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Abstract

Software Defined Networking (SDN) aims to provide dynamic and programmable solutions for network
management. In its original form, the SDN paradigm decouples the data and control plane of conventional
network devices, centralizing all control functions of the SDN domain on a single server with a unified
view of the network. Network devices were therefore simplified to a reduced set of data plane operations,
programmed using a standard protocol. OpenFlow was possibly the most successful SDN protocol.
However, it soon became clear that most of the flexibility offered by the SDN model was limited by the
capabilities and fields defined in the OpenFlow protocol itself. As a way of overcoming this limitation, an
alternative model was proposed based on the concept of programmable data plane. P4 (Programming
Protocol-independent Packet Processors) is a language developed for specification of how data packets
should be processed and forwarded on compatible network devices. Since rules and packet actions are
defined at the bit and byte level, P4 offers a more detailed control over network traffic than the one possible

by OpenFlow solutions.

This work presents a novel load balancing solution using the P4 language which includes a
production-grade SDN controller, a programmable data plane compatible with any number of connected
servers, and a stateful load balancing algorithm with fault tolerance capabilities.
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1. Introduction

The conventional implementation of SDN networks
assume non-programmable switches configured
with a remote controller through a well-defined pro-
tocol. This is overall a good solution for some occa-
sions; however, it has some known shortcomings
that will be discussed in section 2.1. P4 was pro-
posed [1], in the scope of data plane programma-
bility, as a domain-specific language, designed to
program network nodes, and overcome the limi-
tations imposed by the traditional static SDN data
plane architecture.

The P4 programming language offers many ben-
efits, including high customizability of the data
plane and control over the code running in the net-
work nodes. One of the key aspects of P4 is to
be protocol-independent. Switches can be loaded
with large range of programs and each might have
a different implementation of multiple protocols.
Having one of these nodes in a network makes it
very agile for future implementation of new proto-
cols or network functions. The network adminis-
trator just needs to extend the P4 code in the al-
ready available and ready programmable-switches.
Changes can be simple like changing how a proto-
col analyses a packet’s header information, adding

keys to be matched in a flow-table or adding new
counters and sending the information to the net-
work controller for statistics purpose either to have
a better understanding of the network traffic, or
to populate big data for network analysis and ma-
chine learning. Switches are also available to more
complex network functions, like adding a firewall
function to filter unwanted traffic or installing a load
balancer in the network for better control of flows.

Shifting a network from fixed-function to
programmable-switches is an investment for future
network implementations, the network becomes
agile and available to change how the data plane
works. However, P4 still presents considerable
challenges before it can be widely deployed. The
motivation for this work was the need to explore
and contribute to new P4 applications.

The objective of this thesis is to bring Data Plane
Programmability in the form of the P4 language to
Software Defined Networks, in order to have a bet-
ter understanding of the capabilities that P4 can
introduce in a Software Defined Network.

The implementation should provide the network
with benefits from Data Plane Programmability
such as high flexibility to include new protocols, as
well as provide a base platform to build and install



new functions, making a transition to a future-proof,
agile network.

To accomplish the work proposed, we have de-
cided to develop a load balancing system. These
are relatively easy to develop, while at the same
time giving some room for improvements and cre-
ativity. Also, Load Balancers are crucial compo-
nents of data centers, being therefore ubiquitous
and fundamental to the day to day life of a modern
technological society.

The goal of this work is to contribute to im-
prove P4 solutions for LB applications. To accom-
plish that we propose to consult articles mention-
ing Load Balancing projects and develop an ap-
plication based on these. The objective is to im-
prove the solutions found by introducing new fea-
tures and overcoming some of their obstacles an
limitations. Later in this thesis we will make a fur-
ther comparison between our work and the related
work.

2. Background

In this chapter, we present an introduction to Soft-
ware Defined Networking (SDN),Data Plane Pro-
grammability (DPP), and Load Balancing Algo-
rithms.

2.1. Software Defined Networking

Traditional switches have the data and control
plane in the same physical device. This allows for a
fast and reliable operation since each switch is in-
dependent from all others in a network. However,
distributed architectures are much harder to opti-
mize since they rely on local algorithms that usu-
ally do not have a global network view. Moreover,
in large networks, managing and configuring every
switch manually can be tiring and cumbersome.

Software Defined Networking (SDN) offers an
architecture that decouples the control and data
planes from switches, centralizing all control de-
cisions in a single computing platform. The con-
trol plane operates the logic and makes decisions
about network traffic management and optimiza-
tion, while the data plane focuses on forwarding
the packets based on the control plane’s decisions.
The data plane uses flow tables that contain ac-
tions to execute when a match is made. Flow ta-
bles can be dynamically populated with rules by
the control plane according to operation require-
ments. This architecture provides a strong founda-
tion, since decisions depart form a single controller
who has a global and unified view of the overall net-
work, and the decisions are no longer distributed
all over the network.

Separating the data and control planes from the
same device originates a new network architec-
ture. It consists of three layers vertically aligned.
The central layer is the Control Layer, where net-
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Figure 1: SDN architecture layers.

work traffic is managed. It receives instructions
from an Application Layer through the Northbound
Interface. The bottom layer is called the Infrastruc-
ture Layer, it is built by network devices and con-
tains the data plane. The Control Layer uses the
Southbound Interface to communicate with the In-
frastructure Layer sending instructions for how to
manage network traffic. Figure 1 shows an illustra-
tion of the three layers present in a SDN architec-
ture.

The SDN controller, also known as Network Op-
erating System, is the key component for a SDN
network to work properly. It can be found in the
Control Layer and consists of an application that
manages network flows [2].

The development of SDN was based on the de-
coupling of the control and data planes. The inter-
face between these two planes is called the South-
bound Interface (SBI). OpenFlow (OF) was the first
widely adopted protocol for the SBI communica-
tion.

The OpenFlow protocol is managed by the Open
Networking Foundation (ONF), a consortium lead-
ing the adoption of open network standards such
as SDN and OpenFlow, as well as other tech-
nologies related to automatic network manage-
ment. OpenFlow Development started in 2008 [3]
at Stanford University and since its initial inception
many versions have been launched. Each version
introduced new network protocols which tried to
complement previous versions. The first version
only supported four common protocols, while the
latest version of OpenFlow lets us add and delete
forwarding entries for about 50 different header
types [4].

OpenFlow can add, update, and delete entries in
the flow tables of network switches. Each entry has
a set of match keys and instructions to follow on
matching packets. This can either be done proac-



tively, by populating tables before packet hits the
network node, or reactively, in response to arriving
packets that do not match any of a preloaded set
of rules.

OpenFlow is a powerful protocol that gives the
user full control of packet forwarding rules and the
network data plane through the control plane.

However, OpenFlow has some known shortcom-
ings. Supporting many protocols makes the proto-
col almost universal, since it can be used in nearly
every situation possible. However, it increases the
development complexity. In fact, each OpenFlow
version requires new OpenFlow switches, since
these too should implement every protocol ad-
dressed by it. This makes it harder for vendors to
adapt, especially if some of the protocols are very
specific and rarely used. This results in bloated
network switches which customers may not want
due to configuration complexity. Usually, users only
need a limited amount of network protocols to run
in their network.

2.2. Data Plane Programmability

Control plane programmability had a rapid evolu-
tion in the past 10 years and brought many bene-
fits for SDN networks. However, data plane devices
have remained nearly the same: a static platform
that is essentially “dumb” and only forwards pack-
ets based on the input it receives from the control
plane. This model has also contributed for limited
data plane development.

In order to overcome these limitations, a new
“top-down” model was proposed that introduces
the concept of data plane programmability [4]. In-
stead of having a limited switch and adapting the
control plane to its capabilities, as in a “bottom-
up” model, this model suggests a dynamic data
plane where the programmer can edit the forward-
ing plane with custom protocols and features. That
way the control plane does not need to worry about
the switches’ or the SBI limitations.

Programming the data plane gives the user
much more detailed control over how packets are
processed. New protocols and features can be im-
plemented and managed out of the scope of Open-
Flow or other rigid SBI protocols.

The next section will focus on P4 and its features
regarding data plane programmability.

P4 (Programming Protocol-independent Packet
Processors) is a programming language used to
specify how a switch’s data plane processes packet
forwarding. While being protocol independent, it
is also target independent, which means that the
same code can run in different hardware platforms,
provided that they adhere to a common hardware
specification [1].

The P4 programming language was initially
proposed in [1] and later developed by the P4

language consortium, a non-profit organization
formed by a group of network engineers. It has
since joined the Open Networking Foundation [5].

Originally proposed in 2014, P4’s objective pre-
sented three main goals:

» Reconfigurability Let programmers change
how packets are processed.

» Protocol Independence Free switches from
unwanted protocol integrations.

» Target Independence For hardware interop-
erability.

When OpenFlow was first engineered there
was a big difference in processing speed be-
tween fixed-function ASICs (Application-Specific
Integrated Circuit), and programmable switches.
The latter were not viable for networks with fast
paced traffic since they were much slower. Nowa-
days however, there are programmable chips that
are as fast as fixed-function ones, called PISA
(Protocol Independent Switch Architecture) chips.
These are very versatile, and its flexibility allows
for programmers to implement and try new network
protocols as soon as they are designed [4].

Because P4 is used to program the data plane
in software switches, it is usually used in SDN net-
works. It takes advantage of the fact that SDN de-
couples planes to program the data plane without
worrying much about the control plane. It is an ap-
pealing addition for SDN networks that need data
plane flexibility. P4 can be used to modify already
existing protocols and add extra features or include
meters for network statistics. P4 switches can also
be programmed to implement new protocols, which
is an advantage over fixed-function switches for de-
velopers that cannot wait for hardware manufactur-
ing to test their algorithms.

Although P4 is commonly used with SDN, it can
also be used in standalone mode with both the data
and control plane in the same system. This pro-
vides great flexibility, P4 can be implemented inde-
pendently of the network architecture to bring the
benefits of Data Plane Programmability.

The language is very versatile and can adapt
to most network protocols including OpenFlow [4].
This is useful for compatibility with conventional
SDN architectures based on OF. However, to con-
trol custom protocols programmed in P4 a new
communication protocol needs to be engineered.

2.3. Load Balancing

The great expansion of computer networks in re-
cent years brought much more traffic than the con-
ventional web servers could handle. Traditional
services only had one server handling all incoming
requests, server administrators quickly understood



that a new method was bound to be implemented
to distribute the high load between more resources.
Thus came Load Balancing.

Load Balancing refers to the technique to dis-
tribute load among a set of resources to get the
best performance possible of the global system. In
computer networks, load balancing can be viewed
at two levels: to distribute network traffic through
multiple paths, or to balance client requests to mul-
tiple servers. In this project we will focus on the
latter.

There are many load balancing algorithms,
which can be grouped in stateless or stateful
algorithmsdesignated as Static or Dynamic algo-
rithms [6]. StatelessStatic algorithms are those
that do not take into consideration the state of the
system, while StatefulDynamic algorithms, on the
other hand, consider the load of the system and
make real time decisions to distribute the load with
the objective of achieving the best overall perfor-
mance. StatefulDynamic algorithms are usually
harder to implement but offer better load balancing
results, these can take advantage of one or more
parameters from the network as the decision factor
for the algorithm. Some of the parameters can be
associated with properties of the servers, for exam-
ple: the CPU load time, the number of connections
with clients, or the average request response time.

Probably some of the most common load balanc-
ing algorithms are the following [7]:

* Round Robin The Round Robin algorithm
consists of ordering all the servers in a list, and
distributing the client requests in rotation. If
we have three servers, the first three requests
will go, in order, to the three servers, consid-
ering that we have servers one, two and three.
When the fourth request arrives, as there is no
fourth server, the list will start at the beginning
and the request will go to the first server.

+ Weighted Round Robin Similar to the Round
Robin algorithm, the Weighted Round Robin
algorithm also orders the servers in a list and
serves them in order and rotation. Unlike the
previous algorithm, the requests are not dis-
tributed equally among the servers. The net-
work manager may set different weights to
each server. In an example with three servers
and four requests, where the first server has a
weight of 2 (two), and the others have a weight
of 1 (one), the first server will handle the first
two requests, while the third request will go to
server two, and the fourth request to the third
server. Like the previous algorithm, this pro-
cess repeats when the list reaches the end.
This strategy is an improvement of his prede-
cessor since more powerful servers can be at-

tributed with more requests.

» Least Connections As the name of the al-
gorithm suggests, this algorithm is considered
stateful and relies on the number of open client
connections. The load balancer keeps track of
how many connections each server has and,
when it receives a new client request, assigns
it to the server with least connections. Unfortu-
nately this algorithm has a downside, it takes
into consideration the number of active con-
nections of each server, but some connections
might be much heavier than others, making it
imbalanced if a server is attributed too many
heavy connections.

» Resource Based This algorithm listens for re-
ports of agents installed in the servers that
share the load status of the servers. This load
is dependent of the load balance application
and can take the form of one or several param-
eters, such as CPU load time, or the server
memory. When the load balancer receives the
report from all the servers, it processes the
values and makes a load balancing decision.

2.4. Related Work

Recently in 2020, Chih-Heng Ke et al. [8] released
a paper demonstrating a load balancing system
with P4 switches in a Software Defined Network,
using a centralized controller. The test topology
consists of a client connected to a P4 switch that
manages the flow to up to four servers. The moti-
vation for this paper relies on the time consuming
encapsulation and decapsulation of conventional
load balancers like Linux Virtual Server (LVS) and
HAProxy. It proposes the use of Data Plane Pro-
grammability with the P4 language to make load
balancing faster, by moving the load balancing al-
gorithm from the control plane to the data plane.
During their work, a series of load balancing algo-
rithms were used to test which has the best per-
formance. The algorithms tested were: connection
hash, random, round-robin, and weighted round-
robin. They used the average request response
time to compare the algorithms, and reached the
conclusion that the best algorithms were the round-
robin and weighted round-robin, depending if the
CPU speed of the servers were equal or not, re-
spectively. This work presents some interesting
features like periodic health checks done by the
controller, which can inform the data plane for
server faults, and the ability for the load balancing
switch to continue working if the control plane fails.
However, after some inspection to the project’s
source code, we found that the algorithms per-
formed are hard coded in P4 and very hard to alter
in case the topology changes. In summary this pa-



per presents a project with four different stateless
load balancing algorithms in a centralized network
capable of fault tolerance.

3. Architecture and Implementation

The objective of this work is to develop a load bal-
ancing application with SDN and P4. Based on
the article mentioned in section 2.4, we propose
to develop a load balancing application that bene-
fits from the best features of the mentioned article,
while at the same time trying to overcome its limi-
tations.

Considering the work by Chih-Heng Ke et al. [8],
we propose some modifications. Firstly, by intro-
ducing a production-grade SDN controller with fea-
tures like code modularity and configurability. Sec-
ondly, by improving upon the data plane P4 code,
making it more generic and compatible to any num-
ber of servers in the system. Finally, by replacing
the stateless load balancing algorithm, by a state-
ful one, which should offer better performance. In
summary, this work shall consist of a stateful load
balancing algorithm in a centralized network with
fault tolerance capabilities.

The main scope is to produce a system with high
quality that could be incorporated in a data center
network. Since data centers are commonly found
to work with centralized networks and load balanc-
ing systems, we consider that it would be a great
achievement if our project could be ready for an
environment like that. With that in mind, we aim
to use SDN, since it is very common among data
centers and has useful functionalities like a unified
view of the network. Also, we want to incorporate a
modern controller that is widely accepted and has
modular applications, in order to ease the imple-
mentation and the change between multiple load
balancing algorithms in a transparent way to the
network.

In order to develop a load balancing SDN appli-
cation, it is a good practice to separate the logic
between the control and data planes. The control
plane contains the part of the algorithm that is re-
sponsible for choosing the weight of each server,
while the data plane has an ambiguous code that
distributes the load between multiple servers con-
sidering the weight of each server, but is transpar-
ent to the decision algorithm itself.

With this approach, the data plane does not have
to communicate with the controller for each packet
it receives, since it already has a table indicat-
ing the weight of each server. In one hand, the
data plane is responsible for having global control
variables that manage the balancing flows inde-
pendently, this way the decision algorithm is ab-
stracted. In the other hand, the control plane is re-
sponsible to update the data plane every time there

is a change in the decision algorithm. Additionally,
if a modular controller is implemented, it should be
easy for the user to change the load balancing de-
cision algorithm in real time without the knowledge
of the data plane.

To simulate a real world scenario, we propose
that the servers run a HTTP socket listening for
GET requests. This means that the switch han-
dles TCP traffic. The data plane program needs
to have a basic understanding of how TCP con-
nections works, this means that the switch is not
performing load balancing packet wise, but instead
request wise. In other words, for each new packet
inbound to the switch, this performs a hash calcu-
lation using the source IP address and the source
TCP port, on the first packet of each connection it
attributes a new server for the hash and saves the
hash-server pair. That way, when a packet arrives
and the hash calculation is already saved in switch
memory, it loads what server is performing the re-
quest and sends the packet to that server. Itis also
important to note that in the end of each TCP con-
nection, the header’s FIN flag is active, when the
switch detects this flag it proceeds to delete the
hash-server pair from switch memory since it will
no longer be used.

Since the application is balancing load between
a set of servers, the internal server IP addresses
need to be invisible to the clients. A strategy is im-
plemented where the switch is attributed a public
virtual IP address to be used by the clients. For
each client request, the destination IP address is
the switch’s virtual IP address, instead of the phys-
ical IP address of the servers. The switch is re-
sponsible for modifying the packet headers of each
request to change the destination IP address for
the server’s IP address that is assigned by the load
balancing algorithm. Also, when a server responds
to the client, the response packet also needs to
be modified, the switch replaces the source IP ad-
dress by its own virtual IP address. It is impor-
tant to note that these header modifications make
both the IP header and the TCP header check-
sums invalid. Therefore, before the switch sends
the packet through the outbound interface, it needs
to recalculate the header checksums. If this last
step is skipped, the recipients of the packets mark
them as invalid and discard the packets.

Regarding the load balancer algorithm, we de-
cided to take the most benefit out of SDN and
develop a stateful load balancer, since these of-
ten offer a better performance than stateless load
balancers. The chosen algorithm is the resource
based type, and the decision parameter to use is
the average server request response time. Ideally
the data plane should have a metric to calculate
the average response time of each TCP connec-
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tion, but since the P4 language does not support
this functionality, we decided to use a probe based
approach from the servers. In our approach, every
server is responsible for sending a periodic report
to the controller with the average response time of
the their most recent requests. These probes are
sent with the UDP protocol to the switch, that redi-
rects them to the controller. When the controller
has received a report from all the online servers, it
processes them and makes a decision about how
the weights should be distributed to each server.
When the decision ends, the controller installs new
load balancing flow rules in the switch, replacing
the previous flow rules.

Lastly, our application is also capable of support-
ing fault tolerance. We use the advanced SDN ca-
pabilities of our remote controller to detect changes
in the topology, these changes can be the addi-
tion or removal of servers connected to the switch.
When the switch detects one of these changes, it
proceeds to restart the load balancing algorithm.
When the algorithm restarts, it forgets about the
weights previously attributed to each servers and
assumes that all the servers have the same initial
weight. When the time passes, the controller re-
ceives the periodic server probes and adjusts the
server weights accordingly.

A proposed topology for the proposed applica-
tion can be consulted in fig. 2.

4. Results & discussion

In this chapter we demonstrate the tests done to
evaluate our load balancing system. In section 4.1,
we introduce the objectives that we aim to achieve
in this chapter. Section 4.2 introduces the scenar-
ios where the tests will be done. Lastly, in sec-
tion 4.3, we present the results of the tests de-
scribed in the previous subsection.

4.1. Test Objectives
With any algorithm developed in software, there
must be a evaluation subsection to verify its op-

erability as well as its performance. These are the
objectives we aim to achieve with our tests.

 Prove that the algorithm developed is properly
working by demonstrating connectivity tests.

« Test the algorithm with various types of vari-
ables to evaluate their impact on different net-
work situations

* Place the developed system in faulty environ-
ments to assess its fault tolerant behaviour

4.2. Test Scenarios

To evaluate the good behaviour and performance
of our algorithm, we used a set of topologies and
variables to have the necessary tests to cover the
minimum amount of possibilities tat we consider
enough to evaluate our system for a near real world
environment.

For every test performed the topology consists
of one client, that simulates enough requests to act
like a large set of clients, a load balancing switch
connected to a SDN controller, and one to four
servers, which will process the client requests as-
signed by the load balancer.

Since we are performing tests in a virtualized en-
vironment, we also decided to develop an artificial
system for our servers in order to have a behaviour
closer to the real world environment.

The load balancer itself has a series of parame-
ters that will be tested in multiple topologies to test
the algorithm and hopefully come to a conclusion
about which are the best values for each parame-
ter.

4.2.1. Artifical Server Load

Since we are working in a virtualized environment,
it can sometimes be hard to evaluate a system
with real world performance values. We decided
to make a basic artificial load algorithm based on
the work done in [9] and [10]. The resulting algo-
rithm was developed in the python HTTP servers
and has a response time distribution that can be
seen in fig. 3.

Since our system can sometimes have more
than two servers and multiple types of tests, the
two distribution lines do not always correspond
to servers one and two of the system. Instead,
servers with an odd number have the performance
of server1 of the graphic, and servers with an even
number have the performance of server2 of the
graphic.

4.2.2. Test Topologies

To test a server load balancing algorithm, the most
simple case scenario is to have a system with one
client, one load balancer, and at least two servers.
We based our testing topology in this simple case,
but extended the amount of servers connected to
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the load balancer to have more broad tests. As
such, our testing topology can be analysed in fig. 4,
where the amount of servers connected to the load
balancer can vary based on the tests being per-
formed. The number of connected servers can be
between one and four.

While the load balancing algorithm can not work
with a topology that only includes one server, since
there is only one path to where the traffic can go,
we have this option because we are performing
comparative case scenarios to prove that having
two or more servers is better than only having one
single server.

4.2.3. Test Variables

As explained in section 3, our application uses
a load balancing algorithm that allocates weights
represented as flows to each server based on their
response time. These flows are controlled by the
P4 program, as well as the ONOS controller, and
are defined before compilation. The amount of
flows that the program uses is defined by the pro-
grammer before starting the program, and can take
any value in the form of a power of 2. We are test-
ing these values for the total amount of flows with
different topologies, each with a different number
of servers, the tests are described in table 1 where

Servers 112134
Flows

16 X

32 X

64 X[ X[ X]|X

128 X

Table 1: Number of flows tested for each topology.

each test is marked with an X.

4.2.4. Test Script

To thoroughly test our application, we decided to
develop our own script which will be executed by
the client. Our script was written in Python and in-
cludes a library to perform HTTP GET requests to
our servers, as well as a library to write the output
of our tests in a Comma-Separated Values (CSV)
file.

The client targets the load balancer virtual IP to
perform the requests. It sends a set of 32 sequen-
tial batches of 128 requests, and between each
batch of requests it waits either for user input, or
for a sleep function. This wait between requests is
unnecessary and would never happen in the real
world, we decided to implement this feature so that
between each batch of requests the servers can
have time to send the load balancing report to the
controller and this can evaluate if there are neces-
sary adjustments to balance the system. With this
behaviour we can have a more clear understand-
ing of what is happening behind the hood of our
application and show test results that are easier to
read.

Lastly, we save all of the test results in a CSV file
with the values gathered for each requests. The
most relevant values are the response time of the
request, and which server processed it. With the
data successfully saved in a CSV file, it can be
used to create Pivot Tables and plot the output with
visual Charts.

4.3. Test Results
This subsection presents the results obtained in
the tests described in section 4.2.

As previously stated, we designed our applica-
tion algorithm with a couple of variables in mind,
with this tests we aim to explore multiple values
for these variables and reach a conclusion about
which are the values that give the best perfor-
mance. We will also test the overall performance
of our system given a different number of servers
to load balance.

4.3.1. System Tests

Our application balances the load between multi-
ple servers using a weight variable, in our project
we refer to this as flows. There are two important
aspects to this component, the flows attributed to
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one server, and the total amount of flows installed
in the system. Since the P4 application is work-
ing with bitwise variables, we found both easier to
developed and more performant to use values of
the power of 2 for the total amount of flows in the
system.

For testing the best values for the total amount of
flows, we decided to use our standard load balanc-
ing testbed topology with four servers. The values
that we will be testing will be 16, 32, 64 and 128.

In fig. 5 we can consult the Average Response
Time for the four tests with different number of
flows. We can reach two conclusions by analysing
this chart. First, with less flows, the system has
less stability. The tests with 64 and 128 flows
have more precision than the tests with 16 and
32 flows. Secondly, with higher flows, the system
takes longer to reach a stable value. Th test with
128 flows needs more batches of requests until it
reaches the same value than the test with 64 flows,
and the latter one also needs more requests to
reach the same values of the tests with 16 and 32
flows.

Therefore we can conclude that, with 4 servers,
the best outcome of our algorithm happens when
we have a total of 64 flows. With 64 flows we have
the best compromise between response time sta-
bility, and time necessary for the algorithm to find
the best number of flows for each server.

4.3.2. Performance Tests
To test the overall performance of our application
we used our system with 64 flows and tried multiple
topologies that have between one and four servers
connected to our switch.

In fig. 6 we can consult how the response time
evolves based on the number of servers connected
to the load balancer. We can easily understand
that when there is only one server connected, the
load balancer doesn’'t work. Either way this is a
relevant scenario in order to have a response time
value of reference.

When comparing the scenarios we understand
that in fact the load balancing is working towards
reducing the total average response time of the
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Figure 6: Average Response Time comparison between

topologies with different number of servers.

system. In all the cases were the load balancing
takes effect we see a decrease in the average re-
sponse time of the system, as well as a significant
decrease in the maximum response time.

The expected outcome of a load balancing sys-
tem is to reduce the average system response time
when introducing new servers. We can verify that
our application gives results in accordance with the
expected in fig. 6. We can also verify that, with the
increase of servers in the topology, the response
time gain decreases. Therefore, it may not be
worth the cost to introduce 5 servers if the increase
in performance is very slow.

It is also important to add that all of these
tests were performed with 64 flows installed in
our application because that was the scenario with
best overall performance for a topology with four
servers. We then used the application with 64
flows and tried topologies with different number of
servers connected to have a uniform testbed for all
topologies.

4.3.3. Fault Tolerance Test

Software Defined Networks have the ability to have
a unified view of the network. Advanced controllers
such as ONOS have APIs prepared with entities
that listen for a wide span of events, including
events like the addition or removal of hosts.

With these kinds of entities we can create trig-
gers that react to these events and change the
behaviour of our load balancing application in real
time.

We decided to use a topology with four servers
and a total of 64 flows to test this functionality. Dur-
ing our test we used the capabilities of the Mininet
cli to turn down, and later back up, the connection
between the load balancer switch and the server4.
The results can be seen in fig. 7, where the chart
represents the evolution of the number of requests
attributed to each server.

In this test we start with a topology consisting of
four servers. As soon as the controller detects all
servers, it distributes the 64 flows equally, meaning
that every server is attributed 16 flows. In fig. 7 we
can see that the servers start by receiving 32 flows
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Figure 7: Fault Tolerance Test.
Server4 fails between batches 7 and 16.

each, that’'s because our test script sends 128 re-
quests per batch, meaning that our algorithm loops
two times and attributes 16 flows to each server
twice.

The load balancer then starts the algorithm and
begins to balance the load received until the batch
7, where the server4 crashes. At this point the con-
troller detects the failure and reset the algorithm
with three servers in mind, meaning that the previ-
ous load balancing evolution is forgotten and it start
the algorithm from the start.

When the algorithm starts by the second time,
it now only has three connected servers. It dis-
tributes the load again, but this time each server
will be attributed with 21 flows (one server will ran-
domly be attributed with 22 so the sum can give 64
flows). The algorithm then starts again and begins
balancing the load with three servers online until
the batch 15.

Server4 comes back online between batches 15
and 16. The controller detects again a change in
the number of connected servers and decides to
restart the algorithm. This time there will be no
more interruptions and the program will balance
the load until there it reaches a stable balance
around batch 27, at which point the servers are
considered to have requests with similar enough
response times and the algorithm stops adjusting
the flows.

4.3.4. Summary
The system was tested with different topologies
and various kinds of flows.

We conclude that the number of total amount of
flows can be adjusted considering the number of
servers connected, in a topology with four servers,
the best performance came with 64 flows, while
with less servers a better performance may be
achieved with less flows, as well as more servers
may benefit from more flows.

Additionally, we reached the conclusion that
adding more servers decreases the average re-
sponse time, but the gap gets smaller with the ad-
dition of each server.

We also showed that the system has a near op-
timal behaviour upon the loss of one server, and

that the adopted solution is fault tolerant.

5. Conclusions

In this chapter we present the conclusions about
the project done in this thesis. Section 5.1 makes
a brief summary of the paradigms addressed in this
papers. Section 5.2 presents the achievements ac-
complished during the development of this project.
Finally, section 5.3 references some relevant is-
sues that may be addresses in future work.

5.1. Summary

SDN was developed to improve network configura-
tion in traditional networks, it successfully decou-
ples the control and data planes from the same
network devices. The control plane was central-
ized in a controller that manages flow control by
providing a global view of the network. There was
a significant evolution in control plane technology,
however, the data plane was left unchanged.

To address that issue and revolutionize the data
plane, the P4 programming language was devel-
oped. It brings data plane programmability to
switches by modifying how packet forwarding is
processed. This can bring many benefits to SDN
networking like custom defined network protocols
and features.

This work aims to develop a load balancing ap-
plication that benefits from the best features of both
Data Plane Programmability, as well as Software
Defined Networks.

5.2. Achievements

With our work we successfully improved upon the
works mentioned in the Related Work, namely the
article by Chih-Heng Ke et al. [8], by introducing
a production-grade SDN controller, revamping the
P4 code, and transforming a stateless algorithm,
into a stateful algorithm.

Introducing ONOS in the application system
bring a number of features like code modularity.
This feature allows for the ONOS application to be
higly configurable and interchangeable at runtime.
With a generic load balancing scheme introduced
in the data plane, the control plane can change the
parameter of the Resource Based Load Balancer
without the knowledge of the data plane. This is an
improvement over the article by Ke since the work
mentioned has the load balancing algorithms hard-
coded in the data plane logic.

The project implemented in this thesis also sup-
ports an ambiguous number of servers trough con-
figurability with NETCONF, while the related work
has the servers explicitly in the data plane code,
changing the topology by adding or removing a
server is a heavy task.

Additionally, by introducing more control in the
control plane, we were able to migrate a stateless



system to a stateful one, introducing the advan-
tages of the latter.

However, the focus of Data Plane Programma-
bility is to increase the control of the network in the
data plane. With our work we are splitting the con-
trol in between the data and control planes.

One of the conclusions of the paper by Ke was
that by providing the load balancing algorithms in
the data plane, their system was independent of
the controller. Our is more dependent of the con-
troller since it is constantly trying to balance the
load between the servers based on their average
response time. If the control plane fails in our solu-
tion, we lose the functionality of realtime analysis of
the system, but the state of the load balancer when
the control plane fails is saved in the data plane,
meaning that the control plane could fail and our
load balancer would still work, while being stuck in
the same load balancing state.

If we consider that most of the time the sys-
tem is in a stable state, that it only converges be-
tween servers in a small window of time, we can
assumes that work solution remains working prop-
erly even on a control plane failure. Instead, if the
system is unstable, and the control plane is con-
stantly changing weights in between servers, then
we could assume that our soultion is not perfect, in
a scenario where the control plane fails.

5.3. Future Work

On one hand, we defend the SDN paradigm which
states that the control should remain in the con-
trol plane, where ONOS with a unified vision of
the network has a lot of visibility and can manage
the data plane by installing flow rules that work as
"guide lines” for the data plane to work indepen-
dently. With the help of ONOS modularity we pro-
pose as future work to improve the control plane
application to have a broader amount of load bal-
ancing algorithms which the user could chose and
switch between at runtime. Also, we propose to
improve the situation where the algorithm takes a
long time to converge when a high number of flows
is introduced in the system. This implementation
could extend the ONOS GUI component to include
custom buttons and commands in the web applica-
tion.

On the other hand, we would also like to ex-
plore the capabilities of P4 to the maximum, and
propose to try and bring all the algorithmic logic in
the control plane to the P4 code. This would be a
hard task, the hardest part would be to maintain a
generic code for any arbitrary number of connected
servers.
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