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Abstract

Astrocytes are responsible for maintaining the homeostasis of the central nervous system. With
ageing, the cellular functions of astrocytes become dramatically compromised. It is plausible that
changes in the phenotype of ageing astrocytes can make the brain more vulnerable to injury and
age-related diseases (pathological ageing). However, transcriptomic profiling of bulk human brain tissue
with RNA-seq fail to discriminate more subtle activity states of astrocytes. As such, this work used
publicly available human brain single-cell RNA-seq data to characterise the gene expression signatures
of human astrocytes in physiological ageing. These show a clear increase in astrocytic heterogeneity
with age, including a group of astrocytes enriched in ageing hallmarks, such as neuroinflammation,
excitotoxicity, loss of neuronal support and synaptic homeostasis functions. The enrichment with age
of this group of astrocytes has been further validated with independent datasets. Additionally, this
work uncovers molecular targets for functional validation, as well as candidate therapeutic compounds
for the reversal of pathological aged astrocytes’ phenotypes.
Keywords: Astrocytes, Ageing, Neurodegenerative Diseases, Single-cell RNA sequencing

1. Introduction

Astrocytes are a very heterogeneous cell group from
a functional and molecular point of view, being
essential for neuronal survival and synapse home-
ostasis. However, occasionally these cells present
pathological behaviours that are not protective of
the central nervous system (CNS), namely in re-
sponse to the neuroinflammation concomitant with
age. It is plausible that changes in astrocytes phe-
notype can make the brain more vulnerable to in-
jury and age-related diseases (pathological ageing).
However, transcriptomic profiling technologies cur-
rently applied in (post-mortem) human brain tissue
(such as RNA-seq) fail to discriminate subtle molec-
ular changes that can reflect different activity states
of astrocytes.

Furthermore, there are numerous therapies that
momentarily improve the symptoms of patients
with several neurodegenerative diseases but whose
maximum effectiveness is observed in animal mod-
els or cell cultures (where they were idealized), sug-
gesting that these systems are not perfect surro-
gates for modelling age-related illnesses [1]. With
the increase in average life expectancy, it is urgent
to more deeply understand the role of astrocytes in
normal ageing of the human brain with single cell
resolution, in order to better grasp how the dynam-
ics of the ageing human brain leads to predisposi-
tion to neurodegenerative diseases.

2. Background
2.1. Physiological and Pathological Ageing in

the Human Brain

The broad scientific consensus points to ageing as
a set of genetic, biological, and environmental fac-
tors, which act together and lead to physiological
and cognitive changes, compromising cells in their
functions [2].

The effect of physiological ageing in the brain
is noticeable mainly through cognitive decline. To
reach this visible consequence, the ageing brain, like
other organs, manifests some cellular and molecular
hallmarks of ageing, namely, loss of dendritic spines
[2], mitochondrial dysfunction, dysregulated energy
metabolism, compromised DNA repair, stem cell
exhaustion [3], loss of stem cells in the hippocampus
[2], aberrant neural network activity [4] and inflam-
mation [2].

The brain is still quite resilient to physiological
ageing, not compromising the elderly to the point
of being completely dependent on others and cogni-
tively inept [5]. The subtle changes that occur and
may predispose tissues to age-related diseases (can-
cer, cardiovascular and neurodegenerative disorders
such as Alzheimer’s Disease (AD) and Parkinson’s
Disease (PD) [6]) is called pathological ageing. Such
may be underlain by neurobiological differences be-
tween subjects with the same chronological age [7].

Although the timeline and causality of events as-
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sociated with neurodegenerative diseases are not
known, and despite these diseases probably having
different causes, there are already several clues that
associate them with the main hallmarks of ageing
[8]. Some authors suggest that the onset of AD
includes, among others, inflammation, DNA dam-
age and mitochondrial dysfunction [8]. There are
several theories that try to explain the exact rela-
tionship between ageing and neurodegenerative dis-
eases. Specifically, one of them admits a continuum
between ageing and the appearance of neurodegen-
erative diseases, such that all ageing will eventu-
ally lead to neurodegeneration [8]. Furthermore, in-
flammation has also been suggested as the primary
cause of pathological ageing [9]. It is increasingly
agreed among the scientific community that the key
to a better understanding of neurodegenerative dis-
eases, and their possible therapeutic reversal, lies in
a deeper study of the physiological mechanisms of
ageing.

2.2. Astrocytes

The broadest cell type classification in the CNS as-
sumes two distinct groups of cells: neurons and glial
cells (oligodendrocytes, microglia, astrocytes) [10].
For many years astrocytes were thought to play a
primarily structural role. However, with the in-
crease in scientific knowledge, it is now known that
these cells are essential for the proper functioning of
neurons and CNS homeostasis [11]. Among astro-
cytes’ main functions, we can highlight the mod-
ulation of neuronal activity, synapse homeostasis
(including synaptic activity and plasticity, as well
as neurotransmitter clearance), provision of trophic
factors and nutrients to neurons, and establishment
and maintenance of the blood brain barrier (BBB)
[12]. New studies also include in the functions of as-
trocytes the ability to generate brain rhythms and
neuronal network patterns [12].

Different astrocytes can present different func-
tions, with this not being an on-off state and some
brain regions presenting specific distribution of as-
trocytic functions [12]. However, astrocytes can
also be momentarily activated by various stimuli
and diseases, further increasing their complexity
and range of functions [12]. Reactive astrocytes,
for example, are characterized by morphological,
molecular, and functional remodelling, in response
to injury, disease, or infection of the CNS [13], and
it is not yet clear whether this reactivity is benefi-
cial or detrimental to the homeostasis of the CNS,
as they can shift their phenotype to a pro- or anti-
inflammatory one.

It is thought that some functional changes
that ageing astrocytes undergo may be increasing
the pro-inflammatory phenotype of the brain [2].
Specifically, aged astrocytes are thought to acti-

vate the complement system, responsible for regu-
lating inflammation through the release of comple-
ment factors C3 and C4B, decreasing the strength
of the connection between neurons and astrocytes,
potentiating memory loss in older people [2]. Fur-
thermore, this may also be associated with the loss
of the capacity to maintain synaptic homeostasis,
with excitotoxicity being an important hallmark of
brains affected by ageing and/or neurodegenerative
diseases [14]. Excitotoxicity is mainly the result of
prolonged or exacerbated activation of glutamate
receptors, caused by the inability of astrocytes to
control the levels of glutamate in the synaptic cleft,
resulting in loss of neuronal function and cell death
[14]. Furthermore, it is known that aged astrocytes
have an increase in ROS release, which is related to
the oxidative stress theory of ageing [2, 15]. It is also
known that aged astrocytes lose part of their abil-
ity to maintain the proper functioning of the BBB
[2]. Finally, as they are an extremely heterogeneous
cell group, any impairment on the astrocyte func-
tion will irrevocably impact the function of other
neuronal cells, creating feedback mechanisms that
result in dysfunction of the entire CNS [2].

Aged astrocytes have also been associated with
several neurodegenerative diseases. Specifically,
they have been related to AD, as it shares many of
the hallmarks of ageing brain and ageing astrocytes,
such as oxidative stress, mitochondrial dysfunction,
and inflammation [8]. PD has also recently been
associated with ageing astrocytes and their conse-
quent loss of function [2].

Since this cell group is very affected by age and
given its complexity, it is plausible that there are
subtle transcriptional changes associated with age-
ing astrocytes that remain unnoticed and make the
brain more vulnerable to age-related diseases. How-
ever, all the ageing astrocyte transcriptomic stud-
ies were carried out in mice and/or humans, using
RNA-seq of pools of cells [2]. This means that all
these changes will reflect an “average” transcrip-
tomic profile of the astrocytes, not having the sen-
sitivity to identify more subtle differences between
the transcriptomes of individual cells [16].

2.3. Single Cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is the cur-
rent gold standard for profiling the transcriptomes
of individual cells and thereby inferring their phe-
notypes. Being a high-throughput technology, it
can profile thousands of cells per experiment, al-
lowing at the same time for the study of a single
cell transcriptome in an unbiased manner, not tar-
geting specific genes like microarrays do [17].

Given that bulk RNA-seq experiments measure
gene expression levels as averages across thousands
of cells, if there is high heterogeneity within the
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group of cells to be sequenced, transcriptome indi-
vidualities are lost [16]. With single-cell RNA-seq,
we can study each cell individually, obtaining the
distribution of gene expression levels across a pop-
ulation of individual cells. It is widely used for dis-
covering new cell states in heterogeneous samples,
such as the tumour micro-environment [18].
Single nucleus RNA sequencing (snRNA-seq) is

an important variation of scRNA-seq. The sin-
gle nucleus protocol was developed based on the
scRNA-seq protocol to extend its applicability to
tissues that cannot be easily dissociated into a
single-cell suspension, such as the human brain
(given that neurons are highly connected and very
long, being difficult to dissociate entirely [19]), or
frozen tissues (given that nuclei are better preserved
than the whole cell [20]). At the same time, snRNA-
seq minimizes the alteration of gene expression that
may be introduced by artificial interactions between
cells in suspension [21].

3. Materians and Methods

3.1. Data Availability
In this work I used four frozen human brain tis-
sue snRNA-seq datasets publicly available through
National Center for Biotechnology Information
(NCBI) data repository Gene Expression Omnibus
(GEO) [22], using the following search words:
scRNA-seq, epilepsy, Memory, Alzheimer, Alcohol,
COVID-19 and Huntington.
From these datasets (GSE153807, GSE141552,

GSE159812, GSE160936), all control samples were
chosen, that is, samples that in principle have
no neurological condition that may counfound the
analysis. The total snRNA-seq data was composed
of cells from 18 samples, comprising an age range
from 7 to 91 years old.
Independent human cortex RNA-seq valida-

tion datasets and relevant clinical metadata
(phs000424.v8.p2) were retrieved from the
Genotype-Tissue Expression (GTEx) project
[23]. Furthermore, samples associated with demen-
tia, PD, cerebral vascular accident, and unknown
cause of death were removed, which reduced the
number of samples in roughly 3% (n=255 to
n=245).
Both scRNA-seq and GTEx gene expression pro-

files are publicly accessible as read count tables.

3.2. Software
Most of the work was performed using the R soft-
ware environment for statistical computing and
graphics (v4.1.0), and its publicly available pack-
ages. Some of the most used R packages in
this work were ggplot2 (v3.3.9) for data visual-
ization, SingleCellExperiment [24](v1.14.1) and
Seurat[25] (v4.0.4) for single cell data handling,
limma[26] (v3.46.0) for differential expression analy-

sis, slingshot [27](v2.0.0) for trajectory inference,
fsgea[28] (v1.18.0) for gene set enrichment analy-
sis, and cTRAP [29](v1.10.0) for drug repurposing.
CIBERSORTx [30] was also used, in order to esti-
mate cell-type proportions in GTEx independent
samples.

3.3. Dimensionality Reduction
As in scRNA-seq read count matrices each gene is
a variable, and there are thousands of genes pro-
filed, dimensionality reduction techniques, such as
Principal Component Analysis [31] (PCA) and t-
distributed stochastic neighbour embedding [32] (t-
SNE), are essential. In this work, I chose to use
50 main components for the PCA, and used the
SCE runPCA function to project the data in these
50 new dimensions, and store the results in an SCE

object, along with the data and metadata. For
the t-SNE representation, the runTSNE function of
the SCE package was used to perform the algorithm
and save the new coordinates for visualisation in
the SCE object, together with the data and meta-
data. This function also takes a parameter called
perplexity, which balances the attention between
local and global similarities in data, forming clus-
ters, being this set to 30 (the default).

3.4. scRNA-seq data pre-processing
A general pipeline for single cell data pre-processing
was used [33](figure 1):

• Quality Control / Filtering: Cells with less
than 400 counts and 300 unique genes detected
were removed. Furthermore, cells with more
than 15% of the total reads belonging to mi-
tochondrial genes were also removed, as they
may be indicative of low quality cells, where
the remaining mRNA may have been lost due
to cell lysis or RNA degradation. Only genes
with a minimum expression of 5 read counts in
at least 10 cells were kept.

• Doublets: Doublets occur when more than
one cell is captured in the cell sorting proto-
col. The identification and removal of doublets
in this work was done using the scDblFinder

package from R. 4269 putative doublets were
removed.

• Normalisation: The computeSumFactors

function (scran package version 1.20.1) was
used to implement a deconvolution strategy for
normalisation. The default window sizes of
around 20 cells for low library sizes, and around
100 for high library sizes were used. log2 trans-
formation was also used, with the addition of
1 pseudocount.

• Batch Effect Correction: Seurat’s batch ef-
fect (that is, variability introduced by the ex-
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Figure 1: Common workflow for scRNA-seq data processing. Schematic of the processing
pipeline used in this work. The pre-processing steps are identified in grey, and were applied to the raw
scRNA-seq data count matrix. Adapted from “Analysis of single cell RNA-seq data” (2019) [33].

perimental conditions) correction method [34]
was used, with the defaults for each function,
including 2000 highly variable genes as the
number of features used for finding anchors in
the low-dimensional data with the first 30 main
components. This correction was only used for
visualization and clustering purposes.

3.5. Clustering
One of the most important tasks in analysing sin-
gle cell data analysis is the definition of clusters
of cells (e.g., after t-SNE representation) and the
following assignment to cell types. The cluster-
ing algorithm was applied using the Seurat func-
tions FindNeighbors and FindClusters, that ap-
ply modularity optimization method, or Louvain’s
method, on top of t-SNE representation of the data.
A resolution of 0.4 was chosen, given that the di-
vision of clusters with a value higher than 0.4 ap-
pears to involve more noise, with the displacements
of small cell groups from one cluster to another.
This decision was aided by the construction of a
cluster tree, using the clustertree package.

3.6. Differential Expression Analysis
Differential Gene Expression Analysis (DEA) is es-
sential to infer differences in gene expression be-
tween groups of cells, and can be done by linearly
model gene expression. I performed differential
gene expression analysis (DEA) in multiple ways.
First, by modelling gene expression and compar-
ing one cluster against the average of the remaining
clusters:

GEx = Clusteri × βi (1)

Where GEx is a vector of expression of gene x
across cells, and Clusteri is a logical matrix with
an entry of 1 if the cell belongs to cluster i, and
0 otherwise. Given that this matrix has as many
columns as clusters and as many rows as cells, and
each cell will be in only one cluster, the resulting
matrix (design matrix) will be sparse. βi will be the
average expression of gene x in cluster i. A contrast
matrix (i.e., a matrix representative of linear com-
bination of the unknown coefficients βi) was then
used to get the differences between a βi coefficient
and the average of the remaining coefficients.
The second way was by comparing two clusters’

gene expression. The formulation was equivalent

to equation 1, but with further use of a contrast
matrix comparing specific pairs of coefficients.

The third way of using the linear models on gene
expression in this work was to compare the gene
expression profile of each cluster against a baseline
one:

GEx = β0 + Clusteri × βi (2)

Where GEx is a vector of expression of gene x
across cells, β0 is the expression of the baseline clus-
ter, and Clusteri is a logical matrix with an entry
of 1 if the cell belongs to cluster i \ baseline, and 0
otherwise. The resulting βi coefficients will be the
log2FC expression of gene x between each cluster
and the baseline cluster.

The limma-voom pipeline was applied to the non-
normalized filtered scRNA-seq data (using edgeR

for normalization) and fit the data to a linear model,
using then the moderated t-test (parametric) and
empirical Bayes shrinkage of standard errors to as-
sess the statistical significance of the differential ex-
pression results. The significance of the results was
given by the adjusted p-value for multiple compar-
isons (Benjamini-Hochberg correction (BH correc-
tion)) lower than < 0.05.

3.7. Cell Type Annotation
This task was divided into two main steps: the de-
tailed analysis, where each of the clusters is associ-
ated with a cell type, taking into account thresholds
based on the percentage of differentially expressed
genes between that cluster and the others that are
known markers of a cell type [35] (> 35% of mark-
ers of that cell type; < 8% of each of the remaining
cell types; <60% of unknown markers); and the gen-
eral analysis, where the smaller clusters are grouped
into larger clusters, according to their cell type.
Seurat v4.0.0’s FindAllMarkers function finds the
markers for each cell cluster against the remaining
clusters, using the Wilcoxon Rank Sum Test (non-
parametric test). A significance level of adjusted
p-value < 0.05 (BH correction) and a magnitude
of the difference between clusters of log2FC above
0.25 were considered, for both the detailed and gen-
eral analysis.

After these steps, astrocyte cells were selected,
and the pipeline was applied again for this subset
of 7% of the initial data (going from 209,187 CNS
cells (nuclei) to about 13,694 astrocytes).

4



3.8. Gene Set Enrichment Analysis
The list of differentially expressed genes can be used
to perform gene set enrichment analysis (GSEA),
that is, compare this ranked list of genes with sets of
genes known to be associated with biological path-
ways and processes. In this work, GSEA was per-
formed using the fgsea package [28] to infer pheno-
types or biological processes (from GSEA’s collec-
tion of publicly accessible annotated gene sets) that
underlie the biology of each astrocytic cluster. The
ranked lists of genes used were the differentially ex-
pressed genes in one cluster against the remaining,
the differentially expressed genes of one cluster ver-
sus the baseline astrocytic cluster, and the loadings
of each gene for each principal component.

3.9. Drug Repurposing
Drug repurposing aims to use approved therapeu-
tical compounds for goals different than those they
were originally developed to, and surpasses some
ethical issues and the expensive time-consuming
process of drug development and approval. cTRAP

[29] can compare an ordered list of differentially
expressed genes with known transcriptional alter-
ations caused by gene knockdowns or chemical com-
pounds and find which perturbations are more cor-
related (positively or negatively) with the pheno-
type of interest (hereinafter referred to as pheno-
type strategy). Similarly, this tool can, from online
databases of drug sensitivity, infer which drugs are
the most likely to target cells expressing the marker
genes of the cluster with a phenotype of interest
(hereinafter referred to as top gene strategy).

3.10. Cell-type Deconvolution
Cell-type deconvolution (or digital cytometry) is a
technique that allows estimating the proportions of
different cell types in bulk samples. This approach
is particularly useful in this work, since single-cell
protocols may be biased in terms of the proportion
of different cell types that are captured, and thus
the proportions obtained from individual cell popu-
lations may not reflect the true composition of the
human brain tissue.
In this work, CIBERSORTx [36] was used to per-

form cell-type deconvolution. Considering data
storage limitations in CIBERSORTx’s web platform,I
removed undefined cell clusters, neuronal clusters
whose definition was dubious, and performed ran-
dom sub-sampling of neurons, oligodendrocytes,
and microglia, to remove 4000, 2000 and 1000 cells,
respectively. Genes expressing less than 5 counts in
at least 100 cells were further removed. For the con-
struction of the cell type signature matrix, an av-
erage gene expression threshold (minimum expres-
sion) of 0 logFC was chosen. Finally, two groups
of astrocytes discovered in this work were removed
from the scRNA-seq signature data (type 1 and

6), since it is suspected that they are poor-quality
cells. Bulk RNA-seq data were taken from the
GTEx project, in this work referred to as “valida-
tion data”.

4. Results

4.1. Stress as the likely source of variance in
ageing astrocytes

It is known that astrocytes are a very heterogeneous
group of cells in terms of function and molecular
identity. Each of the seven clusters in figure 2 (A)
and (B) can be associated with a different type of
astrocytes (type 0 to type 6), whose distinctiveness
is explored in this section.

It was possible to define cluster 0 as a group of
“baseline” astrocytes, that is, whose functions are
in accordance with what is expected from a healthy
astrocyte (hereafter referred to as “normal” func-
tions). This cluster has an up-regulation of biolog-
ical processes such as synapse organization, synap-
tic signalling and neuron development when com-
pared with the other clusters (figure 2 (D), panel
“0”), suggesting that the others may have under-
gone some decline in those processes. Although
cluster 0 is the most populated cluster (figure 2
(A)), it has a decrease in proportion in older sam-
ples (figure 2 (C)). This reinforces not only that
these may be “baseline” astrocytes, present in all
samples, but also allows to hypothesise that older
samples may be down-regulated in some of this neu-
ronal and synaptic support functions, in accordance
with what is already known regarding aged brains.

The main data variance axes appear to be asso-
ciated with a progression between clusters (figure
2 (B)), given by slingshot [27]. Namely, the tra-
jectory parallel to PC1 seems to be associated with
clusters 5, 3 and 4. Similarly, the trajectory parallel
to PC2 seems to be mainly associated with cluster
2. This suggests two orthogonal axes of some bi-
ological response, that drives the main variance in
the data, to be further explored.

Both clusters 2 and 5 show a clear enrichment
of markers associated with endoplasmic reticulum
stress (figure 2 (D)). Namely, they present an up-
regulation in the biological processes of granule as-
sembly stress and unfolded protein response, and
in the unfolded protein response hallmark, related
to ageing. In addition to cluster 2 being enriched
in older samples (figure 2 (C)), we also find reac-
tive oxygen species pathways and TGF-β signalling
down-regulated in cluster 5 when compared with
cluster 2 (figure 2 (D)). These pathways are known
to be associated to compensatory immunosuppres-
sion after chronic stress, suggesting that cluster 2
expresses chronic stress markers [37, 38], consistent
with the oxidative damage theory of ageing [15]. On
the other hand, cluster 5 is not predominantly asso-
ciated with young or old samples. Furthermore, this
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Figure 2: Astrocytic data with clusters 0 to 6. Representation of the astrocyte clusters that make
the basis of this work in (A) a t-SNE plot and in (B) a PCA plot with the first two main components,
and with the results of pseudotime inference with potential trajectories between clusters, taking cluster
0 as the “origin” (identified by a green dot); (C) Proportions of cells of each cluster along age, with each
dot representing a percentage of cells of each cluster in each sample; (D) GSEA of pathways, hallmarks
and biological processes, associated with ER stress, inflammation and normal astrocytic functions in
clusters 0 to 6, as well as specific cluster contrasts. Cluster 0 results have been obtained through DEA
of one cluster against the remaining, Clusters 1 to 6 through DEA of each cluster against cluster 0, and
the specific contrasts obtained through DEA of one cluster against other.

cluster is associated with the progression of clusters
5 → 3 → 4 in the main axis of variance. This may
suggest that cluster 5 is an acute ER stress cluster
that is somehow related to clusters 3 and 4.

Clusters 3 and 4 appear to be the most simi-
lar in gene expression. In functional terms, clus-
ter 4 has enriched neuroinflammation markers and
down-regulated markers associated with neuronal
support functions and synaptic homeostasis (figure
2 (D)). Furthermore, cluster 3 appears to be more
enriched in normal astrocytic functions when com-
pared to cluster 4. Given that these clusters are,
together with cluster 5 (acute stress), discriminated

along PC1, this might suggest that both clusters 3
and 4 are also acute stress responders characterised
by down-regulation of normal astrocytic functions,
with 3 being a milder version of 4.

Clusters 1 and 6 appear to have ER stress mark-
ers down-regulated (figure 2 (D)), when comparing
to the baseline cluster. However, I could not find
any other functional information and they are not
associated with any meaningful axis of variance in
gene expression. As these clusters are are not asso-
ciated with age, I chose to not further study them
in detail.

In short, the enrichment of clusters 2, 3 and 4
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with ageing, and their progression in the main axes
of variance, may suggest that aged astrocytes show
a poor/impaired response to acute stress (clusters
3 and 4), with several associated age hallmarks
(inflammatory phenotype) and loss of function, or
chronic stress (cluster 2).

4.2. Cluster 4 as a possible target for revers-
ing loss of function in ageing astrocytes

As clusters 2 and 4 are the extremes of the variance
and associated with age, it will therefore be in the
interest of this work to further study them, as they
can be a potential factor for the deregulation of the
normal functions of the CNS and predisposition to
neurodegenerative diseases.
Combined with the GSEA results suggesting that

cluster 4 may be associated with a loss of function
by ageing astrocytes in response to acute stress,
looking at individual differentially expressed genes
therein could give some more specific functional in-
sights into this cluster (figure 3 (A)). Astrocytes
in cluster 4 have a deficiency in SLC1A2 (impor-
tant for synapse clearance and to prevent exci-
totoxicity) and CADM1 (important to maintain
functional excitatory synapses). Also, this clus-
ter has an upregulation of SLC38A1, a gene en-
coding for the precursor of GABA and glutamate
neurotransmitters. Additionally, this cluster has
up-regulated DCLK1 (axon growth and migration),
DPP10 (synapse homeostasis, binds to voltage-
gated potassium channels), KAZN (cytoskeletal
organization), and CD44 and TNC (neuroinflam-
mation). Finally, this cluster has down-regulated
NRXN1 (required for efficient neurotransmission),
GPC5 (control of cell division and growth regula-
tion - AD samples have shown to be down-regulated
in GPC5 and NRXN1 [39]), CACNB2 (voltage de-
pendent calcium channel protein) and CABLES1
(important for cell cycle progression, knockdown
leads to increased numbers of apoptotic cells). All
of the above suggest that cluster 4 of astrocytes ex-
hibits several characteristics known to be associated
to pathological ageing (excitotoxicity, downregula-
tion of specific genes, neuroinflammation, etc.).
Cluster 2 does not show enriched astrocyte-

related processes in GSEA. Using PC2’s ordered
list of genes by weights as input to GSEA was used
in an attempt to discover more insights into the
functions of astrocytes in cluster 2. However, such
results were not enlightening, and combined with
the fact that PC2 is not exclusively associated with
cluster 2, the functional characterization of cluster
2 was not possible.
Although clusters 2 and 4 are both at the ex-

tremes of the variance and associated with age, my
analyses suggest it is more promising to focus on
cluster 4 for subsequent validation and therapeutic
exploration. Cluster 4 appears to have a stronger

association with age, is at the end of the largest
data variance axis and has a more coherent biolog-
ical gene expression signal (unlike cluster 2, whose
functional phenotype, in terms of astrocytic func-
tions, could not be determined). Furthermore, type
4 astrocytes appear to have a stronger association
with age in an independent human cortex dataset
(validation data) than cluster 2 (figure 3 (B) and
(C)), a very important validation result that sur-
passes the potential bias in single-cell RNA-seq data
in reflecting true cell proportions.

Differentially expressed genes from cluster 4 (fig-
ure 3 (A)), being enriched in older samples, and
associated with loss of normal astrocytic function
(synaptic maturation, neuronal support) and sev-
eral characteristic of pathological ageing (inflamma-
tion, excitotoxicity), are good candidate genes for
validation studies and potential phenotypic reversal
for therapeutic purposes.

4.3. Candidate compounds for phenotype re-
versal of cluster 4

The marker genes of cluster 4, obtained through
DEA of cluster 4 against the others, ordered by t
value, and with p-value < 0.05, were used as input
for cTRAP. Trifluoperazine, Niclosamide, Foretinib
and Olaparib (figure 3 (D)) were identified as can-
didates for phenotype reversal of cluster 4 while tar-
geting cells that express cluster 4’s marker genes, by
having the best FDA-approved compounds for both
cTRAP approaches for drug repurposing (Spear-
man rho coefficient: < -0.01 for the phenotype
strategy, > 0.05 for the top gene strategy; product
rank coefficient1: > 60000 for phenotype strategy,
< 100 for top gene strategy).

Trifluoperazine is a drug used for the treatment
of schizophrenia for over 50 years. However, a study
showed that this drug can slow neurodegeneration
by enhancing autophagy in response to stress, in
a PD context [40]. Furthermore, although being a
drug mainly used for the treatment of parasitic in-
fections, some studies have proposed Niclosamide
as a way of attenuating pro-inflammatory and mi-
gratory phenotypes of microglia and astrocytes in
ALS models [41], and also as having a neuropro-
tective effect [42]. Foretinib is currently in clinical
trials for the treatment of cancer, however it has
been proposed to prevent axon degeneration, via
preservation of the mitochondria, being thus a can-
didate for many neurological diseases [43]. Finally,
Olaparib is a drug used in the treatment of several
types of cancer, namely breast cancer or fallopian
tube cancer. A study suggested that the adminis-
tration of Olaparib in a Huntington’s disease model
promoted neuroprotection and modulation of the

1The rank product summarises the individual rankings
from cTRAP’s comparison methods (Spearman, Pearson and
GSEA-based scores)[29].
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Figure 3: Cluster 4 as a possible target for reversing loss of function in ageing astrocytes.
(A) Volcano plots of differential expression analysis of astrocytes in cluster 4 against the mean of all
other clusters, with some of the most differentially expressed genes highlighted; (B) Distribution, by age
group, of the proportions of the various cell types, and (C) distribution of proportions, by age group
and through a general additive model along age (R geom smooth function with default parameters), in
neurons and clusters 2 and 4, over the various cortex-independent bulk RNA-seq samples (GTEx); (D)
Scatter plots comparing the correlation between cluster 4’s gene expression changes and those induced
by each of CMap’s compound perturbations (x axis) and the correlation between the differential gene
expression results of cluster 4 and gene expression / drug sensitivity association across all cell lines from
CTRP 2.1 [29] (y axis). The comparisons are performed using Spearman’s correlation coefficient and
Rank product. Highlighted compounds are FDA-approved candidate reverters of cluster 4’s phenotype.

inflammasome activation, resulting in the reduction
of neurological deficits and improving the clinical
outcomes in neurobehavioural tests [44].

All of these compounds are approved by the FDA
and, besides Olaparib, show to be capable of passing
the BBB. However there is evidence that these con-
ventional models of the BBB may not predict clini-
cal pharmacokinetics, and thus more studies should
be performed on this possibility [45]. Certainly, fur-
ther validation of these in silico results is needed
but they are a proof of concept and the basis for
future research.

5. Concluding Remarks

Ageing is the strongest risk factor for numerous
neurodegenerative diseases, yet the causes that un-
derly the shift from physiological to pathological
ageing remains nuclear. Several efforts have been
made by the scientific community to discover those
causal functional and molecular mechanisms. As-
trocytes are a very heterogeneous cell type from a
functional and molecular point of view, being essen-
tial for neuronal survival and synapse homeostasis.
However, occasionally these cells present pathologi-
cal behaviours that are not protective of the cen-
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tral nervous system, namely in response to neu-
roinflammation concomitant with age. It is plausi-
ble that changes in astrocytes’ phenotype can make
the brain more vulnerable to injury and age-related
diseases (pathological ageing). However, technolo-
gies currently applied to profile transcriptomes of
bulk human brain tissues (such as RNA-seq) fail to
detect subtle changes that may allow the identifi-
cation of different astrocyte activity states. Single-
cell RNA-seq allows the study of the transcriptomic
profile of each cell individually. Given the complex-
ity of the human brain, the transcriptomic resolu-
tion given by this technique allows to identify novel
candidate genes and signalling pathways / biologi-
cal processes characteristic of cells most relevantly
contributing to the ageing of brain tissues.

This work culminated in the transcriptomic char-
acterization of a group of astrocytes (type 4) whose
enrichment in old samples was identified both in
scRNA-seq data and in independent bulk RNA-seq
data. Through relationships suggested by a vari-
ety of computational tools, this cluster seems to
be associated with a down-regulation of neuronal
support and synaptic homeostasis functions, in re-
sponse to acute stress, and also enriched in mark-
ers of neuroinflammation and excitotoxicity, being
therefore associated with behaviors that are detri-
mental for the proper functioning of the CNS.

This work scientifically contributed with the dis-
covery of molecular targets for phenotype validation
in vitro and in vivo, as well as candidate therapeu-
tic compounds for the reversal of the pathologically
aged astrocytes’ phenotype.

5.1. Analysis Limitations and Future Work

First, given that the sample size in this work is rel-
atively small, age may be counfounded with the bi-
ological invididuality from each sample. Secondly,
the scRNA-seq data used in this work are only from
the human cortex. Consequently, there is a lack
of regional coverage. Both these caveats could be
mitigated if I had access to a greater sample size
comprising different areas of the brain.

Another caveat in this analysis was the scarcity
of young brain samples. The ideal scenario
would be to obtain samples of human brain tissue
from healthy young individuals; however, biopsy-
ing healthy brains is impossible for obvious ethical
reasons.

Although our analyses of gene expression alter-
ations and therapeutic potential of astrocytes have
focused mainly on cluster 4, it will still be interest-
ing to further study cluster 3. This cluster seems
to be associated not only with PC1 of astrocytic
gene expression data but also to PC2. As both of
these axes appear to convey different biological re-
sponses, the reason for cluster 3 to appear in both

could also be interesting to further study in more
detail. Furthermore, it would be interesting to ex-
pand this study to other CNS cell types. For ex-
ample, microglia are known to be in close contact
with reactive astrocytes [46], and it is possible that
microglia also have activation states, some even cor-
related with cluster 4’s enrichment in older samples.

Despite an in silico validation of the enrichment
of this group of astrocytes with age, functional val-
idation in vitro or in vivo should also be performed
on this group of aged astrocytes. Furthermore, the
hypothesis put forward in this work is that these
type 4 astrocytes are the result of a response to
acute stress (i.e., ageing astrocytes have a greater
difficultly adapting to this type of stress), shown
by a downregulation of normal astrocytic functions.
Due to this, it will be interesting, in addition to em-
ulating their phenotype through genetic editing or
under/overexpression of certain genes, to use vari-
ous stressors (for example pharmaceutical ER stress
inducers such as tunicamycin and thapsigargin, or
by physiologically-induced ER stress via glucose de-
privation [47]) and to observe the transcriptomic
response of astrocytic cell lines. It will also be in-
teresting to study the phenotype associated with
the transcriptomic profile of type 4 astrocytes in
co-cultures of astrocytes and neurons, to emulate,
as far as possible, the characteristic and essential
neuronal support environment of astrocytes. 44oC
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