
Migration of a Client-Server Application to a Cloud Architecture

The Case of an E-Banking Application

Martim Bravo
martim.bravo@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2021

Abstract

Enterprises are increasingly migrating their applications to the cloud, whether to take advantage of
what the cloud has to offer or simply because of the lower costs. This thesis is part of a larger project
where a company is analyzing the migration of a client-server application that it sells to banks to a
cloud-native architecture. Due to the partnerships that the company has, the cloud service provider
used in the thesis is Microsoft’s Azure. The objectives of this thesis are: the investigation of various
architectures for cloud applications and migration strategies; propose an architecture and a migration
strategy; develop a proof-of-concept where a sample of the application runs in the cloud. An overview
of the application to be migrated is given in order to contextualize what the application does and how
it is currently architected. Following the investigation, it is identified the different categories of cloud
services, examples of cloud-native architectures, principles to follow when designing a cloud-native
architecture, migration strategies to the cloud, and services of interest that Azure has. An architecture
is proposed based on the current application architecture, and following the identified principles and
taking ideas from the examples of cloud-native architectures found. A migration strategy with several
intermediate architectures until reaching the proposal is defined. The implementation of each iteration
is described. In the analysis of the costs and performance of each iteration, it is concluded that the
proposed architecture is the most promising.
Keywords: Cloud, Architecture, Migration, E-Banking, Azure

1. Introduction
Nowadays enterprises are increasingly migrating
their applications to the cloud. This migration oc-
curs because of a need to modernize the applica-
tions and because the cloud offers advantages that
the on-premises facilities do not. Some of the ad-
vantages that the cloud brings are cost savings, ease
of security, business continuity, and monitoring.

This thesis is framed in a larger project in which
the focus is the migration of a client-server applica-
tion to a cloud-native architecture. The application
in question, BankOnBox, is an e-banking applica-
tion developed by Link Consulting. The application
will be migrated to Microsoft’s cloud service Azure.
Azure was chosen as the cloud service to migrate
the application to because the current version of
BankOnBox is built on Microsoft technologies and
the company is a Microsoft Partner.

Being part of the other project, the objectives
and deliverables attributed to this thesis are:

• Investigate cloud architectures and migration
strategies;

• Propose a target cloud architecture and a mi-

gration approach;

• Develop a proof-of-concept, where a sample of
the application will be migrated to that archi-
tecture.

2. Background
2.1. BankOnBox
BankOnBox is an online banking platform devel-
oped by Link Consulting and sold to financial insti-
tutions. It is a robust and highly versatile platform
to deliver consistent online services across several
digital channels like mobile, Internet, chat, SMS,
among others. It currently supports the home bank-
ing and mobile banking sites of approximately 20
customers in Europe and Africa.

The BankOnBox application allows the bank cus-
tomers to perform the traditional functionalities of
home banking like consult account balances, make
payments, make transfers, among others. In the
current state of the application, it is deployed on-
premises on the facilities of the clients.

The logical architecture as is visible in Figure 1
is composed of two main components: the BankOn-
Box Internet Banking Sites and the BankOnBox

1

Engine. Other components that are part of the
logical architecture are: the browsers and mobile
apps that communicate with the BankOnBox Inter-
net Banking Sites via HTTPS; the three databases,
one used by the BankOnBox Internet Banking Sites
to load its pages, one used for contract management
and settings, and the other for logs; the back-office
application that the bank’s staff uses; and the bank
core system.

Figure 1: BankOnBox Logical Architecture

The BankOnBox Engine is composed of three
modules, the transaction manager authentication,
the transaction manager, and the BankOnBox in-
tegration. The BankOnBox Engine was designed
with a modular architecture and plugin-based ex-
tensibility in mind since the BankOnBox applica-
tion is sold to different banks that may need differ-
ent operations exposed in the BankOnBox Internet
Banking Sites and that have different interfaces to
their core systems.

To allow the addition of new transactions, with-
out changing the source code, the BankOnBox En-
gine uses a plugin. The plugin used is Microsoft
Unity Framework that does dependency injection.
The plugin loads by reflection all the classes that
implement the transaction interface to a catalog,
this allows that only the code for the new transac-
tions needs to be added without changing the ex-
isting code. The code loaded is responsible for the
transaction validations and execution.

The transaction manager authentication checks if
the request received needs a second level of authen-
tication.

The transaction manager module is the part of
the BankOnBox Engine component that makes all
the validations to the requests received. When the
transaction manager receives a transaction request,
it does all the generic validations first and then all
the transaction-specific validations. After all the
validations are done it passes the request to the in-
tegration to be executed.

The integration module is responsible for making
the conversion between the application model and
core system model, and calling the core system to
execute it.

The BankOnBox Engine component was built on
.NET 4 and is running on Microsoft’s Internet In-

formation Services.

The BankOnBox Internet Banking Sites compo-
nent was built on ASP.NET 4 and is running on
Microsoft’s Internet Information Services. The web
pages are currently being migrated to use Angu-
larJS by a team at Link.

The communication between the websites and
the transaction manager authentication, and be-
tween the transaction manager authentication and
the transaction manager is done using Windows
Communication Foundation (WCF) messages that
implement the WS-Security standard and are sent
over HTTP. The protection of the messages is done
at the message level using WS-Security.

The back-office application was built on Sil-
verlight and is currently being migrated to Angu-
larJS and .NET Core.

The contract management & settings database
contains all the data for an internet banking con-
tract and the functional logs.

The logs database is only used to store applica-
tion logs like application errors, connectivity errors,
and all the requests and responses sent and received
to the bank core system.

All the databases are SQL Server databases.

In terms of functional security, the BankOnBox
application offers two levels of authentication and
multi-approval of operations in business contracts.
The first level of authentication is used for queries
and the second level is used for operations.

In terms of non-functional security, the authenti-
cation of back-office staff is done with Microsoft Ac-
tive Directory; the passwords and OTPs are stored
in the database after being hashed with a salt and
ciphered; in the production environment, the ac-
cess to the contract management & settings and
logs databases is done using Windows authentica-
tion, and the access to the web CMS database is
done using SQL authentication.

The physical architecture of the BankOnBox ap-
plication once deployed in the clients is fairly simple
as it is possible to see in Figure 2.

Figure 2: BankOnBox Physical Architecture

2

The physical architecture is composed of three
zones: the Internet, the demilitarized zone (DMZ),
and the local area network (LAN). Between the In-
ternet and the DMZ, and between the DMZ and the
LAN there are firewalls. The DMZ contains the web
servers and a load balancer. The LAN contains the
application servers with a load balancer in front of
them, the SQL servers, the banking core, and other
systems that the application servers might commu-
nicate with.

2.2. Types of Cloud Computing Services
The different cloud computing services offered by
the cloud providers can be divided into three
main groups: Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS). The division into these three groups
is done by what are the parts of the service stack
that are managed by the provider and what are the
parts that are managed by the cloud user. On an
application running on-premises, the whole stack
would be managed by the person or organization
that owns it.

Cloud computing, as said in [11], [1], and [5], has
many definitions, but the most commonly accepted
is the one by the National Institute of Standards
and Technology (NIST). The definition of cloud
computing by NIST is as follows: “Cloud com-
puting is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal
management effort or service provider interaction.”.

The stack that composes the applications is, from
top to bottom, as follows:Interface; Application;
Data; Runtime; Middleware; Operating System;
Virtualization; Servers; Storage; Networking.

On an IaaS service, the part of the stack managed
by the cloud customer is from the Operating System
upwards, while the cloud provider manages from the
Virtualization downwards. An example of an IaaS
service is a VM hosting service.

On a PaaS service, the part of the stack man-
aged by the cloud user is from the Data upwards,
while the cloud provider manages from the Runtime
downwards. On a PaaS service, the cloud customer
only has control over his code, he does not have ac-
cess to the machine where that code runs, and as
such, one example of a PaaS service is a website
hosting service.

On a SaaS service, the cloud customer only has
access to the Interface used to interact with the ap-
plication. The cloud provider controls the appli-
cation, the software, and the hardware it runs on.
Some examples of SaaS services are Microsoft Office
365, Google Apps, and Dropbox.

In terms of the administration continuum, from

the point of view of the cloud customer, the groups
of services, from higher administration to lower ad-
ministration, are ranked as follows: IaaS, PaaS,
SaaS.

2.3. Principles of Cloud Architecture
Some cloud application architecture principles, as
defined in [9], [10], [6], and [2], that, when followed,
lead to a better optimized cloud application are:

• Design for self-healing

• Make all things redundant

• Minimize coordination

• Design to scale out

• Design for the operations team

• Use managed services

• Use the best data store for the job

• Design for evolution

2.4. Cloud Migration Strategies
There are many strategies to migrate applications
to the cloud, as described in [3], [8], [7], and [4],
most of the strategies can be grouped into four cat-
egories: re-hosting, re-platforming, re-purchasing,
and re-architecting.

Re-hosting, also known as lift & shift, re-
deployment, and copy & paste, is when the mi-
gration to the cloud is done by only migrating the
physical servers and VMs to the cloud as-is, with-
out any changes to the code. This strategy has the
advantage of being the fastest one to be done and
the cheapest in terms of the cost of the migration
process.

Re-platforming, also known as re-packaging, is
similar to re-hosting, with the difference being that
instead of migrating the existing application to an
IaaS it is migrated to PaaS with minimal code
changes. This strategy has the advantage of low-
ering the costs of running and managing the appli-
cation with the cost of the migration itself not being
too high.

Re-purchasing is moving to a different product,
most commonly moving to a commercially available
off-the-shelf (COTS) or SaaS product. This strat-
egy has the advantage of buying a product that is
already built and only needs adaptations instead of
commissioning, building, or re-building a product
from the ground up.

Re-architecting, also know as re-factoring and re-
designing, is when the architecture of the applica-
tion is re-imagined using cloud-native features to
better optimize it to the cloud platform and scal-
ability. This strategy has the advantage of cost-
effectively meeting scalability requirements and al-
lows the addition of new features more easily.

3

3. Solution
3.1. Architecture
The current architecture of BankOnBox when sim-
ply ported to the cloud is not optimized for produc-
tion environments since it has multiple components
of the logical architecture running in the same re-
sources and does not follow the principles of cloud
architecture listed in Chapter 2.3.

A more appropriate architecture is proposed in
Figure 3.

Figure 3: Proposed Architecture

All current IIS sites get dedicated services. The
BankOnBox website and the transaction manager
authentication are each their own App Service. The
App Service was chosen because it is the Azure
equivalent to Windows’ IIS. The site composed of
the transaction manager and integration compo-
nents is divided into Function Apps. This division
is further explained ahead. The Function App ser-
vice was chosen because it is a serverless service and
this is the component that would benefit the most
from the scalability it offers. Both the App Ser-
vice and Function Apps have built-in auto-scalers
and load balancers, following the principle of cloud
architecture that says to design to scale out.

Each database also gets its dedicated service.
The BankOnBox website’s database and the con-
tract management & settings database are both
Azure SQL Databases. This service was chosen due
to being the most cloud-optimized, and the cheap-
est of the managed database services. The less com-
patibility that it offers when compared to a version
of SQL Server running on-premises is not relevant in
this case since the service has built-in alternatives.

An Azure Cache for Redis is used to cache the
responses of database queries. This is used instead
of an in-memory cache because the same cached
response can be accessed by multiple instances.

The database used for applicational logging is re-
placed by the Log Analytics service. This service
allows easy querying and visualization of informa-
tion about the logs which makes it an ideal solution.

The functional logs present in the contract man-
agement & settings database are moved to Cosmos

DB. Using Cosmos DB for storing logs allows the
structure of these to change over time if needed
without changing the database schema. Another
advantage is that the SQL databases are kept small
since the majority of the storage is occupied by logs.

The decisions of what service to use to store func-
tional and applicational logs follow the principle of
cloud architecture that says to use the best data
store for the job.

The contract management application used by
the bank’s staff is in an App Service.

The authentication of the bank’s staff is done us-
ing the Azure Active Directory (Azure AD). The
Azure AD is configured to replicate the on-premises
Active Directory. For that to be possible, it is neces-
sary to have an on-premises machine running Azure
AD Connect.

To have an added layer of security and the Azure
services that communicate with the core system to
be viewed as if they were on-premises, the commu-
nications between Azure services and bank facili-
ties are all done through a VPN connection. The
alternative would be to have an ExpressRoute con-
nection, but that requires a dedicated connection
from the bank facilities to Azure, and it is a more
expensive solution.

Due to not existing a core system that can be used
in this thesis, some components of the architecture
will not be implemented.

A core system database that is normally used
when BankOnBox is in an offline state, to for ex-
ample make a backup, will be put on the cloud to
simulate the core system. This means that trans-
actions that involve transfers of money cannot be
implemented, only transactions to consult informa-
tion.

The contract management application used by
the bank’s staff will also not be implemented since
an Active Directory to be replicated is necessary.
The fact that the main focus is on the architecture
and performance of the transaction manager and
integration components, and that this management
application is being migrated to other technologies
make this less of a priority.

A closer look into the architecture of the transac-
tion manager and integration components is visible
in Figure 4.

Currently, the transaction manager and integra-
tion components are part of a bigger component
that is responsible for all the execution of a trans-
action. The transaction manager is responsible for
the orchestration of the code execution, the valida-
tions, and the functional logging. The integration
is responsible for the communication with the core
system and the execution of the transaction-specific
code.

The architecture proposed separates these two

4

Figure 4: Proposed Architecture Close-up

components into multiple Function Apps. An or-
chestrator Function App and one Function App per
transaction type.

The orchestrator Function App is responsible for,
as the name implies, orchestrating the code execu-
tion, it is also responsible for the functional logging
and the generic validations that all transactions re-
quire.

The transactions’ Function Apps are responsible
for all the logic that is transaction-specific, being
validation or execution. They are also responsible
for communicating with the core system.

In the current architecture, the logic for each
transaction type is added to the BankOnBox ap-
plication via plugins.

To maintain the plugin logic, all transaction
Function Apps share a base URL, where the only
part that changes is the transaction type, and have
one endpoint for the validation of the parameters,
one for the transaction validations, and one for the
execution.

The sequence of actions when a request arrives at
the orchestrator is as follows:

1. The orchestrator loads the settings for the
transaction type received. This also validates
that the transaction type does exist.

2. The orchestrator checks the application status,
whether it is online or offline. This influences
which transactions can be executed.

3. The orchestrator logs the request. This log
generates the id used to track the transaction.

4. The orchestrator does the generic validations.

5. The orchestrator makes a request to the val-
idate parameters endpoint of the transaction
Function App.

6. The transaction Function App checks if the pa-
rameters are valid.

7. The orchestrator makes a request to the trans-
action validation endpoint of the transaction
Function App.

8. The transaction Function App checks
transaction-specific validations.

9. The orchestrator based on the transaction type
settings and the application status checks if the
transaction can be executed or if it has to be
stored for later execution.

10. If the execution is possible, the orchestrator
makes a request to the execution endpoint of
the transaction Function App.

11. The transaction Function App executes the
transaction logic.

12. The orchestrator logs the response.

This sequence of actions means that for each re-
quest that the orchestrator receives, it makes three
requests to the transactions Function Apps.

This division into orchestrator and transactions
allows for transactions that typically receive more
requests to scale out differently from transactions
that receive less. This division also allows hav-
ing different transactions implemented with differ-
ent technologies and in different locations more eas-
ily.

3.2. Migration Strategy
Since this thesis deals with an application that al-
ready exists and not with something new, before
arriving at the architecture proposed to be imple-
mented, the overall solution will go through multi-
ple intermediary architectures. These architectures
allow increasing the solution’s complexity gradually,
to measure the performance of each iteration and
compare the results.

The multiple iterations are as follows:

1. Lift & Shift;

2. Databases Re-Platforming;

3. Servers Re-Platforming;

4. Databases Re-Factoring;

5. Transaction Manager Re-Factoring.

The goal for this first iteration is to take what
currently exists and put it on the cloud to serve as
a baseline to which to compare all other iterations.

To achieve this it is necessary to have the web-
sites, the web service, and the databases running on
virtual machines in the same virtual network in the
cloud. It is also necessary to have a service mocking
the OTP for second-level authentication.

5

Since there is no core system, the offline database
also needs to be running in the cloud.

The fact that there is no bank AD means that an
Active Directory domain controller serving also as
the DNS server for the virtual network is needed.
This is because the databases use Windows authen-
tication to authenticate the connections from the
websites and the web service.

The architecture of this iteration is visible in Fig-
ure 5. It has two VMs in the same virtual network
and subnet.

Figure 5: First Iteration Architecture

The VM APP contains both the websites and the
web service servers. This VM is also the domain
controller for the Active Directory. This machine
has to have a static private IP address to be config-
ured as the DNS server for the virtual network.

The VM SQL contains all the databases re-
quired by the application, in addition to the offline
database used to mock the core system.

The goal of this iteration is to move all databases
from the VM SQL to Azure SQL Databases. This
means less administration is needed by moving to a
PaaS service.

The architecture of this iteration is visible in Fig-
ure 6.

Figure 6: Second Iteration Architecture

The architecture is similar to the previous itera-
tion in the fact that the VM APP is still running
all the same services.

The databases are all Azure SQL Databases. The
authentication of the connections is changed from
Windows authentication to SQL Server login.

The goal of this iteration is to move the sites run-
ning in the VM APP to multiple App Services. This
means less administration is needed by moving to
PaaS services.

The architecture of this iteration is visible in Fig-
ure 7.

Figure 7: Third Iteration Architecture

In this architecture, the websites, the OTP mock,
the TM authenticator, and the TM have each their
own App Service. The TM is comprised of the
transaction manager and integration modules and
is not yet divided into sub-modules.

The goal of this iteration is to stop using SQL
databases for logging and instead use more appro-
priate solutions. This is the first iteration that
needs the BankOnBox code to be re-factored.

The architecture of this iteration is visible in Fig-
ure 8.

Figure 8: Fourth Iteration Architecture

In this architecture, the functional logs are moved
from the contract management & settings Azure
SQL database to a Cosmos DB database. The ap-
plicational logs database is replaced by the Log An-
alytics service.

The goal of this iteration is to divide the trans-
action manager and integration modules into sub-
modules, in other to better divide the load and allow
an architecture that scales better.

The architecture of this iteration is visible in Fig-
ure 9.

6

Figure 9: Fifth Iteration Architecture

In this architecture, a Function App is added for
the orchestrator and a Function App per each type
of transaction implemented. An Azure Cache for
Redis is introduced to store the response of queries
to the database in a way that makes it accessible to
multiple Function App instances at the same time.

4. Results
In a small bank, with 30 000 registered users, that
uses the BankOnBox application there are in a reg-
ular day: a total of around 76 700 requests; approxi-
mately 3 300 daily users; the average time that takes
the BankOnBox application to process the requests,
including calls to the core system, is between 50 and
300 milliseconds. If we take that this data is from
a 10-hour window that gives an average of around
130 requests per minute and from that average, we
assume there are around 50 users on average in a
minute.

4.1. Testing Methodology
The performance of each iteration of the architec-
ture was tested by performing a load test using a
tool called SoapUI1. The SoapUI tool allows the cre-
ation of multiple threads that make the same set of
requests to an endpoint during a given time period
or a given number of runs with a random delay be-
tween the sets of requests. The tool, while making
the requests, collects statistics like minimum, max-
imum, and the average time that the requests took,
the number of requests made, how many returned
errors, between others. The times collected by this
tool are not equivalent to the ones that serve as a
reference, as these are the total times the request
took, including the time to arrive at the server and
back, and not the time that the application took to
process them.

To test the iteration’s performance a given num-
ber of threads make a sequence of three requests
twenty times. The order of requests is login, user’s
home page, and transactions consult. The number
of threads used is 1, 5, 10, 25, 50, and 100 to sim-
ulate different amounts of load. A thread can be
viewed as a user doing the necessary steps a user

1https://www.soapui.org/

would have to do to consult his last transaction.
Between each run of the thread, there is a random
wait time between 0 and 3 seconds. The requests
in all iterations are done directly to the transaction
manager and integration component of the archi-
tecture. Before each test, ten requests of each type
of transaction are done to guarantee that the archi-
tecture’s components are warm.

For the implemented Lift & Shift architecture,
the VMs are of the Standard D4s v3 SKU (4 vCPUs,
16 GiB RAM, 6400 maximum IOPS) and are the
equivalent to what is suggested to the banks that
use BankOnBox.

For the implemented Databases Re-Platforming
architecture, the VM is of the Standard D4s v4 SKU
(4 vCPUs, 16 GiB RAM, 6400 maximum IOPS),
the Contract Management & Settings and the Of-
fline databases are Azure SQL Database General
Purpose Serverless Gen5 with 10 vCores, and the
logging database is Azure SQL Database Basic with
5 DTUs.

For the implemented Servers Re-Platforming ar-
chitecture, the App Service is of the Premium
P2V3 SKU (4 vCPUs, 16 GiB RAM, 195 min-
imum ACU/vCPU) running the code in 64-bit,
with always-on turned on, and ARR affinity turned
off. The SKU of the App Service is equivalent to
the VMs’ SKUs of the previous iterations. The
databases are of the same SKUs as the previous
iteration.

For the implemented Databases Re-Factoring ar-
chitecture, the App Service is the same as the pre-
vious iteration, the Contract Management & Set-
tings and Offline databases are still Azure SQL
Database General Purpose Serverless Gen5 with
10 vCores, and the Cosmos DB is autoscale pro-
visioned throughput between 400 and 4000 RU/s.

For the implemented Transaction Manager Re-
Factoring, the Function Apps are of the Consump-
tion Plan type and are configured with a maximum
scale-out limit of 200 instances, each instance can
process up to 100 requests in concurrency with 100
more in the queue, and the code is running in 64-
bit. The databases are the same as the previous
iteration.

4.2. Performance Results
The performance results following the testing
methodology are visible in the Tables 1, 2, 3, 4,
and 5. The Tables have the minimum, maximum,
and average time of a request in milliseconds for the
three transactions implemented combined.

For Table 4 a column with the percentage of re-
quests that return an Internal Server Error or a
Connection Timeout was added.

For Table 5 a column was added for each trans-
action with the initial and final number of Function
App instances that were processing requests. This

7

column includes the Function Apps of the transac-
tions and of the orchestrator. The values for the
number of instances were obtained using the Live
Metrics capability of the Application Insights asso-
ciated with each Function App.

For the first three iterations, the requests per
second for 1 thread are around 1, that is, 60 per
minute; for 5 threads around 6 requests per second
or 360 per minute; for 10 threads they are around
11 per second or 660 per minute. For the first two
iterations for 25 threads the requests per second
are around 20 per second, 1 200 per minute, and
around 23 per second, 1 380 per minute, for 50 and
100 threads. For the third iteration, the requests
per second for 25 threads are 25, 1 500 per minute;
for 50 and 100 threads the requests per second are
around 30, 1 800 per minute. For the fifth itera-
tion, the requests per second for 1, 5, 10, 25, and
50 threads are very similar to the third iteration,
but for 100 threads there are around 67 requests
per second, 4 020 per minute.

Threads Min Max Avg
1 117 369 227.633
5 112 626 234.373
10 110 6 670 449.957
25 114 1 179 464.237
50 113 2 939 1 518.527
100 117 63 049 3 333.347

Table 1: Lift & Shift Performance Results

Threads Min Max Avg
1 191 587 340.317
5 135 869 335.743
10 132 641 318.797
25 131 2 005 518.053
50 139 3 914 1 367.650
100 137 8 510 3 778.027

Table 2: Databases Re-Platforming Performance
Results

Threads Min Max Avg
1 189 473 315.767
5 130 548 292.113
10 131 566 293.177
25 130 1 409 452.313
50 135 9 771 1 327.827
100 144 6 018 2862.497

Table 3: Servers Re-Platforming Performance Re-
sults
4.3. Pricing
Azure Pricing Calculator2 was used to calculate the
pricing for each iteration. All the prices presented
are the monthly costs and only represent the re-
sources necessary to run the transaction manager

2https://azure.microsoft.com/en-us/pricing/calculator/

Threads Min Max Avg Err %
1 299 8 340 783.900 0%
5 311 26 587 1 392.157 1%
10 65 38 248 1 427.440 29%
25 64 60 147 3 940.330 54%

Table 4: Databases Re-Factoring Performance Re-
sults

Threads Min Max Avg # Inst
1 355 1 208 712.067 4
5 290 19 587 1 073.533 4-14
10 282 1 344 506.763 14
25 275 1 787 524.357 13
50 261 2 185 491.697 13-15
100 264 18 974 1 003.443 15-21

Table 5: Server Re-Factoring Performance Results

and integration components. All these prices in a
real-world situation would be lower because the en-
terprise customer of Azure would have a contract
with Microsoft that would give them discounted
prices.

For the implemented Lift & Shift architecture,
the price for the VM APP with the D4s v3 SKU
running Windows with the OS License Included lo-
cated in West Europe is 261,02€, the price for the
VM SQL with the same SKU and the Windows and
SQL Server Standard licenses included is 515,29€,
the total price is 776,31€. In alternative using the
Azure Hybrid Benefit, where on-premises licenses
can be used in the cloud, the price for the VM APP
is 147,75€, the VM SQL price is 400,22€ for a total
of 547,97€.

For the implemented Databases Re-Platforming
architecture, the price for the VM APP is the same
at 261,02€ with license included and 147,75€ with
Azure Hybrid Benefit; the Contract Management
& Settings and Offline database in West Europe
as Single Database Geo-Redundant backup storage
General Purpose Serverless Gen5 with local redun-
dancy, 1 maximum vCore, 0,5 minimum vCores,
32 GB of storage and a 0,5 CPU vCores and 2,02
GB used during a period of 892 800 seconds per
month are 84,51€ each; the Logging database in
West Europe as Single Database Geo-Redundant
backup storage DTU Basic with 5 DTU and 2 GB
of storage is 4,13€; the total is 434,17€ with the
license included and 320,90€ with Azure Hybrid
Benefit. The maximum vCores for the serverless
databases were set to 1 because during the test-
ing the maximum ever used was 0,5 vCores. The
892800 seconds come from assuming that during a
day the databases spend one-third of the day with
CPU being used.

For the implemented Servers Re-Platforming ar-

8

chitecture, the price of the App Service in West Eu-
rope with Windows, Tier Premium V3, P2V3 SKU
for a full month up is 422,74€; the databases are
the same price as the premium versions, the Con-
tract Management & Setting and Offline are 84,51€
each, and the Logging database is 4,13€; the total
is 589,30€. An alternative, although not tested and
depending on the necessities of the client, would be
to use multiple instances of a cheaper SKU with a
load balancer.

For the implemented Databases Re-Factoring ar-
chitecture, the App Service has the same price as
in the previous version at 422,74€; the Contract
Management & Settings and Offline databases with
the only difference being 8 GB of storage instead of
32 GB are 81,74€ each; the Cosmos DB with Au-
toscale, Single Region Write, maximum 4000 RU/s,
an average of 15% RU/s utilization, and 32 GB of
storage is 44,32€; the total is 624,95€.

For the implemented Transaction Manager Re-
Factoring architecture, the price of the Function
Apps in West Europe, Consumption Plan, 256 MB
per execution, an average of 500 milliseconds per
execution, and 9 436 400 executions per month is
12,23€; the prices of the databases are the same,
81,74€ for each SQL one, and 44,32€ for the Cos-
mos DB; the total price is 220,03€. The num-
ber of execution per month comes from the daily
number of requests, 76 700, times 31 days, times
4, for each orchestrator execution there are three
transaction executions. To avoid cold starts from
Function App inactivity, a Function App Premium
Plan, that allows multiple Function Apps to be de-
ployed in the same plan, and has more performance
than a Consumption Plan, could be used. One in-
stance of the Premium Plan with an EP1 instance
pre-warmed the whole month, plus an additional 2
instances for 80 hours per month (4 hours per 20
days a month), would cost 161,14€, raising the to-
tal price to 368,94€ (this option was not tested).

Recapitulating, the estimated monthly costs of
running the transaction manager and integration
components and the databases for each iteration
are:

• Lift & Shift - 776,31€ or 547,97€

• Databases Re-Platforming - 434,17€ or
320,90€

• Servers Re-Platforming - 589,30€

• Databases Re-Factoring - 623,95€

• Transaction Manager Re-Factoring - 220,03€

These prices do not include the resources neces-
sary to run the current BankOnBox websites and
back-office application, and the resources to com-
municate with the core system. The monthly costs

of these resources are approximately the same for
each iteration.

4.4. Results Analysis

The results of the Lift & Shift iteration are the base-
line to which the other results are to be compared.
In this iteration, the performance is stable for 1
and 5 threads but it starts to decrease thereafter.
The performance for 10 and 25 threads is still in
the acceptable range but is worse. For 50 and 100
threads the performance enters in the unacceptable
range, with a single request taking multiple sec-
onds. The interval of threads that best represent
the small bank described at the beginning of the
chapter would be between 5 and 25 threads.

The results for the Databases Re-Platforming,
the performance results are very similar to the first
iteration, but on average slightly worse due to the
latency introduced by the databases no longer be-
ing on the same subnet of the servers. These results
being so close to the first iteration show, however,
that the bottleneck is located in the servers and not
in the databases. This iteration comparing to the
first one has the advantage of being cheaper.

The results for the Servers Re-Platforming were
expected to be very similar to the second iteration
since the App Service SKU is the equivalent to the
VM SKU used. This is mostly true, but this itera-
tion has sightly better performance for 50 and 100
threads, although outside of the interval of threads
that best represent the small bank. This version
also has the disadvantage of costing more than the
second iteration.

The results for the Databases Re-Factoring are
very bad from the beginning with the requests from
1 thread taking multiple seconds. This performance
problem is due to the synchronous implementation
of the Cosmos DB calls and makes this implemen-
tation as-is unviable.

The results for the Transaction Manager Re-
Factoring with a low number of threads are worse
than in the first three iterations, but still within an
acceptable amount of time. This added time is due
to this version not caching the responses from the
database requests. This iteration, unlike the others,
maintains the request times with the increasing of
the load. This version, however, has occasional re-
quests that take upwards of 15 seconds due to the
cold starts of new instances that are being created
to attend to the increasing load. This version also
has the advantage of being much cheaper than the
others.

5. Conclusions
5.1. Achievements

The objectives and deliverables of this thesis were
achieved, with a functional proof-of-concept devel-
oped following the proposed migration strategy.

9

The final version of the proof-of-concept takes
better advantage of what the cloud has to offer when
compared to the Lift & Shift of the current version
as it performs better with the increasing loads and
is overall a cheaper solution.

The work developed in this thesis gives a better
insight in terms of performance, costs, and architec-
ture to what could be the basis of a future version
of the architecture of BankOnBox to the people in
charge of making these decisions.

5.2. Future Work
Following the end of this thesis, it is necessary to
implement all other transactions that were not sub-
ject to re-factoring and deploy in Azure the new
versions of the websites and back-office application
components when finished. After this is imple-
mented, it will be possible to measure the overall
costs and performance of the BackOnBox applica-
tion running in Azure.

To fully implement the proposed architecture, it
will also be necessary to implement the Redis Cache
that was not implemented due to time constraints.

Other future work includes the analysis of Azure
services that could add value to an architecture that
has the one implemented as its basis. Services like
Azure AD Authentication for second-factor authen-
tication, Azure Synapse Analytics for reporting on
the data in the various databases, among others.

It could also be of interest the analysis of solu-
tions using other services that were not tested like
Azure Kubernetes Service and solutions that use
other configurations of the databases.

5.3. Recommended Architecture
With all the work developed in this thesis and all
the information gathered from the performance re-
sults and pricing, the recommended architecture is
the one in Figure 10.

Figure 10: Recommended Architecture

In this architecture, Function Apps are recom-
mended instead of App Services due to the pric-
ing and the better scalability offered. The Function
Apps are recommended for the new versions of the

websites and back-office application that are being
developed at Link.

If there is a chance of long periods of inactivity,
the usage of the Premium Plan for the Function
Apps is recommended. If this is not a problem, or
if the cold starts from inactivity can be absorbed,
the Consumption Plan is recommended.

The rest of the architecture is the same as the
one initially proposed in Section 3.

References
[1] R. Buyya, J. Broberg, and A. M. Goscinski.

Cloud computing: Principles and paradigms,
volume 87. John Wiley & Sons, 2010.

[2] T. Grey. 5 principles for cloud-native archi-
tecture - what it is and how to master it.
https://cloud.google.com/blog/products/application-
development/5-principles-for-cloud-native-
architecture-what-it-is-and-how-to-master-it,
2019. Accessed: 2021-10-25.

[3] P. Jamshidi, C. Pahl, S. Chinenyeze, and
X. Liu. Cloud migration patterns: a
multi-cloud service architecture perspective.
In Service-Oriented Computing-ICSOC 2014
Workshops, pages 6–19. Springer, 2015.

[4] S. Kehrer and W. Blochinger. A survey
on cloud migration strategies for high perfor-
mance computing. 2019.

[5] Z. Mahmood. Cloud computing for enter-
prise architectures: concepts, principles and
approaches. In Cloud computing for Enterprise
architectures, pages 3–19. Springer, 2011.

[6] Microsoft. Cloud Application Architecture
Guide. 2017.

[7] Microsoft. Cloud Migration Simplified. 2020.

[8] S. Orban. 6 strategies for mi-
grating applications to the cloud.
https://aws.amazon.com/blogs/enterprise-
strategy/6-strategies-for-migrating-
applications-to-the-cloud/, 2016. Accessed:
2021-10-25.

[9] C. Pahl, P. Jamshidi, and O. Zimmermann.
Architectural principles for cloud software.
ACM Transactions on Internet Technology
(TOIT), 18(2):1–23, 2018.

[10] J. Varia. Architecting for the cloud: Best prac-
tices. Amazon Web Services, 1:1–21, 2010.

[11] Q. Zhang, L. Cheng, and R. Boutaba. Cloud
computing: state-of-the-art and research chal-
lenges. Journal of internet services and appli-
cations, 1(1):7–18, 2010.

10

