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Abstract

One of the most important goals in NHS-based countries is to ensure the efficient provision of healthcare
services to its population while balancing costs and access. Thus, planning an optimized hospital network is
crucial for providing good quality healthcare, since decisions related with the location of the hospital, demand
allocation and installed capacity directly impact the daily activities of the hospitals and, consequently, the
service level of the healthcare. This thesis aims to develop and implement an optimization approach to plan
a hospital network, within the scope of a National Health Service, considering relevant aspects of hospital
networks and apply it to a real case study in the Portuguese health system. In order to do this, a bi-objective
mixed-integer linear programming model is presented in which two objective functions are minimized. The
first one minimizes expected travel time to reach hospitals weighted by demand, which relates to improvement
in access to healthcare. The second one minimizes expected operational and investment hospital costs, which
relates to efficiency. Uncertainty in the demand for service was also incorporated. The model was applied to
the national continental network of Cardiology inpatient service and to the Regional Health Administration of
Alentejo’s network of Internal Medicine inpatient service. The results demonstrated that decentralizing care
can improve geographical access and reinforced the need to make a compromise between equity in access to
healthcare and costs.
Keywords: Hospital Referral Network, Location-allocation, Multi-Objective Programming, Uncertainty
Modelling, Operational Research in Healthcare

1. Introduction

Planning a hospital network is an extremely impor-
tant task in healthcare. Every person needs healthcare
services and that care is best provided when hospitals
are placed in optimal locations and have sufficient re-
sources to serve the demand. Decisions like hospital lo-
cation and demand allocation are often involved in the
strategic planning of a network of hospitals and they
directly impact the life of the patients. Questions like
”How long should a person take to get to a hospital?”,
”How large should a hospital be?”, ”Should a trans-
fer be necessary, to which hospital should a patient be
transferred?” and ”How many hospitals should a cer-
tain region/city/country have?” are key to this type of
planning.

Over the last few years, the organization of hospi-
tals in Portugal has gone through some changes. With
the goal of improving Portuguese healthcare, the focus
has been on building a connected network of hospitals
that provides healthcare in a coherent manner and is
based on principles of rationality, complementarity and
efficiency [15]. Due to the recent organizational modi-
fications, there is a lack of updated investigation that
depicts the present state of healthcare services in Por-
tugal. According to the research done for this thesis,
and until the time of completion and delivery of this
work, there is no model for the planning of hospital
networks that considers hospitals as multi-level struc-
tures according to medical specialties, adapted to the
Portuguese case.

This being said, the main goals of this work, in the
context of supplying hospital healthcare services in a

country with an National Health Service (NHS), are to
develop a mathematical model to support decisions con-
cerning planning hospital networks. And, in this way,
help optimize hospital services in order to improve ac-
cess, while balancing costs and efficiency.

2. Background and related work

Despite the legal and political commitments to social
rights, health inequalities caused by some social deter-
minants are still a large concern in Portugal’s NHS [19].
One of these determinants is geography. Due to the in-
sufficient supply of healthcare services in the interior,
more rural, regions of Portugal, people from these lo-
calities experience more difficulties in accessing these
services when compared with people who live closer to
cities. This represents a considerable gap in the provi-
sion of care to elderly populations since these regions
have a larger percentage of older populations [7]. To be
able to bridge this gap and walk towards a more equi-
table society, careful and intelligent planning is funda-
mental. Healthcare planners in countries with an NHS
have to make several decisions in terms of hospital lo-
cation, organization and resource allocation in order to
reach certain policy objectives (e.g. geographic equity
of access, quality and efficiency while minimizing costs)
[12]. A task that is usually complex because some of
these goals can be conflicting. Improving geographical
access may require building smaller hospital facilities
closer to the populations, which can lead to higher inef-
ficiencies and costs [13]. The next section presents some
of the most relevant work done in health care facility lo-
cation modeling worldwide and in Portugal.
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Location models in the healthcare sector

In a real world scenario, every logistic operation will
have budget constraints. Some authors tackled this
problem together with the problem of accessing health
facilities in rural populations in a province in Iran [5].
The model they designed took into account the costs of
opening the facilities and building network links. How-
ever, this model assumed facilities to be uncapacitated
which can be unrealistic. On this topic, there was an
attempt to design a reliable healthcare network whose
facilities have a limited capacity [16]. In their work,
these authors recognized the risk of deterioration of pa-
tients’ health conditions due to limits in the capacity
and investigated a queue system that was designed, in
advance, to address this situation. Another paper pre-
sented a general mathematical formulation that tried to
maximize access to public services and then apply it to
a realistic case based on the Toronto hospital network
[1]. The authors also addressed aggregate capacity de-
cisions on top of determining the configuration of the
network. Other researchers also tried to improve local
accessibility, equity and efficiency in health by devel-
oping a location model in a multi-objective framework
[11]. The object of study, in this case, were community
based organizations. In the context of the Portuguese
health system, the literature about locating hospitals is
not extensive. Nonetheless, some work has been done
regarding hospital network planning. In specific, work
that considers hospitals as diverse multi-service struc-
tures inserted in a complex network [17, 18, 12, 13, 2, 3].

3. Mathematical Model

The problem at hand consists of locating hospitals and
allocating demand to those hospitals. Each hospital is
viewed as a multi-service facility with n medical spe-
cialties. Each hospital has a certain level l according
to each medical specialty. Consequently, it is part of
a hierarchical structure, where hospitals refer to each
other when needed, creating a hospital referral network.
Transfers can occur between lower level hospitals to hos-
pitals in the same level or higher. This network must
take into account the improvement of access and the
minimization of costs.

The problem described is now mathematically formu-
lated in multi-objective Mixed-Integer Linear Program-
ming. The model presented here is based on Model 1
of ”Location-allocation approaches for hospital network
planning under uncertainty” [13], which considers loca-
tion a first-stage decision and allocation a scenario de-
pendent decision. The indices, sets, parameters, weights
and decision variables used are described in sections 3.1,
3.2 and 3.3. The objective functions and constraints are
presented in 3.4.

3.1. Indexes and sets

t, τ ∈ T : Set of time periods in which the planning
horizon is divided

i ∈ I : Set of demand points
j, j′, k, k′ ∈ J : Potential locations for a hospital

Jo ⊂ J : Set of hospitals initially existing
Jc ⊂ J : Set of hospitals that are not opened at the

initial moment
Jm ⊂ J : Set of hospitals that are initially existing

and must be kept open
s ∈ S : Set of possible scenarios for demand
n ∈ N : Set of medical specialties that can exist in

a hospital
l, p, p′ ∈ L : Set of levels for a certain medical specialty

3.2. Parameters and weights

d1ij : Average travel time from demand point i to

hospital j

d2jk : Average travel time from hospital j to hospital k

α : Weight to differentiate a first entry in the system
and a transfer

Ps : Probability of scenario s

DSNLt
inls : Demand for medical specialty n in level l in

location i scenario s and time t

capmint
j : Minimum capacity required in hospital j in time t

capmaxt
j : Maximum capacity required in hospital j in time t

dmax : Maximum travel time allowed for a population to
access hospital care

Nt : Maximum number of hospitals operating in time t

poptj : Population in demand point j in time t

popmin : Minimum population required to open a hospital in
location j

yeart : Number of years of time period t

OCt
j : Unit cost for providing care in hospital j in time t

ICt
j : Fixed investment cost in a new hospital (j ∈ Jc)

providing care in time t

CCt
j : Fixed cost of closing an existing hospital (j ∈ Jo)

providing care in time t
nspec : Total number of existing medical specialties

nmin : Minimum number of medical specialties in a hospital
M : Large coefficient that is chosen to be larger than any

reasonable value that a variable
may take (used in big-M constraints)

3.3. Decision Variables
Xt

j : =1 if a hospital is located at site j in time t; 0

otherwise

Zt
jnl : =1 if a hospital located at site j has medical

specialty n in level l in time t; 0 otherwise

Y t
ijnls : Flow from demand point i to hospital j in medical

specialty n in level l in time t and scenario
s (flow from demand points to hospitals)

Y Tt
jknlps : Flow from medical specialty n in level l in hospital j

to medical specialty n in level p in hospital
k (flow related to intra- and inter-hospitals transfers)

Y Ct
jnls : Patients that stay (receive care) in hospital j

in medical specialty n in level l and scenario s

captj : Capacity in hospital j in time t

Scaptjs : Expected utilization of hospital j in time t and

scenario s

3.4. Objective functions and constraints
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The model considers two objective functions repre-
senting the access and costs objectives. Equation 1 min-
imizes the expected travel time to reach hospital care
weighted by demand. Equation 2 minimizes expected
costs, both operational and investment costs. Equations
3 and 4 refer to demand satisfaction and flow conserva-
tion constraints. Equations 5, 6 and 7 refer to hospital
capacity. Equations 8, 9 and 10 are closest assignment
constraints. Equations 11-16 are related to opening,
closing and locating hospitals. Equations 17-24 are con-
straints about medical specialties. Finally, equation 25
represents standard integrality and non negativity con-
straints.

4. Results and Discussion

In this section, the model presented in the last section is
implemented, solved for two real cases described in sub-
section 4.1 and its results are presented and discussed
in subsection 4.2.

4.1. Characterization of the cases

As previously mentioned, the model was tested for two
real cases, each case with one medical specialty and one
hospital service at a time. The choice of the medical
specialties and services was made according to the infor-
mation available and how recent this information was.
Consequently, the two cases are: the inpatient service
in Cardiology in continental Portugal (case 1) and the
inpatient service in Internal Medicine in the Regional
Health Administration of Alentejo (case 2). This deci-
sion meant to demonstrate the full potential of appli-
cability of the model, since a bigger scale was explored
in the first case and a smaller scale, with uncertainty in
demand incorporated, was explored in the second case.
All the sets and subsets are described in table 1 and the
parameters and weights (except d1ij , d2jk, DSNLt

inls and
poptj) are described in table 2.

Table 1: Definition of sets and subsets.
Sets Case 1 Case 2
T : {1, 2, 3} {1, 2, 3}
I : {1, 2, 3, ..., 18} {1, 2, 3, ..., 11}
J : {1, 2, 3, ..., 39} {1, 2, 3, ..., 9}
Jo = J {∅}
Jc = {∅} J
Jm = Jo {∅}
S : {1} {3}
N : {1} = {Cardiology} {1} = {Int. Medicine}
L : {1, 2, 3} {1, 2, 3}

Table 2: Definition of parameters and weights
Parameters Case 1 Case 2
α : 0.5 0.5
Ps : 1 1/3, 1/3, 1/3
capmint

j : 50, 500, 1000 0

capmaxt
j : 1400, 1900, 6000 (3500, 5500, 6000)× 5

dmax : 70 90
Nt : 39 9
popmin : 10 000 10 000
yeart : 1 5
OCt : - 347× 7.4, 491× 8
ICt : - 200000, 224500
CCt : - 200000, 224500
nspec : 50 50
nmin : 1 = Cardiology 1 = Int. Medicine
M : 1 000 000 1 000 000

Note: Values of capacities correspond to values of capacities for
hospitals in levels I, II and III, respectively. The first value of
the costs corresponds to costs in hospitals in level I and the
second value of the costs corresponds to costs in hospitals in
level II and III.

4.1.1 Case 1
The document that was central as a source of infor-

mation for this referral network was the ”Rede de Ref-
erenciação de Cardiologia - Proposta de Atualização”
(Cardiology Referral Network - Proposal for an update)
[14].
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The planning horizon (T set) is divided into three peri-
ods. The demand points (I set) being considered are the
districts of Portugal, which makes a total of 18 demand
points. The J set represents the potential locations for
siting hospitals. For the Cardiology test situation, the
J set comprises of exact 39 locations where there were
already hospitals with a Cardiology service in 2013 [14].
Since this test situation was one primarily for allocation
of demand, the subset Jo, which represents the hospi-
tals initially existing, has all the locations of J . In other
words, it is equal to J . As a result, Jc is an empty set
since it represents all the closed facilities at the begin-
ning of the planning horizon. Also for the reason stated,
Jm is equal to Jo, as all the hospital that are initially
existing must be kept open. Furthermore, there is only
one scenario s for demand and one medical specialty
(Cardiology) n as previously said. The number of levels
l each hospital can have, according to this specialty, is
three.

The value for the α parameter acts as a weight in the
objective function that minimizes travel times. It serves
to distinguish first entries in the system and transfers
between hospitals. Here, it is defined as 0.5 because
it was considered more crucial for a person to reach a
hospital quickly as a direct entry than as transfer from
another hospital, since the latter may already have re-
ceived preliminary hospital care. The probability of sce-
nario s, Ps, is 1 since there is only one scenario. In
terms of minimum and maximum capacity for the hos-
pitals, the values are the same for each time period, and
were based on the minimum and maximum number of
people admitted in the Cardiology service per level in
the year 2013, respectively. The dmax parameter repre-
sents the maximum amount of time that a person has
to travel to reach a hospital (as a direct entry) and it is
defined as 70 minutes. The maximum number of open
hospitals at a given time period (N t) is set at 39. The
minimum population (popmin) for a hospital to open is
set at 10 000 people (parameter not used in this case
since all the hospitals are open). The parameter yeart

is set at one so each time period has the duration of
one year. The maximum number of medical special-
ties (nspec) a hospital can have is 50 and the minimum
(nmin) is 1. The M (big m) parameter is defined as
1 000 000. To calculate the travel time between every
demand point i and every hospital candidate site j, d1ij ,
and the travel time between every pair of hospitals j
and k, d2jk, the Haversine distance between the pair of
points mentioned above was calculated and converted
into time. For distances equal or less than 50 km, the
converting velocity used was 50 km/h. For distances
greater than 50 km, the velocity used was 100 km/h.
The demand for healthcare (DSNLt

inls ) to be calculated
was the number of people per district in need of care
in the Cardiology specialty per level in a year. Given
that each time period was only a year, it was safe to
assume the demand did not change significantly, so the
demand in every time period was the same. The values
for DSNLt

inls were calculated using information from the
Instituto Nacional de Estat́ıstica and from the Ministry
of Health [9, 14]. Finally, the population in demand
in the area of each hospital (poptj) was defined as the
population that existed in the location of every hospital

with Cardiology service in 2013 [6].

4.1.2 Case 2

In this case, the document that provided the informa-
tion needed for the Internal Medicine referral network
was the ”Rede de Referenciação de Medicina Interna”
(Internal Medicine Referral Network) [4].

The planning horizon (T set) is divided in three pe-
riods. The demand points (I set) considered are 11 in
total. Each sub-region of Alentejo’s RHA is divided in
3 demand points, except one (Alentejo Litoral) that is
divided in 2. In terms of hospital locations (J set), 9
were considered. All locations, similarly to case 1, were
locations where a hospital already exists or where there
is a possibility for building one. Two of the locations are
in Lisbon but, due to the lack of higher level hospitals
in the region being studied, the hospitals at those loca-
tions are part of the Internal Medicine referral network.
No hospitals were considered to be opened in the first
time period (Jc is equal to J and Jo is empty) and no
hospitals were force to be kept open (Jm is also empty).
In this case, three scenarios for demand were considered.
One representing low demand (s=1), another high de-
mand (s=2) and another representing a baseline level
of demand (s=3). Finally, the number of levels each
hospital can have, according to this specialty, is four.
However, no hospital is ranked at level III, so level III
and IV are merged into one. Subsequently, the L set
has three levels.

The value for α is the same as in the first case. Re-
garding the probability of the three scenarios, each sce-
nario is considered to be equally likely so Ps is 1/3 for
every s. In terms of minimum and maximum capac-
ity for the hospitals, the values are the same for each
time period. The minimum is zero and the maximum
is based on the number of people admitted in the In-
ternal Medicine service per level in the year 2016. The
dmax parameter is 90 minutes. Since this value is very
high for a travel time, some other lower travel times
were explored further in the solutions. The maximum
number of open hospitals at a given time period (N t)
is set at 9. The minimum population (popmin) for a
hospital to open is set at 10 000 people and every re-
gion for hospital candidate sites fulfilled this condition.
This means popmin parameter will not limit the open-
ing of a hospital in this case. The parameter yeart is
equal to 5 years, so each time period has that duration.
Thus, the planning horizon lasts 15 years. Regarding
hospital costs, the information was based on the paper
mentioned before [13]. The maximum number of medi-
cal specialties (nspec) a hospital can have is 50 and the
minimum (nmin) is 1. The M (big m) parameter is de-
fined as 1 000 000. The values for d1ij and d2jk were calcu-
lated similarly as in case 1. The velocities of travel con-
sidered were 80 km/h for distances equal/below 60 km
and 100 km/h for the remainder. According to a study
performed by the National Institute of Statistics [8], the
population of Alentejo will decrease in the next decades.
In order to have reliable results and because demand is
considered a great source of uncertainty, three possible
scenarios were created. In all scenarios, the popula-
tion never grows. The difference in each scenario is the
rate of population decrease. In a pessimistic scenario
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(s1), the population decreases at a faster rate than the
present one. In a baseline scenario (s3), it continues
to decrease in a rate equal to the present rate. Lastly,
in an optimistic (s2) scenario, it decreases at a slower
rate than the present rate. The prediction for the resi-
dent population of Alentejo in these three scenarios are
represented in figure 1.

Figure 1: Projections for population growth in Alentejo
(data taken from [8]).

The resident population in each demand point var-
ied, according to the different projection scenarios and
across the different time periods. In consequence, the
total number of expected people in demand for Internal
Medicine services also varied, in the different scenarios
and time periods. The demand per level was then cal-
culated similarly to case 1 and the final values of DSNLt

inls

were obtained, for all elements of S and T . It is relevant
to note that the distribution of population through the
different sub-regions did not change. In other words,
the total population of Alentejo and the population of
each sub-region changed but the size of the population
in each sub-region, in relation to each other, was as-
sumed to be always the same. The projections for the
population were calculated using data from [8]. The
poptj values were defined according to the population
that existed in the location of every hospital with Inter-
nal Medicine service in 2016. It was assumed to be the
same for every time period of the planning horizon [10].

4.2. Computational results

Before testing with real instances, the model was first
tested with fictional data in order to be validated. The
model was implemented and solved in PythonTM, us-
ing the docplex - IBM Decision Optimization CPLEX
library. Every test was performed in a dual-core Intel®

CoreTM i5-5250U CPU @ 1.60GHz and 4GB 1600MHz
DDR3 memory computer with the macOS Big Sur (Ver-
sion 11.6) operating system.

4.2.1 Case 1

As explained before, for this case, only objective func-
tion 1 (relative to improvement of access) was optimized
since there would be no costs of opening/closing hospi-
tals. The flows from demand points to hospitals, from
hospitals to other hospitals and the number of people
served at each hospitals are represented, in figure 2 (in
respect to time t = 1).

The location of the hospitals was not decided by the

model. However, the level, the number of people each
hospital serves and the flows between hospitals were.
Through the analysis of figure 2, the first thing that
can be verified is that the demand is allocated to the
nearest hospital for every demand point except one.
The demand from Porto is allocated to a hospital in
another district (hospital 31 in Aveiro) instead of be-
ing allocated to any of the hospitals in Porto that may
be, technically, at a closer distance (e.g. 4, 5, 6, 30
or 36). According to the travel times d1ij calculated by
the model, d11,30 < d11,31 < d11,6 < d11,36 < d11,5 < d11,4
(where Aveiro is demand point i = 1 and the j’s are
the hospital locations). This means that the demand
from Aveiro should have been assigned to hospital 30,
since it is the closest hospital. However, hospital 30,
being a level III hospital, is at full capacity already. So,
the model assigned the demand from Aveiro to the next
closest hospital, which is hospital 31. In reality, hospi-
tal 31 is not the closest hospital but, since the travel
times were calculated through an approximation, in the
model it is. An issue like this could be solved by adjust-
ing the values used for velocity, for the distance turning
point or by attributing the actual travel times to each
demand point-location pair.

Besides this, it can verified that each hospital is only
treating the patients that need care at the level the hos-
pital is or at a level below (and transfers the rest), as
it was intended. Another observation that can be made
regarding transfers flows is the fact that some hospitals,
due to overcrowding, are transferring patients to multi-
ple other hospitals. That is, the hospitals are transfer-
ring patients, not because they do not have the ”level
required”, but because they are at full capacity. It is the
case of hospital 38 for example. This hospital is located
in Lisbon, where the demand for hospital care is high.
Because this hospital is the nearest to the demand point
that represents the Lisbon district, it has to receive all
patients from that district plus some level III patients
from other hospitals in other districts, since hospital 38
is also the closest level III hospital in the Lisbon vicini-
ties. Level III patients are a priority for hospital 38
because they can only be treated in level III hospitals.
Thus, other patients that can be treated in other hospi-
tals (level I patients for example) are being transferred
to other hospitals (23, 32, 33, 39). Even though this
does not represent exactly the situation in real life, some
conclusions can still be drawn if the demand from these
hospitals is seen as aggregated. It is clear that these
hospitals are serving the demand from Lisbon plus the
higher level patients from other districts, which is in
fact what happens in real life. If needed, the demand
point from Lisbon could be divided into several demand
points and the demand would be distributed more uni-
formly by other hospitals and would not be allocated
to one single hospital. Still on this topic, some hospi-
tals (19, 21, 20...) do not receive any direct entries.
Thereby, a conclusion that can be drawn from these re-
sults is that the choice of demand points for these types
of models is crucial. Differences in demand point size
and location can influence the model tremendously and,
due to that fact, should be chosen carefully.

In terms of classifying each hospital in a level, there
are some differences between the results of the model
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Figure 2: Model results for demand allocation in case 1.

and reality. There were no costs included in this ver-
sion of the model, which means, without any constraints
in this aspect, the model would have classified the ma-
jority of hospitals as level III because these are the ones
that can treat the most types of patients. However,
level III hospitals are more expensive to build and to
maintain than level II or level I hospitals, so some re-
strictions had to be imposed. In 2013, the number of
hospitals/hospital centers classified at level I was 29,
level II was 9 and level III was 4 [14]. In the model, the
number of hospitals allowed to be classified at each level
was kept the same but the model was allowed to choose
which of the hospitals were classified at each level. The
results show that the model assigned level III to hospi-
tals 30, 35, 37 and 38 instead of hospitals 36, 37, 38 and
39. Two of the classifications (37 and 38) coincide but
two of them do not. The choice of classifying hospital 30
as a level III hospital instead of level 36 is not too odd
because they are both in localized in Porto. The more
interesting choice was the decision to classify as level
III a hospital in Faro (hospital 35) instead of hospital
39 in Lisbon. Not considering costs, this choice seems
to make more sense than locating another level III hos-

pital in Lisbon since in the south of Portugal there are
few hospitals and the ones that exist are not that spe-
cialized. If it were considering costs, the model might
make a different decision since it may not be worth to
maintain a level III hospital for the demand that exists
in the south. In addition to changes in the classifica-
tion of level III hospitals, there were also changes in the
other levels. In general, the model also improved access
to level II care since it classified hospitals, not previ-
ously classified as level II, as level II that are located
further away from large cities (e.g. 10, 14). Again,
this was expected since the model did not include costs.
Nonetheless, considering only accessibility, these classi-
fications would be the best choices for improving access
to health care services and, consequently, to increase
equity in access to those services.

4.2.2 Case 2

In case 2, the model was solved for a smaller geo-
graphic area. In this way, it was possible to make sev-
eral iterations by varying the values of the parameters
and incorporating uncertainty. In this case, the two ob-
jective functions (eq. 1 and eq. 2) were considered, as
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well as the three demand scenarios and the three time
periods. In the beginning of the planning horizon, no
hospitals were considered to be open. Some additional
constraints related to levels were added to the model
to increase its realistic aspect. The hospitals in Lisbon
were forced to be classified as level III in the medical
specialty in question and the number of hospitals at that
level was limited to two. This means no other hospital,
except those in Lisbon, could have that classification.
Also, the number of hospitals classified with level II
was not allowed to be more than 2. These restrictions
served as additional baseline budget constraints since
an operating hospital has different expenses depending
on its level.

Analysis of trade-offs between costs and travel times

The solutions obtained for the model are represented as
points in figure 3 and information about the solutions
is described in table 3.

Figure 3: Solutions obtained for case 2 with determin-
istic and stochastic results.

Table 3: Results obtained with different parameters val-
ues and scenarios.

Point Costs (in €) Travel time(in min)

A (s1) 2, 30 × 109 3, 41 × 106

B (s1) 2, 08 × 109 4, 19 × 106

A’ (s2) 2, 42 × 109 3, 60 × 106

B’ (s2) 2, 20 × 109 4, 44 × 106

A” (s3) 2, 36 × 109 3, 50 × 106

B” (s3) 2, 14 × 109 4, 31 × 106

C’ (s2) 2, 42 × 109 3, 60 × 106

D’(s2) 2, 20 × 109 4, 44 × 106

E’ (s2) 2, 57 × 109 3, 61 × 106

F’(s2) 2, 20 × 109 4, 49 × 106

A* 2, 36 × 109 3, 51 × 106

B* 2, 14 × 109 4, 28 × 106

C* 2, 30 × 109 3, 30 × 106

D* 2, 10 × 109 4, 08 × 106

Each point represents a value of minimized costs in
euros (€), which can be operational or related to open-
ing/closing hospitals, and a value of minimized travel
times to reach hospital services weighted by demand
in minutes. The results for the deterministic model in
the three scenarios are represented by points A, A’, A”,
B, B’ and B”. The location of each point represents
different configurations of the hospital network, which
implies trade-offs between costs and time travelled to
access hospitals services. Each of these points was calcu-
lated by minimizing each objective function separately.

Points A, A’ and A” were obtained by first minimiz-
ing the time/distance travelled to reach hospitals ser-
vices, fixing that objective function on that minimum
value and then minimizing the objective function about
costs. Points B, B’ and B” were calculated similarly
but the objective functions switched places. First, the
costs objective function was minimized and fixed on the
minimum value discovered, then the travel time objec-
tive function was minimized. This was done for every
demand scenario. Therefore, it can be said that points
A, A’ and A” represent the improved access solution,
while points B, B’ and B” represent the minimum cost
solution, respectively for low (s1), high (s2) and inter-
mediate (s3) demand. Points A* and B* refer to the
combination of all scenarios in one solution. Thus, they
represent the stochastic results, where each scenario was
considered and had the same probability of happening.

Table 4 introduces the calculated trade-off values of
costs and travel times going from one improved access
solution to an improved costs solution, as well as the cal-
culated trade-off values of costs and travel times going
from one improved costs solution to an improved access
solution. Table 5 introduces the calculated trade-off val-
ues of costs and travel times going from one improved
access solution to a different improved access solution,
as well as the calculated trade-off values of costs and
travel times going from one improved costs solution to
a different improved costs solution.

Table 4: Trade-offs between costs and travel times (im-
proved access/costs solutions and improved costs/access
solution).

Difference between going
from an improved access solution
to an improved costs solution

Difference between going
from an improved costs

to an improved access solution

Solutions Costs Travel time Solutions Costs Travel time

A - B -9,2% 22,8% B - A 10,1% -18,6%
A’ - B’ -9,2% 23,2% B’ - A’ 10,1% -18,8%
A” - B” -9,2% 23,0% B” - A” 10,2% -18,7%
C’ - D’ -9,2% 23,2% D’ - C’ 10,1% -18,8%
E’ - F’ -9,2% 24,1% F’ - E’ 16,7% -19,4%
A* - B* -9,2% 22,1% B* - A* 10,1% -18,1%
C* - D* -8,8% 23,7% D* - C* 9,6% -19,2%

Table 5: Trade-offs between costs and travel times (im-
proved access/access solutions and improved costs/costs
solution).

Difference between going
from one improved access

solution to another

Difference between going
from one improved costs

solution to another

Solutions Costs Travel time Solutions Costs Travel time

A - A” 2,7% 2,7% B - B” 2,7% 2,8%
A” - A’ 2,8% 2,8% B” - B’ 2,8% 2,9%
A’ - C’ 0,0% 0,0% B’ - D’ 0,0% 0,0%
A’ - E’ 6,0% 0,3% B’ - F’ 0,0% 1,1%
A* - C* -2,6% -5,9% B* - D* -2,1% -4,6%
A” - A* 0,0% 0,1% B” - B* 0,0% -0,7%

Table 6 relates to the network configurations. The
rows symbolize hospital locations and the columns sym-
bolize solutions (or hospital configurations). The last
column corresponds to the real configuration of the net-
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work [4]. Each square corresponds to the state of each
hospital in each solution. The possible states for each
hospital (in the medical specialty in question) are: open
and in level I (I); open and in level II (II); open and in
level III (III); or closed (-). It should be noted that
in the R column, hospital F is not closed but does not
belong to the NHS so it is considered to be closed.

Table 6: Configuration of the hospital network for the
different solutions.

A B A’ B’ A” B” C’ D’ E’ F’ A* B* C* D* R

A I I I I I I I I I I I I I I I

B II II II II II II II II I II II II II II I

C I I I I I I I I II I I I I I II

D I I I I I I I I I I I I I I -

E II I II I II I II I I I II I III I I

F I I I I I I I I I I I I I III -

G I II I II I II I II II II I II II II I

H III III III III III III III III III III III III III III III

I III III III III III III III III III III III III III III III

From a preliminary analysis of the deterministic re-
sults, it can be verified that optimistic scenarios gener-
ate the most expensive solutions, pessimistic scenarios
generate the most low-cost solutions and baseline sce-
narios generate an intermediate cost solution (costA <
costA′′ < costA′ and costB < costB′′ < costB′). From
the observation of table 6, it is possible to see that the
configurations in A, A” and A’ are the same; as well
as the configurations in B, B” and B’. This indicates
that the change in costs and travel times is not related
to network configurations or hospital classifications. It
is related to the size of the demand being served. Op-
timistic scenarios correspond to a prediction in which
the values for demand are highest, followed by the val-
ues from the baseline scenario and the values from the
pessimistic scenario. Higher values for demand equates
to more hospital utilization and that can lead to higher
costs. From table 5, it can be verified that the differ-
ence in costs, of going from a solution in a pessimistic
scenario to a solution in a baseline scenario, is of 2,7%.
This is true for comparisons between both improved ac-
cess solutions and improved costs solutions (A-A” and
B-B”). The difference in costs, of going from a solution
in a baseline scenario to a solution in an optimistic sce-
nario, is 2,8%, which is slightly higher. This is verified
for passing from one improved access solution to an-
other (A”-A’) and for passing from one improved costs
solution to another (B”-B’).

In can also be verified that the trend stays the same
for time travelled. The travel time increases with the in-
creasing of the demand (timeA < timeA′′ < timeA′ and
timeB < timeB′′ < timeB′). This can be explained by
the need to cater to more people. More people in need
of reaching hospitals services, which means more peo-
ple for which the model has to minimize travel time,
can lead to more travel time for everyone. Through the
analysis of table 5, it can be verified that the differ-
ence in travel times, of going from an improved access
solution in a pessimistic scenario to an improved ac-
cess solution in a baseline scenario, is of 2,7% (A-A”).
However, the difference in travel times, of going from
an improved costs solution in a pessimistic scenario to
another improved costs solution in a baseline scenario,
is of 2,8% (B-B”). Furthermore, the difference in travel
times, of going from an improved access solution in a

baseline scenario to another improved access solution
in an optimistic scenario, is 2,8% (A”-A’). And the dif-
ference in travel times, of going from an improved costs
solution in a baseline scenario to another improved costs
solution in an optimistic scenario, is 2,9% (B”-B’).

Regarding the comparison (in table 4) between going
from one improved access solution to an improved costs
solution, it is possible to see that the costs decrease by
9.2% in every scenario (A-B, A’-B’ and A”-B”). How-
ever, the increase in travel times is not equal for all
those cases. For the same decrease in costs, going from
an improved access solution to an improved costs so-
lution in a pessimistic scenario (A-B), corresponds to
the lowest increase in travel times (followed by A”-B”
and then A’-B’). When going from an improved costs
solution to an improved access solution, the difference
in costs is the same for the pessimistic and optimistic
scenario (B-A and B’-A’) and is equal to 10,1%. For
the baseline scenario, the value is 10,2%. Similar to the
previous situation, the decrease in travel times is not
equal for all those cases but is very close. The largest
decrease (18,8%) in travel times going from an improved
costs solution to an improved access solution happens
in the optimistic scenario (B-A).

Looking at the stochastic results (points A* and B*),
it is possible to affirm that the values of costs and travel
times are quite similar to the ones obtained for the de-
terministic solution in the intermediate scenario (A* ∼=
A” and B* ∼= B”). The differences between solutions,
both in costs and travel times, is less than 1% and there
are no differences in the configurations of the network.
In terms of comparing the price of going from an im-
proved access solution to an improved costs solution, it
is clear that for a decrease in costs of 9,2%, the increase
in travel times is only 22,1%. In the case of going from
an improved costs solution to an improved access solu-
tion, it is can be seen that for a decrease of 18,1% in
travel times, the costs increase 10,1%.

Points C’, D’, E’ and F’ represent other relevant de-
terministic solutions obtained by changing the values of
some of the parameters. These variations were all per-
formed using the optimistic scenario since this was the
scenario that predicted the highest value for demand.
Points C’ and D’ are the solution for when the maximum
travel time allowed - dmax - was lowered to 50 minutes
(it was 90 minutes before). Points E’ and F’ are the so-
lution for when the maximum capacity - capmaxt

j - for
all hospitals was reduced to 80% of what it was before.
Points C* and D* are the stochastic results for a case
in which the model was allowed to place an extra level
III hospital in Alentejo, which represented a possibility
to stop transferring patients to hospitals outside this
region. By observation of these new results, it is clear
that the solution found for points C’ and D’ (where
the maximum travel time was reduced) is very similar,
both in time and in costs, to the deterministic solution
found with the original value of dmax (C’ ∼= A’ and D’ ∼=
B’). It is also apparent that the values of the improved
cost solution corresponding to a lowered capmaxt

j are
very close to the corresponding improved cost solutions
in the optimistic scenario (F’ ∼= B’ ∼= D’). However,
the improved access solution, even though it has the
same travel time value (timeE′ ∼= timeA′ ∼= timeA∗),
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it differs significantly on the costs value. The different
of lowering the maximum capacity correspond to a in-
crease in costs of 6,0% and an increase of travel times
(0,3%). This difference can be justified by some dif-
ferences in the configurations of the hospitals and by
a bigger percentage of patients being treated in higher
level hospitals.

Regarding the points C* and D*, related to a solu-
tion where an additional level III hospital was allowed
to be placed, it is possible to see that the improved
access solution had a lower value of travel time when
compared to the other stochastic improved access solu-
tion (timeC∗ < timeA∗), corresponding to a 5,9% dif-
ference. This verifies that, when there is a higher level
hospital inside the Alentejo region, the patients do not
need to be transferred to hospitals in Lisbon and the
total travel time is lower. The same happens with the
improved costs solutions (costsD∗ < costsB∗), which
seems counter-intuitive because a solution that has 3
hospitals in level III (D*) is less expensive than another
with 2 hospitals in level III (B*), for the same num-
ber of hospitals in level I and II. This, however, can be
explained by the operational costs considered for these
locations and by some transfers the hospitals are doing.
In the future, it would be of great interest to explore
different decisions regarding parameter settings to com-
pare how similar the solutions would be.

Analysis of changes in network configurations

In addition to analysing travel time and cost values, it
is important to look at the actual solutions found for
the configuration of the network of hospitals. To aid
in this discussion, table 6 must be analysed. From ob-
serving the table, it can be confirmed that all hospitals
were opened in every solution. It can also be verified
that there are some changes in the classification of the
hospitals. The solution that is closest to the real con-
figuration is the the improved costs solution for when
maximum capacity is at 80% (E’). It is also clear that
the model, when given the possibility of placing two
level II hospitals, always chose to do it, even when costs
were minimized first. In part, this validates the govern-
ment’s decision to build another higher level hospital to
provide better care at those levels in this region. More-
over, when given the possibility of placing an extra level
III hospital, the model chose to do it in both solutions
(C*, D*). Additionally, in all solutions but one, the
model decided to locate a level II hospital in location
B. However, the second location for the level II hospital
varied according to which objective function was mini-
mized first. In improved access solutions, that hospital
was placed in location E, while in improved costs, it was
placed in location G. These decisions are to be expected
since location E is more central and closer to more de-
mand points than location G. The same can be said for
the decision on where to locate the III level hospital in
C* and D*.

Other conclusions, related to the reliability of the
model, can be inferred. When comparing solutions with
different values for maximum travel time allowed dmax,
it can be stated that the configurations are the same
for dmax = 90 (A’ and B’) and dmax = 50 (C’ and
D’). When comparing solutions with different values for

maximum capacity capmaxt
j , it can be concluded that

the configuration is the same for the full capacity im-
proved cost solution (B’) and the capacity at 80% im-
proved cost solution(F’). For the improved access solu-
tions (A’ and E’), the configuration are very similar but
the hospital in locations B and C are ”switched”.

Comparing the solutions’ configurations to the real
one, it is possible to observe that in the latter the lo-
cation of the only level II hospital is very central and
localized near the most populated demand point (i = 6).
While in the results obtained, where it was possible to
place at least two level II hospitals, these hospitals were
placed in opposites sides of the region. Location B is
near the top of the geographic area under evaluation
and locations E and G are near the bottom. To see if
these results may be in part due to the differences in op-
erational costs explained earlier and if the model would
behave differently if the costs (and maximum capacities)
were the same for every location, a quick version of the
model, was designed and solved. The results show that
the solution would not be very different. Therefore, the
model seems to suggest that the optimal solution may
involve the decentralization of higher level care, instead
of building all specialized hospitals in the more popu-
lated areas.

In order to better visualize the solutions proposed by
the model, an example of a configuration based off of
solution A* was mapped in figure 4.

From a first glance, it can be verified that all demand
from demand points seems to be being assigned to the
closest hospitals, as expected. Another anticipated con-
clusion is the transfer of all level II patients from level
I hospitals to the closest level II hospitals (B and E).
Also an expected decision is the transfer of all level III
patients from all hospitals to the closest level III hos-
pitals (H and I). In addition, it is possible to see that
some hospitals are being more used than others. For
example, hospital E is receiving the level II transfers
of all, but one, level I hospitals and hospital I is re-
ceiving the level III transfers of all, but two, hospitals.
One other observation that can be made is that peo-
ple from one sub-region are being assigned to a hospital
outside their sub-region. It is the case of demand point
5. The demand from this demand point, which belongs
to Alentejo Central, is being assigned to a hospital in
Alto Alentejo. This may not be a very critical issue
since all sub-regions are still a part of the Alentejo’s
Regional Health Administration, which is the most im-
portant unit in health issues.

5. Conclusions and Future Work
In summary, there are still many questions to answer
in this field. Nonetheless, some things can be con-
cluded. The importance of multi-objective models, in
order to obtain realistic solutions, is highlighted. The
implemented model also suggests that, in general, the
solutions that most improve access to services are the
most expensive ones. So, a compromise must be made
between equity in access and costs to obtain an optimal
feasible solution. The results also suggest that, as it was
expected, decentralizing care, or building more hospitals
in non-central areas, can improve geographical access.
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Figure 4: Model results for situation A* in case 2 -
stochastic results with minimization of objective func-
tion 1 (minimization of travel times). Demand points
1, 2 and 3 correspond to Alto Alentejo; 4, 5, 6 corre-
spond to Alentejo Central; 7 and 8 correspond to Alen-
tejo Litoral; and 9, 10 and 11 correspond to Baixo Alen-
tejo

Especially, hospitals providing higher level and special-
ized care. Another conclusion is the fact that the choice
of the size and location of demand points can influence
greatly the solution. In terms of robustness and reli-
ability, the model was tested for different numbers of
demand and values for parameters. The solutions did
not differ too much from each other so it is possible to
say the model is quite robust and reliable. Although,
the model must be tested with more variations of inputs
in order to reach that conclusion with a higher degree
of certainty.

In the future, it would be interesting to solve the
model for a superior number of N . It should be noted
that for these cases it may be necessary to use heuristics
or metaheuristics, since including more specialties (or
more referral networks) would increase the dimension
of the problem. Furthermore, since the model presented
does not allow transfers between medical specialties, it
would be interesting to incorporate that in the model.
It would also be of interest to work alongside decision
makers in this field to get their inputs about their pref-
erences and the values for some weights (e.g. α weight,
or objective function weights if the bi-objective model
is solved through Weighted Sum method (WSM)).

Finally, it can be concluded that location-allocation

modeling is a broad topic that has multiple promis-
ing and yet unexplored questions. More specifically,
location-allocation models in the health sector can be
an extremely useful tool to aid in the government’s
decision-making and to help increase equity in health
care.
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