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Resumo

Sabe-se que o cérebro humano envelhecido cai num fenótipo inflamatório, referido como “inflam-

mageing”, com os astrócitos a serem das células mais afetadas. Em condições fisiológicas, estas

células são responsáveis por manter a homeostase do Sistema Nervoso Central e, entre outras funções,

são capazes de modular a atividade neuronal, providenciar fatores tróficos e nutrientes aos neurónios,

e estabelecer e manter a barreira hematoencefálica. No entanto, com o envelhecimento, os astrócitos

sofrem mudanças de expressão génica, perdendo parte das suas funções normais. É plausı́vel ad-

mitir que mudanças no fenótipo dos astrócitos possam deixar o cérebro mais vulnerável a lesões e a

doenças relacionadas com a idade (envelhecimento patológico). No entanto, as tecnologias de análise

transcricional atualmente aplicadas a tecido cerebral humano (e.g. RNA-seq) falham em distinguir es-

tados astrocı́ticos mais subtis.

Dito isto, o principal objetivo deste trabalho é caracterizar as assinaturas de expressão génica de

astrócitos humanos em envelhecimento fisiológico utilizando dados públicos de sequenciação de tran-

scritomas de células individuais (scRNA-seq). Os resultados deste trabalho demonstram um claro au-

mento da heterogeneidade de astrócitos com a idade, incluindo um grupo de astrócitos que aparenta

estar enriquecido em caracterı́sticas de envelhecimento, tais como neuroinflamação, excitotoxicidade,

perda de funções de suporte neuronal e de homeostase sináptica, e cujo enriquecimento com a idade

foi validado em dados independentes. Este trabalho contribui cientificamente com a descoberta de alvos

moleculares para validação do fenótipo in vitro e in vivo, bem como potenciais compostos terapêuticos

capazes de reverter o fenótipo daqueles astrócitos associados a envelhecimento patológico.

Palavras-chave: Astrócitos, Envelhecimento, Doenças Neurodegenerativas, Single-cell RNA

sequencing
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Abstract

It is known that the ageing brain falls into an inflammatory phenotype, referred to as “inflammageing”,

with astrocytes being within the most affected cells. In physiological conditions, these cells are responsi-

ble for maintaining the central nervous system homeostasis and, among others, can modulate neuronal

activity, provide trophic factors and nutrients to neurons, and establish and maintain the blood brain

barrier. However, with ageing, astrocytes undergo gene expression changes, losing part of their normal

functions. It is plausible that changes in astrocyte’s phenotype can make the brain more vulnerable to

injury and age-related diseases (pathological ageing). However, transcriptomic profiling technologies

currently applied to human brain tissue (such as RNA-seq) fail to discriminate more subtle astrocyte

activity states.

As such, the main objective of this work is to characterize the gene expression signatures of human

astrocytes in physiological ageing using publicly available single-cell transcriptomic (scRNA-seq) data.

Such results demonstrate a clear increase on astrocytic heterogeneity with age, including a group of

astrocytes enriched in ageing hallmarks, such as neuroinflammation, excitotoxicity, loss of neuronal

support and synaptic homeostasis functions, and whose enrichment with age has been further validated

in independent datasets. This work’s main scientific contribution was the discovery of molecular targets

for phenotype validation in vitro and in vivo, as well as candidate therapeutic compounds for the reversal

of astrocytic phenotypes associated with pathological ageing.

Keywords: Astrocytes, Ageing, Neurodegenerative Diseases, Single-cell RNA sequencing
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Chapter 1

Introduction

1.1 Motivation

Ageing consists of a multitude of genetic, biological and environmental factors that compromise the

function of several cells in our body [1]. It is the strongest risk factor for numerous neurodegenerative

disorders, such as Alzheimer’s or Parkinson’s diseases [2–4]. As the average life expectancy and median

age of the world population increase, there is an urge to uncover the age-associated mechanisms of

pathology, in order to adopt therapies that pair this increase in longevity with an increase in health span

and quality of life [5].

It is known that the ageing human brain presents an inflammatory phenotype, referred to as “in-

flammageing” [6], with astrocytes being within the most affected cells. In healthy conditions, these cells

are responsible for maintaining the central nervous system (CNS) homeostasis and, among others, can

modulate neuronal activity, provide trophic factors and nutrients to neurons, and establish and maintain

the blood brain barrier [1, 7, 8]. Given the critical role of astrocytes in the proper functioning of the CNS, it

is plausible that age-associated changes in their phenotype can leave the brain more vulnerable to injury

and age-related diseases. It has been previously demonstrated that, with ageing, astrocytes undergo

gene expression changes, losing part of their functions and acquiring a pro-inflammatory phenotype [9],

which may lead to an exacerbation of the low-grade inflammation state concomitant with ageing [1, 9].

In the past few years, there have been some exploratory assays focusing on ageing in human astro-

cytes. With transcriptomic analysis techniques, such as RNA sequencing (RNA-seq), several ageing-

associated changes in gene expression and signalling pathways have already been identified. However,

this technology lacks the resolution to elucidate on the real heterogeneity of brain tissue, given that

it pools all cell types together and measures their average activity, not distinguishing cell groups with

different functions. In 2009 the first test was carried out with a new technique, single cell RNA-seq

(scRNA-seq), which permitted profiling the transcriptome of each cell individually [10]. In recent years,

the application of this technique to human tissues, namely the brain, has become quite common. It

appears as a way to solve the lack of cellular resolution of bulk RNA-seq, allowing to look at the distribu-

tion of gene expression levels across a population of individual cells, and hereby to acquire insights into
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novel candidate genes, signalling pathways and biological processes characteristic of ageing tissues.

Furthermore, there are numerous therapies that momentarily improve the symptoms of patients with

several neurodegenerative diseases but whose maximum effectiveness is observed in animal models or

cell cultures (where they were idealized), suggesting that these systems are not perfect surrogates for

modelling age-related illnesses [11].

With the increase in average life expectancy, it is urgent to more deeply understand the role of

astrocytes in normal ageing of the human brain with single cell resolution, in order to better grasp how

the dynamics of the ageing human brain leads to predisposition to neurodegenerative diseases.

1.2 Objectives and Methodology

The main objective of this work was to characterise gene expression alterations in human astrocytes

in physiological ageing. Such study is lacking and is needed to discover the transcriptional individu-

ality of human aged astrocytes that can contribute to the predisposition of the aged human brain for

neurodegenerative diseases.

For this, publicly available scRNA-seq data were used to obtain gene expression signatures of human

ageing astrocytes. These signatures were used (1) to estimate the relative abundance of the distinct

functional types of astrocytes in post-mortem brain tissues based on their transcriptomes (bulk RNA-

seq); (2) to identify relevant associated pathways and cellular processes for future in vitro or in vivo

validation studies; and (3) as molecular targets for the in silico identification of candidate drugs capable

of phenotype reversal. Several analysis and visualisation packages, implemented in statistical software

R, were used in obtaining those signatures.

1.3 Thesis Outline

This document is divided into five main parts. Chapter 1 is the present chapter, where the motivation

and objectives of this work are summarised. Chapter 2, or Background, consists of the basic concepts for

understanding the problem under study, through a careful and systematic literature review. This chapter

explores the basics of physiological and pathological ageing, central nervous system cells, and ageing

astrocytes as a potential aetiology of the increased predisposition of the elderly to neurodegenerative

diseases. Chapter 3, or Materials and Methods, provides an overview of the public datasets used

in this work, as well as the main scRNA-seq data processing and visualisation packages. By personal

choice, this chapter also includes the results of scRNA-seq pre-processing, so that Chapter 4, or Results

and Discussion, focuses only on the downstream data exploration and on addressing the proposed

biological problem, including in silico validation. Finally, Chapter 5, or Concluding Remarks, consists of

a synthesis of the results of this work, as well as considerations on its main limitations and future work

to be developed in this topic.
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Chapter 2

Background

2.1 The Ageing Human Brain

The Central Nervous System (CNS) is possibly the most complex system in the human body, being

divided into two main parts: the spinal cord and the brain. The brain can be further divided into six

main parts, namely the medulla oblongata, pons, cerebellum, midbrain, diencephalon (comprising the

thalamus and hypothalamus), and cerebrum (comprising the cortex, basal ganglia, hippocampus and

amygdaloid nuclei) [12].

The brain is responsible for numerous functions, controlling all the organs of the human body by

processing, integrating, and coordinating multiple information coming from and to them [12]. However,

given its importance in the control and homeostasis of the entire human body, any malfunction can have

disastrous consequences, with age being a crucial factor of predisposition to illness and injury [13].

2.1.1 The Cell Types of the Human Brain

The concept of cell type is an interesting matter, since each cell is unique and behaves differently

from the others, depending on the resolution at which we choose to analyse it [14]. However, many

cells share similar activities in tissues, so it is common to group cells according to their morphology and

perceived function. In addition, a cell can have several classifications: take as an example the so-called

“canonical” cell type, such as muscle or nerve cells, defined according to the overall function that the

tissue in which they are found presents. Though, within muscle cells, it is possible to further increase

the resolution of such classification, finding skeletal, smooth, or cardiac muscle cells, among others [15].

It all depends on the resolution we choose to look at the cells and what we hope to achieve with this

classification – a critical point intended to be explored in this work.

The broadest cell type classification in the brain assumes two main groups (figure 2.1): neurons and

glial cells [16].
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FIGURE 2.1: Cells in the human brain
(A) Cells that make up the human brain, including neurons, glial cells (astrocytes, microglia and oligo-
dendrocytes) and ependymal cells. Adapted from NeuroscienceNews: New Cause of Schizophrenia
Uncovered (2017) [17]. (B) Schematic representation of the CNS cell type classification, according to
Kandel and Shadlen (2021) [16].

Neurons

Neurons are cells capable of being excited and transmitting information by conducting electrical

stimuli. Morphologically, these cells are constituted by a cell body, dendrites, axons, and axon terminals.

Furthermore, neurons are extremely heterogeneous, and can be classified, among others, according to

their morphology (unipolar, bipolar, multipolar) or function (sensory, motor) [16]. It is estimated that the

human brain has around 86 billion neurons, this density being possible due to our great efficiency in food

ingestion and energy consumption [18].

Glial Cells

Glial cells are non-neuronal cells that do not produce electrical impulses and are not capable of being

electrically excited, but are essential to proper functioning of neurons, being responsible for, among other

functions, protecting and nourishing them [16, 19]. Glia comes from the Greek for ”glue” and was initially

thought to be responsible for holding neurons in place and act as supportive cells [19]. Currently, these

cells are known to be undoubtedly more complex than that: they surround the cell bodies, axons, and

dendrites of neurons, maintaining the homeostasis of the entire system [16, 19].

In the human brain, as in all vertebrate brains, we can further divide glial cells into two large groups:

macroglia and microglia. Microglia are immune cells responsible for presenting antigens and acquiring

a phagocytic phenotype (i.e. becoming specialized macrophages) in response to injury and infection.

Within macroglia we can also define oligodendrocytes and astrocytes. Oligodendrocytes are cells

that cover the axons of neurons with their own cell membrane, forming the myelin that is responsible

for increasing the speed of neuronal transmission of the electrical message, restricting the action of

voltage-sensitive ion channels only in specific regions (Ranvier’s nodes). Finally, astrocytes are highly

heterogeneous cells responsible for maintaining synapse homeostasis and forming the blood brain bar-

rier, among others, but whose function is not yet fully understood [16].
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We may consider another type of cells in the central nervous system that do not fall in the previous

classification: ependymal (endothelial) cells cover the ventricular system of the brain, and they are

responsible for the creation and secretion of cerebrospinal fluid [16].

The relative abundance of cell types varies between brain regions. It is estimated that oligoden-

drocytes are the most abundant glial cell type (45-75% of total human brain glial cells), followed by

astrocytes (19-40%), and microglia (10% or less) [20]. For several decades, more specifically from the

1960s until 2009, it was thought that the ratio between neurons and glial cells was around 1:10 (100

billion neurons to one trillion glial cells) [21]. However, with the emergence of a novel way of quantifying

the abundance of cell types in the human brain (i.e., isotropic fractionator [22]), it has now been estab-

lished that this ratio is highly dependent on the brain area and age, and generally less than 1:1, meaning

that there are more neurons than glial cells [18, 21].

2.1.2 Physiological Ageing

What is Ageing?

Although there is no unique definition for ageing, several studies have discussed this topic [23]. The

broad scientific consensus points to ageing as a set of genetic, biological, and environmental factors,

which act together and lead to physiological and cognitive changes, compromising cells in their functions

[1]. Therefore, ageing can be seen as a deterioration of the physiological integrity of an organism caused

by the passage of time [24].

The mechanisms and causes of ageing have always aroused curiosity in humans. However, the “new

era” of exploring ageing had its origins 40 years ago, as the cellular and molecular mechanisms of life

and disease began to be explored [13].

Ageing affects every part of the body differently, with some showing obvious changes, such as skin

atrophy [8], and others showing more subtle alterations. Tissues composed primarily of postmitotic cells,

such as the brain, are especially prone to the nefarious effects of ageing [25].

The Hallmarks of Ageing

The effect of ageing in the brain is noticeable to us mainly through cognitive decline, which can

manifest itself in different stages of severity [26]. There is ample evidence that ageing begins by affecting

episodic memory, involving consciously remembering events and experiences, and executive functions,

a set of capacities involved in planning, mental flexibility, inhibiting inappropriate actions, attending to

relevant and ignoring irrelevant sensory information [27]. However, irrespectively of reaching such a

perceptible consequence, the ageing brain, such as the remaining human organs and tissues, shows

some consistent changes amongst the elderly population, the so called “hallmarks of ageing” [13].

According to López-Otı́n and colleagues (2013), there are nine fundamental hallmarks of ageing

(Figure 2.2), with these being divided into three main categories: primary, antagonistic, and integrative

[13, 25]. Furthermore, they all follow the following criteria: they manifest themselves during physiological
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ageing, their aggravation accelerates ageing, and their amelioration retards the physiological ageing

process, being thus very interesting candidates for ageing reversing therapeutics [13].

The primary hallmarks are the first to occur and negatively affect the human body. These include

genomic instability, telomere attrition, epigenetic alterations, and loss of proteostasis, which is the dy-

namic balance of the formation and maturation of functional proteins. Genomic instability is at the heart

of the main theories of ageing [13]. It is described as the dysregulation of mechanisms that control and

correct DNA mutations or other changes during cell division, which may lead to non-functional cells.

Antagonist hallmarks arise in response to primary hallmarks and tend to counteract their effects

through compensatory mechanisms, including mitochondrial dysfunction, cellular senescence, and dereg-

ulation of nutrient sensing. Although these actions start by being beneficial, as they compensate for the

damage caused by the primary hallmarks, their prolonged action may also be detrimental. Mitochon-

drial dysfunction is particularly harmful, since although the production of reactive oxygen species may

be beneficial, as it is responsible for cell signalling and survival, its prolonged effect is associated with

toxicity and cell death [13].

FIGURE 2.2: The nine hallmarks of ageing
The nine hallmarks of ageing and the neurodegenerative diseases associated with them (AD –
Alzheimer’s disease; PD – Parkinson’s disease; HD – Huntington’s disease; ALS – amyotrophic lateral
sclerosis; AT – ataxia telangiectasia). Primary hallmarks are identified in beige, antagonist hallmarks in
grey and integrative hallmarks in purple. Retrieved from Hou et al., 2019 [25].

Finally, integrative hallmarks arise as a consequence of the joint damage of the remaining hall-

marks and when the cellular homeostasis mechanisms become unable to maintain their proper func-

tioning. These hallmarks include stem cell exhaustion and altered intercellular communication (such as

calcium signalling), and are thought to be responsible for the effective functional decline associated with

age [13].
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Taking all of the above into consideration, it becomes clear that the proposed nine hallmarks of ageing

have a hierarchical relationship between them [13]. Thus, elucidating on the exact causal relationships

between them through their individual study for each organ and cell is critical for a better understanding

of the mechanisms of ageing and age-related diseases.

Conclusively, one that is worth mentioning and exploring further is the oxidative damage theory of

ageing, as well as its repercussions and influence on other detrimental mechanisms. It postulates that

“age-associated reductions in physiologic functions are caused by a slow steady accumulation of oxida-

tive damage to macromolecules which increases with age, and which is associated with life expectancy

of organisms” [28]. A corollary of this theory also postulates that “the rate of ageing should be retarded

by attenuation of oxidative damage”. However, oxidative stress is only one of many types of “stress”,

which will be further detailed (figure 2.3). Cellular stress can be of different sorts, such as caused by

radiation, chemotherapy, oncogene activation or hypoxia, as well as oxidative and endoplasmic reticu-

lum stress [29]. The endoplasmic reticulum is responsible for, among other functions, preventing protein

aggregates, by ensuring correct transcription and translation, as well as post maturation and folding of

proteins. This is maintained through several mechanisms, such as the unfolded protein response (UPR).

Endoplasmic stress can be caused by a multitude of factors, including several ageing hallmarks (nutri-

ent depletion, disturbances in calcium signalling), and can result in the disruption of the UPR, disturbing

tissue homeostasis. Moreover, the ER stress induces an inflammatory response that in chronic condi-

tions can result in senescence, apoptosis, or triggers a compensatory immunosuppression mechanism,

with the release of mediators of immunosuppression secreted by immune cells, such as TGF-β, IL-10

and ROS [29, 30]. There are several mechanisms to deal with cellular stress, namely cellular stress

responses, stress-induced cell death, and senescence [29]. Cellular stress responses include the afore-

mentioned UPR, heat shock response and DNA damage response. When these mechanisms fail to

recover cell homeostasis, stress-induced cell death can happen in order to prevent further damage,

including programmed cell death (apoptosis or autophagy) and necrosis [29–31].

The Hallmarks of the Ageing Brain

The effect of physiological ageing in the brain is noticeable mainly through cognitive decline. To

reach this visible consequence, the brain, like other organs, manifests the aforementioned hallmarks

of ageing. More specifically, the aged brain suffers from loss of dendritic spines [1], mitochondrial

dysfunction, dysregulated energy metabolism, compromised DNA repair, stem cell exhaustion [2], loss

of stem cells in the hippocampus [1], aberrant neural network activity [4] and inflammation [1, 2, 4, 27],

that will be discussed next.

Dendritic spines are specialized protrusions of the neuronal dendritic surface, and are fundamental

for excitatory transmission and synaptic plasticity in the brain [32]. The loss of dendritic spines, as well

as the change in proportions of the various types of spines that occur naturally with age, can greatly

impact normal cognitive functions [1, 33]. Furthermore, mitochondria are responsible for a plethora of

functions, such as production of ATP, calcium signalling, lipid biosynthesis and cellular apoptosis, and

when their function is compromised as a result of natural ageing, they can increase the production of
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FIGURE 2.3: Stress and the oxidative damage theory of ageing
Illustrative diagram of stress relationships, including endoplasmic reticulum stress and oxidative stress,
with natural physiological ageing [29–31].

ROS, which can be damaging [25]. Additionally, neuronal precursor stem cells are lost, particularly in

the hippocampus [1], being this region extremely important for the consolidation of memory and the

establishment of spatial memory [2, 34]. Several hallmarks of brain ageing can also make neuronal

circuits more prone to excitotoxicity, which is damage caused by hyper-excitability, including oxidative

stress caused by mitochondrial dysfunction [2, 4]. Finally, perhaps one of the most studied phenotypes

in ageing is inflammation [1, 2, 4, 27]. Interestingly, under the scope of different causal and temporal

mechanisms sometimes this is even being referred to as “inflammageing” [35].

Molecular Profile of the Ageing Brain

The pace of ageing is controlled by genetic pathways and biological processes conserved in evolu-

tion [13]. Although the physiological changes in gene expression that occur in the ageing brain depend

on several factors, such as the brain region, the sex of the subject and even the inter-subject biological

variability, there are some consistent and interesting changes. In the human brain, most genes have a

trend for decreased expression with age, mainly associated with protein processing and energy gener-

ation [36]. However, there are some whose expression is increased in aged brains, these genes being

associated with immune activation and inflammation. Glial cells shift their gene expression towards an

inflammatory phenotype, and this shift is not observed in neurons [1, 36].

Functional and Morphological Changes in Aged Brain Cells

Functions and relationships between the various cells also change in the aged CNS, although it is

not yet clear why.
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Briefly, all glial cells show changes that can compromise their neuroprotective role (figure 2.4). In

particular, ageing microglia demonstrate a predisposition to the inflammatory phenotype, astrocytes

appear to lose their synapse-maintaining ability (as will be further explored in the next sections), and

oligodendrocytes modify their axon myelination capabilities, which may impact the speed of electrical

message transmission. Since all cells are essential for the proper functioning of the CNS, and since

they are all in constant interaction, any disruption in their functioning can compromise neuronal support

and increase neuronal vulnerability to aggression, which could explain the ageing brain’s predisposition

to cognitive decline and neurodegenerative diseases [37].

FIGURE 2.4: Ageing brain cells
Schematic illustration of the functional changes that brain cells undergo with the physiological ageing
process, and that are believed to impair their neuroprotective roles and increase the predisposition of
the CNS to neurodegenerative diseases. Adapted from Salas et al. (2020) [37].

It is also known that the brain loses volume and weight with ageing, with a volume loss of about

5% per decade after the age of 40 [38]. However, what causes this to happen is not fully understood.

Specifically, the loss of volume associated with gray matter is thought to be associated with the decrease

in dendrite branches [38]. These volume losses are also highly dependent on the brain area: the

prefrontal cortex appears to be the most affected, as well as the hippocampus and cerebellum [38].

More studies are needed to clarify these questions.

In conclusion, ageing consists of a multitude of factors that cause disruptions in the CNS homeosta-

sis. Given that these effects are responsible for cognitive decline in the elders [26], it is urgent to discover

what are the specific mechanisms responsible for the appearance of the primary hallmarks of ageing.

2.1.3 Pathological Ageing, Neuroinflammation and Neurodegenerative

Diseases

Taking all of the above into consideration, the brain is still quite resilient to physiological ageing. In

fact, there are no physiological, cellular, and molecular changes that alone compromise the elderly to the

point of being completely dependent on others and cognitively inept. For instance, it is not uncommon
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to observe two 70-year-olds in the opposite side of the spectrum: one fully capable of their cognitive

faculties, and one already with evidence of Alzheimer’s Disease or other neurodegenerative disease.

Such may be underlain by neurobiological differences between subjects with the same chronological

age [39], and the subtle changes that occur and may predispose the tissues to age-related diseases

(cancer, cardiovascular and neurodegenerative disorders) is called pathological ageing. There is a need

to uncover the functional and molecular differences between functionally impaired and unimpaired elders

to tackle disease prevention.

What are Neurodegenerative Diseases?

Neurodegenerative diseases are some of the most nefarious disorders affecting the human body,

as they compromise neurons and thus impact several systems. These diseases are characterized by

a chronic, progressive loss of the structure and functions of the nervous system, resulting, in the case

of the brain, in deep cognitive and functional decline [40]. However, the aetiology of neurodegenerative

diseases remains poorly understood.

The most common neurodegenerative diseases are Alzheimer’s Disease (AD), Parkinson’s Disease

(PD), and Amyotrophic Lateral Sclerosis (ALS) [25]. Alzheimer’s disease is the most common cause of

dementia, associated with 60-70% of all cases worldwide [41]. Dementia is defined as the deterioration

of cognitive function beyond what would be expected with physiological ageing [41]. According to the

World Health Organization (WHO), dementia affects, among others, memory, reasoning, and orientation,

leaving patients very dependent as it progresses [41]. AD is also a progressive disease, since the

patients’ symptoms worsen as time passes. Unfortunately, AD has no cure and, on average, the life

expectancy of a patient with AD is estimated to be around 8 years after diagnosis [41]. Some of the brain

areas most affected by AD are the hippocampus and the entorhinal cortex, both involved in memory

processes [42, 43]. PD is also a progressive neurodegenerative disease that primarily affects motor

functions. The first symptoms of this disease are tremors, commonly in the hands, and then patients

start to progressively feel stiffness and slowness of their movements [44]. Contrary to AD, the area

most affected by PD is the basal ganglia, more specifically the substantia nigra [45]. Finally, ALS is a

neurodegenerative neuromuscular disease that causes the loss of motor neurons, which mostly affects

the primary motor cortex, brainstem and spinal cord [46]. The main symptoms of these patients include

muscle stiffness and twitches, as well as difficulty in speaking and/or swallowing. A small percentage

of patients with ALS may also show signs of dementia, being a disease with a quite wide spectrum of

symptoms [47]. Like AD, PD and ALS have no cure [44, 46].

However, there are some treatments capable of delaying their symptoms. For example, there is

currently one Food and Drug Administration (FDA) approved treatment for AD, although under the so

called ”accelerated approval pathway” 1, that addresses the underlying molecular biology of the disease,

removing plaques of beta amyloid protein [48], thought to be associated to cognitive decline.

1The FDA can approve a drug for a life-threatening disease that may have a therapeutic benefit over existing treatments, even
when there is uncertainty about the drug’s clinical benefit [48].
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What is the Prevalence of Neurodegenerative Diseases?

The prevalence of neurodegenerative diseases is alarmingly increasing in the population as it ages

[25]. It is estimated that one in 10 individuals over 65 years of age has AD and this number increases

to 50% in individuals over 95 years old [25]. Unfortunately, the numbers associated with PD and AD are

equally frightening, as it can be observed in figure 2.5 (data from the United States of America (USA)

[25]). There is plenty of evidence that structural changes in the brain occur years before the cognitive

and functional decline associated with neurodegenerative diseases [49]. Finding the molecular basis of

these diseases relies on exploring their mechanisms before their onset. However, the impossibility of

predicting the onset of disease, as well as the difficulties regarding collection of brain tissue to study its

cellular mechanisms in humans, make that task very complicated [25, 49].

FIGURE 2.5: Prevalence of neurodegenerative diseases
Prevalence of a) Alzheimer’s Disease per 1000 citizens in the USA; b) Parkinson’s Disease per 100000
citizens globally; c) Amyotrophic Lateral Sclerosis per 100000 citizens in the USA. Retrieved from Hou
et al., 2019 [25].

What are the Causes of Neurodegenerative Diseases?

Although the timeline and causality of events associated with neurodegenerative diseases are not

known [24], and despite these diseases probably having different causes, there are already several

clues that associate them with the main hallmarks of ageing [25] (figure 2.2). Some authors suggest

that the onset of AD includes, among others, inflammation (inflammageing), DNA damage and mi-

tochondrial dysfunction [25]. In older adults, inflammation has been related to cognitive decline and

structural changes in the brain, and chronic inflammation has also been associated to many of the most

nefarious neurodegenerative diseases [50]. Moreover, the antagonist process of inflammation – the

compensatory immunosuppression – has also been in the centre of many studies, given that even this

process can be damaging by itself, evoking harmful effects in the brain tissue, and possibly promoting

the risk of tissue degeneration and age-related diseases [31, 51].

There are several theories that try to explain the exact relationship between ageing and neurodegen-

erative diseases. Specifically, one of them admits a continuum between ageing and the appearance of

neurodegenerative diseases, such that all ageing will eventually lead to neurodegeneration [25]. Further-
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more, inflammation has also been suggested as the primary cause of pathological ageing [27]. Some

studies established the relationships between ageing and cognitive decline, and between inflammation

and cognitive dysfunction, thus it will not be unreasonable to hypothesize that inflammation may exacer-

bate age-associated cognitive decline and pathological ageing [27]. However, it is increasingly agreed

among the scientific community that the key to a better understanding of neurodegenerative diseases,

and their possible therapeutic reversal, lies in a deeper study of the physiological mechanisms of ageing.

Lately, there is an interesting relationship between two of the most harmful classes of diseases of

the 21st century, neurodegenerative diseases and cancer. It is known that the physiological integrity

concomitant with ageing is not only the primary risk factor for neurodegenerative diseases, but also

for cancer [13], among other diseases. Interestingly, an inverse correlation between the incidence of

cancer and the incidence of neurodegenerative diseases has already been demonstrated [52]. While

the prevalence of cancer reaches its peak around the age of 60, it tends to decrease with age while

the prevalence of neurodegenerative diseases starts to increase [52]. Additionally, it is thought that

many genes are differentially expressed in both neurodegenerative diseases and astrocytoma (tumour

of the central nervous system originated from an uncontrolled proliferation of astrocytes [53]), which

illustrates the need for further understanding the mechanisms behind both conditions. In particular, the

gene encoding for the TAU protein is expressed in both conditions. Although in AD the accumulation

of TAU protein causes the formation of neurofibrillary tangles, thought to be toxic, in astrocytoma the

overexpression of this protein can be also beneficial, acting as a break for the formation of blood vessels,

being thus associated with better prognosis [54].

In summary, the ageing brain incurs in several molecular and functional changes, felt mainly through

cognitive decline. However, unknown subtle changes in the environment, molecular signalling, or cell

behaviour are thought to trigger pathological ageing, manifested as numerous neurodegenerative dis-

eases, such as AD and PD, and resulting in the impairment of everyday tasks [26]. It remains then to

know what mechanisms might be behind this change between physiological and pathological ageing.

2.1.4 Socioeconomic impact of the Ageing Brain in the Modern Era

Ageing is natural, normal, and an irrevocable event in all our lives, affecting every cell and organ

in our body - the brain is no exception [1]. It is already common knowledge that, with ageing, most of

individuals have a mild cognitive decline which leads to greater dependence in common daily tasks [26].

Moreover, many other ageing-associated diseases occur, with very high costs for the elderly and for the

social system that supports them [25]. Ageing is the main risk factor not only for “physical” diseases or

symptoms, such as typical muscle pain, but also for numerous neurodegenerative diseases, such as AD

and PD [2–4, 13].

Both the average life expectancy and the world population’s median age have been increasing for

the past 70 years [55]. According to the World Health Organization, several factors may be associated

with these indicators, such as advances in medical care and changes in the leading causes of death (for

example, from infections to chronic diseases) [56]. The median age of the world population has grown
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from 23.1 years in 1950 to 28.5 years in 2010, with prospects of an increase to 32.0 years in 2025,

although there is still a huge gap between developed and undeveloped countries, as can be seen in

figure 2.6 [55].

FIGURE 2.6: Median age of the world’s population
Median Age by country and of the world population from 1950 to 2100, adapted from Our World in
Data (https://ourworldindata.org/age-structure), by Max Roser. Data Source: United Nations Population
Division (Median Age) – 2017 [55].

According to the same source, there is a trend also towards an increase in the median age of the

world population in the next 30 years, both in developed and non-developed countries, indicating the

growing ageing of the population worldwide [55]. However, despite these – apparently – positive indica-

tors, the quality of life of the elderly does not follow this growing trend: we live longer, but we may not

have proportional healthspan extension. Amongst other factors, the higher prevalence of neurodegen-

erative diseases in the elder population contributes for this.

In figure 2.7 are represented the disability-adjusted life years (DALYs) per sex and neurological dis-

orders [57], that is, ”the sum of the years of life lost to due to premature mortality (YLLs) and the years

lived with a disability (YLDs) due to prevalent cases of the disease or health condition in a population”,

according to WHO [58]. It can be noted that, as people age, the number of DALYs associated with

neurodegenerative diseases, in light blue and dark green, increases immensely. However, it is not yet

clear what happens and what drives the change from normal to pathological ageing, only that age is a

factor that increases this predisposition.

There is therefore an urge to find out more about the mechanisms that are associated with ageing,

in order to ensure that the increase in life expectancy is accompanied by an increase in the associated

quality of life [27]. In fact, considering the socioeconomic impact that ageing and neurodegenerative

diseases have on the world population, there are increasing efforts by the scientific community to under-

stand these conditions [24], reflected by the number of associated publications per year (figure 2.8).
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FIGURE 2.7: Global DALYs for neurological disorders (identified by black arrows) by sex and age
Global DALYs for neurological disorders by sex and age, 2016 (A) Females. (B) Males. DALY=disability-
adjusted life-year. Adapted from Global, regional, and national burden of neurological disorders,
1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 [57].

FIGURE 2.8: Web of science publications on the ageing brain and neurodegenerative diseases
Number of publications per year associated with keywords ”ageing brain” (red) and ”neurodegenerative
diseases” (blue), from 1918 to 2019, according to Web Of Science. Plotted using RStudio software.
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2.2 Astrocytes

Astrocytes are a fascinating group of cells, indispensable for the proper functioning of the CNS.

Given the high number of functions that these cells perform, any disruption of their homeostasis can

be expected to result in a major impact on brain functions [7]. Astrocytes are shaped like stars, hence

their name (from the ancient Greek astron – star – and kútos – cell), and are present in the brain and

spinal cord. Interestingly, a single astrocyte interacts with up to two million synapses [59]. These cells

are very important from the point of view of neuroprotection and maintenance of the CNS, which is why

they deserve a prominent position in this Master’s thesis [7].

2.2.1 Heterogeneity

For many years, astrocytes were thought to play a primarily structural role. However, with the in-

crease in scientific knowledge, it is now known that these cells are essential for the proper functioning

of neurons and CNS homeostasis [19].

Structurally, astrocytes are classified into two main groups. Fibrous astrocytes (figure 2.9 (A)) have

long, unbranched processes, being mainly located in white matter. Protoplasmic astrocytes (figure

2.9 (B)) have highly branched processes and are present in gray matter [60]. The expression level

of glial fibrillary acidic protein (GFAP), an intermediate filament protein, has been widely used as an

astrocytic marker, although it is known that other glial cells and even neurons can express this marker

[61]. Moreover, fibrous astrocytes have higher expression of GFAP than protoplasmic astrocytes [60].

FIGURE 2.9: Types of astrocytes
Schematic illustration of the different structural classification of astrocytes: (a) fibrous astrocytes, with
slender and longer processes, interacting with other brain cells; (b) protoplasmic astrocytes, with highly
branched processes, being part of a tripartite synapse [62].

Among astrocytes’ main functions (figure 2.10), we can highlight the modulation of neuronal activity,

synapse homeostasis (including synaptic activity and plasticity, as well as neurotransmitter clearance),

provision of trophic factors and nutrients to neurons and establishment and maintenance of the blood

brain barrier [1, 7, 8, 63]. New studies also include in the functions of astrocytes the ability to generate

brain rhythms and neuronal network patterns [7].

In terms of synaptic functions, astrocytes are responsible, together with pre- and post-synaptic nerve
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endings, for forming tripartite synapses (figure 2.9 (b)). This is a very typical structural and functional

configuration of chemical synapses and allows astrocytes to perform their synapse homeostasis func-

tions [64].

Different astrocytes can present different functions, with this not being an on-off state (just as a motor

neuron cannot become a sensory neuron) and some brain regions presenting specific distributions of

astrocytic functions. Such heterogeneity and possible variability of astrocytic proportions may contribute

to the differences in the effects of neurodegenerative diseases between brain areas, with some regions

suffering more than others [7].

FIGURE 2.10: Astrocyte functions
Schematic representation of the heterogeneity of functions of astrocytes in the CNS [7].

Out of curiosity, the ratio of astrocytes to neurons increases with organism complexity [63]. There is

no consensus yet on the relationship between that ratio and cognitive capacity: some authors argue that

the relative increase in astrocytes is only associated with enhanced metabolic support required by the

higher energy output associated with larger neurons and brains; conversely, other authors argue that

larger neurons do not need more energy, and therefore the increase in the astrocyte-neuron ratio in hu-

mans may be associated with greater cognitive capacity [63]. Such apparently contradictory information

increases the mystery and curiosity about these cells, which will certainly motivate the search for more

knowledge on them.

In conclusion, astrocytes have a wide spectrum of possible functions, being therefore normal for any

disruption of the CNS homeostasis to cause a major impact on their physiological functions [7].
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2.2.2 Reactivity

Astrocytes can be activated by various stimuli and diseases, further increasing their complexity and

range of functions [7]. Reactive astrocytes are characterized by morphological, molecular, and func-

tional remodelling, in response to injury, disease, or infection of the CNS [7, 65]. This means that,

following some stimuli, astrocytes can reversibly shift their molecular expression, while enlarging and

losing some of their functions [7] (figure 2.11). A major difference between reactivity and heterogeneity

of phenotypes is that reactivity is reversible and therefore should not be confused with astrocyte func-

tional heterogeneity [65]. However, it is not yet clear whether this reactivity is beneficial or detrimental to

the homeostasis of the CNS.

FIGURE 2.11: Reactive astrocytes
Reactive astrocytes undergo hypertrophy of cellular processes. (A) Staining of astrocytes with GFAP,
a marker of astrocyte reactivity; (B) schematic illustration of morphological changes that reactive astro-
cytes undergo after their activation. [66]

One classification for astrocyte reactivity was proposed by Liddelow and his colleagues in 2017 and

advocates two states of reactivity: A1 and A2 [67]. According to this classification, reactive astrocytes

can develop into pro- (A1) or anti-inflammatory (A2). A1 astrocytes have been associated with neuroin-

flammation and tend to upregulate the expression of classical complement cascade genes shown to

be destructive to synapses. This means that they lose their ability to promote neuronal survival. It is

also known that microglia are fundamental and sufficient to trigger the reactivity of A1 astrocytes. On

the other hand, A2 astrocytes are mainly associated with ischaemia and upregulate many neurotrophic

factors, promoting CNS recovery and repair. Although being firstly described in mice, the same study

validates their presence in human samples [67].

There are several putative reactivity marker genes. The most used marker to describe reactivity in

general (called “pan” reactivity, that is, not restricted to the differences between A1 and A2 astrocytes)

is GFAP (figure 2.11) [65]. This gene encodes for the Glial Fibrillary Acidic Protein, an intermediate
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filament protein that is a constituent of astrocytes. However, GFAP is not expressed by all reactive

astrocytes (although those who express it are necessarily reactive) [65]. Other genes used to tag pan-

reactive astrocytes are VIM (which also encodes for an intermediate filament protein but is expressed

by endothelial cells and immature astrocytes), CHI3L1 (whose function is still unknown) and S100B (a

gene encoding Ca2+ binding protein that is expressed after injury) [65]. On the other hand, the STAT3

gene is a marker of A2 reactive astrocytes and, while it encodes for a transcription factor, it can also be

expressed by neurons [65]. Finally, the complement factor protein encoded by the C3 gene is a marker

of A1 reactive astrocytes, although it is also expressed by other glial cells [65].

However, the same group admits that this classification may be too simplistic and binary, and that

reactivity may be a continuum between these two states, or even n distinct activation states [68]. More

studies are needed to clarify this notion of reactivity. However, this simplistic binary classification is

already beginning to give several clues on the true complexity of astrocytes and their potential harmful

role in ageing contexts.

2.2.3 Astrocytes Communication

As stated above, it was thought that astrocytes were just “the glue of the brain”, having thus a minor

structural role. However, it is currently known that this is not the case.

To perform their function, astrocytes need to communicate between them and with other cells. As-

trocytes have ionotropic receptors in their membranes, made of ion channels that open or close in

response to a ligand (such as neurotransmitters), and metabotropic receptors, which use signal trans-

duction mechanisms (such as G Proteins) to modulate cellular activity [69].

These receptors may be activated by several neurotransmitters (such as noradrenaline, glutamate,

GABA, among others) released by neurons in the tripartite synapse and have the ability to respond

according to the intensity of synaptic activity, modulating their activity and maintaining homeostasis

of the CNS. Furthermore, in response to these neurotransmitters, astrocytes undergo fluctuations in

the intracellular levels of Ca2+ ions, depending on the intensity of the neuronal response, which leads

to the release of glio-transmitters (neurotransmitters, but of glial origin), such as ATP and glutamate

(figure 2.12) [70]. Despite this, the astrocytic response to calcium transients is not fast enough, with

astrocytes mainly performing a modulating activity, rather than a message transmission one like neurons

[71]. However, it is still unclear how astrocytes release these transmitters. With all these mechanisms,

astrocytes are able to maintain the proper functioning of synapses, avoiding excitotoxicity through the

renewal of neurotransmitters, and plasticity [64].

On the other hand, it is also known that astrocytes demonstrate spontaneous oscillation of Ca2+

levels, not dependent on neuronal activity. These “calcium waves” are distinct from the electrical tran-

sients that characterize neurons, as they have high amplitude, last for longer periods and are regular but

spaced in time [64]. It is not yet known why this happens, but it has been shown that it occurs in some

astrocyte subpopulations, and that it may be associated with modulation of neuronal activity, as well as

communication between astrocytes. Furthermore, it is thought that these ionic transients may also be

sufficient to excite adjacent neurons [64].
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FIGURE 2.12: Tripartite Synapse
Schematic illustration of the tripartite synapse. Pre-synaptic neurons (neuron 1) release neurotransmit-
ters to the synaptic cleft. These neurotransmitters create an action potential in post synaptic neurons
(neuron 2) and trigger a Ca2+ transient inside the astrocyte (green). These calcium waves will trigger
the release of glial transmitters that can modulate the synapse, depending on the neuronal activity. As-
trocytes are also capable of having calcium transients independent from neuronal activity. IP3, or inositol
1,4,5-trisphosphate, is a second messenger that mediates the release of intracellular calcium. [72]

Although astrocytes cannot propagate action potentials, they are somewhat excitable, in the sense

that they can be activated and communicate with other cells through glial transmitters and calcium waves

[64]. This discovery has revolutionized the way we look at electrical transmission in the brain and the

fundamental role of astrocytes in the CNS.

2.2.4 Astrocytes and Ageing

Functional Profile of Ageing Astrocytes

With age, our brain develops an inflammatory phenotype, often called inflammageing. With inflam-

mation there is a recruitment of microglia, which in turn secretes inflammatory factors that trigger the

reactivity of astrocytes. These can develop, simplistically, into pro-inflammatory or anti-inflammatory

states [67]. However, the pro-inflammatory phenotype (A1 astrocytes) is the most prevalent with ageing.

This causes transcriptional and functional changes, making astrocytes unable to perform their functions

of promoting neuronal survival [9].

It is thought that some functional changes that ageing astrocytes undergo may be increasing the

pro-inflammatory phenotype of the brain [1]. Specifically, aged astrocytes are thought to activate the

complement system, which is part of the innate immune system and is responsible for regulating in-

flammation through the release of complement factors C3 and C4B [1]. Since astrocytes participate in

the tripartite synapses, one hypothesis is that the complement system’s action on these synapses de-
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creases the strength of the connection between neurons and astrocytes, and that it potentiates memory

loss in older people [1]. Furthermore, this may also be associated with the loss of the capacity to main-

tain synaptic homeostasis, with excitotoxicity being an important hallmark of brains affected by ageing

and/or neurodegenerative diseases [73]. Excitotoxicity is mainly the result of prolonged or exacerbated

activation of glutamate receptors, caused by the inability of astrocytes to control the levels of glutamate

in the synaptic cleft, resulting in loss of neuronal function and cell death [73]. Furthermore, it is known

that aged astrocytes have an increase in ROS release, which is related to the oxidative stress theory

of ageing [1, 28]. It is also known that aged astrocytes lose part of their ability to maintain the proper

functioning of the Blood-Brain Barrier (BBB) [1]. Finally, as they are an extremely heterogeneous cell

group, any impairment on their function will irrevocably impact the function of other glial cells in addition

to neurons, creating feedback mechanisms that result in dysfunction of the entire CNS [1].

This inflammatory phenotype has been shown to be detrimental to the proper functioning of as-

trocytes. However, recent studies are also starting to elucidate on the effect of natural compensatory

immunosuppression in astrocytes. A review by Salminen (2020) states that the number of cells that fall

into this phenotype tends to increase with age, and this compensatory immunosuppression phenotype

has harmful effects on the tissues on which it acts, such as brain tissue, and may also be associated

with the exacerbation of neurodegeneration and age-related diseases [31].

Finally, considering the oxidative stress theory of ageing with astrocytes, we can still find evidence

that astrocytes are quite sensitive to both oxidative and endoplasmic reticulum stress, compromising

their neuroprotective and homeostasis functions and adapting worse to these conditions as they get

older [74]. However, more studies need to be done in order to clarify this issue, as other studies suggest

that stress-reactive astroglia is not necessarily neurotoxic and that intense oxidative stress does not

result in its exacerbation by glia or neurons [75].

Structural Profile of Ageing Astrocytes

In structural terms, despite being highly dependent on the region in which they are found, it is

known that, with age, astrocytes start to have shorter and stubby processes, as opposed to the fine

and branched processes of normal astrocytes (figure 2.13 (A)) [1]. There is no evidence that their

number changes significantly with age [37].

Transcriptomic Profile of Ageing Astrocytes

In general, consistent with astrocytes becoming more reactive with age, mainly by acquiring a pro-

inflammatory phenotype (A1 reactive astrocytes), we find genes such as GFAP, S100b and other ”A1”

genes whose expression is increased in aged astrocytes (figure 2.13 (B)). Furthermore, we find up-

regulated genes associated with the complement system, such as C3 and C4B. On the other hand, we

find down-regulated genes associated with secretory molecules, such as ATP and VEGF, and genes

that regulate oxidative stress, such as NRF1 and DJ1. However, all these transcriptomic studies were

carried out in mice and/or humans, using RNA-seq of pools of cells [1]. This means that all these

changes will reflect an “average” transcriptomic profile of the astrocytes, not having the sensitivity to

identify more subtle changes in the transcriptome of individual cells [76].
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FIGURE 2.13: Molecular and morphological changes of ageing astrocytes
Summary of (A) the morphological changes and (B) molecular changes that astrocytes undergo with
ageing. With ageing, astrocytic processes become shorter and stubbier, and most of their neuroprotec-
tive functions become dysregulated [1].

Ageing Astrocytes and Neurodegenerative Diseases

Aged astrocytes have also been associated with several neurodegenerative diseases. Specifically,

they have been related to AD, that shares many of the hallmarks of ageing brain and ageing astrocytes,

such as oxidative stress, mitochondrial dysfunction, and inflammation [25]. PD and ALS have also

recently been associated with ageing astrocytes and their consequent loss of function [1, 7, 8, 77].

Since this cell group is very affected by age and given its complexity, it is plausible that there are subtle

transcriptional changes associated with ageing astrocytes that remain unnoticed and make the brain

more vulnerable to age-related diseases.

In short, and citing Soreq and colleagues (2017), “the intimate relationship between ageing and neu-

rodegeneration raises the possibility of shared transcriptional and post-transcriptional gene regulation

programs” [78] - a better understanding of neurodegenerative diseases involves a better understanding

of the processes in physiological ageing.
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2.3 Single Cell RNA sequencing Data

High-throughput RNA sequencing (RNA-seq) allows the study of the molecular mechanisms of health

and disease by sampling the transcriptomes of tissue samples, enabling the quantification of the relative

levels of different RNAs therein [79]. This technology comprises reverse transcription from RNA to

complementary DNA (cDNA), DNA fragmentation, fragment amplification and detection of the resulting

base pair sequences, the so-called reads. After aligning reads against an annotated genome sequence,

they are counted for each gene in each sample and summarised in a matrix of read counts, with genes

as rows and samples as columns.

2.3.1 What is Single Cell RNA sequencing?

Single-cell RNA sequencing (scRNA-seq) is the current gold standard for profiling the transcrip-

tomes of individual cells and thereby inferring their phenotypes. Being a high-throughput technology, it

can profile thousands of cells per experiment, allowing at the same time for the study of a single cell

transcriptome in an unbiased manner, not targeting specific genes like microarrays [80]. It is widely used

for discovering new cell states in heterogeneous samples, such as the tumour micro-environment [81].

To reach single-cell resolution, scRNA-seq protocols require, among others, a step for cell isolation

and transcript amplification. Two of the main categories of these protocols include well-based protocols

and droplet-based protocols [82, 83]. Well-based protocols rely on methods, such as fluorescence-

activated cell sorting (FACS) or microfluidic chips, for physical separation of cells in separate wells.

Although allowing for flexible experimental set-ups, as the cells can stay in the wells for a certain amount

of time, these protocols require manual pipetting for each individual well, in order to perform reverse

transcription, being also very expensive and potentially introducing more noise in the samples [83].

Droplet-based protocols (figure 2.14) are based on the mechanical isolation of each cell using a

droplet of oil. Each droplet contains a small bead (each coloured dot in figure 2.14), coated by many

repeated complementary DNA (cDNA) sequences with five main parts: a linker region, a primer region

to allow for further molecular amplification of each transcript, an unique barcode, a second series of

barcodes called unique molecular identifiers (UMI), and finally the poly-d(T) region that allows the cap-

ture of mRNA [84]. Although each bead has only one unique barcode (allowing for the identification

of each cell), it has numerous distinct UMIs, allowing for the unique identification of each transcript in

each cell. These molecules can then be pooled after reverse transcription [83], amplified with PCR

and sequenced with high-throughput state-of-the-art-technologies, such as Illumina, without losing the

single-cell resolution of the transcriptome.

One of the most used droplet-based protocol is Chromium from 10X Genomics, that ensures one of

the highest capture efficiencies amongst scRNA-seq technologies while being relatively affordable [86].

In this work, I have used scRNA-seq data prepared with this protocol.
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FIGURE 2.14: Droplet-based single-cell RNA sequencing platform
Droplet-based protocol for scRNA-seq with Chromium 10X Genomics® . Adapted from “Single-Cell RNA
Sequencing Frequently Asked Questions” [85]

2.3.2 Single Cell versus Bulk RNA Sequencing

The first single-cell transcriptomics study was published in 2009 and focused on a mice blastomere

[10]. Since then, scRNA-seq has been increasingly applied, given its enormous advantages in un-

ravelling the complexity and heterogeneity of cell groups. Bulk RNA-sequencing experiments allow to

measure gene expression levels as averages across thousands of cells. However, if there is high het-

erogeneity within the group of cells to be sequenced, transcriptome individualities are lost [76]. With

single-cell RNA-seq, we can study each cell individually, obtaining the distribution of gene expression

levels across a population of individual cells (figure 2.15). Together with clustering algorithms, we can

see, among others, the differences in expression between cell types, heterogeneity within cell types,

study differentiation trajectories and differences between different cell type-specific responses [87].

FIGURE 2.15: Bulk RNA-seq versus scRNA-seq
Unlike bulk RNA-seq, which provides an average transcriptomic profile of a sample with numerous cells,
scRNA-seq has the ability to find distinct cell groups within the same sample. Adapted from “Single-Cell
RNA-Seq: An Introductory Overview and Tools for Getting Started” [87].
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2.3.3 Advantages and Disadvantages of Single Cell RNA Sequencing

Given the technical limitations of the scRNA-seq technologies (low amounts and inefficient capture of

mRNA molecules, leading to sampling bias, in individual cells), there is a high number of lowly expressed

genes in each cell with no reads [88]. These dropout events lead to a zero-inflation of the count matrix

highly characteristic of scRNA-seq data, motivating the adaptation of protocols for the analyses of bulk

transcriptomes. However, the possibility of unravelling the true heterogeneity of a tissue compensates for

those drawbacks, and there are already plenty of bioinformatics tools that aim at dealing with them [89].

Furthermore, we are now witnessing the emergence of new protocols that even couple this enormous

transcriptional resolution with spatial information.

2.3.4 Single-Cell versus Single-Nucleus RNA Sequencing

Single-nucleus RNA sequencing (snRNA-seq) is an important variation of single-cell RNA sequenc-

ing. The single-nucleus protocol was developed based on the scRNA-seq protocol to extend its applica-

bility to tissues that cannot be easily dissociated into a single-cell suspension [90], such as the human

brain (given that neurons are highly connected and very long, being difficult to dissociate entirely [91]),

or frozen tissues (given that nuclei are better preserved than the whole cell [92]). At the same time,

snRNA-seq minimizes the alteration of gene expression that may be introduced by artificial interactions

between cells in suspension [93].

This technology is based on four steps: tissue processing, nuclei isolation, nuclei sorting and se-

quencing, being the first two steps those that differ the most from scRNA-seq [94]. For this, nuclei

dissociation protocols are used, where the cells are suspended and lysed, for the nuclei to be separated

from the cytoplasm using centrifugation.

2.3.5 Advantages and Disadvantages of Single-Nucleus RNA Sequencing

The main advantage of snRNA-seq is that it combines the advantages of scRNA-seq with the possi-

bility of applying such technique to brain or frozen tissues, without losing the cells identity. However, it

has lower RNA input amounts, which can also increase noise [90]. Furthermore, due to technical limi-

tations, some extra-nuclear contents may be encapsulated along with the nuclei and may also increase

the amount of cell debris and background RNA (i.e., RNA from the cytoplasm, mitochondria, etc.) [95].
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Chapter 3

Materials and Methods

3.1 Data Availability

All frozen human brain tissue snRNA-seq datasets used in the present work are publicly available

through the National Center for Biotechnology Information (NCBI) data repository Gene Expression

Omnibus (GEO) [96]. Processed snRNA-seq data from these datasets (read count tables) were down-

loaded from the GEO data portal1. Moreover, the independent brain RNA-seq validation datasets used

were retrieved from the Genotype-Tissue Expression (GTEx) project, a publicly available resource to

study tissue-specific gene expression and regulation, with an associated tissue bank with relevant clinic

metadata. Processed GTEx v8 RNA-seq data (read count tables) were downloaded from the project’s

data portal2. Donor metadata were obtained from dbGaP - database of Genotypes and Phenotypes

(Accession phs000424.v8.p2).

TABLE 3.1: Summarised description of the human datasets used in this work, including the ageing
astrocyte datasets (scRNA-seq) and the validation brain datasets (RNA-seq).

1Gene Expression Omnibus - https://www.ncbi.nlm.nih.gov/geo/
2Genotype-Tissue Expression project - https://www.gtexportal.org/
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3.1.1 Ageing Astrocytes Datasets

In order to find human transcriptomic data from single-nucleus RNA sequencing of healthy individuals

of various ages, i.e, whose cause of death is not related to neurodegenerative diseases, control samples

from several publicly available studies were used (table 3.1). For this, an extensive search was made

in snRNA-seq data available on the GEO portal, using the keywords scRNA-seq, epilepsy, Memory,

Alzheimer, Alcohol, COVID-193 and Huntington, in order to select control individuals for these studies,

who did not have pathologies associated with the brain that could greatly impact the conclusions of

this work (table A.1). The 60-year-old threshold was chosen to separate young and aged individuals,

as it is thought that the first signs of neurodegenerative diseases may start to appear up to 30 years

before their onset (80-90 years old for AD, for example [49]). To balance the number of young and

old individuals, four datasets were chosen (GSE153807, GSE141552, GSE159812, GSE160936), with

overlapping ages so that age ranges are not totally confounded with the studies and thereby facilitate

the removal of batch effects. With these criteria, the joint dataset consisted of eight samples from young

donors and ten samples from old donors. The names given to the datasets in this work are “young”,

“oldish”, “youngoldish” and “old”, and reflect the dominant ages in each of them, with the numbering

of each sample within each dataset (e.g., young1, young2, etc.) being random (table A.1). To avoid

introducing a bias towards a chosen brain area, different brain areas were used. Furthermore, the

young dataset is the only one not comprising post-mortem samples but samples from living individuals

with epilepsy, as it is naturally very difficult to find post-mortem samples from young individuals.

Although some count matrices were made available already with a few quality filters applied, I de-

cided to revise the quality control and apply my own filtering criteria to data pre-processing.

All datasets were supposed to include a mixture of all CNS brain cells and the identification of cell

types was performed in the downstream analysis, through known cell type-specific markers. However,

it is suspected that the old dataset only had astrocytic and microglial cells. Finally, although all the

data used in this analysis are snRNA-seq, to simplify the language, and given that scRNA-seq is the

foundation of snRNA, I will henceforth not make a distinction between the two and refer everything as

scRNA-seq.

3.1.2 Validation Datasets

To validate the results of this work in independent samples, the GTEx project RNA-seq dataset [97]

was used, comprising donors with a wide range of ages (table 3.1). The full dataset was available

as a matrix of gene counts, to which we performed sample filtering to obtain only the brain regions of

interest, namely the Cortex, Hippocampus and Cerebellum. As the detailed metadata of this project are

confidential, institutional authorised access to them was needed to study the change in the proportion

of cells with age.

In order to avoid the bias associated to brain pathologies, GTEx samples associated with dementia,

PD, cerebral vascular accident, and unknown cause of death were removed, which reduced the number

3Given the great amount of data recently made available.
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of samples for analysis in roughly 3-4 % (from n=255 to n=245 in the cortex, from n=197 to n=191 in the

hippocampus and from n=241 to n=234 in the cerebellum).

GTEx cortex samples were chosen to ensure the comparability between GTEx validation samples

and scRNA-seq cortex samples. However, hippocampal and cerebellum datasets were also considered,

as these areas are very affected by neurodegenerative diseases.

3.2 R Statistical Software

Most of the work of this thesis was performed using the R software environment for statistical com-

puting and graphics [98]. This programming language is widely used by statisticians and computational

biologists, as it is an intuitive and efficient language for the analysis of big data. R was used to import

and pre-process data, as well as to render plots that illustrate the main results of this work. R is an open-

source programming language, being constantly improved in terms of resources for data scientists, and

with a helpful large online community. R-Studio [99] is an integrated development environment (IDE)

for R, which allows its usage in a graphical, user-friendly way, including resources such as debugging,

plotting and help in its graphical interface. In this work, R Studio Web (with R version 4.1.0) was used

to run the analysis in the laboratory’s server, given that single-cell analysis can be computationally de-

manding, easily reaching 50GB, and sometimes almost 200 GB of RAM. The main R packages used in

this work and their respective versions are summarised in table 3.2. However, it should be stressed that

the number of packages used in this work was virtually higher through package dependencies.

TABLE 3.2: Summary of the main R packages used in this work, all free and open-source.

Amongst the enormous number of packages offered by R, ggplot2 [100] is one worth mentioning.

This package was developed to make data plotting easy and intuitive, allowing the plotting of different

types of graphs always based on the same reasoning. Most, if not all, graphics included in this work

were made using this package as a basis.
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The two main packages used for data handling, pre-processing and results visualization in this work

are SingleCellExperiment (SCE) [101] and Seurat [102]. These packages are quite similar in terms of

data storage, as they allow the association of gene counts and metadata related to each cell in a single

object, in an efficient way and requiring the minimum possible computational resources. They are also

similar in terms of visualisation, as they are based on ggplot2. Although Seurat is more powerful and in-

cludes more visualisation and data processing tools (including its own batch effect correction algorithm),

it is less intuitive than SingleCellExperiment in terms of data access. Since this thesis was my first

contact with scRNA-seq data, I chose to use a mix of the two packages: using SingleCellExperiment

in exploratory data analysis and first pre-processing and filtering of data, and Seurat for more complex

tasks, such as batch effect correction, clustering and some types of data visualisation.

Other R packages were used in this work, namely limma (for differential expression analysis), slingshot

(for pseudotime inference analysis), fgsea (for gene set enrichment analysis) and cTRAP (for assessing

drug re-purposing potential). These packages have several methods and algorithms associated that are

worth mentioning in more detail in the following sections.

3.3 Dimensionality Reduction

Matrices of read counts obtained from scRNA-seq experiments have high dimensionality, as there

are thousands of genes that can be detected (figure 3.1). Thus, dimensionality reduction techniques are

fundamental for data visualisation. Amongst the most used in scRNA-seq data are Principal Component

Analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE).

FIGURE 3.1: High dimensionality data representation
Schematic representation of single cell data dimensionality and the need for dimensionality reduction
techniques. Each gene in a scRNA-seq count matrix corresponds to a variable.

3.3.1 Principal Component Analysis (PCA)

PCA is one of the oldest dimensionality reduction techniques [103] and is based on finding the direc-

tions of greatest variance in the data, which, therefore, contain most of the statistically relevant informa-

tion. This problem is based on the discovery of pairs of eigenvectors / eigenvalues, that is, orthonormal

vectors and their associated length, ordered by decreasing percentage of variance explained. Thus,

data with high dimensionality can be projected in this new coordinate system, so that the projection

reflects as much variance in the data as possible (figure 3.2).
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FIGURE 3.2: Principal Component Analysis (PCA) schematic representation
Schematic representation of performing a PCA on two dimension data, by projecting the data onto the
main axes of variance. Each dot is a cell, and each variable is a gene.

Let Xraw be the high-dimensional data matrix, n the number of cells, p the number of genes (vari-

ables), k the number of new coordinates, µ the mean of the data and V the k eigenvectors with the

highest eigenvalues. The centred data, that will ensure that the first principal component is proportional

to the maximum variance of the data, may be given by:

Xn×p = Xrawn×p
− µ (3.1)

The new coordinates of the centred data, Z, will be given by the projection of the data in the space

defined by the eigenvectors:

Zn×k = Xn×p × Vp×k (3.2)

In this work, I chose to use 50 main components and the SCE runPCA function to project the data in

these 50 new dimensions, storing the results in an SCE object along with the data and metadata.

3.3.2 t-distributed stochastic neighbour embedding (t-SNE)

Unlike PCA, that is a deterministic and linear method, t-SNE is a probabilistic and non-linear method

for visualising high dimensional data in n new dimensions [104]. The t-SNE n-dimensional plot is con-

structed such that, if two points/cells are close, they are most likely (given by a probability distribution)

to be close in the real high dimensional space as well. This technique usually forms clusters of similar

points but the absolute distance between two points, as well as their absolute position in space and

cluster size, is arbitrary – only the relative distances between points hold some biological meaning. This

means that this technique is highly prone to distortions in the data, can possibly find patterns in random

noise if the parameters are chosen wrongly (unlike PCA that does not have a priori parameters), and is

non-deterministic. However, the fact that it does not assume a normal distribution of the data, like PCA,

makes it very useful for scRNA-seq data [105].

In this work, the runTSNE function of the SCE package was used to perform t-SNE and save the new

coordinates for visualisation in the SCE object, together with the data and metadata. This function also

takes a parameter called perplexity, which balances the attention between local and global similarities

in data, forming clusters, being this set to 30 (the default).
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3.4 Statistical Analysis
Statistical analysis allows to investigate trends, patterns, and relationships in quantitative data (such

as count matrices), being the basis of scientific reasoning. And because every answer has a question, to

draw valid conclusions, we must be very careful and precise when designing an experiment to address

our research question. Not all scientific questions can be answered, but those that can must have

an associated testable hypothesis (even if it then does lead to inconclusive results). Typically, these

hypotheses translate into null (no relationship or no difference between groups) and alternative (there is

relationship or difference between groups) hypotheses, which can be tested using representative data

samples for the problem at hand, and appropriate statistical tests [106].

Statistical tests

There are a huge number of statistical tests, designed to test the null hypothesis. We can have tests

applicable to cause-effect relationships (Pearson’s correlation test), tests that explore the relationship

between variables (t-test, ANOVA, etc.), and even tests that allow us to infer characteristics of a given

population through a sample of it (linear regressions). These tests can be parametric, that is, they

can be defined through a set of parameters such as the mean and standard deviation, thus making

assumptions about the data (it follows a normal distribution, etc.), or non-parametric, that do not make

assumptions about the data. Generally, for a parametric test (t-test, Pearson’s correlation test) there is a

non-parametric equivalent (Wilcoxon Rank-Sum test, Spearman’s test), so the statistical test appropriate

to the data and suitable to answer the scientific question should be carefully chosen.

Statistical significance

Regardless of their purpose, all statistic tests have an associated test statistic. This test statistic

describes how far the data are from the null hypothesis (for example, that there is no difference between

two groups, which can be translated into as the difference between the means of each group being null).

Each test statistic will have an associated statistical significance, that is, a number that denotes how

likely it is that the data would have occurred by random chance under the null hypothesis. The statistical

significance is normally given by the p-value. P-value < 0.05 is a common threshold for statistical

significance, that is, if the null hypothesis is true, the data under question is likely to occur less than 5%

of the time [107, 108]. We can reject the null hypothesis, but we can not deem it as true when it is not

rejected.

Effect size

The effect size should always be considered when performing a statistical analysis. The effect size is

the actual meaningful difference between groups being tested under the null hypothesis. Let’s say that

my null hypothesis is that the mean expression of gene k in cluster of cells A is equal to that in cluster

of cells B; my null hypothesis is then µA − µB = 0. Let’s say that I statistically test if my null hypothesis

can be rejected, with a resulting p-value of 0.01 for a log fold change (log2FC = log2(A/B)) of 0.007.

This means that the null hypothesis can be confidently rejected because there is only a 1% chance of

obtaining an at least as extreme result under the null hypothesis. However, the average difference in

expression between the groups (effect size) is quite small and therefore likely not biologically meaningful.

We can then conclude that the tested is not relevant, although it is statistically significant [107, 109].
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3.5 Pre-processing of scRNA-seq data

Although it can be considered as part of the results, taking around two months to be completed,

I chose to include the pre-processing of single-cell data as a part of the Methods section. Albeit not

directly answering any biological question, it has influenced all results and their interpretation.

“Getting intimate” with the data is essential in research projects; there is no set of packages, functions

and algorithms that works universally well for all data. However, a pipeline of general steps for single cell

data pre-processing can be defined, in order to guide researchers in the initial contact with this analysis.

Such a pipeline is exemplified in figure 3.3 and will be explored in the following sections.

FIGURE 3.3: Common workflow for scRNA-seq data processing
Schematic of the processing pipeline used in this work. The pre-processing steps are identified in grey,
and were applied to the raw count matrix retrieved from public databases of scRNA-seq data, comprising
cell quality control (QC), normalisation, batch effect correction and clustering. Based on the main steps
presented in the resources of the online course “Analysis of single cell RNA-seq data” (2019) [110].

3.5.1 Filtering

The first step in the analysis of single cell data is filtering based on cell quality and gene expression,

as there may be several technical aspects that make the sequenced cells of poor quality. If this is not

done, poor quality cells that do not reflect the molecular phenotype of any human brain cell will be
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included in the analysis, which could lead to wrong conclusions. In addition, filtering non-informative

cells and genes is very important to optimize the computational burden of analysis.

There are several ways to identify a poor-quality cell [111, 112]:

• Library size: The library size of a cell can be described as its total number of sequencing reads.

Cells with small library size may correspond to wells/droplets that captured ruptured cells/nuclei,

or just background noise. This could also happen due to inefficiency in capturing and amplifying

cDNA.

• Detected genes: Cells with few identified genes will have low library complexity, suggesting that

the real population of transcripts was not correctly sampled. A characteristic of single cell data is

the existence of a “heavy left tail” at the extreme of the distribution of identified gene counts (figure

3.4 (C)).

• Percentage of mitochondrial genes: High percentages of mitochondrial genes amongst those

detected are indicative of low quality cells, as the remaining mRNA may have been lost due to cell

lysis or RNA degradation. In single nucleus, this high percentage could also be indicative of cells

where the cytoplasm was not efficiently removed.

It is also important to filter genes whose expression is considered undetectable, as they will not add

relevant new information to the analysis.

The thresholds chosen for filtering are highly dependent on the data themselves, and therefore there

are no recommended values. In general, thresholds should be chosen such that, in addition to acting

on the heavy left tail of the UMI counts, balance the library size around the median of counts, as well

as reducing the computational cost to an affordable burden. Considering these points, the following

thresholds were chosen for this analysis, illustrated in figure 3.4:

• Library size: Remove cells with less than 400 read counts.

• Unique genes detected: Remove cells with less than 300 unique genes detected.

• Percentage of mitochondrial genes: Remove cells with more than 15% of the reads mapped to

mitochondrial (MT) genes.

• Gene counts: Keep genes with a minimum expression of 5 read counts in at least 10 cells.

3.5.2 Doublets

Another thing to consider when analysing single cell data is the presence of doublets. Doublets

occur when an oil droplet in the cell sorting protocol encapsulates two or more cells. Despite being

a technical artefact, the estimation and removal of doublets can be done computationally, for example

through machine learning techniques.

The identification and removal of doublets in this work was done using the scDblFinder [113] R

package. According to a benchmark study, DoubletFinder [114] is the best tool for finding doublets in
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FIGURE 3.4: Quality control of scRNA-seq data - Filtering
The filtering thresholds were chosen considering the ”heavy left tails” in the counts of (B) reads and (C)
unique genes identified, as well as (D) a reasonable percentage of mitochondrial genes. It an be also
noticed that (A) the median of the library size was not around the median of the individual samples, and
that (E) after filtering it is more balanced around them. The filtering results are shown in figures (F),
(G) and (H) for library size, unique genes per cell and percentage of mitochondrial gene counts per cell,
respectively.
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terms of accuracy, but not in computational efficiency [115]. Its main principle is that the algorithm first

generates artificial doublets by combining gene expression profiles of two randomly selected droplets;

subsequently, it defines a doublet score for each original droplet as the level of similarity the droplet has

to those artificial doublets (via k-nearest neighbours); finally, it detects doublets as the original droplets

whose doublet scores exceed the computed threshold. scDblFinder, published after the release of the

benchmarking study, uses the same principles as DoubletFinder, but with a few alterations that make

it more efficient and accurate. This function allowed for doublet identification in each sample,using the

1000 most variable genes to make the estimation, hence the importance of prior gene filtering.

Since this technique depends a lot on the number of cells used (the more cells, the more accurate

the estimate), the estimation of doublets was done in two ways: with the unfiltered data and subsequent

identification of doublets in the filtered results, and with the filtered data (figure 3.5). The estimate with

the unfiltered data identified more doublets, totalling 10199 among the 68028 cells, in contrast to the

estimate using only the filtered data, which identified 4269 doublets. Nevertheless, since the rationale

for data filtering was that many of the cells were of poor-quality and did not reflect any real biological

individuality, the estimate with the filtered data was chosen, removing 4269 doublets from the data.

FIGURE 3.5: Doublet estimation strategies
Doublet identification strategies, using the scDblFinder R package. (A) estimation of doublets using
unfiltered data, with consequent identification in the filtered data; (B) estimation of doublets using filtered
data.

3.5.3 Normalisation

Normalisation is indispensable for analysing scRNA-seq data. When preparing the library for each

cell, there are biological and technical factors that influence the associated library size. Since gene

expression should not be confounded with cell sequencing depth, normalisation is important to eliminate

technical variability while maintaining biological variability [116].

In this work, the computeSumFactors function (scran package [117] version 1.20.1) was used, which

implements a deconvolution strategy for normalisation. Briefly, all cells are sorted by increasing library

size, and a moving window is applied to this rank of cells, so that each window has cells with similar

library sizes; then, the counts for those cells are summed together; furthermore, the count sums for this

34



pool of cells are normalised against the average of the counts across all cells (average reference pseudo-

cell); finally, sliding this window and performing these steps iteratively will construct a linear system that

can be solved by least-squares methods to obtain cell-specific size factors, that can be applied to each

cell (that is, gene expression of each cell is divided by its size factor). The default window sizes were

used, being these around 20 cells for low library sizes, and with window size of around 100 for high

library sizes. The results before and after normalisation are represented in figure 3.6.

Distribution of read counts usually have a log normal shape, and so the read counts were log-

transformed with log2. As the distribution of read counts for single-cell data is zero-inflated, a pseu-

docount of 1 was added in the transformation. The effect of normalisation on the data can be seen

in figure 3.6, with the corrected library sizes becoming much more comparable between samples and

datasets, mitigating sequencing depth-related biases.

FIGURE 3.6: Normalisation of single-cell RNA-seq data
Boxplots summarising library sizes across cells for each sample in each dataset, (A) before and (B) after
normalisation. The median counts across the entire data are represented by the red dashed line, and
it can be clearly seen that, with normalisation, the library sizes are much more aligned with the median
library size, mitigating biases associated with the sequencing depth.

3.5.4 Batch Effect Correction

Batch effects (differences in personnel, experimental conditions, etc.) cause variability in the data

that is not associated with biological factors. This can lead to wrong conclusions if the variables of

interest are correlated with the conditions of the experiment (e.g., clustering by dataset). Batch effects

are of particular concern in scRNA-seq experiments (high resolution and noisy, due to low amounts of

mRNA to work with) and, therefore, numerous computational tools have been developed to correct them.

Several batch effect correction methods were explored in this work, including ComBat (sva package

[118] version 3.40.0) and limma’s [119] function removeBatchEffect. However, Seurat’s batch effect

correction method [120] showed the best results in terms of sample homogenization across all clusters.

This algorithm was bench-marked as one of the best tools for batch effect correction, according to Tran

et al. (2020) [121].

It identifies correspondences between cells of the same type in different experiments, called anchors,
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that can be used to harmonize datasets into a single reference, even when there are heavy technical

differences. It has some similarities with reference assembly and mapping for genomic DNA sequences

[120]. In summary, this algorithm performs, for each pair of datasets, canonical correlation analysis

(CCA, similar to PCA), followed by L2 regularization, and mapping of both datasets in this new low

dimensional space. Then, in this common space, pairs of mutual nearest neighbours (MNNs) are found

between the two datasets, being considered as belonging to similar biological states – these are anchors

between the datasets. Then, the anchors are given a score, based on the shared overlap of mutual

neighbourhoods for the two cells in a pair - if this score is high, it means that many similar cells in one

dataset are predicted to correspond to the same group of similar cells in a second dataset (figure 3.7).

Finally, a non-linear transformation of the data based on these anchors and corresponding scores is

performed, so that they can be jointly analysed. For this to work, correspondences of cell types between

datasets are expected.

FIGURE 3.7: Seurat’s batch effect correction algorithm
Schematic illustration of Seurat’s integration algorithm for batch effect correction on single cell data.
(A) For each pair of datasets, one is considered the reference, and the other the query. (B) CCA +
L2 regularization is performed to project each dataset into a shared low dimensional space, where (C)
anchors (pairs between cells) between datasets are computed. Non-linear transformations are applied,
using these anchors, in order to “join” the datasets based on their biological similarities [120].

The functions used in this work were FindIntegrationAnchors, which identifies anchors between

datasets in a list, and IntegrateData, which performs the non-linear integration of datasets. Using the

four datasets (young, oldish, youngoldish, and old) as the input of the function, the algorithm was unable

to integrate the data. Because of this, each sample was considered a dataset and the integration was

performed with the 18 samples. The parameters used were the defaults of each function, including

the use of 2000 highly variable genes as the number of features used for finding anchors, in the low-

dimensional data with the first 30 main components. The batch effect with 4000 highly variable genes

was also tested, however the result was roughly the same, which did not justify the higher computational

cost and volume of the resulting data. The results of the batch effect correction are shown in figure 3.8.

Before correction, cells were grouped by dataset,demonstrating a non-biological aggregation of data.

After correction for batch effect, we can notice that the datasets and samples are now completely mixed,

so the formed clusters should now be indicative of cell populations or interesting biological states that

could be later explored.

Note that correction for batch effect may introduce technical variability and will not be equal to uncor-
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rected normalized data. This correction should only be used for visualization and clustering purposes,

as was done in this work, and not to perform differential gene expression, GSEA or similar [122].

FIGURE 3.8: Batch effect correction
Single cell data of this work before (A,C) and after (B,D) batch effect correction. Before batch effect
correction, cells were grouping by (A) dataset and (C) sample. After batch effect correction, the (B)
datasets and (D) samples seem now more harmonized and integrated, clustering by possible cell types
and cell states.

3.6 Clustering

One of the most important tasks in analysing single cell data analysis is the definition of clusters of

cells (e.g., after t-SNE representation) and the following assignment to cell types, based on the expres-

sion of specific markers of each cell type. The definition of a cluster and the consequent assignment to

a cell type is a very complicated task, so as not to incur in under-clustering (i.e., when cells of different

types are assigned to the same cluster, masking the underlying biological structure of the data) or over-

clustering (i.e., when if multiple clusters represent the same cell type, introducing non-relevant divisions

in the data).

Concomitant with the growing interest in the area, numerous clustering algorithms have been devel-

oped in recent years. The one used in this work is modularity optimization [123], or Louvain’s method.

This is a heuristic method applicable to large networks and the clustering algorithm used by Seurat,

having demonstrated its effectiveness in benchmarking studies [124]. This method consists of the so-

called modularity optimization phase and the community aggregation phase. Modularity is a parameter

between -1 and 1 that translates the density of links in each community of points, compared to links be-

tween communities. For each node, its neighbours are considered, and the modularity gain that would
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occur if a node were to belong to a community is calculated. This process is iteratively done for all nodes,

until there is no gain in modularity (a local maximum). The community aggregation phase creates a new

network, whose nodes are the communities found in the first step. These two steps are thus repeated

iteratively until a stopping criterion, called resolution, is met.

In order to avoid under-clustering, an “educated clustering” strategy was allied to this algorithm (i.e.,

through a qualitative analysis of cell type markers [125]), allowing to have an initial idea of the cell types

associated with each cluster (figure 3.9). In figure 3.10 (A) to (C) are depicted the resulting clusters

when using different resolutions (0.01, 0.35 and 0.4). For this data, a resolution of 0.01 results in under-

clustering, given that the qualitative evaluation of the clusters identifies microglia and oligodendrocytes

appearing together in cluster 0; with a resolution of 0.35, cluster 4 could be merging a cluster not

qualitatively identified as any cell type with a cluster that could theoretically be neuronal. Still in the

same line of reasoning, with a resolution of 0.4 we can divide cluster 4 (resolution 0.35) into two new

clusters (12 and 5), separating a putative neuronal cluster from a cluster whose cell type cannot be

determined.

The clustering algorithm was applied using the Seurat functions FindNeighbors and FindClusters.

A resolution of 0.4 was chosen, given that with higher resolutions the division of clusters gets noisier,

by the displacement of residual cell groups from one cluster to another. This decision was aided by the

construction of a cluster tree, using the clustree function from the package clustree (figure 3.10 (D)).

3.7 Differential Gene Expression

To infer differences in gene expression between groups of cells, we can linearly model gene expres-

sion. The differential gene expression analysis (DEA) was performed in this work in multiple ways. First,

by modelling gene expression and comparing one cluster against the average of the remaining clusters:

GEx = Clusteri × βi (3.3)

Where GEx is a vector of expression of gene x across cells, and Clusteri is a logical matrix with an

entry of 1 if the cell belongs to cluster i, and 0 otherwise. Given that this matrix has as many columns as

clusters and as many rows as cells, and each cell will be in only one cluster, the resulting matrix (design

matrix) will be sparse. βi will be the average expression of gene x in cluster i. A contrast matrix (i.e.,

a matrix representative of linear combination of the unknown coefficients βi) was then used to get the

differences between a βi coefficient and the average of the remaining coefficients.

The second way was by comparing two clusters’ gene expression. The formulation was equivalent

to equation 3.3, but with further use of a contrast matrix comparing specific pairs of coefficients.

The third way of using the linear models on gene expression in this work was to compare the gene

expression profile of each cluster against a baseline one:

GEx = β0 + Clusteri × βi (3.4)

Where GEx is a vector of expression of gene x across cells, β0 is the expression of the baseline

cluster, and Clusteri is a logical matrix with an entry of 1 if the cell belongs to cluster i \ baseline, and 0
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FIGURE 3.9: Marker genes of CNS cell types
t-SNE plots of the expression (log-normalised) of three marker genes of each of the main CNS cell types
[125].
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FIGURE 3.10: Clustering Metrics
Clustering results obtained by applying the Louvain method to our scRNA-seq data, with resolutions of
(A) 0.01, (B) 0.35 and (C) 0.4. A resolution of 0.4 was chosen. (D) Cluster tree obtained by applying
a range of resolutions between 0.01 and 0.5, with a step of 0.05, illustrating the relationship between
clusters obtained with different resolutions.
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otherwise. Under this formulation, the resulting βi coefficients will be the log2FC expression of gene x

between each cluster and the baseline cluster.

DEA was performed using the limma [119] and EdgeR packages [126] and following the limma-voom

pipeline [127], unless stated otherwise. The limma-voom pipeline was applied to the non-normalized

filtered scRNA-seq data (using edgeR for normalization) and fit the data to a linear model, using then the

moderated t-test (parametric) and empirical Bayes shrinkage of standard errors to assess the statistical

significance of the differential expression results. limma is a pseudobulk method (i.e., aggregates cells

within a biological replicate) for differential expression analysis, meaning that it can deal better with bio-

logical replicates than other state-of-the-art methods built exclusively for scRNA-sequencing, producing

fewer false positives [128]. For each coefficient in the linear model, the magnitude of differences in gene

expression was measured in log2FC, and their significance given by an adjusted p-value lower than 0.05

for multiple comparisons (Benjamini-Hochberg correction (BH correction)), needed to control the false

discovery rate arising from testing more than one hypothesis at a time.

3.8 Cell Type Annotation

After having the “ideal” number of clusters, it was possible to assign each one to a cell type. For this,

the markers of each cluster, that is, differentially expressed genes of each cluster in comparison with the

other clusters, were found.

There is still no consensus on the ideal statistical test to find the markers (i.e., the differentially ex-

pressed genes) for each cluster. However, if those are robust, their finding should be independent of the

test used. Due to its relevance, the cell type annotation task was done applying a non-parametric test,

using Seurat, as this approach does not make assumptions on the data. Yet, given the computational

burden of it (around 5 hours to get the differentially expressed genes), limma’s workflow was followed in

the remaining analyses.

The FindAllMarkers function from Seurat finds the markers for each cell cluster against the remain-

ing clusters, using the non-parametric Wilcoxon Rank-Sum Test. A significance level of adjusted p-value

< 0.05 (BH correction) and a magnitude of the difference in expression between clusters of log2FC

above 0.25 were considered, for both the detailed and general analysis. All thresholds for significance

and log2FC were chosen with the help of volcano plots4 and the usage of established marker genes

(positive controls, figure B.1).

The cell type annotation task was divided into two main steps: the detailed analysis, where each

of the clusters identified in figure 3.10 (C) was associated with a cell type; and the general analysis,

where if one cell type was associated with more than one cluster, these smaller clusters were grouped

into larger ones. These steps will be explained in detail in the next sections.

4Plots of magnitude of effect against the statistical significance, in logarithmic scale, of each gene after DEA, that resembles
a volcano
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3.8.1 Detailed Analysis

To associate each cluster in figure 3.10 (C) to a cell type, we found the percentage of differentially

expressed genes between that cluster and the others that are known markers of a cell type, associating

a cluster C to a cell type A if the following criteria were met:

1. More than 35% of cluster C marker genes being also markers for a cell type A.

2. Less than 8% of cluster C marker genes being also markers for each cell type ̸= A.

3. The percentage of cluster C’s markers not associated to any cell type being less than 60%

These criteria were chosen empirically (table B.1). Particularly for the first threshold, if this value

was too strict, some cell types known to be present in the brain would be missing, such as endothelial

cells (figure 3.11 (A)) and microglia, and given that, by looking at panels (B) and (D) from figure 3.8,

the samples are homogeneously distributed by all clusters, it is plausible that the cluster formation will

reflect the main cell types of the CNS. The second threshold was chosen to avoid an overly permissive

classification that would lead to an almost random distribution of cell-type markers (figure 3.11 (B)).

Finally, the third criterion, framed by the first two, was chosen to control for random technical clusters. If

these three criteria are met, the clusters will be assigned with one of the cell types; otherwise, they will

be assigned to “unknown cell types”.

FIGURE 3.11: Distribution of know cell-type specificities of marker genes for clusters 14 and 7 in
figure 3.10 (C)
The percentage of marker genes of clusters (A) 14 and (B) 7 from figure 3.10 (C) that are known to be
specific markers of each neural cell type is shown.

Finally, for each of the assignments, the top 10 marker genes of each cluster (significant genes with

the highest log2FC) were always checked. This was done in order to confirm that there was agreement

between the top genes for each cluster and the classification obtained in the detailed analysis step,

increasing confidence in the results. All clusters associated with a cell type had five or more of the top

10 marker genes associated with that cell type.
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3.8.2 General Analysis

After associating each cluster with a cell type (figure 3.12 (A)), 6 large clusters were formed, by

joining together clusters of the same cell type (and one large cluster for undefined cells), as shown in

figure 3.12 (B). After this, the markers of each of these clusters were again obtained and the conditions

described above were verified (table B.2). With this, I managed to associate each cluster to a CNS cell

type, through an “educated” approach of clustering and cell type annotation, which allows to discriminate

the cells of interest and start asking the biological questions I am interested in.

FIGURE 3.12: Cell type annotation of clusters
Annotations of cell types based on (A) the detailed analysis and (B) the general analysis. In the de-
tailed analysis, each of the clusters obtained by the clustering algorithm with a resolution of 0.04 was
associated with a cell type, based on specific markers of each cell type. In the general analysis, these
clusters were grouped into 6 large clusters, which allows the isolation of the specific cell type of interest
– astrocytes – for subsequent analyses.

The number of cells in each of the 6 clusters can be found in table 3.3, where we see a higher number

of neurons, followed by astrocytes, oligodendrocytes, microglia, undefined cells, and finally endothelial

cells. We cannot conclude much from these numbers, since we know that, for instance, the ”old” dataset

only had astrocytes and microglia, therefore not following the expected 1:1 ratio between neurons and

glial cells. Furthermore, cell proportions suggested by scRNA-seq should be handled with care, as they

may be technically biased (e.g., cell quality dependent on cell type). Nevertheless, neurons are still the

most abundant cell type in the combination of all datasets.

TABLE 3.3: Summary of the number of cells per cluster, obtained at the end of the general analysis of
the “educated clustering” workflow.

Cluster Number of Cells
neuro 20303
astro 14798
oligo 12327
micro 11279
endo 913

undefined 5242
total 64862

For this educated clustering process, since there were many clusters to be analysed, and many

variables to take into account, I chose to develop a small decision support dashboard. This dashboard
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was made in R, using the shinydashboard [129] package. It is a very basic dashboard, with just a

summary of all the metrics I talked about (figure 3.13 (A)), with the possibility of seeing in detail the

expression of each marker of a certain cell type, in any cluster, coloured in a tSNE, as well as the

visualisation of the markers in a volcano plot (figure 3.13 (B)). However, in pedagogical terms, it was

another tool that I learned to use and included in my “toolbox”.

FIGURE 3.13: Dashboard for cell type annotation
Dashboard made, through the R shinydashboard package, with the purpose of helping the annotation
of cell types for each cluster. As an example, we show the information available for the a cluster of
oligodendrocytes (0 oligo), where it is possible to verify (A) the percentage of specific gene markers of
each cell type present in the markers of this cluster, as well as (B) visualise a t-SNE plot coloured by the
expression of a particular oligodendrocyte marker, and the volcano plot of differential gene expression
associated with the markers of this cluster.

3.8.3 Astrocyte Isolation

With the educated clustering analysis and workflow, it is possible to select, with statistical and bio-

logical confidence, using robust genetic markers, the set of astrocytes for the remaining analysis. One

could have directly used the already processed gene expression data for the astrocytes obtained in

the educated clustering step. However, I chose to perform all steps on raw astrocytic data, including

filtering, normalisation, batch effect correction, and clustering, as to avoid possible bias caused by the

non-astrocytic data. Two samples had to be removed from the analysis, youngoldish3 and oldish4 (ta-

ble A.2), because they had a very low number of astrocytes (31 and 99, respectively), which made

the remaining analysis unpractical. Two of the pre-processing steps got special attention, as described

below.

The normalisation did not go as well as what was expected from what happened previously with all

CNS cells, where the median library size of each sample was around the median library size across

all samples (figure 3.14 (C)). This could be explained by the reduction in the number of cells, which

hampered the precision of the normalisation factors estimation. I hypothesised that the normalisation

step could get better results if I used the gene expression of astrocytic cells directly from the cell type

annotation step, and thus not running the pre-processing pipeline all over again. However, I tried both

approaches and the results were pretty much the same (figure 3.14 (B) and (C)). That said, I chose to

continue with the pipeline analysis from the raw astrocytic data.
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FIGURE 3.14: Normalisation of astrocytic data
Distribution of astrocytic library sizes across the various datasets, (A) before data normalisation; (B)
after data normalisation using normalisation factors obtained from cells of all types; and (C) after data
normalisation using astrocytic data normalisation factors, after redoing the pre-processing pipeline only
in these cells. The red dashed line represents the median library size.

In the cell type annotation step (after clustering with a resolution of 0.3), since I only have one cell

type under analysis, I chose to see the expression of a pair of markers specific for astrocytes, namely

AQP4 and SLC1A2 [125]. In figure 3.15 (B) it can be seen that cluster 5 in figure 3.15 (A), coloured

in pink, does not express any of these markers, which may indicate cells that were misidentified as

astrocytes. That said, I chose to remove this cluster, and go back to performing the pre-processing

pipeline again.

Finally, after applying the pre-processing pipeline only to these reliable astrocytic cells, the clusters

shown in figure 3.15 (C) were obtained. However, cluster 1 had a large percentage of mitochondrial

genes when compared to the other clusters (3.16 (A)), and the differentially expressed top genes were

also mitochondrial genes. It was not clear why this was happening, but given that the expression of some

mitochondrial genes had a bimodal shape (3.16 (B)), one hypothesis was that cells in poor condition

could be grouped with cells that are actually biologically defined by higher expression of mitochondrial

genes. To further divide those cell groups, looking for biologically interesting distinct astrocytic states,

I decided to run clustering again on the cells of cluster 1. The chosen resolution was 0.31 and, after

analysing the markers of each cluster, I concluded that one of the (four) clusters obtained with this

subdivision did not have mitochondrial genes among its differentially expressed genes, and that the

bimodal expression of mitochondrial genes was less pronounced. Thus, I associated the group of cells

without mitochondrial marker genes in the new cluster 1, and the others in a new cluster 6.

The clusters shown in figure 3.17 (B) are those chosen for the subsequent analyses. Out of curiosity,

I finish this chapter by mentioning that I have reduced my data by about 93% since the beginning of pre-

processing, going from 209,187 CNS cells (nuclei) to about 13,694 astrocytes. These data will be the

basis of the remaining analysis, given that they are already normalised, with the dimensionality reduction

parameters (t-SNE and PCA) computed, and with interesting clusters to study.
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FIGURE 3.15: Final selection of astrocytic data
(A) Clustering of re-processed gene expression of cells previously classified as astrocytes based on the
clustering of cells of all types; (B) t-SNE plots coloured by the expression of specific astrocyte markers,
where it is verified that the cells of cluster 5 express less of them; (C) clustering of re-processed gene
expression of astrocytes after the removal of cells in cluster 5 of (A).

FIGURE 3.16: Mitochondrial genes in astrocytic clusters
(A) Smoothed histograms of distributions of log10 of read counts of mitochondrial genes in each cluster
of astrocytes, with cluster 1 standing out. (B) Expression of some mitochondrial genes found to be
cluster 1 markers, with evidence for their bi-modal form distribution across cluster 1 cells, which may
indicate that this cluster houses two distinct cell groups.

FIGURE 3.17: Sub-clustering of cluster 1 astrocytes
Clustering of astrocytes based on their gene expression data (A) before and (B) after the division of
cluster 1 into two new clusters, 1 and 6. The new cluster 1 does not have mitochondrial marker genes,
unlike cluster 6.
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3.9 Gene Set Enrichment Analysis (GSEA)

Gene Set Enrichment Analysis (GSEA) is a computational method used to infer whether a defined list

of genes shows statistically significant and concordant differences between two biological states [130].

This tool looks at a list of genes ranked by a certain statistical metric, and if a gene belongs to the gene

set of interest (pathway, biological process, etc.), it increases a running-sum statistic, and decreases it

otherwise (figure 3.18). After going through the entire list of genes, an overall enrichment score (ES)

will be given together with its statistical significance for each pathway / biological process included in the

GSEA database [130], under the reasoning that if the gene set is enriched at either the top or bottom

of that list (that is, under or over-expressed), it is thought to be related to phenotypic differences. GSEA

uses a collection of publicly accessible annotated gene sets, divided into, among others, hallmark gene

sets (representing specific well-defined biological states or processes), curated gene sets from online

pathway databases (such as KEGG), and genes annotated by the same ontology term (GO).

FIGURE 3.18: Gene Set Enrichment Analysis (GSEA) overview
Overview of the GSEA method, applied to two phenotype classes, A and B. (A) DEA is performed
between two groups A and B, resulting in an ordered list of differentially expressed genes; (B) The
location of genes from a gene set S within the sorted list of differentially expressed genes is obtained,
on top of which GSEA will be performed, resulting in a maximum ES [130].

In this work, GSEA was performed using the fgsea package [131] to infer phenotypes or biological

processes that underlie the biology of each astrocytic cluster. Upregulated or downregulated KEGG

pathways, hallmarks and biological processes (GO) were inferred through the application of GSEA to

each of the astrocytic clusters. The ranked lists of genes used were the differentially expressed genes in

one cluster against the remaining, the differentially expressed genes of one cluster versus the baseline

astrocytic cluster, and the loadings of each gene for each principal component. These genes were

ordered by their t-statistic, that is, the ratio of the difference between the estimated value of a parameter

and its hypothesized value to its standard error, combining effect size and statistical significance.

3.10 Pseudotime Inference

Pseudotime inference is a technique that associates each cell with a pseudotime, i.e., a measure

of how much progress an individual cell has made through a certain process that can be translated

by changes in gene expression [132]. It is normally applied to cell differentiation data, on top of a
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representation of dimensionality reduction, such as PCA or t-SNE. This technique is based on the idea

that, for many systems, such as cell differentiation, there are not clear distinctions between cell states,

but a smooth transition – a lineage -, where each cell is associated with a given pseudotime in that

lineage (figure 3.19). There are several methods to calculate such pseudotimes, whose explanation is

not in the scope of this master thesis.

FIGURE 3.19: Slingshot for pseudotime inference
Representation of the application of a pseudotime inference algorithm, slingshot, on data represented
in the PCA space. In this space, relationships between cell clusters are inferred through the assignment
of pseudotimes, allowing a continuous lineage between cell states / cell clusters to be traced [133].

In methodological and logical terms, this tool was not developed with the aim of exploring the type of

single-cell data used in this work. However, this was a key tool for clarifying the possible relationships

between clusters, and thus ease the functional classification of each one. In this work, R package

slingshot [133] was used to infer a progression between astrocytic clusters, starting from the baseline

cluster with associated normal astrocytic functions. Although it is not expected to obtain differentiation

trajectories with these data, it allowed to look in another way at the representative PCA of astrocytic

data, and to associate each axis of variance with a biological process.

3.11 Drug Repurposing (cTRAP)

cTRAP [134] is a computational tool developed to compare differential gene expression results with

the transcriptomic profiles from known cellular perturbations (such as drug administration), derived from

the Connectivity Map (CMap) [135]. cTRAP can compare an ordered list of differentially expressed genes

with known transcriptional alterations caused by gene knockdowns or compounds administration and

find which perturbations are more correlated (positively or negatively) with the phenotype of interest

(hereinafter referred to as phenotype strategy). Similarly, this tool can, from online databases of drug

sensitivity, infer which drugs are the most likely to target cells expressing the distinctive/candidate genes

of the phenotype of interest (hereinafter referred to as top gene strategy). These are two different but

important concepts, that allow for an educated search for phenotype emulation in vitro / in vivo, and for

drug repurposing. Given that most drugs will have therapeutical applications other than those they were

originally described for and have been proven safe in the human body, the strategy of drug re-purposing

has gained tremendous popularity, as it overcomes ethical issues and the expensive process of drug

development and approval processes [136, 137]. In this context, drugs known to be able to cross the

BBB in neuro-related works are particularly important.
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3.12 Cell-type deconvolution (CIBERSORTx)

CIBERSORTx [138] is a machine learning technique that allows the performance of digital cytometry,

that is, cell type deconvolution using gene signature matrices of each cell type and with application in bulk

RNA-seq samples. Cell type deconvolution is a technique that allows estimating the proportions of differ-

ent cell types in bulk samples, for further association with the sample’s metadata. CIBERSORTx bases

its algorithm on a linear support vector regression, firstly applied in its predecessor, CIBERSORT[139].

In short, to find these proportions (weights) for each cell type, the nu-support vector regression (ν-SVR)

method, a variation of support vector machines (SVM), is first applied to gene expression data in order

to perform feature (i.e. gene) selection, to minimise the possibility of over-fitting. The support vectors

transform the total count matrix into a sparse solution that can be applied to a linear regression problem,

depicted in figure 3.20, where m is the sparse mixture matrix of cell types (bulk RNA-seq) after feature

selection, B is the single-cell signature matrix of each cell type, and f the unknown weights associated

with each cell type, in each sample.

FIGURE 3.20: CIBERSORTx system of equations for problem solving
System of equations associated with the solution of the cellular deconvolution problem, where m is the
sparse mixture matrix of cell types (bulk RNA seq) after feature selection, B is the single cell signature
matrix of each cell type, and f the unknown weights associated with each cell type, in each sample.

CIBERSORTx is implemented on a web platform [140]. By submitting a matrix of single cell counts,

the platform builds a cell type signature matrix (B), and, by subsequent submission of the mixture

matrices (bulk RNA seq), it can infer the proportions of each cell type in each mixture (f ). The platform

has a space limit of 1GB, so I had to filter the matrix of single cell raw counts (comprising all CNS

cells) and remove undefined cell clusters, neuronal clusters whose definition was dubious, and perform

random sub-sampling of neurons, oligodendrocytes, and microglia, to remove 4000, 2000 and 1000

cells, respectively. Genes expressing less than 5 counts in at least 100 cells were further removed. For

the construction of the cell type signature matrix, an average minimum gene expression threshold of 0

log2FC was chosen, as advised in the platform for single cell data from 10X Genomics (otherwise, the

sparsity of the data could lead to an unreliable signature matrix). Bulk RNA-seq data were taken from

the GTEx project, in this work referred to as “validation data”.
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Chapter 4

Results and Discussion

4.1 Problem Description

After pre-processing the scRNA-seq data and defining astrocytic clusters with potential biological

relevance, the next step was the identification of clusters enriched in older samples and to unveil their

biological functions. The goal of the remaining analysis was indeed to unravel gene expression alter-

ations in ageing astrocytes that may be pathological and can contribute to the predisposition of the

ageing brain to neurodegenerative diseases.

4.2 Exploratory analysis of astrocytic data

4.2.1 scRNA-seq data of human postmortem brain tissue reveal distinct

clusters of astrocytes with unique characteristics

Astrocytes are a very heterogeneous group of cells in terms of function and molecular individuality.

Each of the clusters in figure 4.1 (A) can be associated with a different type of astrocytes (type 0, type

1, etc.), whose distinctiveness is explored in the following sections.

Each cluster has cells from all individuals. Some astrocytic clusters (e.g., 2 and 4) are more repre-

sented in older samples, and some (e.g., 0) in younger samples (figure 4.1 (E)). However, any asso-

ciation between clusters and possible age-related biological functions should benefit from information

about signalling pathways and cellular processes therein, to be explored in the next sections.

To define the transcriptomic profile of each of the clusters, I performed DEA of one cluster against the

average of the others (table (C.1)). I obtained a list of genes, ordered by the magnitude of the difference

(logFC), for each one of the astrocytic clusters. With this list of genes for each cluster, I performed

gene set enrichment analysis (GSEA), in order to infer which pathways or biological processes may

be up-regulated or down-regulated therein. However, as the clusters are of cells of the same cell type

(astrocytes), a “blind” GSEA analysis was not very useful to unravel the subtle functional individualities

of each cluster, as the GSEA hits were too vague to draw solid conclusions (e.g., down-regulation of

”Locomotion” in cluster 3 or ”Behavior” in cluster 4). Therefore, I chose to perform, as a first approach,
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FIGURE 4.1: Exploratory analysis of astrocytic clusters 0 to 6
(A) Representation in a t-SNE plot of the astrocyte clusters that make the basis of this work; (B) Dis-
tribution of the number of cells per cluster; (C) Number of cells per sample per cluster; (D) Number of
cells per sex per cluster; (E) Proportions of cells of each cluster along age, with each dot representing a
percentage of cells of each cluster in each sample.
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GSEA with only known astrocytic biological pathways and processes, such as synapse maintenance and

neuronal support (figure 4.2). Although I am aware that, by doing this, I am not allowing for the discovery

of novel astrocytic functions, this is only the first step of the analyses. In the remaining sections, I will

explore other astrocytic functions and relationships between clusters.

FIGURE 4.2: GSEA of normal astrocytic functions in defined clusters of astrocytes
Results of GSEA of differences between the clusters and the average of the others, with gene sets
associated with known biological pathways and processes associated with normal astrocytic functions.

It was possible to define cluster 0 as a group of ”baseline” astrocytes, that is, whose functions are in

accordance with what is expected from a healthy astrocyte (hereafter referred to as ”normal” functions).

This cluster has an up-regulation of biological processes such as synapse organization, synaptic sig-

nalling and neuron development when compared with the other clusters (figure 4.2), suggesting that the

others may have undergone some decline in those processes. Although cluster 0 is the most populated

cluster (figure 4.1 (B)), it has a decrease in proportion in older samples (figure 4.1 (E)). This reinforces

not only that these may be ”baseline” astrocytes, present in all samples, but also allows to hypothesise

that older samples may be down-regulated in some of this neuronal and synaptic support functions, in

accordance with what is already known regarding aged brains. Cluster 4 exhibits a particularly emphatic

down-regulation of those normal astrocytic functions (figure 4.2).

4.2.2 Gene Expression Similarities Between Clusters

By performing DEA of one cluster against the others, the most differentially expressed genes in that

cluster may also be differentially expressed between other clusters. This happens because under that

formulation of DEA, the differentially expressed genes in one cluster are defined as different from the

average astrocyte in the others, and not from each other cluster individually.

This overlap on the top differentially expressed genes can be observed between clusters 3 and

4, unravelling similar differences between these clusters and the others, suggesting some similarity

between them, potentially attributable to related activation states. We can see a similar, albeit not as

strong, overlap in strong expression of one cluster’s top differentially expressed genes in other clusters

(e.g., between cluster 6 and 0), although not as strongly as in clusters 3 and 4.

Such analysis may give more clues on the relationship between astrocytic types and/or states.
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FIGURE 4.3: Heatmap of expression of the top 10 marker genes from each astrocytic cluster
Heatmap of the standardized expression of the top 10 marker genes of each cluster (based on the logFC
in expression between that cluster and all others).
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4.2.3 Reactivity does not explain the main differences between the analysed

human astrocytic clusters

According to Clarke et al. (2018), ageing astrocytes acquire an A1 reactive, that is, pro-inflammatory

phenotype. This could be due to the exacerbation of the inflammatory phenotype concomitant with age,

with a mechanism similar to positive feedback. With this statement, it can be hypothesized that some of

the clusters, perhaps clusters 2 and 4 as they appear to be enriched with age (figure 4.1 (E)), present a

reactive phenotype. However, by studying the expression of specific reactivity markers [141], it can be

noted that this does not appear to be the case (figure 4.4). Particularly in cluster 2, it can be noticed

a down-regulation of the SPARCL1 gene (also down-regulated in A1 astrocytes) but, at the same time,

an up-regulation of the STAT3 gene (up-regulated in A2 astrocytes) and a down-regulation of FKBP5

(down-regulated in A2 astrocytes). In cluster 4, there is a similar reactivity dilution, with up-regulation of

C1QB (up-regulated in A1 astrocytes) and STAT3 (up-regulated in A2 astrocytes) and down-regulation

of SPARCL1 (down-regulated in A1 reactive astrocytes).

FIGURE 4.4: Expression of reactivity markers in clusters 0 to 6
Cross-cluster expression of markers for each type of reactivity [141], taking into account the binary
classification suggested by Liddelow et al. (2017). (A) Up and (B) down-regulated markers of A1
astrocytes. (C) Up and (D) down-regulated markers of A2 astrocytes.

None of the clusters exhibits exclusive expression of markers of either A1 or A2 classification of

reactivity, suggesting that for this dataset it is not reactivity that dominates the main differences in gene

expression between clusters.
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4.2.4 Pseudotime Inference as a glance on astrocytic relationships

Pseudotime inference was a key tool to unmask possible relationships between clusters. Although

being developed for the inference of times associated with differentiation or temporal progression of

cells, it generally allows the discovery of relationships associated with the greatest variance in the data,

as it uses similarity between transcriptomes to infer proximity.

In practice, the application of pseudotime inference to astrocytic data enlightens a transitional rela-

tionship between clusters in PCA plots (figure 4.5), parallel to the major axes of variance. Using cluster

0 cells as the ”baseline” astrocytes and therefore as the origin of progression, the main axis of variance

(PC1) seems to be associated with the 5 → 3 → 4 cluster progression. Similarly, the second main axis

of variance (PC2) seems to be associated with progression to cluster 2. The third main variance com-

ponent (PC3) does not reveal any meaningful trend, except perhaps the transition from cluster 1 to 6

(which, before being separated in the pre-processing step, belonged to the same cluster).

The relationships suggested by pseudotime inference using PCA may be a way of unmasking bio-

logical function and increase the molecular resolution of the identity of different astrocytic states, and

will be explored in the remaining analysis.

FIGURE 4.5: Pseudotime Inference in PCA space
Representation of the 7 clusters of astrocytes that are at the base of this work, in PCA plots ((A) first and
second, and (B) second and third Principal Components), and with the results of pseudotime inference
with potential trajectories between clusters, taking cluster 0 (coloured in salmon, and identified by a
black dot with a green centre) as the ”origin”.

4.3 Gene Signature of Human Ageing Astrocytes

4.3.1 Stress as the presumed main source of variance in astrocytic gene

expression

I have associated the main astrocytic gene expression variance axes with a progression between

clusters (figure 4.6). Namely, the positive end of PC1 seems to be associated with clusters 0, 1, 2 and

6, with clusters 5, 3 and 4 along the progression of PC1 to more extreme negative values. Similarly,

PC2 seems to be mainly associated with cluster 2 and 3 in the negative axis of variance, and clusters 4
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and 5 in the positive axis. These progressions, also suggested by pseudotime inference analysis, can

be speculated to be of various natures, such as transitions between types of astrocytes (e.g., type 5

astrocytes evolve to type 3 and then to type 4). The exact nature of these progressions will be explored

in the next sections.

FIGURE 4.6: PCA of astrocytic gene expression
Representation of the 7 clusters of astrocytes that are at the base of this work, in a PCA plot of their
gene expression, with adjacent curves associated to each clusters’ density along each of the main axis
of variance.

By performing GSEA on the differentially expressed genes between each cluster and the baseline

cluster, some gene sets (hereinafter referred to as ”hits”) associated with endoplasmic reticulum (ER)

stress were found enriched in clusters 2 and 5 (figure 4.7). Namely, these clusters present an up-

regulation of biological processes of granule assembly stress and unfolded protein response, and of the

unfolded protein response hallmark, already related to ageing (figure 2.3). This suggests that clusters 2

and 5 may be enriched in stress markers, which are known to be strongly associated with age.

However, there are some factors that differentiate clusters 2 and 5, and that allow a better definition

of their biological identity. In addition to cluster 2 being enriched with age (figure 4.1 (E)), we also find

reactive oxygen species pathways and TGF-β signalling down-regulated in cluster 5 when compared

with cluster 2 (figure 4.8, panel ”5vs2”). This might suggest that cluster 2 has chronic stress markers

associated with compensatory immunosuppression (figure 2.3). On the other hand, cluster 5 is not

predominantly associated with young or old samples. Furthermore, this cluster is associated with the

progression of clusters 5 → 3 → 4 in the main axis of variance. This may suggest that cluster 5 is

an acute ER stress cluster (i.e., not associated to compensatory immunosuppression) that is somehow

related to clusters 3 and 4.

Clusters 3 and 4 appear to be the most similar in gene expression (figure 4.3). In functional terms,
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FIGURE 4.7: GSEA of ER stress, inflammation and normal astrocytic functions in clusters 1 to 6
GSEA of pathways, hallmarks and biological processes, associated with ER stress, inflammation and
normal astrocytic functions in clusters 1 to 6, each compared to cluster 0.

cluster 4 has enriched neuroinflammation markers (figure 4.7) and down-regulated markers associated

with neuronal support functions and synaptic homeostasis. Furthermore, cluster 3 appears to be more

enriched in normal astrocytic functions when compared to cluster 4 (figure 4.8, panel ”3vs4”). Given that

these clusters are, together with cluster 5 (acute stress), discriminated along PC1, this might suggest

that both clusters 3 and 4 are also acute stress responders characterised by down-regulation of normal

astrocytic functions, with 3 being a milder version of 4.

Clusters 1 and 6 appear to have ER stress markers down-regulated (figure 4.7), when comparing

to the baseline cluster. However, I could not find any other functional information and they are not

associated with any meaningful axis of variance in gene expression. As these clusters have been

problematic since the beginning of the analysis (with a high percentage of mitochondrial genes that may

suggest poor quality cells) and are not associated with age, I chose to not further study them in detail.

The previously suggested cluster relationships and possible functions are consistent with the genes

associated with each main component of PCA (i.e., the genes with greater weight in the two main axes

of variance)1. The cluster progression 5 → 3 → 4 ((figure 4.9) (A)) is associated with some genes asso-

ciated with structural remodelling and cell division. DCLK1 is associated with radial migration and axon

growth of cortical neurons, which may be a response to neuron injury that happens with ageing. TNC

is associated with guidance of migrating neurons as well as axons during development, synaptic plas-

ticity, and neuronal regeneration. GPC6 is associated with the control of cell growth and division. This

may suggest that the PC1 axis is in part associated with the attempt to recover after an insult (stress).

Furthermore, this axis has at its opposite end ((figure 4.9) (C)) genes associated with tumour suppres-

sion (LRRC3B) and synapse function and homeostasis. GRM3 encodes the glutamate metabotropic

receptor 3, whose decrease in expression can increase glutamate signalling. RIMS1 regulates synaptic

vesicle exocytosis and its downregulation has been observed in AD samples [143]. Another gene asso-

1If not stated otherwise, the genes’ description was retrieved from the GeneCards Human Gene Database [142]
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FIGURE 4.8: GSEA of ER stress, inflammation and normal astrocytic functions for specific cluster
contrasts
GSEA of pathways, hallmarks and biological processes, associated with ER stress, inflammation and
normal astrocytic functions of specific contrasts between clusters (1 against 6, 3 against 4, 5 against 2).

ciated with (+) PC1 is ZNF98, important for regulating apoptosis, protein folding and assembly. These

genes are down-regulated in the progression axis 5 → 3 → 4, supporting the idea that the (-) PC1 axis

of variance is mainly associated with a dysregulation of normal synaptic functions.

Finally, genes associated with both (-) PC1 and (-) PC2 ((figure 4.9) (B)), therefore potentially asso-

ciated with both forms of stress, are linked to neuroinflammation (CD44) and neurotransmitter cycling

and detoxification (SLC38A1). MAN1C1 is not yet associated to major biologically relevant effects on

the brain and astrocytes, but its overexpression is related to metabolic functions and has been associ-

ated to renal tumour suppression (less cell viability, colony formation, induced apoptosis, suppressed

cell invasion and migration). At the opposite extreme, genes mutually associated with (+) PC1 and (+)

PC2 ((figure 4.9) (D)) suggest a downregulation in the progression 5 → 3 → 4 of astrocyte proliferation,

where decreased CABLES1 (regulation of the cell cycle) may lead to increased number of apoptotic

cells, and decreased ERBB4 may restrain basal proliferative activity of hypothalamic astrocytes [144].

Furthermore, these axes are associated with GPM6A, which is highly expressed in mature neurons and

is a major component of the axon growth cone during development and synaptogenesis. Finally, they

are also associated with FLRT2, which can regulate memory functions in the adulthood. Both axes of

stress (-PC1 and -PC2) therefore involve the down-regulation of genes necessary for astrocyte survival.

In summary, our analyses suggest that the main axes of variance in astrocytic gene expression are

enriched in chronic (cluster 2) and acute (cluster 5) stress markers, with common downregulation of

genes necessary for astrocyte survival. Furthermore, the main axis of variance is associated with a

progression of clusters 5 → 3 → 4, which could suggest an acute stress response by clusters 3 and 4,

enriched with age, and with potential dysregulation of some synaptic and neuronal support functions.
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FIGURE 4.9: Genes with the highest and lowest weights in each PC
Representation of the weight of each gene in each of the data’s largest variance axes (PC1 and PC2).
In particular, there are highlighted, in red, genes whose biological function proves to be more interesting
in light of the progression of clusters 5 → 3 → 4 (A), or opposite (C), as well as genes that are as-
sociated with both axes of progression, negative (B) or positive (D), and which therefore may indicate
genes associated with the progression of stress. The dashed lines in panel (B) and (D) (-0.35 and 0.4,
respectively) indicate the thresholds chosen to select genes associated with both PCs.

4.3.2 Pseudo-bulk analysis validates the main axis of astrocytic gene

expression variance

Pseudo-bulk RNA-seq data (i.e., simulated bulk RNA-seq data, by artificial pooling scRNA-seq sam-

ples) can be used in scRNA-seq studies, as it may dilute some of the noise present in scRNA-seq data

(such as dropouts). For this purpose in the context of this project, the counts for each gene in all cells

of an individual were summed for each cluster. This step required an initial filtering of cluster-individual

pairs with less than 20 cells and genes with counts below 15 after the pooling of all cells of each individ-

ual, in order not to compromise the data normalization step using edgeR (figures E.1 and E.2).

Furthermore, the first three components seem to discriminate datasets, and the fourth only a single

sample (figure E.4). Only the fifth component seems to be associated with variance in the data not

given by a batch effect, and is the only component that correlates with the first principal component of

the single-cell expression data (figure E.3). Therefore, a reconstruction of the projected data was made,

removing the first 4 PCs (figure 4.10 (A)).
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FIGURE 4.10: Pseudo-bulk RNA-seq data
(A) PCA of pseudo-bulk gene expression, resulting from pooling scRNA-seq data from all cells of each
cluster from each individual. (B) Loadings/weights of genes associated with PC1 of pseudo-bulk (hori-
zontal) and single cell (vertical) gene expression, with red highlighting of some of the top genes associ-
ated with single cell PC1 and cluster 4.

As can be seen in figure 4.10 (B), the signal of the main axis of variance in the single cell data

remains in the pseudo-bulk data. Some of the main genes associated with +/- PC1 and cluster 4 are

also represented at the extremes of this new axis of variance, which states for the robustness of this

possibly biologically relevant signal.

4.3.3 Acute stress as a possible target for reversing loss of function in ageing

astrocytes

So far, we have observed that cluster 2 of astrocytes is enriched in chronic stress markers and

more abundant in older samples, and cluster 5 is enriched in acute stress markers and that does not

show a particular association with age. Also, clusters 3 and 4 appear to become more prevalent in

old ages and are involved in the inferred trajectory of clusters 5 → 3 → 4, aligned with the principal

axis of gene expression variance (PC1). Given that clusters 3 and 4 are associated with a neuro-

inflammatory phenotype and depleted of markers of normal astrocytic functions, this might suggest that

ageing astrocytes have greater difficulty adapting to acute stress, with cluster 3 being a “milder” state of

cluster 4.

As clusters 2 and 4 are the extremes of the variance and associated with age, it will therefore be in

the interest of this work to further study them, as they can be a potential factor for the deregulation of

the normal functions of the CNS and predisposition to neurodegenerative diseases.

Combined with the GSEA results suggesting that cluster 4 may be associated with a loss of function

by ageing astrocytes in response to acute stress, looking at individual differentially expressed genes

therein could give some more specific functional insights into this cluster (figure 4.11 (A)). Astrocytes in

cluster 4 have a deficiency in SLC1A2 (important for synapse clearance and to prevent excitotoxicity) and

CADM1 (important to maintain functional excitatory synapses). Also, this cluster has an upregulation of

SLC38A1, a gene encoding for the precursor of GABA and glutamate neurotransmitters. Additionally,

this cluster has up-regulated DCLK1 (axon growth and migration), DPP10 (synapse homeostasis, binds

to voltage-gated potassium channels), KAZN (cytoskeletal organization), and CD44 and TNC (neuroin-

61



flammation). Finally, this cluster has down-regulated NRXN1 (required for efficient neurotransmission),

GPC5 (control of cell division and growth regulation - AD samples have shown to be down-regulated in

GPC5 and NRXN1 [145]), CACNB2 (voltage dependent calcium channel protein) and CABLES1 (im-

portant for cell cycle progression, knockdown leads to increased numbers of apoptotic cells). All of the

above suggest that cluster 4 of astrocytes exhibits several characteristics known to be associated to

pathological ageing (excitotoxicity, downregulation of specific genes, neuroinflammation, etc.).

FIGURE 4.11: DEA of astrocytes in clusters 4 and 3&4
Volcano plots of differential expression analysis of astrocytes in (A) cluster 4 against the mean of all
other clusters, and (B) cluster 3 + 4 against the mean of all other clusters. Some of the most differentially
expressed genes are highlighted.

DEA in cluster 3 essentially suggests the same, having already been discussed that these clusters

are quite similar in terms of differentially expressed genes, with cluster 3 showing a slightly more “normal”

phenotype in terms of astrocytic functions (figure 4.8). Their combined analysis is also in accordance

with this (figure 4.11 (B)).

Cluster 2 does not show enriched astrocyte-related processes in GSEA. Using PC2’s ordered list of

genes by weights as input to GSEA was used in an attempt to discover more insights into the functions

of astrocytes in cluster 2 (figure D.1). However, such results were not enlightening, and combined with

the fact that PC2 is not exclusively associated with cluster 2, the functional characterization of cluster 2

was not possible.

Although clusters 2 and 4 are both at the extremes of the variance and associated with age, my

analyses suggest it is more promising to focus on cluster 4 for subsequent validation and therapeutic

exploration. Cluster 4 appears to have a stronger association with age, is at the end of the largest

data variance axis and has a more coherent biological gene expression signal (unlike cluster 2, whose

functional phenotype, in terms of astrocytic functions, could not be determined).
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4.3.4 Candidate genes responsible for the main source of variance in ageing

astrocytes

So far, it is known that chronic stress-associated immunosuppression affects brain homeostasis,

being linked with ageing and neurodegenerative diseases, and that ER stress triggers an immunosup-

pressive reaction with implications for ageing and AD [31, 51]. However, there still seems to be no clear

knowledge on resilience (i.e., the ability to recover) after acute stress in ageing astrocytes, only that it

may be a way to predict healthy ageing and decreases with age [146].

My observation at this point is that cluster 4 is primarily enriched in aged samples, with increased

markers of neuroinflammation and neuronal reconfiguration, as well as of synapse dysregulation and

excitotoxicity, all of these being hallmarks of the ageing brain. Furthermore, pseudotime inference sug-

gests that astrocytes in cluster 4 are acute stress responders. From a therapeutic point of view, it could

be interesting to target marker genes of cluster 4 that directly or indirectly:

• Reduce neuroinflammation

• Regulate excitotoxicity

• Regulate synapse maturation

• Regulate the response to neuron injury

Some of these genes have already been described in section 4.3.3, and are summarized in table 4.1.

They have been selected from the most up- or down-regulated genes in cluster 4 or clusters 3&4, with

known functions associated with those previously listed. Their expression in the PCA space can also be

found in figure 4.12 (A), and discriminated between clusters is illustrated in figure 4.12 (B).

TABLE 4.1: Table summarizing the main candidate genes in cluster 4 for phenotype emulation or rever-
sal. Up = up-regulated; Down = down-regulated

Some of the expression of down-regulated genes in cluster 4 have already been perturbed in mice

and associated with neuronal functions. Namely, disruptions in the expression of Slc1a2 increase the

susceptibility to neuronal degeneration [147], and Nrxn1 knock-out mice show abnormal excitatory post-

synaptic currents and a decrease in Ca2+ [148].
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FIGURE 4.12: Marker genes of cluster 4
Expression of the main marker genes of cluster 4, through (A) representation of their expression in PCA
space, and (B) through representation by violin plots of their expression in each cluster.
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This set of genes has interesting biological functions that are consistent with the current hypothe-

sis that there may be subtle changes in the ageing astrocyte transcriptome that can contribute to the

predisposition of the ageing brain to neurodegenerative diseases.

4.3.5 Candidate compounds for phenotype reversal

Most drugs will have other mechanisms of action beyond those they were originally made for and

thus the strategy of drug repurposing is a non-expensive and ethical way of surpassing the canonical

time-consuming process of drug development [136, 137].

I used as input for cTRAP [134] the marker genes of astrocytes in cluster 4, obtained through differen-

tial expression analysis of cluster 4 against the others, ordered by t-statistic, and with adjusted p-value

< 0.05 (BH correction). FDA-approved compounds that have shown simultaneously the best results

for both cTRAP strategies, for each of the two metrics used (Spearman correlation coefficient and rank

product2), were selected to be a basis for the discussion (figure 4.13):

1. For the phenotype strategy, I have selected compounds with negative Spearman coefficient (<

-0.01) between cluster 4’s gene expression changes and those induced by CMap’s compound per-

turbations, suggesting compounds that induce gene expression changes negatively correlated with

cluster 4’s phenotype, and thus being candidates for its reversal. Furthermore, compounds with

low rank product coefficient (> 60000) were also selected, i.e. compounds whose induced gene

expression changes when compared to cluster 4’s have the lowest combined ranks for correlation

and functional enrichment.

2. For the top gene strategy, I have selected the compounds with positive Spearman coefficient (>

0.05) between the differential gene expression results of cluster 4 and drug sensitivity results from

CTRP 2.1 database, and thus being the more likely compounds to target the marker genes of

cluster 4. Similarly, compounds with high rank product coefficient (< 100) were also selected.

This approach suggests Trifluoperazine, Niclosamide, Foretinib, and Olaparib as good candidates for

phenotype reversal while targeting cells that express cluster 4’s marker genes.

Trifluoperazine is a drug used for the treatment of schizophrenia for over 50 years [137]. It works

by decreasing abnormal excitement – possible excitotoxicity – in the brain [149]. This drug is taken

orally and has the capability of passing the BBB. It falls in the group of antipsychotic medications and

is approved by FDA for these conditions. Zhang and colleagues (2017) have studied the potential of

Trifluoperazine in preventing PD progression and showed that this drug can slow neurodegeneration by

enhancing autophagy in response to stress [150].

Niclosamide is an orally-taken drug mainly used for the treatment of parasitic infections but it has

shown preclinical potential in disease models of cancer and other infections [151]. Its proposed mecha-

nism works by reducing the potential of the inner mitochondrial membrane to inhibit oxidative phospho-

rylation [152]. Some studies have proposed Niclosamide as a way of attenuating pro-inflammatory and

2The rank product summarises the individual rankings from cTRAP’s comparison methods (Spearman, Pearson and GSEA-
based scores)[134].
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FIGURE 4.13: Identification of candidate compounds for reversal of cluster 4 phenotype
Scatter plots comparing the correlation between cluster 4’s gene expression changes and those induced
by each of CMap’s compound perturbations (x axis) and the correlation between the differential gene
expression results of cluster 4 and gene expression / drug sensitivity association across all cell lines from
CTRP 2.1 [134] (y axis). The comparisons are performed using (A) Spearman’s correlation coefficient
and (B) Rank product. Highlighted compounds are candidate reverters of cluster 4’s phenotype that are
FDA approved.

migratory phenotypes of microglia and astrocytes in ALS models [153]. There is also general evidence

of Niclosamide as having a neuroprotective role, including prevention of neurodegeneration [154, 155].

Foretinib is a pan-kinase inhibitor, currently in clinical trials for the treatment of cancer. However, it

has been proposed to prevent axon degeneration, via preservation of the mitochondria, being thus a

candidate for many neurological diseases [156, 157].

Olaparib is a drug used in the treatment of several types of cancer, namely breast cancer or fallopian

tube cancer. It was made to be taken orally and is demonstrated to fail passing the BBB in preclinical

models. However there is evidence that these conventional models of the BBB may not predict clinical

pharmacokinetics, and thus more studies should be performed on this possibility [158]. A study from

2020 suggested that the administration of Olaparib in a Huntington’s disease model promoted neuropro-

tection and modulation of the inflammasome activation, resulting in the reduction of neurological deficits

and improving the clinical outcomes in neurobehavioural tests [159]. Thus this drug could be also an

interesting candidate for further studies.

Certainly, further validation of these in silico results is needed but they are a proof of concept and the

basis for future research.

4.3.6 Computational validation of the enrichment in aged brains of acutely

stressed astrocytes by digital cytometry

Digital cytometry is a technique that allows estimating the proportions of different cell types in bulk

samples. This approach is particularly useful in this work, since single cell protocols may be biased in
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terms of the proportion of different cell types that are captured, and thus the proportions obtained from

individual cell populations may not reflect the true composition of the human brain tissue.

When performing that cell type deconvolution with gene expression signatures for CNS cells including

all types of astrocytes defined by our analysis, more than half of the cells in each of the bulk samples

would correspond to type 6 astrocytes. Types 1 and 6 astrocytes were identified as problematic clusters

throughout this analysis, with a high percentage of mitochondrial genes that may suggest poor quality

cells. For this reason, I chose to exclude both clusters 1 and 6 from the analysis in order to achieve a

more realistic resolution in astrocytic types, during the step of constructing the cell type signature matrix,

which is shown in figure 4.14. Most cell types in the CNS appear to have strong signatures, i.e. groups

of genes expressed exclusively therein. The astrocytic signature appears diluted among all astrocyte

clusters, but it can be noticed that astrocytes of types 0 and 4 appear to have the most robust signature

among all astrocytes.

FIGURE 4.14: Cell type signature obtained through CIBERSORTx
Heatmap of the gene signature matrix for neural cell types, computed with CIBERSORTx, used to carry
out the cell-type deconvolution task. Each row is a gene, and each column is a cell type. We can see
that the main neural cell types have well-defined gene signatures.

By performing cell-type deconvolution in an independent dataset, consisting of bulk transcriptomes

of cortex samples, the enrichment of cluster 4 in aged samples was validated (figures 4.15 and F.1), as

well as a depletion of neurons in these samples. Oligodendrocytes appear to have constant proportions

over age. Furthermore, type 5 astrocytes and microglia were not detected in these data. However, since

microglia is expected to be one of the least abundant glial cell types, it may have been masked by the

remaining cells. The same may have happened to type 5 astrocytes. Nevertheless, the enrichment of

cluster 4 in aged samples is an important result of validation in independent data, demonstrating that

the observation made with the scRNA-seq dataset was not due to chance.

It is important to notice that digital cytometry does not allow the comparison of absolute proportions

between cell-types. Given that it estimates of the proportion of mRNA coming from each cell-type, the

proportions of bigger cells (i.e., with a higher amount of mRNA) can be overestimated. Because of this,
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only the variation in proportions of each cell-type across samples were studied.

The cell-type gene signatures were derived from cortex data, and therefore direct extrapolation to

other brain areas may not be possible. However, I have also performed this study in the cerebellum and

hippocampus (figures F.2 and F.3). Type 4 astrocytes seem to be present also in these brain areas, but

with a higher dispersion across the various ages (i.e., with an increasing trend not as obvious as in the

cortex). At the same time, the proportions of neurons tend to decrease in older samples, maintaining

the positive control used in cortex samples. This suggests a type of astrocytes that is not specific from

the cortex, but whose enrichment in older samples is more pronounced therein.

In conclusion, the enrichment of type 4 astrocytes in aged cortices found with independent single cell

and bulk transcriptomic datasets not only demonstrates the potential of transcriptomics and associated

computational analysis tools for the study of the brain, but also gives the scientific community the tran-

scriptomic profile of a candidate novel type of astrocytes for possible validation and therapeutic targeting

in vitro and in vivo.

FIGURE 4.15: Cell-type deconvolution of cortex samples - highlights
Cellular proportions estimation for the various cell types in this work, including types 0, 2, 3, 4 and 5
astrocytes, neurons, microglia (micro), oligodendrocytes (oligo) and endothelial cells (endo), in cortex
samples. (A) Distribution of cell-type proportions across cortex bulk RNA-seq samples (GTEx) repre-
sented in boxplots. (B) Distribution, by age group, of the proportions of the various cell types. (C) Dis-
tribution of proportions, by age group and through a general additive model along age (R geom smooth

function with default parameters), of cell types of greater interest.
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Chapter 5

Concluding Remarks

Ageing is the strongest risk factor for numerous neurodegenerative diseases, yet the causes that

underly the shift from physiological to pathological ageing remains nuclear. Several efforts have been

made by the scientific community to discover those causal functional and molecular mechanisms.

Astrocytes are a very heterogeneous cell type from a functional and molecular point of view, being

essential for neuronal survival and synapse homeostasis. However, occasionally these cells present

pathological behaviours that are not protective of the central nervous system, namely in response to

neuroinflammation concomitant with age. It is plausible that changes in astrocytes’ phenotype can make

the brain more vulnerable to injury and age-related diseases (pathological ageing). However, technolo-

gies currently applied to profile transcriptomes of bulk human brain tissues (such as RNA-seq) fail to

detect subtle changes that may allow the identification of different astrocyte activity states. Single-cell

RNA-seq allows the study of the transcriptomic profile of each cell individually. Given the complexity of

the human brain, the transcriptomic resolution given by this technique allows to identify novel candidate

genes and signalling pathways / biological processes characteristic of cells most relevantly contributing

to the ageing of brain tissues.

In this work, I focused on implementing approaches for the analysis of publicly available human brain

scRNA-seq data, in order to profile ageing-associated gene expression alterations in human astrocytes.

This work culminated in the transcriptomic characterization of a group of astrocytes, named type 4

astrocytes or astrocytic cluster 4, whose enrichment with age was identified both in scRNA-seq data and

in independent bulk RNA-seq data. Through relationships suggested by a variety of computational tools,

such as PCA, pseudotime, DEA and GSEA, this cluster seems to be associated with a down-regulation

of physiological astrocytic functions, in response to acute stress. This group of astrocytes appears to

be enriched in markers of neuroinflammation and excitotoxicity, as well as loss of neuronal support

and synaptic homeostasis functions, being therefore associated with known hallmarks of pathological

ageing.

Furthermore, I was able to identify a set of candidate compounds, through a computational drug

repurposing strategy, potentially capable of acting on the most differentially expressed genes in cluster

4 and reversing its phenotype.
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This work scientifically contributed with the discovery of molecular targets for phenotype validation in

vitro and in vivo, as well as candidate therapeutic compounds for the reversal of the pathologically aged

astrocytes’ phenotype.

5.1 Analysis Limitations

The analysis performed in this work followed several pipelines and tools shown to be state-of-the-art

in benchmark studies. However, there are still some limitations that are worth putting into perspective.

First, given that the sample size in this work is relatively small, age may be counfounded with the

biological invididuality from each sample. Secondly, the scRNA-seq data used in this work are only from

the human cortex. Consequently, there is a lack of regional coverage. Both these caveats could be

mitigated if I had access to a greater sample size comprising different areas of the brain.

Another caveat in this analysis was the scarcity of young brain samples. Due to the complexity of

retrieving human brain samples in living subjects, this is usually done in post-mortem situations. There

is a relatively high number of older brain samples because fortunately most deaths occur in older people.

The ideal scenario would be to obtain samples of human brain tissue from healthy young individuals;

however, biopsying healthy brains is impossible for obvious ethical reasons.

5.2 Suggestions and Future Work

The work described here consisted of the analysis of several healthy brain tissue samples (i.e.,

with no known neurodegenerative diseases), and the consequent identification of a group of astrocytes

(cluster 4) with therapeutic potential for reversing some of their possibly pathological changes with age

(e.g., loss of normal astrocytic functions). Although our analyses of gene expression alterations and

therapeutic potential of astrocytes have focused mainly on cluster 4, it will still be interesting to further

study cluster 3. This cluster seems to be associated not only with PC1 of astrocytic gene expression

data but also to PC2. As both of these axes appear to convey different biological responses, the reason

for cluster 3 to appear in both could also be interesting to further study in more detail.

Furthermore, it would be interesting to expand this study to other CNS cell types. For example,

microglia are known to be in close contact with reactive astrocytes [67], and it is possible that microglia

also have activation states, some even correlated with cluster 4’s enrichment in older samples.

Despite an in silico validation of the enrichment of this group of astrocytes with age,functional valida-

tion in vitro or in vivo should also be performed on this group of aged astrocytes.

Moreover, the hypothesis put forward in this work is that these type 4 astrocytes are the result of a

response to acute stress (i.e., ageing astrocytes have a greater difficultly adapting to this type of stress),

shown by a downregulation of normal astrocytic functions. Due to this, it will be interesting, in addition

to emulating their phenotype through genetic editing or under/overexpression of certain genes, to use

various stressors (for example pharmaceutical ER stress inducers such as tunicamycin or thapsigargin

[160], or physiologically-induced ER stress via glucose deprivation [160]) and to observe the response of
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astrocytic cell lines. It will also be interesting to study the phenotype associated with the transcriptomic

profile of type 4 astrocytes in co-cultures of astrocytes and neurons, to emulate, as far as possible, the

characteristic and essential neuronal support environment of astrocytes.

5.3 Concluding Remarks

Through this purely computational work, and using only public data, I identified, to my knowledge,

a novel group of astrocytes associated with a down-regulation of physiological astrocytic functions and

whose differentially expressed genes are candidates for further studies, such as phenotype validation

and reversal. There are some authors who consider the practice of using public data unethical [161].

However, there is also a growing consensus that those entitled “research parasites” (i.e., scientists who

use public data from other studies) make science move faster and more rigorously, without ever failing to

credit the “hosts” of the data [162, 163]. My personal vision aligns with the latter, and the usage of only

public data has proved to be one of the most fascinating parts of this whole research initiation project.

Although data generation is expensive, there is a lot of data publicly available, and an increasing

importance given to data over new ideas and questions that can be addressed with the data [164]. In

addition to being much cheaper and less time consuming than data generation, data sharing allows for

rapid replication and validation of results, as well as new scientific discoveries beyond those for which

the data were first obtained. It is possible to do science with public data, as long as the right question is

asked. This project served as a fundamental part of my academic career, further stimulating my interest

in the field of bioinformatics and computational biology, as well as my understanding of brain biology and

neurodegenerative pathologies.

Biology, specifically the biology of the central nervous system, is tremendously complex and non-

linear, and there are increasingly more tools that help to understand it. Over the years, additional

functions performed by astrocytes have been discovered, and the concept of “cell type” may even be

put into perspective. Certainly, in the coming years, more research will be done with a focus on this cell

group, which has all the potential to explain these subtle shifts between physiological and pathological

ageing.
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Appendix A

Sample metadata and Number of

Nuclei

TABLE A.1: Public metadata associated with each of the single-cell RNA sequencing data samples
used in this work.
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TABLE A.2: Number of cells associated with each sample, in the main data filtering steps. Entries with
(*) mark samples that were removed in the astrocytic data processing phase.
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Appendix B

Neural cell-type gene markers

TABLE B.1: Number and percentage of each clusters’ marker genes (log2FC > 0.25 and adjusted p-
value < 0.05) that are present in the list of known cell type markers (1000 for each cell type [125]), in
the detailed analysis.

TABLE B.2: Number and percentage of each clusters’ marker genes (log2FC > 0.25 and adjusted p-
value < 0.05) that are present in the list of known cell type markers (1000 for each cell type [125]), in
the general analysis.
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FIGURE B.1: Volcano plots of differential expression in each cluster compared to the others in
the detailed analysis
Adjusted p-val < 0.05 (Y-axis) and log2FC > 0.25 (X-axis), identified in dashed red lines, were used to
define the marker genes of each cluster.
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Appendix C

Gene markers of astrocytic clusters

TABLE C.1: 50 most up-regulated and 50 most down-regulated genes in cluster 4 compared to the
average of the others.
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FIGURE C.1: DEA of one cluster against the remaining ones
Differential expression analysis of each cluster against the mean of all other clusters. Some genes with
the highest absolute logFC are highlighted, at the extremes of each of the “volcano plots”.
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Appendix D

Functional enrichment of the main

principal components of astrocytic

gene expression

FIGURE D.1: GSEA of the three main PCs of astrocytic expression
Selection of the pathways, hallmarks and biological processes associated with ER stress, inflammation
and normal astrocytic functions (neuronal support and synaptic homeostasis), and respective enrich-
ment along the first three principal components (PCs) of astrocytic gene expression.
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Appendix E

Analysis of pseudo-bulk astrocytic

data

FIGURE E.1: Pseudo-bulk sample filtering criteria
Matrix showing the number of astrocytes from each cluster in each sample. Cluster/sample combinations
having 20 or fewer cells (blue) were removed from the pseudo-bulk RNA-sequencing analysis, as to not
compromise the normalization step. Three more samples (oldish3 and young3 from cluster 6, and
oldish3 from cluster 3) were removed (also in blue), as they were compromising the normalization step.
Blank entries correspond to samples that were not present in a specific cluster in the astrocytic scRNA-
seq data.
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FIGURE E.2: Library sizes of pseudo-bulk samples
Boxplots summarising the distributions of read coverage across pseudo-bulk RNA-seq samples (re-
moved samples - see figure E.1 - in orange)

FIGURE E.3: Correlation of principal components from pseudo bulk versus single cell
Linear regression (black solid line) applied to relation between the loadings of each gene (grey dot) in
the principal components of the pseudo-bulk and single-cell gene expression. There is a clear tendency
for the pseudo-bulk PC5 to align with the single-cell PC1 (panel D).
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FIGURE E.4: Principal Components of non-filtered pseudo-bulk RNA-seq data
PCA of pseudo-bulk gene expression, resulting from pooling scRNA-seq data from all cells of each
cluster from each individual, for (A) PC1 and PC2, (B) PC2 and PC3, (C) PC3 and PC4 and (D) PC4
and PC5
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Appendix F

Cell Deconvolution

FIGURE F.1: Cell-type deconvolution of cortex samples
(A) Boxplots of distributions of CIBERSORTx estimates of proportions of the various cell types in this
work, including types 0, 2, 3, 4 and 5 astrocytes, neurons, microglia (micro), oligodendrocytes (oligo)
and endothelial cells (endo), in GTEx cortex samples. (B) Distribution, by age group, of the proportions
of the various cell types. (C) Distribution of proportions, by age group and through a general additive
model along age (R geom smooth function with default parameters).
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FIGURE F.2: Cell-type deconvolution of cerebellum samples
(A) Boxplots of distributions of CIBERSORTx estimates of proportions of the various cell types in this
work, including types 0, 2, 3, 4 and 5 astrocytes, neurons, microglia (micro), oligodendrocytes (oligo) and
endothelial cells (endo), in GTEx cerebellum samples. (B) Distribution, by age group, of the proportions
of the various cell types. (C) Distribution of proportions, by age group and through a general additive
model along age (R geom smooth function with default parameters).

FIGURE F.3: Cell-type deconvolution of hippocampus samples
(A) Boxplots of distributions of CIBERSORTx estimates of proportions of the various cell types in this
work, including types 0, 2, 3, 4 and 5 astrocytes, neurons, microglia (micro), oligodendrocytes (oligo)
and endothelial cells (endo), in GTEx hippocampus samples. (B) Distribution, by age group, of the
proportions of the various cell types. (C) Distribution of proportions, by age group and through a general
additive model along age (R geom smooth function with default parameters).
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