (𝐷)
𝑜𝑝𝑖 = 𝑖𝑑 (𝑝) (1)

Let 𝐻𝑜𝑙𝑒𝑇𝑦𝑝𝑒 (𝑖) be the node type of hole 𝑖 . If a node 𝑖 corre-
sponds to an If node, then the node’s hole must be a production
with a Boolean return type.

∀ 1 ≤ 𝑖 ≤ 𝑛 : 𝐻𝑜𝑙𝑒𝑇𝑦𝑝𝑒 (𝑖) = 𝐼 𝑓 =⇒∨
𝑝∈𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑃𝑟𝑜𝑑 (𝐷)

𝑜𝑝𝑖 = 𝑖𝑑 (𝑝) (2)

If a node 𝑖 corresponds to an Assign node, then the respec-
tive symbol must be a production in 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷). For all 𝑖
between 1 and 𝑛:

𝐻𝑜𝑙𝑒𝑇𝑦𝑝𝑒 (𝑖) = 𝐴𝑠𝑠𝑖𝑔𝑛 =⇒∨
𝑝∈𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷)

𝑜𝑝𝑖 = 𝑖𝑑 (𝑝) (3)

The return type of each node is the same as the return type
of its production rule.

∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑝 ∈ 𝑃𝑟𝑜𝑑 (𝐷) : (𝑜𝑝𝑖 = 𝑖𝑑 (𝑝)) =⇒
(𝑡𝑖 = 𝑡𝑖𝑑 (𝑇𝑦𝑝𝑒 (𝑝)))

(4)

Arguments. Given a sketch with more than one hole to fill,
the arguments of an operator 𝑖 used in a hole must be either
terminal symbols or return symbols from previous holes.

∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑟 ∈ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑙𝑒𝑠 (𝑖), 1 ≤ 𝑗 ≤ 𝑘 :∨
𝑠∈𝑇𝑒𝑟𝑚 (𝐷) ∪ 𝑟𝑒𝑡𝑟 :𝑟<𝑖

𝑎𝑖 𝑗 = 𝑖𝑑 (𝑠) (5)

The arguments of an operator 𝑖 must have the same types
as the respective parameters of the production rule used in the
operator. Let𝑇𝑦𝑝𝑒 (𝑝, 𝑗) be the type of parameter 𝑗 of production
rule 𝑝 , where 𝑝 ∈ 𝑃𝑟𝑜𝑑 (𝐷). If 𝑗 > 𝑎𝑟𝑖𝑡𝑦 (𝑝) then 𝑇 (𝑝, 𝑗) = 𝜖 .

∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑝 ∈ 𝑃𝑟𝑜𝑑 (𝐷), 1 ≤ 𝑗 ≤ 𝑎𝑟𝑖𝑡𝑦 (𝑝), 1 ≤ 𝑟 < 𝑖 :
((𝑜𝑝𝑖 = 𝑖𝑑 (𝑝)) ∧ (𝑎𝑖 𝑗 = 𝑖𝑑 (𝑟𝑒𝑡𝑟 ))) =⇒ (𝑡𝑟 = 𝑡𝑖𝑑 (𝑇𝑦𝑝𝑒 (𝑝, 𝑗)))

(6)
A terminal symbol 𝑡 ∈ 𝑇𝑒𝑟𝑚(𝐷) cannot be used as argument

𝑗 of an operator 𝑖 if it does not have the correct type:

∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑝 ∈ 𝑃𝑟𝑜𝑑 (𝐷), 1 ≤ 𝑗 ≤ 𝑎𝑟𝑖𝑡𝑦 (𝑝),
𝑠 ∈ {𝑟 ∈ 𝑇𝑒𝑟𝑚(𝐷) : 𝑇𝑦𝑝𝑒 (𝑟 ) ≠ 𝑇𝑦𝑝𝑒 (𝑝, 𝑗)} :

(𝑜𝑝𝑖 = 𝑖𝑑 (𝑝)) =⇒ ¬(𝑎𝑖 𝑗 = 𝑖𝑑 (𝑠))
(7)

The arity of an operator 𝑖 can be smaller than 𝑘 ; in that case,
the empty symbol is assigned to the arguments that exceed the
production’s arity:

∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑝 ∈ 𝑃𝑟𝑜𝑑 (𝐷), 𝑎𝑟𝑖𝑡𝑦 (𝑝) < 𝑗 ≤ 𝑘 :
(𝑜𝑝𝑖 = 𝑖𝑑 (𝑝)) =⇒ (𝑎𝑖 𝑗 = 𝑖𝑑 (𝜖))

(8)

Output. Let 𝑇𝑦𝑝𝑒 (𝑜𝑢𝑡) be the type of the program’s output,
𝑃𝑜𝑢𝑡 ⊆ 𝑃𝑟𝑜𝑑 (𝐷) be the subset of production rules with return
type equal to 𝑇𝑦𝑝𝑒 (𝑜𝑢𝑡), i.e., 𝑃𝑜𝑢𝑡 = {𝑝 ∈ 𝑃𝑟𝑜𝑑 (𝐷) : 𝑇𝑦𝑝𝑒 (𝑝) =
𝑇𝑦𝑝𝑒 (𝑜𝑢𝑡)}, 𝑅𝑒𝑡 = {𝑟𝑒𝑡𝑖 : 1 ≤ 𝑖 ≤ 𝑛} represent the set of return
symbols in the program and End be the type of node that ends a
flow and returns the effective output. Given that a flow can have
multiple nodes pointing to an End node, there is more than one
possible output result. Let 𝐿 denote the set of all nodes that point
to an End node. Since the last nodes of a program correspond to
the program’s output, the operator of each one of the nodes in
𝐿 must be one of the productions in 𝑃𝑜𝑢𝑡 :

∀ 𝑙 ∈ 𝐿 :
∨

𝑝∈𝑃𝑜𝑢𝑡
(𝑜𝑝𝑙 = 𝑖𝑑 (𝑝)) (9)

Input. Let 𝐼 be the set of symbols that represent the inputs
provided by the user. We want to guarantee that all such inputs
are used in the generated programs:

∀𝑠 ∈ 𝐼 :
∨

1≤𝑖≤𝑛

∨
1≤ 𝑗≤𝑘

(𝑎𝑖 𝑗 = 𝑖𝑑 (𝑠)) (10)

Must use previous nodes. A node 𝑖 must use any previous
node in 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑙𝑒𝑠 (𝑖). Hence, one of the children must use
the result of any previous node.

∀1 ≤ 𝑖 ≤ 𝑛, 𝑟 ∈ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑙𝑒𝑠 (𝑖) :
∨

1≤ 𝑗≤𝑘
(𝑎𝑖 𝑗 = 𝑖𝑑 (𝑟𝑒𝑡_𝑟 ))

(11)

4.2 PUFS-L Framework
The PUFS-L framework integrates list manipulation operators in
PUFS+. There exist 12 built-in OutSystems operators we want to
synthesize, such as ListAppend or ListFilter,and a custom
operator ListMap that is not built-in, but is included in our DSL
and then compiled into OutSystems code.

The methodology chosen for the implementation was the
addition of a single node of type ExecuteAction,which is filled
by the SMT solver with the list manipulation operators.

After the implementation of the base PUFS-L framework with
the chosen methodology, two additional variants were created:
PUFS-L-Ordered, which aims to create a more intelligent sketch
enumeration; and PUFS-L-Assisted, which builds upon the PUFS-
L-Ordered framework by allowing the user to provide assistance
in more complex functions.

4.2.1 PUFS-L-Ordered Framework. The PUFS-L-Ordered frame-
work has the same capabilities as the PUFS-L framework, the
difference being that the sketch enumeration is guided by the
input and output types.

The first change in the sketch enumeration process was fil-
tering with the goal of minimizing the redundant attempts that
could never satisfy the input/output examples. The filter consists
of a set of rules, described below:



(1) If the input/output examples do not contain any element
of type list, then all sketches with ExecuteAction nodes
are skipped and the list manipulation operators are not
added to the DSL.

(2) If the input/output examples have an element of type list,
then at least one ExecuteAction node must be in the
sketch.

(3) If the output is of type list, then all nodes pointing to the
End node must be of type ExecuteAction.

The second change to the sketch enumerator was the sorting
of sketches. From the analysis performed on real-world user ex-
amples of the OutSystem’s platform in the example generation,
flows with list manipulation operators usually are accompanied
by other list manipulation operators and not assign and condi-
tional ones. Thus, the sketches are sorted from the largest to the
smallest amount of ExecuteAction nodes.

4.2.2 PUFS-L-Assisted Framework. The PUFS-L-Assisted frame-
work introduces the possibility for the user to provide assistance
in more complex functions. Operators such as ListFilter or
ListMap iterate through a list and apply an operation to each el-
ement, which resulted in the need for a new type. This new type
is similar to a traditional programming lambda (an anonymous
function that can be dynamically defined), in that a dynamically
chosen operation is performed to each element of a list. PUFS-L-
Assisted allows the user to provide the lambda operations as a
constant to guide the synthesizer to a more efficient search.

There are two types of lambdas: CmpLambda and OpLambda.The
former allows a comparison operation to be performed to each el-
ement of a list, which is used by operators such as ListIndexOf
and ListAll. The latter allows an arithmetic operation to be
performed to each element of a list, which is used by the op-
erator ListMap.In case the user does not provide the lambda
operation as a constant, the new types CmpLambda and OpLambda
can be instantiated through new operations, which are Assign
nodes. However, this adds an extra node, which, depending on
the size of the example, can greatly increase the complexity of
the problem and, therefore, the time required to find a solution.

4.2.3 Changes in Implementation. Now we will present the
changes in the implementation to create the different variants
of PUFS-L.

Encoding variables
Remember that𝐷 is the DSL and 𝑃𝑟𝑜𝑑 (𝐷) is the set of produc-

tion rules. In the PUFS-L framework, 𝐷 consists of the produc-
tions𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷) and𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑 (𝐷), i.e., 𝑃𝑟𝑜𝑑 (𝐷) =
𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷) ∪ 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑 (𝐷). 𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑃𝑟𝑜𝑑 (𝐷),
which is used to denote the set of productions that return a
Boolean value, is extended to have the list manipulation opera-
tors that return a Boolean value.

Constraints
The PUFS-L framework introduces a single constraint: if a

node 𝑖 corresponds to an ExecuteAction node, then the respec-
tive symbol must be a production in 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑 (𝐷).

∀ 1 ≤ 𝑖 ≤ 𝑛 : 𝐻𝑜𝑙𝑒𝑇𝑦𝑝𝑒 (𝑖) = 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛 =⇒∨
𝑝∈𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑 (𝐷)

𝑜𝑝𝑖 = 𝑖𝑑 (𝑝) (12)

Sketch Enumerator

The original framework consisted in two different types of
nodes: the Assign node and the If node. The new framework
adds one more type of node ExecuteAction. The main differ-
ence is that Assign nodes may be replaced by the new node type.
Thus, in the end, we create a list of sketches with all possible
combinations of the nodes for each depth.

DSL and Interpreter
PUFS-L introduces a series of new types and operators, which

need to be present in the DSL and have a corresponding in-
terpreter specifying their behaviour. Thus, both the DSL and
interpreter were extended to have the new values and operators.

A grammar builder was created to dynamically build the
grammar from the DSL according to the type of framework
configured and the input/output example types. To achieve this,
we have a grammar builder with only the PUFS+ framework’s
values and operators, and a grammar builder with only the
list manipulation’s new values and operators. Then, there is a
main grammar builder that, according to the configuration and
example types, builds the final grammar from the individual
builders. For instance, for the PUFS and PUFS+ frameworks and
when the input/outputs do not have any list, the grammar must
only have the values and operators of the PUFS framework, i.e.,
neither type list nor operators that make use of lists.

4.3 PUFS-SQL Framework
The PUFS-SQL framework combines the PUFS framework (PUFS+
version) with data aggregation capabilities. The goal of this
framework is to allow the synthesis of aggregation queries us-
ing input/output examples. Two variants of PUFS-SQL were im-
plemented: PUFS-SQL#FreeForm, which synthesizes free-form
SQL queries; and PUFS-SQL#Templates, which only generates
programs with queries that follow specific patterns that were
observed to be highly frequent in real-world OutSystems code
by the OutSystem’s AI R&D team.

Similarly to PUFS-L-Ordered, ordered versions of PUFS-SQL#
FreeForm and PUFS-SQL#Templates were also implemented.

The PUFS-SQL#FreeForm framework consists in the inte-
gration of an SQL synthesizer into our synthesizer. From the
synthesizers presented in section 3, we decided to use the CUBES
synthesizer since it seems to be the most complete in terms of
the range of SQL queries supported. The new DSL has 2 new
different types: Table and Structure.The former is a table that
can be provided by the user. The latter is a python dictionary that
corresponds to a row of a table, where the keys are the columns
of the table and the values of the dictionary are the values of
the row. A table with multiple rows is represented through a
list of elements of type Structure.Besides the new types, the
DSL now has new possible types that come from the CUBES
specification, such as Col and FilterCondition. All of these
types are generated by the CUBES framework and correspond
to operators used in SQL queries.

The PUFS-SQL#Templates variant relies on an internal anal-
ysis performed on a dataset of real-world applications imple-
mented in OutSystems. The analysis concluded that certain types
of templates represent the majority of the data aggregation oper-
ations performed using the OutSystems platform. The templates
that were implemented represent a total of 82.79% of all aggre-
gates. An advantage of using templates versus the free form
version is that complex operations, that would require more
than one node, can be fulfilled with a single one.



Independently of the version, a new operation was added,
referred to as getStructureElement, which retrieves the value
of a column of a given Structure object. This operation is used
in an Assign node. In assignment, conditional and data aggrega-
tion benchmarks, the node of type Assign can never be present,
since the output of a query is a list of structures, which implies
the need of a node of type ExecuteAction to obtain an element
of the list before performing any assignment operations on the
value. The Assign cannot be used before a node DataSeteither,
because the constants the SQL queries accept must be provided
in the input of the specification to create the DSL values, such
as the filter conditions.

4.3.1 PUFS-SQL-Ordered Framework. The PUFS-SQL-Ordered
framework introduces the ordering and filtering of sketches, us-
ing the input and output types, and, similarly to the PUFS-SQL
framework, it supports both the FreeForm and Templates vari-
ants.

The first change in the sketch enumeration process for the
PUFS-SQL-Ordered framework was filtering, with the goal of
minimizing the redundant attempts that could never satisfy
the input/output examples. The filter consists of a set of rules,
described below:

(1) Any sketch with nodes of type Assign are skipped since
PUFS-SQL benchmarks do not make use of this type of
node.

(2) If the input and output do not have any tables, then all
sketches with DataSet nodes are skipped and the data
aggregation operations are not added to the DSL.

(3) If the input/output examples contain a table, then at least
one DataSet node must be in the sketch.

(4) If the output is of type list, then all nodes pointing to the
End node must be of type DataSet.

The second change to the sketch enumerator was the sorting
of sketches. From the analysis performed on real-world user ex-
amples of the OutSystem’s platform in the example generation,
flows with data aggregation operations usually were accompa-
nied by other data aggregation operations, conditional nodes or
list manipulations. Thus, considering only assignment, condi-
tional and data aggregation nodes, the sketches are sorted from
the largest amount of DataSet nodes to the smallest.

4.3.2 Changes in Implementation. Now we will present the
changes in the implementation to create the different variants
of PUFS-SQL.

Encoding variables
Remember that 𝐷 is the DSL and 𝑃𝑟𝑜𝑑 (𝐷) is the set of pro-

duction rules. In the PUFS-SQL framework, 𝐷 consists not only
of the productions 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷), but also of the productions
𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑃𝑟𝑜𝑑 (𝐷), i.e., 𝑃𝑟𝑜𝑑 (𝐷) = 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷) ∪𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑃𝑟𝑜𝑑 (𝐷).

Constraints
Similarly to PUFS-L, PUFS-SQL introduces a single constraint:

if a node 𝑖 corresponds to a DataSet node, then the respective
symbol must be a production in 𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑃𝑟𝑜𝑑 (𝐷).

∀ 1 ≤ 𝑖 ≤ 𝑛 : 𝐻𝑜𝑙𝑒𝑇𝑦𝑝𝑒 (𝑖) = 𝐷𝑎𝑡𝑎𝑆𝑒𝑡 =⇒∨
𝑝∈𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑃𝑟𝑜𝑑 (𝐷)

𝑜𝑝𝑖 = 𝑖𝑑 (𝑝) (13)

Sketch Enumerator

The original framework consisted in two different types of
nodes: the Assign node and the If node. The new framework
adds one more type of node DataSet. The main difference is that
Assign nodes may be replaced by the new node type. Thus, in the
end, we create a list of sketches with all possible combinations
of the nodes for each depth.

DSL and Interpreter
Similarly to PUFS-L, PUFS-SQL introduces a series of new

types and operators, which need to be present in the DSL and
have a corresponding interpreter specifying their behaviour.
Thus, both the DSL and interpreter were extended to have the
new values and operators.

The integration with CUBES for free-form queries consisted
in creating a parser that transformed our benchmarks into a
format compatible with CUBES. Then, we generated the CUBES’
DSL and parsed all of the values and operators obtained to our
own DSL. Finally, the interpreter of CUBES was added to the list
of interpreters. The decider, when verifying the input/output
examples, calls the interpreter corresponding to the operator
used in the solution.

Furthermore, the main grammar builder, depending on the
framework configured, creates the corresponding grammar from
the DSL. For instance, for the PUFS-SQL framework, the gram-
mar should contain the operators and values of the PUFS+ frame-
work and the SQL queries.

4.4 PUFS-X Framework
The PUFS-X framework combines all of the features of PUFS+,
PUFS-L and PUFS-SQL into a single framework.

Just like for PUFS-L and PUFS-SQL, an ordered version of
PUFS-X was also implemented.

4.4.1 PUFS-X-Ordered Framework. The PUFS-X-Ordered frame-
work introduces the ordering and filtering of sketches, using
the input and output types. The filtering of sketches follows the
same idea as the one seen in the PUFS-L-Ordered and PUFS-
SQL-Ordered frameworks, i.e., minimize the solutions that could
never satisfy the input/output examples.

The filter has the following set of rules:
(1) If the input/output examples do not contain any tables,

then all sketches with DataSet nodes are skipped and the
data aggregation operations are not added to the DSL.

(2) If input/output examples do contain neither lists nor ta-
bles, then all sketches with ExecuteAction nodes are
skipped and the list manipulation operations are not
added to the DSL.

(3) If input/output examples contain a table, then at least one
DataSet node must be in the sketch.

(4) If input/output examples contain a list and no tables, then
at least one ExecuteAction node must be in the sketch.

(5) If the output is of type list, then all nodes pointing to
the End node must be either of type DataSet or of type
ExecuteAction.

Besides the referred set of rules, there is a verification of
whether the order of nodes make sense. Nodes of type If are
always accepted independently of where they appear. However,
the remaining nodes should only be accepted if their location in
the sketch makes sense. For instance, a DataSet node only uses
input values to perform a query and never an output of another
node. Thus, a DataSet node can always be at the beginning.



Lets start with the first node. If there are any tables in the
input, then the first node should be of type DataSet, because it
only uses as arguments the input values. If there are no tables
but there are lists in the input, the first node should be either
of type ExecuteAction or of type Assign, because the node of
type DataSet will never be used when no tables are in the input.
In case there are neither tables nor lists in the input, then the
first node should always be of type Assign since there will be
no need for any list operations or any SQL queries.

After the first node, if we have a node of type DataSet we
expect to see another DataSet or an ExecuteAction node, be-
cause only these nodes can use an output of a DataSet node. An
Assign node only performs operations on elements that are not
lists and not tables. If we have a node of type ExecuteAction,
we expect to see either another ExecuteAction node or an
Assign node since both nodes may use each other. Finally, if
we see an Assign node we expect another Assign node or an
ExecuteAction node for the same reason.

4.4.2 Changes in Implementation. Now we will present the
changes in the implementation to create the different variants
of PUFS-X.

Encoding variables
Remember that𝐷 is the DSL and 𝑃𝑟𝑜𝑑 (𝐷) is the set of produc-

tion rules. In the PUFS-X framework, 𝐷 consists in the produc-
tions 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷), the productions 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑 (𝐷)
and the productions𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑃𝑟𝑜𝑑 (𝐷), i.e., 𝑃𝑟𝑜𝑑 (𝐷) = 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑜𝑑 (𝐷) ∪
𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑 (𝐷) ∪ 𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑃𝑟𝑜𝑑 (𝐷). 𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑃𝑟𝑜𝑑 (𝐷)
denotes the set of productions that return a Boolean value.

Sketch Enumerator
The PUFS-X framework adds on the the PUFS+ framework

the node types ExecuteAction and DataSet, the main differ-
ence being that the Assign nodes may be replaced by the new
node types. Thus, we create a list of sketches with all possible
combinations of the nodes for each depth.

DSL and Interpreter
With the PUFS-X framework, the DSL and interpreters do not

change. However, the grammar builder adds a new configuration
that creates a grammar with all operators and values mentioned
thus far, i.e., PUFS+, PUFS-L and PUFS-SQL operators and values.

5 EVALUATION

Implementation
The synthesizer is implemented in Python 3.8 and it uses the

Z3 SMT solver 4.8.10 with theory of Linear Integer Arithmetic.
The results were obtained using an Intel(R) Core(TM) computer
with an i5-8350U 1.70 GHz CPU, using a memory limit of 2 GB,
running Ubuntu 20.04 LTS and with a time limit of 500 seconds.

Benchmarks
In order to evaluate our synthesizer, benchmarks are retrieved

from real-world examples developed using the OutSystems plat-
form. The benchmarks represent the different flows that our
framework should be able to synthesize and is composed of
391 distinct instances. They are divided into different groups
based on the type of nodes that appear in the respective solution.
For example, one type of benchmark uses only assignment and
conditional nodes, whereas another uses only list manipulation
nodes. Then, within their group, the benchmarks are divided

Figure 4: PUFS vs PUFS+

into different sub-groups that represent the number of nodes
required by the respective solution.

The goal of this experimental evaluation is to answer the
following questions:

(1) How does PUFS+ compare to PUFS? (section 5.1)
(2) How do the Multi-Gen and Single-Gen encodings com-

pare? (section 5.1)
(3) Howmany, how complex and how precise can each frame-

work solve the benchmarks?
(4) How does the addition of new features affect the results

of simpler benchmarks?
(5) How does the pruning and ordering of sketches affect the

performance of the frameworks?

5.1 PUFS+ framework
As shown in Figure 4, PUFS performs significantly worse than
the PUFS+ framework, especially with sketches having 2 or more
nodes. PUFS+ with the Multi-Gen encoding (PUFS+#MG) aver-
ages 23.37 seconds, andwith the Single-Gen encoding (PUFS+#SG)
the average lowers to 15.45 seconds per benchmark. Both encod-
ings are able to correctly solve around 90% of the benchmarks.
In contrast, PUFS averages 31.6 seconds, only being able to solve
40.45% of benchmarks. Furthermore, for the same benchmarks,
PUFS spent 53.57 seconds to find the solution in contrast to
the 6.1 seconds spent by PUFS+ with either encodings. These
results are expected due to the changes in PUFS+ to improve
the performance of the framework.

The difference between the encodings is only visible in bench-
marks with more than 2 nodes, which comes as expected since
1 node and 2 node sketches have the same connectivity inde-
pendently of the encoding. In 3 node benchmarks, PUFS+#MG
averaged 77.28 seconds, whereas PUFS+#SG averaged 49.19 sec-
onds. Furthermore, for the same 3 node benchmarks, PUFS+#MG
spent 1617.29 seconds in contrast to the 1116.06 seconds spent
by PUFS+#SG. The difference between the performance of the
two types of encoding is expected, because the Single-Gen en-
coding forces a node to use the single previous node, whereas
the Multi-Gen encoding allows solutions where any previous
node can be used creating a larger search space.

PUFS had a precision of 81.81%, which means that 81.81%
of solutions found were the intended ones. In contrast, both
PUFS+#MG and PUFS+#SG had higher precision of 87%. Upon a
closer look at the examples for each benchmark, the majority of
cases where the solution found by the synthesizer was not the
intended one correspond to edge cases. An example of an edge
case in our synthesizer involves the operations greater_than



Figure 5: PUFS-L variants on list manipulation benchmarks

and greater_or_equal_than for which some examples did not
specify properly the edge case that would differentiate the two
operations.

5.2 PUFS-L framework
Figure 5 shows the performance of the different variants of
PUFS-L running on benchmarks containing list manipulation
operations, i.e., benchmarks with only list manipulation nodes
and benchmarks with list manipulation, assignment and condi-
tionals.

The impact of having the sketches pruned and ordered can be
observed by comparing PUFS-L and PUFS-L-Ordered. PUFS-L
averages 25.99 seconds whereas PUFS-L-Ordered averages 18.61
seconds. Besides the difference in efficiency, PUFS-L-Ordered is
able to have a higher precision of 91.45% in contrast to 87.66%.
Hence, the ordering and pruning has a positive impact on the
framework. Similarly to the analysis of the PUFS+ framework,
upon a closer look at the examples for each benchmark, the
majority of cases where the solution found by the synthesizer
was not the intended one corresponds to edge cases or, in the case
of list manipulation, to the confusion between the operations
ListAppend and ListInsert. The former is explained in section
5.1. The latter corresponds to the edge case of the operation
ListInsert, which, when provided with an index that is higher
than its size, functions as a ListAppend by inserting the element
at the end of the list.

PUFS-L-Assisted was able to average 4.44 seconds in finding
a solution with a precision of 98%. In contrast, both PUFS-L and
PUFS-L-Ordered ended with a precision of 94%. PUFS-L-Assisted
was also able to find all solutions. The difference in the average
runtime between the PUFS-L-Ordered and PUFS-L-Assisted is
not visible in every benchmark. The only benchmarks where
PUFS-L-Ordered has more difficulty are the ones that require
types CmpLambda and OpLmabda. This is expected since PUFS-
L-Ordered does not have any assistance from the user, which
means it not only needs to have an extra node to create the
operation CmpLambda or OpLmabda, but it also needs to find the
correct one. With the user providing the complex operation, the
PUFS-L-Assisted framework is able to maintain a steady runtime
throughout all benchmarks.

5.3 PUFS-SQL framework
Figure 6 shows the performance of the different variants of
PUFS-SQL running on benchmarks containing data aggregation
operations, i.e., benchmarks with only data aggregation nodes
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and benchmarks with data aggregation, assignment and condi-
tionals. Note that there were additional benchmarks that were
ran but were not portrayed in the figure that specifically tar-
gets the use cases where templates cannot find a solution. The
conclusion from those benchmark results reinforced, i.e. that
pruned and ordered variants have a better performance (PUFS-L-
Ordered#FreeForm was more efficient than PUFS-L#FreeForm).

In Figure 6, the difference between the frameworks is evident.
First, the template version performs significantly better than
free-form, being able to solve every benchmark in contrast to the
free-form version that only finds 56.41% of the correct solutions.
The average time for PUFS-SQL#Templates was 20.49 seconds
and for PUFS-SQL-Ordered#Templates was 13.09 seconds. On
the other hand, PUFS-SQL#FreeForm averaged 17.74 seconds
and PUFS-SQL-Ordered#FreeForm only 10.17 seconds. Despite
the average being lower for the free-form version, we must note
that it was only able to find 22 out of the 42 solutions and that the
average time does not take into account the solutions not found
within the time limit of 500 seconds. The template version is able
to find all solutions and the average time takes into account all
42 benchmarks. Besides the difference between the template and
free-form versions, the difference between the frameworks that
are pruned and ordered compared to their respective simpler
versions is clear for both the template and the free-form versions.

The total time spent on the same 21 benchmarks consoli-
dates the conclusions, with PUFS-SQL#Templates spending 64.28
seconds, PUFS-SQL-Ordered#Templates 31.71 seconds, PUFS-
SQL#FreeForm 310.92 seconds and PUFS-SQL-Ordered#FreeForm
210.56 seconds. The ordered versions are significantly more ef-
ficient and the free-form version is around 5 times worse than
the template version.

We must note that for the PUFS-SQL frameworks the pre-
cision was 100%, thus showing there was no ambiguity in the
benchmarks that were ran. This can be attributed to the distinct
operations of the DSL for SQL queries and to the fact that the
selected benchmarks did not contain edge cases.

5.4 PUFS-X framework
The PUFS-X framework was ran against every benchmark be-
cause it supports the synthesis of all features, i.e., data aggrega-
tion, list manipulation, assignment and conditionals.

Figure 7 shows the results for the best performing frame-
works of PUFS, PUFS-L and PUFS-SQL, also including PUFS-
X and PUFS-X-Ordered. The performance of all frameworks
is similar with the exception of PUFS-X, which is clearly the
worst framework. PUFS-X, without the pruning and ordering
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of sketches, has to enumerate through 3 sketches for depth 1, 9
sketches for depth 2 and 36 sketches for depth 3. In contrast, all
of the remaining frameworks presented only have to enumerate
through 1 sketch for depths 1 and 2, and 2 sketches for depth 3.
With the intelligent enumeration, even though all frameworks
except PUFS#SG have additional features, the impact on the
performance is minimal or simply none. PUFS-L-Ordered even
ended with a higher average of 14.9 seconds in contrast to the
simplest framework PUFS#SG which had an average of 15.45
seconds. Knowing that both frameworks, after the pruning and
the ordering of sketches are identical in their DSL and SMT con-
straints, the only difference is the order in which the SMT solver
returns candidate solutions, which happens to show slight better
results for PUFS-L-Ordered. The precision of all frameworks is
similar, which is expected in an identical DSL.

In regards to list manipulation benchmarks and then data ag-
gregation benchmarks, the results showed that PUFS-X contin-
ued to be the clear worst, showing even further how the pruning
and ordering of sketches improves the performance of frame-
works. For list manipulation benchmarks, PUFS-X-Ordered was
able to have a similar performance to PUFS-L-Ordered since it is
able to remove all sketches with DataSet nodes due to the lack
of tables in the input. However, in data aggregation benchmarks,
since ExecuteAction nodes can follow DataSet nodes, after
the pruning and ordering, PUFS-X-Ordered ended with more
sketches to enumerate than PUFS-SQL-Ordered, ending with a
worse performance of an average of 97.21 seconds in contrast to
38.16 seconds.

All in all, for all 391 benchmarks, PUFS-X ended with an
average of 37.71 seconds whereas PUFS-X-Ordered spent on
average 15.4 seconds, thus reinforcing, once again, the difference
in performance when the pruning and ordering of sketches is
performed.

6 CONCLUSION
In this thesis, we proposed a solution to further simplify the users
experience with the OutSystems platform. Our final version,
PUFS-X, supports the synthesis of assignments, conditionals,
list manipulations and data aggregation. The extensive evalua-
tion performed showed us that the pruning and the ordering of
sketches significantly improves the efficiency of the frameworks.
Also, with the pruning, the addition of new features only affects
the performance in benchmarks containing data aggregation.
Hence, PUFS-X is able to solve as many benchmarks and with
a similar performance as PUFS+ and PUFS-L. Furthermore, we

concluded that the use of templates for SQL queries is signifi-
cantly better than free-form querying.

For future work, the synthesizer can be extended to contain
more features, such as loops and exception handlers. Right now,
it is prepared to accept any new types of nodes with their respec-
tive DSL operators and values. The bottleneck is the exponential
growth with the number of different nodes a sketch can have.
Hence, it would be interesting to also see new different methods
to increase the performance of the frameworks, such as a user
providing a sketch that is already partially completed guiding
the synthesizer to a more efficient search. Another possibility is
to make use of multi-core processing and have multiple threads
separately trying to find a solution.

The benchmarks used were manually created through the
observation of real-world examples, creating a possible bias. It
would be interesting to use real users to test the usability of
the synthesizers and analyze the ambiguity generated by the
examples.
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