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Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder that affects the central nervous system. One of the disease’s
manifestation is in the patient’s speech, which usually becomes slurred, monotonic, and breathy. These symptoms pro-
vide a powerful biomarker for the detection of PD. The present work had two objectives. First, we aimed at assessing
the performance of a language-independent model for the Parkinson’s Disease (PD) diagnostic task. For this work, three
datasets from different languages were used. A baseline approach (a model trained and tested with speech from the same
language) achieved a maximum accuracy of 90%. An intermediate step was also taken, where a model was trained with
speech from one language and part of the speech contained in a different dataset (in a different language) and tested
with the remaining part of the speech from the second dataset. This semi language-independent model’s performance was
similar to the baseline’s performance. These results demonstrated the ability of our model to be re-trained with new data
from a new language and be extended to patients speaking the new language. Next, the language-independent model was
trained, reaching a maximum accuracy of 67% and a recall value of 76%. Although the accuracy of our model is lower
than the state-of-the-art (77%), the recall, which represents the capacity to detect PD patients, is far better than the
best previous work (53%). Second, the LIME explainability model was used to generate an explanation report for each
diagnostic produced by the classification model. The report includes the probability of a subject belonging to each class
(PD or Healthy Controls (HC)) and the top five features with the highest contribution to the model’s classification. Each
feature includes the average value, the range of values of a healthy individual, its contribution weight to the classification,
and a small description. This information helps the clinician to understand the computational diagnostic, thus providing
enhanced trust in the model. An evaluation of the global contribution of each feature concluded that both MFCC and
PLP features provide the models with more relevant information than Fundamental Frequency (F0), Harmonics-to-Noise
Ratio (HNR), jitter, and shimmer. This work contributed to increase the usefulness of machine learning models for the
automatic PD detection. Its contribution was a PD detection approach that can be extended to any language. Further-
more, the explainability model applied herein facilitates the understanding and fosters the adoption of PD diagnostic
computational models in real medical practice.
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1 Introduction

Neurodegenerative diseases are the most debilitating
disorders that ail human kind, and the fourth leading cause
of death. Neurodegenerative diseases affect the patient’s
thinking, movement, cognitive behavior, and memory, caus-
ing impairments and disabilities. These diseases include se-
rious disorders like Alzheimer’s Disease (AD) and Parkin-
son’s Disease (PD) [53].

PD is the second most common neurodegenerative dis-
ease. It was estimated that 1% of people over 60 years old
are affected with PD [60]. In 2015, more than 6 million
people suffered from this disease worldwide. This value is
projected to double by 2040, mainly driven by the increase
of life expectancy [16]. One of the consequences of PD is
the development of dementia. Almost half the PD patients
develop dementia in the first 10 years after diagnosis [63],
reaching over 80% after 20 years [24].

Early detection of PD can be critical for the life quality
of the patient. Hence, the earlier the diagnostic is made, the
earlier the treatment can begin, thus starting to control the
evolution of the disease and improving the comfort of the
patient. Furthermore, the majority of the treatment costs
occur during the later stages of the disease, reinforcing the
importance of early diagnosis [43].

Over the last years, medicine and health care have been
a prime focus for Artificial Intelligence (AI) and Machine
Learning (ML). Numerous models have been tested to these
areas, demonstrating impressive results in early detection of
many diseases, among other tasks. A common problem in
these experiments is the lack of training data. A solution for
this problem is to train a global model that could be used
for patients with different characteristics than the ones from
the training data (for example, for speech-based models, it
would be able to make diagnostics using speech in a lan-
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guage different from the one used to train the model). In
addition, the majority of these experiments focuses only on
maximizing accuracy performance. Hence, a large problem
remains unsolved on the real application of the previously
referred models, as explainability has yet to become a fo-
cus for any of these works [33]. Replacing medical decision-
making with non-explainable, black-box ML models, can
be contravening with the profound ethical responsibilities
of clinicians [31]. Consequently, the lack of explainability
and interpretability of ML models used in these areas can
seriously limit their chances of adoption in real practice
[61]. Therefore, the application of explainable models will
increase the possibility for medical professionals to under-
stand a model’s output, thus increasing the acceptance of
AI systems in such tasks [27].

This work’s objective was twofold. First, we trained a
model that was able to detect PD from speech in a language
different from the training data. Second, we used an explain-
ability model to generate human-understandable explana-
tions for the given classification (Parkinson or Healthy) of
each patient to foster the use of ML models to support PD’s
diagnosis.

The document is structured as follows. Section 2 de-
scribes PD and state-of-the-art methodologies for PD com-
putational diagnosis. Next, section 3 dives into the con-
cept of Explainable Artificial Intelligence (XAI), and re-
views multiple approaches developed in this area. Section
4 describes the experimental setup of this work, followed
by section 5, which reports the results and their discussion.
Finally, Section 6 presents the conclusions and future work.

2 Parkinson’s Disease

PD is a common cause of dementia. It consists of a neu-
rodegenerative disorder that affects the central nervous sys-
tem. Symptoms begin gradually and worsen over time [40].

2.1 Symptoms

The most common symptoms include resting tremors
(where hands or arms start shaking when resting), bradyki-
nesia (or slowness of movement), muscle stiffness, which
results in difficulty in moving and producing facial expres-
sions, postural instability, which reduces the ability to main-
tain a steady posture, and dystonia, a condition in which
patients have involuntary and repetitive muscle movements.
In particular, PD also affects speech ability. Slurring and
mumbling are observed in PD patients’ speech, which is of-
ten observed to be monotone and breathy. The speech rate is
also affected, as most patients speak slowly, although others
speak too fast. Finally, cognitive problems have been asso-
ciated with the disease, manifested as a difficulty in finding
the correct words (which also contributes to slowing the
speech) [13].

2.2 Speech impairments

PD patients exhibits multiple speech impairments, both
at acoustic and at language levels. Acoustic parameters of

speech, such as the Fundamental Frequency (F0) [23], pause
duration [23] or vowel space time [21] have been shown to
distinguish PD from Healthy Controls (HC). 90% of PD pa-
tients are reported to have speech and voice disorders [20],
which show that this biomarker can be an important source
of information to detect PD. Instances of incomplete clo-
sure of vocal folds along with bowing folds during phonation
have been reported [46], leading to noise presence, typically
characterized by measures such as Glottal-to-Noise Ratio
(GNR), Noise-to-Harmonics Ratio (NHR), Harmonics-to-
Noise Ratio (HNR) and Voice Turbulence Index (VTI). An
increase in the average values of F0, jitter, and shimmer
have also been measured in PD patients.

2.3 Computational diagnosis

Over the last years, many experiments have been con-
ducted to diagnose PD using ML models. Such projects have
achieved positive results, which are reviewed in this section.

2.3.1 Speech production tasks The most common
speech production tasks used for PD classification are pro-
ductions of a sustained vowel, as there are major variations
in glottal noise and tremors in patients with PD [22], Di-
adochokinesia (DDK), which consists of a fast repetition
of sounds that imply quick succession of movements with
the mouth and tongue (for this task, it is normal to use
the pseudo-word /pa-ta-ka/ ), Text-dependent Utterances
(TDU), and text reading.

Several speech production tasks to detect PD were
tested [50] – Sustained vowel phonation (/a/ ), maximum
phonation time (/a/ ), rapid repetitions of the pseudo-word
/pa-ta-ka/, reading of words, sentences and texts, and story-
telling guided by visual stimuli. Two approaches were car-
ried out. First, a sentence-level vector was created, with
which the classifier achieved accuracies between 55% (with
a sustained vowel phonation /a/ production task) and al-
most 71% (where the speech production task was reading
out loud prosodic sentences). Secondly, all sentences were
segmented into 4-second segments, with a time shift of 2
seconds. Using the features extracted at a segment level, the
classifier achieved accuracies between 58% (with a sustained
vowel phonation /a/ production task) and 85% (where the
speech production task was reading of prosodic sentences).
For this work, the authors used the FraLusoPark dataset
[49], which contains audio from 60 PD and 60 HC. The
participants were European Portuguese speakers.

A set of 22 acoustic features was extracted from the
Parkinson’s Disease Detection Dataset [30] and the Parkin-
son’s Telemonitoring Dataset [59]. The Parkinson’s Disease
Detection Dataset includes speech by 23 patients with PD
and 8 HC producing sustained vowels. The Parkinson’s
Telemonitoring Dataset contains speech from 42 PD pa-
tients producing sustained vowels. Using multiple ML clas-
sifiers, the system achieved an accuracy of almost 97% using
a Gaussian Process Classification (GPC). With this model,
the sensitivity reached 88% and the specificity went slightly
above 97% [15].
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To study the relevance of each phonemic group in de-
tecting PD, three datasets were used – GITA [41], Neurovoz
[36], and CzechPD [56]. Neurovoz contains the results for
multiple tasks – DDK, TDU and a monologue, based on a
picture description – from 47 PD patients and 32 control
Spanish Castilian speakers. GITA contains multiple speech
production tasks from 50 PD patients and 50 HC Spanish
Colombian speakers – DDK, TDU and a monologue. The
CzechPD subset considered for this study contains only the
DDK task, produced by 20 newly diagnosed and untreated
speakers with PD and 14 HC, all Czech speakers. Using
a Gaussian Mixture Model - Universal Background Model
(GMM-UBM) classifier pre-trained with an auxiliary Span-
ish Castilian dataset, Albayzin [35], the model yielded an
classification accuracy of 94% for the CzechPD dataset, 89%
for Neurovoz, and 84% for GITA [37].

Sustained vowels and text reading tasks were tested to
differentiate PD from HC [8]. The authors use three datasets
– Proença [51] (containing audio from 22 PD patients in
European Portuguese), UCI [17] (with audio from 20 PD
and 20 HC) and a dataset created for the purpose of this
study by the authors. The Proença dataset contains word
and text reading tasks and the UCI contains results from
the sustained vowel task from the patients and healthy con-
trols. The authors tested multiple ML classifiers, such as
Neural Networks (NN), Support Vector Machines (SVM)
and Random Forests (RF). This work yielded an accuracy
of almost 95% with the RF classifier and slightly above 90%
with NN (with 4 layers, comprising 7, 7, 6 and 7 neurons,
respectively) and SVM.

2.3.2 Feature selection Multiple acoustic features have
been used to attempt to distinguish between PD and HC.

Cases of incomplete vocal folds closure along with folds
bowing during phonation were reported [46], leading to the
presence of noise, that is typically characterized using mea-
sures such as NHR, GNR, HNR, and VTI. Some feature
values have also been found to increase in PD patients, such
as average F0 and jitter [6] and shimmer [29].

A set of 5 acoustic features – F0, correlation dimension,
HNR, detrended fluctuation analysis and recurrence period
density entropy – were selected from a set of 22 acoustic
features by using Gaussian processes for regression and clas-
sification combined with Automatic Relevance Determina-
tion (ARD) [15]. The authors tested multiple ML classifiers
(SVM, RF, GPC, among others). The GPC achieved an ac-
curacy of almost 97%, although the model’s sensitivity was
left on 88% (wrongly classifying 12% of the patients). The
specificity reached 97%.

The adequacy of different phonemic groups in identify-
ing PD patients was analyzed [37]. The work describes the
concept of phonemic grouping, which consists of grouping
phonemes by their type (such as nasal, fricatives, plosives).
Using a GMM-UBM classifier, this work yielded results
with accuracies between 77% (using the plosive-nasal-vowel
phonemic group) and 94% (with the fricative-nasal phone-
mic group). The authors extracted Rasta-Perceptual Linear
Predictive (Rasta-PLP) [25] and its derivatives, ∆ + ∆∆,
and labeled them by phonemic group. The focus on the

most important sounds has proved that plosive, vowel and
fricative segments are the most important for PD detection.

A NN was trained with the VoxCeleb 1 [11] and 2 [12]
datasets. An affine transformation was applied to the last
pooling layer, to retrieve the x-vectors, an abstract repre-
sentation of the input features, which were Mel-frequency
cepstral coefficients (MFCC) and its derivatives, ∆ + ∆∆.
The x-vectors are then used as an input to a Probabilistic
Linear Discriminant Analysis (PLDA) classifier. The model
achieved an accuracy of 90% on TDU production tasks and
79% on DDK production task (repetition of the pseudo-
word /pa-ta-ka/ ) [38].

2.3.3 Classification models Most of the available
datasets for this task are very small, considering the usual
size for a classification problem. This characteristic made
the PD detection difficult. Indeed, complex models are un-
able to capture the variability of the data from a small
dataset, and are therefore unable to correctly simulate and
generalize the training set [2]. Therefore, the majority of the
approaches to this problem use traditional machine learn-
ing models, such as SVM, RF and K-Nearest Neighbours
(KNN), which are able to make accurate predictions train-
ing with small datasets. Nevertheless, some experiments
have used Multi-Layer Perceptrons (MLP) and other NN ar-
chitectures, achieving accurate results, in some cases yield-
ing superior performances when compared to other models,
such as SVM, and RF [62].

A 114-dimensional feature vector was used as input to
a RF. Using acoustic features such as F0, loudness, shim-
mer, jitter and MFCC, and using 5-fold cross-validation,
the classifier achieved an accuracy of 85.1% [50].

A set of classifiers was used on two PD datasets [15].
The authors extracted the top 5 acoustic features (using
ARD) from a set of 22 features. After feature selection, the
model achieved an accuracy of almost 97%. The SVM clas-
sifier yielded an accuracy close to 97% as well, whereas the
Boosting Classifier (BC) obtained an accuracy around 1%
lower, completing the task with close to 96 % accuracy. The
RF achieved 96.62% specificity, whereas the model’s accu-
racy almost reached 93%.

From the Naranjo dataset [39] 240 recordings were re-
trieved [64]. From these recordings, 44 acoustic features
were extracted. The authors used KNN and SVM classi-
fiers, achieving similar results, yielding accuracies slightly
above 91%.

From the Naranjo dataset, a total of 177 acoustic fea-
tures were retrieved [64]. Using the Relief algorithm, the au-
thors selected the 66 more relevant features. Ensemble KNN
was compared against Cosine KNN and Gaussian SVM was
compared to Quadratic SVM. The Cosine KNN yielded an
accuracy slightly above 91%, whereas the Gaussian SVM
outperformed the Quadratic SVM, with an accuracy simi-
lar to the Cosine KNN (also above 91%).

A total of 2330 acoustic features were extracted from the
mPower dataset [7] (2268 corresponding to Audio/Visual
Emotion and Depression Recognition Challenge (AVEC)
2013 and 62 corresponding to GeMAPS) [58]. With 2023
HC and 246 PD, the authors tested three ML methods
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to distinguish between PD and HC: L2-regularized Logistic
Regression (LR), RF, and gradient-boosted Decision Trees
(DT). Because the dataset is heavily biased towards HC
(n = 2023) compared to PD (n = 246), the authors added
precision, recall and F1-score to the accuracy as evaluation
metrics to compare the performance of each model. The gra-
dient boosted DT achieved the best results, yielding 0.797
for recall, 0.901 precision and an F1-score of 0.836. Similar
results were reached with the RF classifier, but with an in-
ferior value for recall (0.693 recall, 0.902 precision and 0.783
for F1-score). The LR achieved the worst results, reaching
0.759 recall, 0.811 precision and 0.784 of F1-score.

A GMM-UBM classifier was trained using one dataset
and tested it with three others. The model yielded accura-
cies between 84% and 94% [37].

MLP have also been extensively used for PD classifica-
tion, having proven their efficacy in performing this task. A
1 hidden layer MLP, used on various sets of acoustic fea-
tures, was able to classify AD patients with an accuracy of
over 92% and HC with an accuracy of almost 91%, surpass-
ing the performance of a KNN model, which yielded accura-
cies of 90.9% for AD and 87.3% for HC [32]. The Levenberg-
Marquardt and Scaled Conjugate Gradient methods were
tested as training algorithms for an MLP [5]. Using 16
classical acoustic features (such as F0, jitter, shimmer) ex-
tracted from 195 speakers, the authors tested multiple val-
ues for the number of hidden units (5, 10, 15, 20, 25) and
concluded that the Levenberg-Marquardt outperformed the
Scaled Conjugate Gradient, reaching accuracies of over 97%
with 25 hidden units, whereas Scaled Conjugate Gradient
achieved 79% on 10 hidden units. Using the UCI dataset
[17], a set of 23 features was extracted for PD classifica-
tion [62]. The authors compared the performance of a Deep
Multi-Layer Perceptrons (DMLP), with 5 or 10 hidden lay-
ers, with other ML classifiers. The authors reduced the size
of the DMLP to 5 hidden layers, using ReLU or softplus
as non-linear activation functions instead of the latter acti-
vation function, as these are continuous and can therefore
address the vanishing gradient problem that affects Deep
Neural Networks (DNN). Results on this experiment con-
cluded that the best performance came from the DMLP us-
ing 10 hidden layers, which yielded 80% accuracy, whereas
the LR model only reached 77.5% and the KNN could only
get to 72.5%. Dropping the size of the DMLP to 5 hidden
layers reduced the model’s accuracy to 76%, which was still
higher than some of the tested models, such as the KNN
and RF models.

2.3.4 Language independency As one of the goals for
this work is to develop a model capable of detecting PD
for any patient, universality is an important property for
the desired model, which can be achieved with language in-
dependency. Three distinct datasets, one in Spanish, one
in German and one in Czech, were used with a GMM-
UBM model to train a semi language-independent model
[42]. For each experiment, the model was trained with one
dataset and tested with another (adding to the training
set subsets of the test set with percentages varying from
10% and 80%). Despite reaching accuracies of 96%, high

accuracies are only achieved when large portions of the test
language are used to train the model. In a fully language-
independent model (where the model is trained using one
language and tested with another), the model accuracy only
reaches 77% (trained with the German dataset and tested
with the Czech dataset). A GMM-UBM was trained us-
ing corpora in Spanish Castilian, Spanish Colombian and
Czech. Cross-language testing resulted in accuracies of 82%
[37].

3 Explainability Models

XAI is a field of AI that provides techniques and al-
gorithms able to generate interpretable, intuitive, human-
understandable explanations of AI decisions [14].

Explaining the decisions made by a black-box model re-
quires knowledge of its internal operations [14], which makes
it impossible to use by end-users who are only focused and
interested on getting an accurate result. The very nature of
a black-box ML/Deep Learning (DL) model is a barrier for
their real-life usage [57]. For a ML model be used in real life
situations, the users must have confidence in it. Two defi-
nitions of trust must be considered: trust in the prediction,
where the user trusts a prediction sufficiently such that he
is comfortable with performing an action based on it, and
trust in the model, which gives enough confidence to deploy
the model. Thus, in order for such model to be deployed,
both definitions must be fulfilled [55]. This is even more im-
portant in critical situations, such as medical diagnosis. To
address this limitation in ML and DL, many models have
been created to generate explanations for a model’s predic-
tions.

Creating human-understandable explanations can also
aid in finding erroneous behavior in a model. A peculiar
discovery was made in an experiment where Fisher Vec-
tor classifiers were used for the image recognition task [4].
An interpretability technique called Layer-wise Relevance
Propagation (LRP) was applied to explain the predictions
of the model. In particular cases, where the input image
consisted of a horse, it was found that the model primarily
based its decision not on any of the physical traits of the
horse, but on a copyright tag present on the bottom left of
the image that turned out to be a characteristic of all the
horse images used in training. This error certainly highlights
the need for interpretability of ML/DL models, especially
in the medical field, where such errors can severely impact
human lives.

3.1 Explanation

An explanation is a verifiable justification for a model’s
output or decision [14]. There are many kinds of explana-
tions, such as a heat map stressing relevant parts of an im-
age (for example, a DaTSCAN image in PD detection [33]).
Some models, such as Local Interpretable Model-agnostic
Explanation (LIME) [55], base their explanations on activa-
tions or parameters of the black-box models, using simpler
surrogate models [14].
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3.2 Scope

Explainability models can be subdivided in three large
groups, based on the scope of their explanations: local,
global or mixed.

3.2.1 Local explanations’ models Locally explainable
methods are designed to generate an explanation for the
model’s decision on a single instance of input data [14].
Models that provide local explanations fail to provide a
global observation of the model. Their explanations do not
provide enough information on the original model compu-
tations and do not provide enough detail to understand the
model’s behavior as a whole [1].

Randomized Input Sampling for Explanation (RISE)
was proposed in 2018. This model is based on random
masking to locally understand the most important features
(for example, in the case of the image classification prob-
lem, RISE will determine the most important pixels for the
black-box model’s classification) [47].

Consider f : I → R to be the model. For the image clas-
sification problem, we consider Λ : {1, .., J} x {1, ..,W} as
the image coordinates and I would map every pixel to its
RGB representation (I = {I|I : Λ → R}). f is a classifier
that returns the probability of an instance of a certain class
be present in the image. Considering a random binary mask
M : Λ→ {0, 1} following a distribution D. By masking the
image with I � M (where � represents the element-wise
multiplication), we preserve only a subset of the pixels of I.
By calculating the confidence score f(I �M), we can de-
fine the importance of every pixel λ, SI,f (λ), λ ∈ Λ, as the
average value of the confidence scores of all masked images
where M(λ) = 1. Mathematically,

SI,f (λ) =
1

E[M ]

∑
m∈M

f(I �m) ·m(λ) · P [M = m] (1)

3.2.2 Global explanations’ models Understanding
the model’s behavior on a set of input data points could pro-
vide insights on the input features, patterns, and their out-
put correlations, thereby providing transparency of model
behavior globally. Various globally explainable methods
break down complex deep models into linear counterparts,
which are easier to interpret [14].

In 2020, the concept of Neural Additive Models (NAM)
was proposed [1]. The explanations are created by shape
functions, relative to each input feature. To parameterize
these functions, a NN is created for each function. With this
architecture, the model is able to create an exact represen-
tation of how NAMs compute a prediction, thus creating an
explanation of the model’s global behavior.

Consider D = {(x(i), y(i))}Ni=1 as the training set, with
N instances, where x is the input vector and y is the target
vector. The proposed model was trained using the following
loss function:

L(Θ) = Ex,y∼D[l(x, y;Θ) + λ1η(x; θ)] + λ2γ(Θ) (2)

where η(x,Θ) = 1
K

∑
x

∑
k(fΘk (xk))2 is the output penalty,

γ(Θ) is the weighted decay and fΘk represents the kth fea-
ture network.

The authors use the cross-entropy loss for binary classifi-
cation as the task-dependent loss function l(x, y;Θ), which,

considering pΘ(x) = σ(βΘ +
∑K
k=1 k

β
k (xk)), yields

l(x, y;Θ) = (βΘ +

K∑
k=1

fΘk (xk)− y)2 (3)

where βΘ defines the parameters to be calculated.

3.2.3 Mixed models To combine the advantages of the
local and global explanations’ models, mixed models pro-
vide explanations that are able to locally interpret decisions,
while also allowing to understand the behavior of the model
as a whole.

LIME is an algorithm that uses local interpretable rep-
resentations of the classification data to generate an output
that can be interpreted by humans [55]. We define x ∈ Rd as
the original representation of the instance to be explained
and x′ ∈ {0, 1}d′ , a binary vector and its interpretable rep-
resentation. Let g ∈ G, where G is the set of models that
can present a interpretable output to the user. We also de-
note Ω(g) as a measure g’s explanation complexity and
f : Rd → R as the model to be interpreted. f(x) will be
the probability or binary indicator that x belongs to a par-
ticular class. Let πx(z) be a proximity measure of distance
between x and an instance z to define around x. Lastly,
we define L(f, g, πx) as a measure of how unfaithful g is
approximating f in the space defined by πx. As we want
to maximize interpretability while keeping local fidelity, the
explanation can be defined as:

ξ(x) = argmin
g∈G

L(f, g, πx) +Ω(g) (4)

The algorithm creates sample instances instances
around x′, weighted by πx. Considering a perturbed sample
z′ ∈ {0, 1}d′ containing a fraction of the non-zero elements
of x′, the original representation z ∈ Rd is obtained, so the
value f(z) can be calculated. For example, considering an
input x = [1, 2, 3, 4, 5] and a mask x′ = [1, 1, 1, 1, 0], z′ could
be [1,0,1,1,0] (ignoring the second value of the input). Thus,
z can be defined as z = z′�x = [1, 0, 3, 4, 0]. Considering Z
as the set of all perturbed z′ with the label f(z), equation
4 is used to calculate the explanation.

3.3 Parkinson’s Disease diagnosis

As stated in section 1, ML models used for sensitive
tasks, such as detection of PD, lack the ability to generate
an explanation to be interpreted by the medical profession-
als that need to establish a diagnosis. These models, called
black-box models [27], take an input and return as an out-
put a classification, which cannot be interpreted by a med-
ical professional. This problem difficults the acceptance of
these models for such tasks, as the risk of decision-making
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based on the results of a black-box system raises numerous
ethical concerns [9].

Image-based explanations were generated for a black-
box model (the VGG16 convolutional neural network) on
a dataset of SPECT DaTSCAN images of the brain [33].
The authors retrieved a 2-dimensional section of the 3-
dimensional image, trained, and tested the black-box model,
which yielded an accuracy of 95.2%, a specificity of almost
91%, a sensitivity of 97.5% and a precision of 95.2%. After
the classification, the authors generated a color map over
the input images to highlight the regions of interest (the pix-
els with larger weights for the classification process). This
showed that the most interesting regions of the brain for
this task were the putamen and the caudate, confirming the
medical background information described, providing trust
in the model, as it could be easily interpreted by a medical
professional.

Explainability models have been applied to many other
medical tasks, such as breast cancer detection [48], identi-
fication of individuals with high-risk of depressive disorder
[10], and early detection of COVID-19 [52]. This area re-
mains almost unexplored for the task of early detection of
PD and, to the best of our knowledge, no work has com-
bined explainability algorithms with acoustic-based models
for this task.

4 Experimental Setup

This section describes the methodology. First, the cor-
pora used in this work are described, followed by the ap-
proaches to be followed (feature selection, classification
model, explanation generation model, and multi-language
tests). Finally, the evaluation procedures are presented. Fig-
ure 1 shows the pipeline for the system’s architecture.

4.1 Corpus Description

Most datasets available for this task have insufficient
data to train neural models [2]. Nevertheless, few common
speech production tasks are available in the datasets. As
some datasets contain speech from PD patients and share
commons speech production tasks, they can be combined
to produce sufficiently long collections of data that can be
used for neural models [8], [15], [37], [38]. Different datasets
were used for training and testing, or to combine instances
from different datasets in the training and/or testing sets
[42], all proving to be accurate in the PD classification task.

This study used 3 datasets for training and testing the
model – FraLusoPark [49], GITA [41], and Mobile Device
Voice Recordings at King’s College London (MDVR KCL)
[28].

The FraLusoPark dataset is composed by speech from
120 patients, half of which are native French speakers
and the other half are European Portuguese speakers. The
dataset also contains 120 healthy participants as a control
group (with the same distribution between French and Eu-
ropean Portuguese speakers as the PD participants). Each
group of PD patients is divided into three subgroups, based

on the number of years since diagnostic: 20 early stage pa-
tients (who have been diagnosed less than 3 years before and
present no motor fluctuations), 20 mid stage patients (with
a diagnostic made 4 to 9 years before the data collection, or
less than 3 years and experiencing motor fluctuations), and
20 advanced stage patients, diagnosed over 10 years ago.
The patients’ speech is recorded twice for every speech pro-
duction task, before (at least 12 hours after medication) and
after medication (at least 1 hour after medication). FraLu-
soPark participants were asked to perform the following set
of speech production tasks: sustain the vowel a at a steady
pitch, hold the vowel a during their maximum phonation
time on a single breath, DDK (repetition of the pseudo-
word pa-ta-ka at a rapid pace during 30 seconds), reading
aloud 10 words and 10 sentences, formed by adapting part
of section V.2 of the Frenchay Dysarthria Assessment of
Intelligibility (FDA-2), reading of a short text (adapted to
French and European Portuguese), storytelling by guided
visual stimuli, reading a collection of sentences with spe-
cific language-dependent prosodic properties, and free con-
versation for 3 minutes. In the scope of the present study,
we only consider the Portuguese speakers of this dataset, as
the audios from the french patients could not be accessed.

The GITA dataset contains recordings of 50 PD patients
and 50 HC, evenly distributed between genders. For the PD
group, the average age is 62.2 with a standard deviation of
11.2 years and 60.1 with a standard deviation of 7.8 for male
and female participants, respectively. Considering the HC
group, the average age is 61.2 and 11.3 years and 60.7 with a
standard deviation of 7.7 for male and female participants,
respectively. Multiple stages of disease progression are con-
sidered in this study (time since diagnostic ranges between
0.4 - 20 years for male patients and 1 - 41 years for female
patients). All the participants are Colombian Spanish native
speakers. Recordings of the PD patients were made no up
to 3 hours after the morning medication. Different speech
production tasks were performed to examine phonation, ar-
ticulation and prosody. To analyze phonation, participants
were asked to sustain the five Spanish vowels and to re-
peat the same five vowels, but alternating the tone between
low and high. Regarding articulation, a DDK evaluation
was performed with the pseudo-words /pa-ta-ka/, /pa-ka-
ta/ and /pe-ta-ka/. Finally, for the evaluation of prosody,
both PD patients and HC were asked to repeat a series of
sentences with different levels of complexity, to read a dia-
logue between a doctor and a patient, which contained the
complete set of Spanish sounds, to read sentences with a
strong emphasis on a set of words and freely speak about
their daily routine.

Lastly, the MDVR KCL dataset was recorded in the
context of phone calls, in an acoustically-controlled envi-
ronment. The dataset contains speech from 16 participants
with PD (11 male and 4 female) and 21 HC (3 male and
18 female), totaling 37 native English speakers. The PD
group contains patients from all the stages of the disease
(early, mid and late stages) according to the Hoehn and
Yahr scale [26]. The participants were asked to read a text
(“The north wind and the sun” or “Tech. Engin. Computer
applications in geography snippet”). Additionally, the inter-
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Fig. 1: Pipeline of the developed model.

viewer started a spontaneous conversation with each partic-
ipant about various topics.

To homogenize the datasets, only the text-reading tasks
were considered herein. This yields a total of 131 HC and
125 PD speakers of European Portuguese, Colombian Span-
ish, and European English.

4.2 Data Processing

The original audio files contained the interviews (includ-
ing silences and speech segments from the interviewers) of
each test subject, therefore requiring segmentation in order
to remove useless audio fragments. Silences between speech
segments were removed. Next, sounds produced by the sub-
ject that were not considered as speech were also deleted.
Finally, audio segments containing speech from interviewers
were also eliminated.
After data processing, the datasets were reduced to one file
per subject. Total duration and remaining metadata on each
dataset is presented in table 1.

4.3 Feature Extraction

In order to extract the features, the openSMILE [18] tool
was used. To extract the complete set of features, four con-
figurations were used: MFCC12 0 D A.conf for MFCC’s,
PLP 0 D A.conf to extract Perceptual Linear Predictive
(PLP)’s, prosodyAcf2.conf for prosody features (F0 and
HNR), and GeMAPSv01b.conf to extract jitter and shim-
mer.
OpenSMILE was configured to use a sliding window of 25ms
with a frame step of 10ms. After the extraction, each partic-
ipant was represented by a sequence of feature vectors, and
each frame described by a list of features. To classify each
patient, the resulting diagnostic is obtained by averaging
the model’s output for each of the patient’s frames.

4.4 Classification Experiments

Three distinct experiments were conducted during the
present work. First, a baseline was created by training
and testing a classification model with sets from the same
dataset. This procedure scored the classification models for
single languages. Secondly, the same model was trained to
evaluate its performance as a semi language-independent
classifier. For this, the model was trained using one com-
plete dataset and with a fraction of another dataset (90%),
thus combining two languages in the same training set. The
model was then tested with the remaining 10% of the second
dataset. All the combinations between the three datasets
were tested, leading to 6 dataset combinations. By test-
ing this semi language-independent version, it was possi-
ble to evaluate an intermediate step between a language-
dependent and a language-independent classification model,
shedding light into the model’s sensitivity to the lan-
guage. Lastly, a completely language-independent model
was trained by combining two datasets. For this last ex-
periment, each model was trained with two datasets and
tested with the third, thus allowing to evaluate the model’s
ability to diagnose a patient who speaks in a language dif-
ferent from the ones used to train the model.
These experiments used the scikit-learn implementation [45]
of a MLP was used. Two different architectures were tested
to evaluate their ability to learn from the training data.
The first architecture contains one entry layer with N neu-
rons (where N is the number of input features), a fully-
connected hidden layer with N + 1 neurons and an output
layer with 1 neuron, whose value represents the probability
of the test subject to be classified as PD [32]. The second
architecture also contains an input layer with N neurons,
two fully-connected hidden layers, comprising 200 neurons
each and, similarly to the first architecture, an output layer
with 1 neuron, also representing the probability of the sub-
ject under evaluation to be diagnosed with PD. For these
experiments, the threshold between HC and PD diagnostics
(the output value of the neuron from the output layer) was
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Dataset Total time PD/HC (%) M/F (%) Average age

FraLusoPark 113m43s 54/46 51/49 65.1

Gita 30m8s 50/50 50/50 61.7

MDVR KCL 65m3s 42/58 38/62 n/a

Table 1: Information on the used datasets.

set to 0.5.
In order to find the best model configuration, the experi-
ments were repeated testing multiple values for the L2 reg-
ularization term parameter, or alpha (10−4, 10−3, 10−2),
maximum number of iterations (1000, 2000, 5000) and
solver for weight optimization (lbfgs, sgd, adam).

4.5 Explanation generation

After the classification experiments, explanations were
generated for each individual of the test set (with all models
described in section 4.4). As the objective of this work is to
generate an explanation for each diagnostic individually, a
mixed model was used.
The selected model was LIME [55]. This model yielded re-
sults on explaining PD diagnostics with SPECT DaTSCAN
images of the brain that were confirmed by the bibliogra-
phy. This work aimed to verify if a similar performance can
be achieved using acoustic features.
To explain the diagnostic of each subject, the ex-
plain instance method from the LimeTabularExplainer
class was used with each feature list (each representing a
time frame) to generate a report. Next, two operations were
performed. First, the classification model’s output was aver-
aged between all time frames, creating a final classification
probability for the subject. Secondly, each feature weight
(which LIME calculated) was also averaged, thus creating
a final weight for each feature (from which the top five fea-
tures with the largest contribution to the classification were
selected). To this report, a list of normal values for healthy
patients for each of the features was added. Finally, to assist
the interpretation of the report by the medical professional,
a small description of each feature was also added. Tables
2 and ?? show the complete list of normal values and de-
scriptions for each feature.
Additionally, a global evaluation of each feature’s relevance
was conducted. In order to conduct this analysis, the top five
classification model configurations for each experiment for
each MLP were used. An explanation was generated for each
patient from the testing set, and the result contribution of
each feature was averaged. Additionally, the percentage of
patients for each of the top five features with highest contri-
bution was calculated. Thus, we shed light into the relative
quality of each feature in distinguishing PD patients from
healthy subjects.

4.6 Model Evaluation

To evaluate the classification model’s performance, mul-
tiple metrics have been selected, namelyaccuracy (which al-

lows to evaluate the % of subjects correctly diagnosed), pre-
cision (that yields the fraction of subjects diagnosed with
PD that were correctly classified, recall (which quantifies
the percentage of PD subjects that were correctly diag-
nosed), F1-score that allows to evaluate precision and re-
call in the same metric, and Specificity which measures the
fraction of subjects classified as HC that were correctly di-
agnosed.

These metrics quantify the performance of the models,
which allows to determine the best parameters and archi-
tecture. Furthermore, recall allows to evaluate the percent-
age of subjects from the PD group that were correctly di-
agnosed, which, combined with specificity (that evaluates
the number of subjects from the PD group incorrectly di-
agnosed), provides confidence in the model information to
medical professionals.
To assess LIME’s results, average values of each feature
were obtained from the bibliography (see table 2) and are
shown along with the values in each explanation, in order
to compare each subject’s feature values with its range for
a healthy individual. This comparison will allow to evaluate
the model’s ability to detect abnormal values (or their ab-
sence) and select those features as justifications for a given
classification. Furthermore, a comparative analysis between
the global contribution of each acoustic feature was per-
formed, therefore allowing to compare feature’s relevance
for the model’s diagnostic.

5 Results and Discussion

This chapter presents the results and discussion. First,
classification experiments are presented, Results and dis-
cussion 5 describing all three experiment types (baseline,
semi language-independent, and language-independent) and
discussing model optimization. Next, the language inde-
pendency topic is discussed, followed by the explainability
model’s results and a comparative analysis on the relevance
of each acoustic feature.

5.1 Classification Experiments

In this work, three types of experiments were conducted,
each using two different MLP architectures, as described in
the previous chapter. Results are shown in tables 3 and
4 (for the baseline experiments), 5 and 6 (for the semi
language-independent experiments), and 7 and 8 (for the
language-independent experiments). These tables show the
five MLP parameter parameterizations with higher accu-
racy for each experiment. Tables 3, 5 and 7 present the
results for architecture 1, whereas tables 4, 6 and 8 show
the results for architecture 2.
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Male Female Reference

F0 (Hz) 105-160 175-245 [44]

Jitter (%) < 1.04 [3]

Shimmer (%) < 3.81 [3]

HNR (dB) < 20 (/a/, /i/), < 40 (/u/) [19]

Table 2: Feature values for healthy subjects.

5.1.1 Baseline experiments Both architectures 1 and
2 of the MLP yielded an accuracy of 90% with the best pa-
rameterization (tables 3 and 4 and figure 2).
All the best models parameterizations (for both architec-
tures 1 and 2) achieved higher scores using the GITA
dataset. There are multiple reasons that can explain these
results. In particular , the text read by subjects for the
creation of the GITA dataset contains the complete set of
Spanish sounds, which makes the data phonetically com-
plete. Also, the audios from the MDVR KCL dataset were
recorded using phone calls, which uses audio compression
with data loss, resulting in a dataset with inferior quality.
In addition, MDVR KCL has a significantly smaller record-
ing time, which may limit the model learning.
Initial experiments using either the sgd solver or
#iterations = 1000 produced significantly lower results
compared to the other values. Therefore, these two val-
ues were removed. The distribution between MLP solvers
(adam and lbfgs) on the top 5 model parameterizations
for architecture 1 is similar, whereas 4 out of the 5 best
model parameterizations on architecture 2 use the adam
solver. Both architectures yielded better results when us-
ing value smaller values (0.0001 and 0.001) for the alpha
parameter, comparing to the results obtained using larger
values (0.01). Finally, architecture 1 does not show signifi-
cant differences between models using 2000 and 5000 for the
maximum number of iterations. In addition, this difference
is observable on architecture 2, where the four model config-
urations which yielded better results by using the value of
5000 for this parameter regardless of the solver. The differ-
ence between architectures can be explained by the higher
complexity of architecture 2 which require the optimization
of a large number of parameters (52400 weights and 401
biases), compared with architecture 1, which has only 3844
weights and 62 bias. A larger number of parameters requires
more iterations for the model to converge.
Architecture 1 yielded precision values between 0.75 and
1, meaning that 75% to 100% of the patients labeled as
PD by the models were correctly classified. The precision of
architecture 2 was slightly worse, between 67% and 100%.
Recall values (which corresponds to the percentage of PD
patients were correctly classified) were similar for the two
architectures. Architectures 1 and 2 led to recall values in
the ranges [71-100]% and [67-100]%, respectively. Using the
specificity metric (which corresponds to the percentage of
HC patients that were correctly classified) to compare the
two architectures, architecture 2 outperformed architecture
1 by a small margin, producing a range of values between
80% and 100%, whereas architecture 1 produced a range

of values between 75% and 100%. Finally, comparing both
architectures using the F1-score metric, the performance of
architecture 2 (up to 91%) is usually higher than the one of
architecture 2 (up to almost 86%).
Overall, we can conclude that there are no significant dif-
ferences between the two architectures.

5.1.2 Semi-independent experiments When testing
a semi-independent approach, architecture 1 yielded bet-
ter results than architecture 2 (tables 5 and 6 and figure
3). Although the two best model parameterization of both
architectures produced an accuracy of 90%, the following
three model parameterization resulted in an accuracy of al-
most 86%, whereas architecture 2 only reached an accuracy
of 80%. The same trend applies to precision.
Architecture 1 outperformed architecture 2 on precision,
producing results between 0.83 and 1, whereas architecture
2 yielded values between 0.6 and 1. While both architec-
tures’ highest value was the same, architecture 1 produced
consistently better results, with a smaller range of values.
Similar results were achieved when using recall. Architec-
ture 1 produced values between 0.75 and 1, and 3 of the
top 5 model parameterizations achieved 100% recall. Ad-
ditionally, architecture 2 values for recall ranged from 0.66
and 1. As F1-score combines the values from precision and
recall (and architecture 1 outperformed architecture 2 on
both these metrics), the F1-score metric leads to the same
conclusions. Values of this metric for architecture 1 varied
between 0.85 and 0.92, whereas architecture 2 values ranged
from 0.75 to 0.88. Finally, architecture 2 produced better re-
sults when using specificity. This architecture’s values var-
ied between 0.71 and 1, with a much smaller variation be-
tween extremes when compared to the results produced by
architecture 1, which varied from 0.5 to 1. The results were
similar to the ones achieved on the baseline experiences us-
ing architecture 2. Architecture 1 had a slightly better per-
formance on the semi language-independent experiments,
compared to the baselines. This experiment confirms the
conclusions of a similar work that tested semi language-
independent models [42], which suggests that these models
can be retrained using a small dataset of a new language.
These retrained models can be used on patients that speak
the different language, without loss of performance. This
characteristic can be particularly useful, as lack of training
data is usually a limitation to train such models.

5.1.3 Language-independent experiments Language-
independent models lead to substantially worse results com-
pared to previous models (tables 7 and 8 and figure 4).
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dataset solver alpha max. iterations accuracy precision recall specificity f1-score

gita adam 0.0001 5000 0.9 0.75 1.0 0.857 0.857

gita lbfgs 0.0001 2000 0.9 0.75 1.0 0.857 0.857

gita adam 0.001 2000 0.8 1.0 0.75 1.0 0.857

gita lbfgs 0.01 5000 0.8 0.833 0.833 0.75 0.833

gita lbfgs 0.01 2000 0.8 1.0 0.714 1.0 0.833

Table 3: Baseline experiment results using architecture 1.

dataset solver alpha max. iterations accuracy precision recall specificity f1-score

gita adam 0.001 5000 0.9 0.8 1.0 0.833 0.889

gita lbfgs 0.001 5000 0.9 1.0 0.833 1.0 0.909

gita adam 0.0001 5000 0.8 0.8 0.8 0.8 0.8

gita adam 0.01 5000 0.8 0.667 0.667 0.857 0.667

gita adam 0.001 2000 0.8 1.0 0.778 1.0 0.875

Table 4: Baseline experiment result using architecture 2.

dataset solver alpha max. iterations accuracy precision recall specificity f1-score

M + G adam 0.001 2000 0.9 0.857 1.0 0.75 0.923

F + G lbfgs 0.0001 5000 0.9 0.875 1.0 0.667 0.933

G + F adam 0.0001 2000 0.857 0.833 1.0 0.5 0.909

G + F adam 0.01 5000 0.857 0.889 0.889 0.8 0.889

G + F lbfgs 0.001 2000 0.857 1.0 0.75 1.0 0.857

Table 5: Semi language-independent experiment result using architecture 1. Dataset column legend: M - MDVR KCL, F
- FralusoPark, G - Gita. First dataset was used entirely for training, the second one was partially used for training and

partially for testing.

dataset solver alpha max. iterations accuracy precision recall specificity f1-score

M + G lbfgs 0.001 5000 0.9 1.0 0.8 1.0 0.889

F + G lbfgs 0.0001 2000 0.8 0.75 0.75 0.833 0.75

M + G adam 0.0001 5000 0.8 1.0 0.667 1.0 0.8

M + G adam 0.001 5000 0.8 0.6 1.0 0.714 0.75

M + G lbfgs 0.0001 5000 0.8 0.6 1.0 0.714 0.75

Table 6: Semi language-independent experiment result using architecture 2. Dataset column legend: M - MDVR KCL, F
- FralusoPark, G - Gita. First dataset was used entirely for training, the second one was partially used for training and

partially for testing.
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Fig. 2: Baseline experiment result using architecture 1 (left) and architecture 2 (right). Correspondence to table 3 and 4:
row 1 is orange, row 2 is green, row 3 is red, row 4 is purple, row 5 is brown.

When using a language-independent model, architecture
1 achieved a maximum accuracy of 67%. Architecture 2
yielded very similar results, scoring a maximum of 66% on
this metric.
Combining the top five model parameterizations for both
architectures, almost all (90%) obtained their best scores
when trained with the FraLusoPark and MDVR KCL, and
tested with GITA. The same percentage of the combina-
tion of the top five models of each architecture used the
lbfgs solver, whereas only 1 of these 10 model parameter-
izations used the adam solver. Similarly to the baseline
and semi language-independent experiments, the model’s
performance is consistently higher for smaller values of al-
pha. On both architectures, only 1 of the top five model
parameterizations used alpha = 0.01. Finally, no significant
differences were found when comparing model’s perfor-
mance based on the number of iterations.
Considering the precision metric, architecture 1 scored
slightly higher values than architecture 2. It’s values range
between 0.59 and 0.64 whereas architecture 2 yielded val-
ues between 0.57 and 0.61, meaning that architecture 2
produced more false positives (patients from the HC group
incorrectly classified as PD). Also, architecture 1 per-
formed slightly worse when comparing the recall metric,
only achieving values ranging from 0.76 to 0.84, whereas
architecture 2 scored recall values between 0.77 and 0.88,
thus correctly classifying a higher number of patients from
the PD group. Architecture 1 outperformed architecture 2,
when compared using the specificity metric. Architecture 2
only achieved a maximum of 0.46, compared to architecture
1, which scored a maximum of 0.58 on this metric. Lastly,
as F1-score combines precision and recall in the same met-
ric, the results of both architectures on this metric were
equivalent.
We can conclude that the models have a similar perfor-
mance on the PD detection task. Thus, architecture 1 can
be considered a better option for this task, as it is simpler,

with only 3906 parameters to optimize, than architecture
2, which comprises a total of 52801 parameters. This differ-
ence makes architecture 1 much less resource-intensive, in
both terms of time and computing power.

5.1.4 Model optimization When comparing models’
results per parameter, it is possible to find the best values
for each parameter.
Smaller values for alpha (0.0001 and 0.001) consistently pro-
duced superior results when compared with 0.01. Consider-
ing language-dependent and semi language-dependent mod-
els, there is no clear difference between the use of the lbfgs
and adam solvers. For both experiments, around half of the
top five model parameterizations used each solver. In addi-
tion, for language-independent experiments, models using
the lbfgs solver outperformed those using the adam solver.
Between the top five model parameterizations of each ar-
chitecture, only 1 was trained using adam (tables 7 and 8).
Lastly, comparing the results based on the number of maxi-
mum number of iterations (#interations), there is no clear
difference between models trained with #iterations = 2000
and #iterations = 5000 in any of the experiments per-
formed. This shows that, in most cases, 2000 iterations
should be sufficient to train the model, and convergence
is reached without executing the maximum number of iter-
ations.

5.2 Language Independency

Both architectures used during this work yielded an ac-
curacy of 90% on the semi language-independent experi-
ments. One the one hand, these results are inferior to the
ones achieved on a similar work ([42]), where the authors
were able to achieve a maximum accuracy of 96% when
training a model with a German dataset and 80% of a Span-
ish dataset and testing with the remaining 20%. On the
other hand, this model was outperformed by architecture
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Fig. 3: Semi language-independent experiment result using architecture 1 (left) and architecture 2 (right).
Correspondence to table 5 and 6: row 1 is orange, row 2 is green, row 3 is red, row 4 is purple, row 5 is brown.

dataset solver alpha max. iterations accuracy precision recall specificity f1-score

gita lbfgs 0.001 5000 0.67 0.644 0.76 0.58 0.697

gita lbfgs 0.01 2000 0.65 0.612 0.82 0.48 0.701

gita lbfgs 0.001 2000 0.65 0.615 0.8 0.5 0.696

gita lbfgs 0.0001 2000 0.63 0.592 0.84 0.42 0.694

gita adam 0.0001 5000 0.63 0.6 0.78 0.48 0.678

Table 7: Independent experiment result using architecture 1.

1 when using the recall metric, producing recall values of
95%, whereas architecture 1 produced a recall of 100% for
the top 3 model parameterizations. Contrary to this work,
results produced by our model were inferior when using the
specificity metric, where the authors were able to achieve
a score of 97%, compared to the 75% produced by our
model. Based on the recall metric, we can conclude that
our solution has better ability to indicate when a subject
belongs in the PD group. This contrasts with the ability to
classify subjects from the HC group, where our model has
an inferior performance. As previously described in section
5.1.3, architecture 1 produced an accuracy of 67% on the
language-independent experiments. This result is slightly
inferior to the one achieved on a different article [42], where
a language-independent model yielded an accuracy of 77%
when trained with a Czech dataset and tested with a Ger-
man dataset. Comparing the models using the recall and
specificity metrics, the results are identical to the ones
achieved on the semi language-independent models’ com-
parison in this work. Our model with highest accuracy pro-
duced a recall of 76% whereas the authors were only able to
score 53% on this metric. On the other hand, architecture
1 produced a score of 58% on the specificity metric, signifi-
cantly inferior to the 95% achieved by the other work.
It is possible to conclude that the performance of both ar-
chitectures used in this work were not able to produce state-
of-the-art results on the language independency topic. Re-
garding the recall metric, both architectures outperformed

the state-of-the-art, which demonstrates better capacity in
detecting PD.

5.3 Explainability

LIME was used to generate explanations for each test
subject. These are local explanations, as they are able to
explain the classification of each test subject. Results ob-
tained following this process are described in section 5.3.1.
By analyzing the complete set of explanations produced in
this work, the global contribution (weight) of each feature
was evaluated for the classification. Results for the global
analysis are described in section 5.3.2.

5.3.1 Local Explanations To generate an explanation,
the top five features with the highest contribution to the di-
agnostic were selected. Figure 5 illustrates an explanation,
containing the percentage attributed to each class (PD and
HC), the features with the highest contribution to the diag-
nostic, their corresponding weights (values ranging between
[-1,1]), the subject’s average value on that feature, the range
of normal values for a healthy subject (extracted from the
bibliography), and a short description of the feature. This
information provides a clearer insight of the model’s clas-
sification to the medical professional. The percentage at-
tributed to each class allows to evaluate the degree of con-
fidence of the model in the decision, whereas the average
value can be compared to the normal range of values to
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dataset solver alpha max. iterations accuracy precision recall specificity f1-score

gita lbfgs 0.01 5000 0.66 0.614 0.86 0.46 0.717

gita lbfgs 0.0001 2000 0.63 0.589 0.86 0.4 0.699

gita lbfgs 0.0001 5000 0.62 0.579 0.88 0.36 0.698

gita lbfgs 0.001 2000 0.6 0.571 0.8 0.4 0.667

fralusopark lbfgs 0.0001 5000 0.586 0.586 0.773 0.369 0.667

Table 8: Independent experiment result using architecture 2.

feature percentage of subjects contribution (weight)

PLP[0] 77.2 5.4

MFCC[0] 65.3 4.8

PLP[1] 55.4 3.9

MFCC[1] 44.6 4.7

MFCC[12] 38.6 5.0

PLP[5] 37.6 4.9

PLP[3] 26.7 3.1

MFCC[2] 20.8 5.8

MFCC[3] 17.8 2.7

Shimmer 16.8 4.6

Table 9: Top 10 more common features on explanations.

feature percentage of subjects contribution (weight)

MFCC[10] 5.9 7.6

∆MFCC[1] 5.0 6.8

MFCC[2] 20.8 5.8

PLP[0] 77.2 5.4

∆∆MFCC[0] 1.0 5.3

∆MFCC[7] 2.0 5.1

MFCC[12] 38.6 5.0

PLP[5] 37.6 4.9

MFCC[0] 65.3 4.8

MFCC[1] 44.6 4.7

Table 10: Top 10 features ordered by average contribution (weight) to explanations.
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Fig. 4: Independent experiment result using architecture 1 (left) and architecture 2 (right). Correspondence to table 7
and 8: row 1 is orange, row 2 is green, row 3 is red, row 4 is purple, row 5 is brown.

Fig. 5: Example explanation report generated by LIME.

check for abnormal parameters. Finally, the feature descrip-
tion links the mathematical definition of the features with
its physical manifestation, thus simplifying the interpreta-
tion of the results by the medical professional.

5.3.2 Global Feature Contribution The top 10 fea-
tures were sorted by their frequency on the complete set of
explanations produced in this work and by average contri-
bution to the models’ classification, (tables 9 and 10).
PLP and MFCC are different mathematical representations
of sound that simulate the way humans perceive it. These
two sets of features constitute the majority of the top fea-
tures with highest contribution to the largest number of
test subjects (tables 9 and 10). Comparing the MFCCs and
PLPs by percentage of subjects, there are no significant
differences between these features. On the other hand, 8 of
the 10 features with highest contribution are MFCC pa-
rameters. In addition, shimmer is also on the top features
ordered by number of subjects for which they are the most
relevant. Finally, jitter and F0 produce significant contri-
butions to few test subjects (11.9% jitter and 1% for F0).

These features’ contributions are inferior to the ones shown
on the table (2.9% for F0, and 2% for jitter). HNR was
never one of the top five features for any subject.
The global contribution (weight) for each feature can be
observed in figure 6. The contribution of two features with
lowest weight is significantly smaller than the remaining. In
addition, there is a significant difference between the weight
of the three features with highest contribution and the oth-
ers, which can be defined as a threshold to separate the
features into two groups (relevant and irrelevant).
The best performing features are similar in both analysis,
with a strong presence of MFCC and PLP group of features.
A significant difference can be observed between the 6th and
the 7th top features (sorted by number of subjects), which
can also be defined as the threshold to separate the features
into relevant and irrelevant groups.
Combining both analysis, the combined threshold can be
defined as the top six features, meaning that this should be
the group of features that the medical professional should
focus on.
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Fig. 6: Global contribution (weight) by feature.

6 Conclusions

This work addressed two issues of the PD diagnosis task:
universality and explainability. First, lack of training data
for PD diagnostic creates a necessity for pre-trained models
that can be re-trained with a small dataset of speech from
a new language and be able to diagnose patients speaking
the new language. Secondly, lack of ability to understand
black-box models’ diagnosis is a barrier to real-world usage
of such models, which can be solved using explainability
models.

6.1 Conclusions

In the first part of this work, we evaluated the perfor-
mance of a new language-independent model for the PD
diagnosis task. Baseline results (training and testing the
model with speech from subjects speaking the same lan-
guage) achieved a maximum accuracy of 90% with the
two MLP architectures tested. These architectures differ
in the number of layers and number of nodes per layer.
An intermediate step was taken between the baseline and a
language-independent model, in which models were trained
with one dataset and with 90% of another dataset (with
different language speakers) and tested with the remain-
ing 10% of the second dataset. Both architectures yielded
a maximum accuracy of 90% in the intermediate setting,
without loosing performance compared to the baseline. This
demonstrated the capacity of these models to be applied to
a different language with a smaller amount of training data
when pre-trained with a different language. This character-
istic can be useful as the size of the available datasets limits

the quality of the training. Although results of the present
work were very promising, the percentage of the new lan-
guage dataset used for training (90%) is still high. Reducing
the amount of data to re-train a model is worth investigat-
ing in the future. When training a language-independent
model (trained with two datasets and tested with a different
one, from a new language), accuracy dropped to two thirds
for both architectures. Results were inferior to the state-
of-the-art regarding the accuracy metric, as a similar work
achieved an accuracy of 77% with a language-independent
model [42]. Our model with highest accuracy yielded a max-
imum value of 76% on the recall metric, significantly higher
than the 53% achieved by the work of Orozco-Arroyave, et
al. (2016). Therefore, the present work produces less false
negatives (PD subjects classified as HC), thus being a more
robust tool to support the medical activity. In the second
part of the work, the LIME model was used to generate
an explanation for each diagnostic. This step allowed to ex-
plain the classification results in a way understandable by
medical professionals, thus providing trust in the model.
This explanation can foster the adoption of computational
diagnostic models to be used in clinical scenarios, as these
models often produce more accurate diagnostics than med-
ical professionals. The LIME explanation report indicated
the probability of each subject belonging to on of the classes
(PD and HC), as well as the top five acoustic features which
contribute the most to the model’s classification. For each
feature, the contribution weight and the subject’s average
value were also included, together with the range of values
of a healthy patient and a small description of the feature.
This report largely extends the information produced by the
classification model, which only indicates the final diagnos-
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tic, thus providing the medical professional with informa-
tion that allows to make an informed diagnostic. Finally, a
global analysis was conducted to evaluate the average con-
tribution of each acoustic feature extracted and the per-
centage of test subjects for which each feature was one of
the top five with the highest contribution. Combining both
results, we concluded that MFCC and PLP features rep-
resent better information for the PD diagnostic task than
F0, jitter, shimmer, and HNR. Note that both MFCC and
PLP are abstract mathematical representations of sound,
and are therefore difficult to explain to a medical profes-
sional. Additionally, to the best of our knowledge, there is
no known range of values for both MFCC and PLP pa-
rameters that defines a healthy patient, which prevents our
model to generate a complete report on these features. This
work should be extended in the future with simpler, easy to
understand features in order for the model to be used in a
clinical scenario.

6.2 Future work

There are several paths to continue this work.
First, the current pipeline presents some limitations that
should be addressed. As previously described, there are
complexity limitations associated with abstract features,
such as PLPs and MFCCs. Using simpler features, such
as Logarithmic Filter Banks [34] (instead of MFCC),
would increase the clarity, and therefore the trustwor-
thiness/reliability of the model’s diagnostic. In addition,
graphical representations of the physical manifestation of
each feature can be added to the explanation. The normal
values for some features, such as F0, depend on meta fea-
tures (the normal values for F0 for males is range between
105 and 160 Hz and between 175 to 245 Hz for females).
Thus, adding the gender as a feature for the model could
help improve the model’s performance.
Both the classification and the explanation pipeline’s steps
can be further improved. First, the similarity between the
average contribution (weight) of all features on the explana-
tion model suggests some correlation between features. This
hypothesis can be further studied, using a model to eval-
uate the interactions between features, such as factoriza-
tion machines [54]. Detecting redundant features could help
reduce the model’s complexity, thus reducing resource re-
quirements. Also, the results achieved on the semi language-
independent experiments showed performance was not af-
fected when training a model with two languages. Further
analysis on the impact of varying the training percentage of
the test language would shed light into the relation between
data quantity used to re-train a model and the possible per-
formance loss. Finally, both for the classification and the
explanation steps, different models can be used to make a
comparative analysis. This would allow to both assess the
classification ability of multiple models, and to compare the
explanations generated by various models and the trust pro-
vided to the medical professionals.
The goal of generating explanations is to provide the med-
ical professionals with a tool that can shed light into the
black-box classification models. Thus, these models should

be tested in real-world scenarios, to rate their adequacy to
perform this task. During the real-world evaluation, a com-
parative analysis could be conducted between explainability
models, in order to assess which ones provide more trust to
the end-users of the product (the medical professionals).
This can be done by generating explanations for the same
user using different explainability models and assessing the
degree of confidence of the medical professional in each one
of them. This evaluation could also lead to the conclusion
that a combination of both methods provides more infor-
mation, which would provide a higher level of trust by the
medical professional on the classification models. Feature
types (such as audio or images) should also be compared,
as to understand which are better accepted by medical pro-
fessionals. For example, the explanations generated by the
model developed during this work could be compared with
the ones produced by the work described on section 3.3,
in which LIME was used to explain PD diagnostic with
SPECT DaTSCAN images of the brain.
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agnosis of parkinson’s disease using speech samples and
threshold-based classification. Journal of Medical Imaging
and Health Informatics, 5:1358–1363, 2015.

21. Alexander Goberman and Lawrence Elmer. Acoustic analy-
sis of clear versus conversational speech in individuals with
parkinson disease. Journal of Communication Disorders,
38:215–230, 2005.

22. J. Godino-Llorente, S. Shattuck-Hufnage, J. Choi, Laureano
Moro-Velázquez, and J. Gómez-Garćıa. Towards the iden-
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Reilly, and Peter Snyder. Acoustic characteristics of parkin-
sonian speech: a potential biomarker of early disease progres-
sion and treatment. Journal of Neurolinguistics, 17:439–453,
2004.

24. M. Hely, W. Reid, M. Adena, G. Halliday, and J. Morris.
The sydney multicenter study of parkinson’s disease: the in-
evitability of dementia at 20 years. Movement Disorders
Journal, 23:837–844, 2008.

25. H. Hermansky, N. Morgan, A. Bayya, and P. Kohn. Rasta-
plp speech analysis technique. In ICASSP-92: 1992 IEEE
International Conference on Acoustics, Speech, and Signal
Processing, volume 1, pages 121–124, 1992.

26. Margaret M. Hoehn and Melvin D. Yahr. Parkinsonism.
Neurology, 17(5):427–427, 1967.

27. Andreas Holzinger, Chris Biemann, Constantinos Pattichis,
and Douglas Kell. What do we need to build explainable ai
systems for the medical domain? 2017.

28. Hagen Jaeger, Dhaval Trivedi, and Michael Stadtschnitzer.
Mobile device voice recordings at king’s college london

(mdvr-kcl) from both early and advanced parkinson’s dis-
ease patients and healthy controls [data set], 2019.

29. T. Kent, H. Vorperian, J. Kent, and J. Duffy. Voice dysfunc-
tion in dysarthria: application of the multi-dimensional voice
program. Journal of Communication Disorders, 36:281–306,
2003.

30. M. Little, P. McSharry, D. Costello, and I. Moroz. Exploit-
ing nonlinear recurrence and fractal scaling properties for
voice disorder detection. BioMedical Engineering OnLine,
2007.

31. Alex London. Artificial intelligence and black-box medical
decisions: Accuracy versus explainability. The Hastings Cen-
ter Report, 49:15–21, 2019.

32. Karmele Lopez-de Ipiña, Jordi Solé-Casals, Harkaitz
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Glossary

AD Alzheimer’s Disease. 1, 4
AI Artificial Intelligence. 1, 2, 4
ARD Automatic Relevance Determination. 3

BC Boosting Classifier. 3

DDK Diadochokinesia. 2, 3, 6
DL Deep Learning. 4
DMLP Deep Multi-Layer Perceptrons. 4
DNN Deep Neural Networks. 4
DT Decision Trees. 4
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F0 Fundamental Frequency. 2–4, 7, 14, 16

GMM-UBM Gaussian Mixture Model - Universal Background Model. 3, 4
GNR Glottal-to-Noise Ratio. 2, 3
GPC Gaussian Process Classification. 2, 3

HC Healthy Controls. 2–4, 6–9, 11, 12, 15
HNR Harmonics-to-Noise Ratio. 2, 3, 7, 14

KNN K-Nearest Neighbours. 3, 4

LIME Local Interpretable Model-agnostic Explanation. 4, 5
LR Logistic Regression. 4
LRP Layer-wise Relevance Propagation. 4

MFCC Mel-frequency cepstral coefficients. 3, 14, 16
ML Machine Learning. 1–5
MLP Multi-Layer Perceptrons. 3, 4, 7–9, 15

NAM Neural Additive Models. 5
NHR Noise-to-Harmonics Ratio. 2, 3
NN Neural Networks. 3, 5

PD Parkinson’s Disease. 1–9, 11, 12, 15, 16
PLDA Probabilistic Linear Discriminant Analysis. 3
PLP Perceptual Linear Predictive. 7, 14, 16

Rasta-PLP Rasta-Perceptual Linear Predictive. 3
RF Random Forests. 3, 4
RISE Randomized Input Sampling for Explanation. 5

SVM Support Vector Machines. 3

TDU Text-dependent Utterances. 2, 3

VTI Voice Turbulence Index. 2, 3

XAI Explainable Artificial Intelligence. 2, 4
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