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Resumo

As empresas estão cada vez mais a migrar as suas aplicações para a cloud, seja para tirar vanta-

gens do que a cloud tem para oferecer ou simplesmente pelos custos serem menores.

Esta tese está inserida num projeto maior onde uma empresa está a analisar a migração de uma

aplicação cliente-servidor que vende a bancos para uma arquitetura cloud-native. Devido a parcerias

que a empresa tem, o provedor de serviços cloud usado na tese é o Azure da Microsoft.

Os objetivos desta tese são: a investigação de várias arquiteturas para aplicações na cloud e es-

tratégias de migração; propor uma arquitetura e uma estratégia de migração; desenvolver uma prova

de conceito onde uma amostra da aplicação corre na cloud.

Uma visão geral da aplicação a migrar é feita de forma a contextualizar o que a aplicação faz e como

está atualmente arquitetada.

Na sequência da investigação, são identificadas as diferentes categorias de serviços cloud, exem-

plos de arquiteturas cloud-native, princı́pios a seguir quando se desenha uma arquitetura cloud-native,

estratégias de migração para a cloud, e serviços de interesse que o Azure possui.

Uma arquitetura é proposta seguindo os princı́pios identificados e tirando ideias dos exemplos de

arquiteturas cloud-native encontradas, tendo como base a arquitetura atual da aplicação. Uma es-

tratégia de migração com várias arquiteturas intermédias até se chegar à proposta é definida. É feita a

descrição da implementação de cada iteração.

Na análise dos custos e da performance de cada iteração, chega-se à conclusão de que a arquitetura

proposta é a mais promissora.

Palavras-chave: Cloud, Arquitetura, Migração, E-Banking, Azure
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Abstract

Enterprises are increasingly migrating their applications to the cloud, whether to take advantage of

what the cloud has to offer or simply because of the lower costs.

This thesis is part of a larger project where a company is analyzing the migration of a client-server

application that it sells to banks to a cloud-native architecture. Due to the partnerships that the company

has, the cloud service provider used in the thesis is Microsoft’s Azure.

The objectives of this thesis are: the investigation of various architectures for cloud applications and

migration strategies; propose an architecture and a migration strategy; develop a proof-of-concept where

a sample of the application runs in the cloud.

An overview of the application to be migrated is given in order to contextualize what the application

does and how it is currently architected.

Following the investigation, it is identified the different categories of cloud services, examples of

cloud-native architectures, principles to follow when designing a cloud-native architecture, migration

strategies to the cloud, and services of interest that Azure has.

An architecture is proposed based on the current application architecture, and following the identified

principles and taking ideas from the examples of cloud-native architectures found. A migration strategy

with several intermediate architectures until reaching the proposal is defined. The implementation of

each iteration is described.

In the analysis of the costs and performance of each iteration, it is concluded that the proposed

architecture is the most promising.

Keywords: Cloud, Architecture, Migration, E-Banking, Azure
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Chapter 1

Introduction

1.1 Motivation

Nowadays enterprises are increasingly migrating their applications to the cloud. This migration oc-

curs because of a need to modernize the applications and because the cloud offers advantages that the

on-premises facilities do not. Some of the advantages that the cloud brings are cost savings, ease of

security, business continuity, and monitoring.

In terms of cost savings, as it is not necessary to make upfront investments in hardware, which

reduces the risk involved, there is no need to dimension the solution to the peak of use because the

pay-per-use model and the ease of scalability allows to dimension the application to the normal use and

only scale when there are more users, that may end up paying for the scaling.

The security that is not specific to a solution, like distributed denial of service (DDoS) attack protection

and data protection, is easy to activate and in many services is already activated by default, so there is

no need to implement it by hand which sometimes may lead to problems down the line, as security is

not always trivial to implement, leaving only the solution-specific security to be implemented.

Business continuity is one of the big advantages of the cloud as data backups and data recovery is

easy to activate and have control over. Disaster recovery is also easier to implement and, because of

so, there is no need to have facilities in other geographic locations for this purpose. The high availability

of the cloud services backed up by the Service Level Agreements (SLAs) is one of the strong suits of

the cloud.

The monitoring of performance, costs, availability, and security is built-in to the cloud services and

there is no need to spend money and time in building a solution for that purpose.

1.2 Topic Overview

This thesis is framed in a larger project in which the focus is the migration of a client-server application

to a cloud-native architecture. The application in question, BankOnBox, is an e-banking application

developed by Link Consulting. The application will be migrated to Microsoft’s cloud service Azure. Azure
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was chosen as the cloud service to migrate the application to because the current version of BankOnBox

is built on Microsoft technologies and the company is a Microsoft Partner.

1.3 Objectives and Deliverables

Being part of the other project, the objectives and deliverables attributed to this thesis are:

• Investigate cloud architectures and migration strategies;

• Propose a target cloud architecture and a migration approach;

• Develop a proof-of-concept, where a sample of the application will be migrated to that architecture.

1.4 Thesis Outline

In the Background chapter, Chapter 2, an overview of the BankOnBox application is given, along with

the different types of services that cloud providers make available, principles to follow when designing an

application’s cloud architecture, migration strategies, examples of cloud architectures, and an overview

of some Azure services.

In the Solution chapter, Chapter 3, the architecture proposed to be implemented is described as well

as the migration strategy used to implement it.

In the Implementation chapter, Chapter 4, all the steps taken to implement the architecture are

explained, the problems encountered in the implementation, and how they were solved.

In the Results chapter, Chapter 5, an overview of some functionalities of Azure services used to

debug the implementation is given. The process used to obtain the results is described. The pricing for

the multiple iterations of the architecture is given. The results are shown and analyzed.

2



Chapter 2

Background

In this section, the current version of BankOnBox will be explained in detail, as well as the differ-

ent types of cloud computing services, some principles of cloud architecture design, some migration

strategies, some reference cloud architectures, and some of Azure’s services.

2.1 BankOnBox

BankOnBox is an online banking platform developed by Link Consulting and sold to financial insti-

tutions. It is a robust and highly versatile platform to deliver consistent online services across several

digital channels like mobile, Internet, chat, SMS, among others. It currently supports the home banking

and mobile banking sites of approximately 20 customers in Europe and Africa.

The BankOnBox application was developed with the intent of bridging the gap between the tech-

nologies, the bank’s needs, and the customer’s needs to captivate and retain customers in a highly

competitive environment. The BankOnBox application allows the bank customers to perform the tradi-

tional functionalities of home banking like consult account balances, make payments, make transfers,

among others. In the current state of the application, it is deployed on-premises on the facilities of the

clients.

In this section, the architecture of the application will be explained. The BankOnBox was already the

subject of work in another thesis [1] and as such was also explained there.

2.1.1 Logical Architecture

The logical architecture as is visible in Figure 2.1 is composed of two main components: the BankOn-

Box Internet Banking Sites and the BankOnBox Engine. Other components that are part of the logical

architecture are: the browsers and mobile apps that communicate with the BankOnBox Internet Banking

Sites via HTTPS; the three databases, one used by the BankOnBox Internet Banking Sites to load its

pages, one used for contract management and settings, and the other for logs; the back-office applica-

tion that the bank’s staff uses; and the bank core system. The communication between the BankOnBox

Internet Banking Sites and the BankOnBox Engine is made using SOAP requests and responses.
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Figure 2.1: BankOnBox Logical Architecture

The BankOnBox Engine is composed of three modules, the transaction manager authentication, the

transaction manager, and the BankOnBox integration. The BankOnBox Engine was designed with a

modular architecture and plugin-based extensibility in mind since the BankOnBox application is sold to

different banks that may need different operations exposed in the BankOnBox Internet Banking Sites

and that have different interfaces to their core systems.

2.1.2 Technologies

The BankOnBox Internet Banking Sites component was built on ASP.NET 4 and is running on Mi-

crosoft’s Internet Information Services. The web pages are currently being migrated to use AngularJS

by a team at Link.

The BankOnBox Engine component was built on .NET 4 and is also running on Microsoft’s Internet

Information Services.

All the databases are SQL Server databases running on on-premises machines.

The back-office application was built on Silverlight and is currently being migrated to AngularJS and

.NET Core.

2.1.3 BankOnBox Internet Banking Sites

The BankOnBox Internet Banking Sites component uses dynamically generated web pages that it

loads from its database.

The BankOnBox Internet Banking Sites communicate with the transaction manager authentication

module of the BankOnBox Engine component. The communication is done using Windows Communi-

cation Foundation (WCF) messages, that implement the WS-Security standard, and are sent over HTTP.

The protection of the messages is done at the message level using WS-Security.
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2.1.4 BankOnBox Engine

The BankOnBox Engine component, as said previously, is composed of the transaction manager

authentication, the transaction manager, and the integration modules.

To allow the addition of new transactions, without changing the source code, the BankOnBox Engine

uses a plugin. The plugin used is Microsoft Unity Framework that does dependency injection. The plugin

loads by reflection all the classes that implement the transaction interface to a catalog, this allows that

only the code for the new transactions needs to be added without changing the existing code.

Every request that the BankOnBox Engine receives and every answer it sends is logged to the

contract management & settings database. Access to the databases is done using Entity Framework 4.

2.1.5 Transaction Manager Authentication

The transaction manager authentication is the BankOnBox Engine’s module that deals with the com-

munication from the BankOnBox Internet Banking Sites.

This module checks if the request received needs a second level of authentication.

If a second level of authentication is needed, this module sends a response to the BankOnBox

Internet Banking Sites component saying that and forwards the request to the transaction manager

module that puts the request on hold until it receives the second level authentication.

If a second level of authentication is not needed, then this module forwards the request to the trans-

action manager modules and its response to the BankOnBox Internet Banking Sites component.

The communication with the transaction manager module is also done using Windows Communica-

tion Foundation (WCF) messages and WS-Security.

2.1.6 Transaction Manager

The transaction manager module is the part of the BankOnBox Engine component that makes all the

validations to the requests received.

The transaction manager has only one endpoint, this also allows to easily change the transactions

offered as there is no need to add or remove endpoints in the BankOnBox Engine and also add or

remove them in the code of the BankOnBox Internet Banking Sites.

The transactions can be grouped into two categories: queries and operations. Transactions of the

category queries only read information from the contract management database and the bank core

system, and an example of a query transaction is the request to check how much money is in one

account. The transactions of the category operation involve writes, usually, money transfers.

Each transaction type has its specific code to distinguish them since there is only one endpoint. Each

transaction also has its specific parameters.

When the transaction manager receives a transaction request, it does all the generic validations

first, like, for example, checking if there is a session active if the user has permission to execute the

transaction, and after that makes all the transaction-specific validations. After all the validations are

done it passes the request to the integration to be executed.
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The classes defined for the transactions in the transaction manager are responsible for defining what

are the specific parameters that the transaction needs and the specific validations.

The transaction manager uses a state machine built with Windows Workflow Foundation (WWF) to

make all the validations.

2.1.7 Integration

The integration module is the part of the BankOnBox Engine component that deals with the execution

of the transactions and with the communication with the bank core system.

This is the part of the overall solution that is specific to each of the banks that BankOnBox is sold to,

as each bank may have a different interface to access its core system, being that a web API or an IBM

iSeries with direct program calls, message queues or ODBC database access.

The integration is responsible for making the conversion between the application model and core

system model, so that the transaction can be executed, and calling the core system to execute it.

The classes defined for the transactions in the integration are responsible for defining the logic of the

transaction execution.

2.1.8 Contract Management & Settings Database

The contract management & settings database has tables for users, contracts, and configurations,

and it is in this database that all the data for an internet banking contract is stored. It is also in this

database that the user is connected to the accounts that he is allowed to access and operate.

An internet banking contract regulates the access of a customer to their banking information via

the digital channel. The contract has information like the digital channel credentials, the accounts the

customer has access to in the digital channel, the types of operations they can execute in each account,

the limits of the allowed transactions (transaction maximum values, dailyy maximum values, among

others), additional authentication factors required by operation, among others. For corporate contracts,

it also includes who approves transactions, and how many approvals are required for a transaction to go

through.

The transactions of the category operations can have automatic or manual processing. The manual

processing operations require a member of the back-office staff to process them, and as such, they are

stored in this database.

This database is also used to store logs, although the logs stored in this database are only func-

tional ones. These logs are stored in two tables, one named “TransactionLogs” and the other named

“Operations”.

The table “TransactionLogs” contains all the requests and responses received and sent by the

BankOnBox Engine. This is useful for the bank to collect statistics like how many transactions are be-

ing done per second, how many money transfers, how many account balance consults, between many

others.
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The table “Operations” also contains the requests and responses received and sent by the BankOn-

Box Engine, but only the ones regarding money transferring and logins or logouts, this is because some

enterprise contracts require multiple users to authorize a money transfer. This table is where all the

pending operations to be executed later are stored.

2.1.9 Logs Database

The logs database is only used to store application logs like application errors, connectivity errors,

and all the requests and responses sent and received to the bank core system.

2.1.10 Security

In terms of functional security, the BankOnBox application offers two levels of authentication and

multi-approval of operations in business contracts.

The first level of authentication is used for queries and is a username and password combination.

The second level is used for operations and it can be a confirmation key, a coordinate card, or a one-time

password (OTP) that can be an SMS or a token.

In terms of non-functional security, the authentication of back-office staff is done with Microsoft Active

Directory; the passwords and OTPs are stored in the database after being hashed with a salt and

ciphered; in the production environment, the access to the contract management & settings and logs

databases is done using Windows authentication, where the transaction manager runs as a Windows

user and the SQL Server only allows connections for reads and writes by that user, the access to the web

CMS database by the BankOnBox Internet Banking Sites component is done using SQL authentication.

2.1.11 Physical Architecture

The physical architecture of the BankOnBox application once deployed in the clients is fairly simple

as it is possible to see in Figure 2.2.

The physical architecture is composed of three zones: the Internet, the demilitarized zone (DMZ),

and the local area network (LAN). The Internet and the LAN have between them the DMZ. Between the

Internet and the DMZ, and between the DMZ and the LAN there are firewalls. The DMZ contains the

web servers, in front of the web servers exists a load balancer. The LAN contains the application servers

that also have a load balancer in front of them, the SQL servers, the banking core, and other systems

that the application servers might communicate with, like, for example, the domain controller.

2.2 Types of Cloud Computing Services

The different cloud computing services offered by the cloud providers can be divided into three main

groups: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service

(SaaS). The division into these three groups is done by what are the parts of the service stack that are
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Figure 2.2: BankOnBox Physical Architecture

managed by the provider and what are the parts that are managed by the cloud user. On an application

running on-premises, the whole stack would be managed by the person or organization that owns it.

Cloud computing, as said in [2], [3], and [4], has many definitions, but the most commonly accepted is

the one by the National Institute of Standards and Technology (NIST). The definition of cloud computing

by NIST is as follows: “Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction.”.

The stack that composes the applications is, from top to bottom, as follows:

• Interface;

• Application;

• Data;

• Runtime;

• Middleware;

• Operating System;

• Virtualization;

• Servers;

• Storage;
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• Networking.

On an IaaS service, the part of the stack managed by the cloud customer is from the Operating

System upwards, while the cloud provider manages from the Virtualization downwards. An example of

an IaaS service is a VM hosting service.

On a PaaS service, the part of the stack managed by the cloud user is from the Data upwards, while

the cloud provider manages from the Runtime downwards. On a PaaS service, the cloud customer only

has control over his code, he does not have access to the machine where that code runs, and as such,

one example of a PaaS service is a website hosting service.

On a SaaS service, the cloud customer only has access to the Interface used to interact with the

application. The cloud provider controls the application, the software, and the hardware it runs on.

Some examples of SaaS services are Microsoft Office 365, Google Apps, and Dropbox.

In terms of the administration continuum, from the point of view of the cloud customer, the groups of

services, from higher administration to lower administration, are ranked as follows: IaaS, PaaS, SaaS.

2.3 Principles of Cloud Architecture

Some cloud application architecture principles, as defined in [5], [6], [7], and [8], that, when followed,

lead to a better optimized cloud application are:

Design for self-healing In distributed systems failures occur. Therefore, there is a need to design

the application to be self-healing when that happens. This requires an approach that detects failures,

responds to failures gracefully, and logs and monitors failures to give operational insight.

Make all things redundant Build redundancy into the application to avoid having single points of

failure. A resilient application routes around failure. To do that there is a need to identify critical paths of

the application and check if there is redundancy at each point of the path.

Minimize coordination Minimize coordination between application services to achieve scalability.

Most cloud applications consist of multiple application services like front-ends, databases, business

processes, reporting and analysis, among others. To achieve scalability and reliability these services

should run on multiple instances.

Design to scale out Design the application so that it can scale horizontally. One of the big advantages

of the cloud is the ability to use as much capacity as needed, scaling out when load increases, and

scaling in when the extra capacity is no longer needed. The application should be design in such a way

that allows it to scale horizontally, adding or removing new instances as demand requires.
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Design for operations Design the application so that the operations team has the tools needed. The

cloud changed the role of the operations team as they are no longer responsible for the management of

the hardware and infrastructure that hosts the application. However, the operations team is still important

in running a successful cloud application. Some of the important functions of the operations team include

deployment, monitoring, escalation, incident response, and security auditing. For that to be possible,

robust logging and tracing are important, and as such, the operations team should be involved in the

designing and planning to ensure that the application gives them all the data and insight that they need.

Use managed services When possible use PaaS rather than IaaS. Managed services are easier to

configure and administer as there is no need to provision VMs, set up virtual networks, manage patches

and updates, and all the other overhead associated with running software on a VM.

Use the best data store for the job Pick the storage technology that best fits the data and how it

will be used. Relational databases are very good at providing ACID guarantees for transactions over

relational data, but they come with costs. These costs include queries that may require expensive joins,

data that must be normalized and conform to a predefined schema, and lock contention that may impact

performance. In a large solution, it is probable that a relational database will not fill all the needs, and as

such alternatives like keyvalue stores, document databases, and graph databases may be a better fit.

Design for evolution An evolutionary design is key for continuous innovation. All successful appli-

cations change over time, whether it be to fix bugs, add new features, bring in new technologies, or

make existing systems more scalable and resilient. If all the parts of an application are tightly coupled,

it becomes very hard to introduce changes into the system as a change in one part of the application

may break another part. This problem does not only occur in monolithic applications as an application

decomposed into services may still exhibit the sort of tight coupling that leaves the system rigid and

brittle.

2.4 Cloud Migration Strategies

There are many strategies to migrate applications to the cloud, as described in [9], [10], [11], and [12],

most of the strategies can be grouped into four categories: re-hosting, re-platforming, re-purchasing, and

re-architecting.

Re-hosting, also known as lift & shift, re-deployment, and copy & paste, is when the migration to the

cloud is done by only migrating the physical servers and VMs to the cloud as-is, without any changes

to the code. This strategy has the advantage of being the fastest one to be done and the cheapest in

terms of the cost of the migration process.

Re-platforming, also known as re-packaging, is similar to re-hosting, with the difference being that

instead of migrating the existing application to an IaaS it is migrated to PaaS with minimal code changes.
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This strategy has the advantage of lowering the costs of running and managing the application with the

cost of the migration itself not being too high.

Re-purchasing is moving to a different product, most commonly moving to a commercially available

off-the-shelf (COTS) or SaaS product. This strategy has the advantage of buying a product that is

already built and only needs adaptations instead of commissioning, building, or re-building a product

from the ground up.

Re-architecting, also know as re-factoring and re-designing, is when the architecture of the applica-

tion is re-imagined using cloud-native features to better optimize it to the cloud platform and scalability.

This strategy has the advantage of cost-effectively meeting scalability requirements and allows the ad-

dition of new features more easily.

2.5 Reference Cloud Architectures

In [7], Microsoft offers some reference cloud architectures to common application architecture styles.

2.5.1 N-Tier Architecture Style

N-tier is a traditional architecture for enterprise applications that divides an application into logical

layers and physical tiers.

Layers are a way to separate responsibilities and manage dependencies. Each layer performs a

specific logical function, such as presentation, business logic, and data access. A layer can only call

layers that sit below it.

Tiers are physically separated, running on separate machines. A tier can call another tier directly

or by using asynchronous messaging, such as a message queue. It is not required for each layer to

be hosted in its own tier. One tier can host multiple layers. Physically separating the tiers improves

scalability and resiliency but also adds latency from the additional network communication.

N-tier applications have an architecture that resembles the one in Figure 2.3.

Some of the best practices when using this architecture are: use autoscaling to handle changes in

load; use asynchronous messaging to decouple tiers; cache semi-static data; configure database tier

for high availability; place a web application firewall (WAF) between the front-end and the Internet; place

each tier in its own subnet, and use subnets as a security boundary; restrict access to the data tier, by

allowing requests only from the middle tier(s).

An example of an n-tier architecture on virtual machines is visible in Figure 2.4.

In this architecture, each tier consists of two or more VMs with scaling capability. Having multiple

VMs provides resilience in case one VM fails. Load balancers are used to distribute requests across the

VMs in a tier.

Each tier is placed inside its own subnet. This makes it easy to apply network security rules and route

tables to individual tiers. Network security rules restrict access to each tier. For example, the database

tier only allows access from the business tier.
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Figure 2.3: N-Tier Architecture

Figure 2.4: N-Tier Architecture on VMs
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The web and business tiers are stateless. Any VM can handle any request for that tier. The data tier

should consist of a replicated database.

2.5.2 Web-Queue-Worker Architecture Style

In the Web-Queue-Worker style, the application has a web front-end that handles HTTP requests

and a back-end worker that performs CPU-intensive tasks or long-running operations and where the

front-end communicates to the worker through an asynchronous message queue. Web-Queue-Worker

applications have an architecture that resembles the one in Figure 2.5.

Figure 2.5: Web-Queue-Worker Architecture

Some of the best practices when using this architecture are: use polyglot persistence when appro-

priate; use autoscaling to handle changes in load; cache semi-static data; use data partitioning.

An example of a web-queue-worker architecture on Azure App Services is visible in Figure 2.6.

In this architecture, the front-end is implemented as an Azure App Service Web App, and the worker

is implemented as a Function App. The web app is associated with an App Service Plan that provides

the instances and the scaling policy. The web worker is serverless.

The message queue used can be either an Azure Service Bus or an Azure Queue Storage.

A Redis Cache is used to store session state and other data that needs low latency access.

A CDN is used to cache static content such as images, CSS, or HTML.

For storage, the storage technology that best fits the needs of the application is used. Multiple

storage technologies can be used.

2.5.3 Microservices Architecture Style

A Microservices architecture style application is composed of many small and independent services

where each service implements a single business capability and where the services are loosely coupled

and communicate synchronously through API contracts or asynchronously through message queues.

Microservices applications have an architecture that resembles the one in Figure 2.7.
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Figure 2.6: Web-Queue-Worker Architecture on Azure App Services

Figure 2.7: Microservices Architecture
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Some of the best practices when using this architecture are: model services around the business

domain; data storage should be private to the service that owns the data; services communicate through

well-design APIs; avoid coupling between services; keep domain knowledge out of the gateway; services

should have loose coupling and high functional cohesion.

An example of a microservices architecture on Azure Container Service is visible in Figure 2.8.

Figure 2.8: Microservices Architecture on Azure Container Service

In this architecture, the public nodes are reachable through a public-facing load balancer. The API

gateway is hosted on these nodes.

The back-end nodes run services that clients reach via the API gateway. These nodes do not receive

Internet traffic directly. The back-end nodes might include more than one pool of VMs, each with a

different hardware profile.

The management VMs run the master nodes for the container orchestrator.

The public nodes, back-end nodes, and management VMs are placed in separate subnets within the

same virtual network.

An externally facing load balancer sits in front of the public nodes. It distributes internet requests to

the public nodes. Another load balancer is placed in front of the management VMs to allow secure shell

traffic to the management VMs using NAT rules.

2.6 Azure Services

Some Azure services of interest for this thesis are as follows.

2.6.1 Virtual Machines

The virtual machines (VMs) service[13] is an IaaS. The VMs can have as the operating system Linux

distros or Windows Server.
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VMs are typically chosen when more control over the computing environment is needed when com-

pared to what other choices offer.

An Azure VM gives the flexibility of virtualization without having to buy and maintain the physical

hardware that runs it. However, it is still needed to maintain the VM by performing tasks, such as

configuring, patching, and installing the software that runs on it.

The size of a VM is determined by factors such as processing power, memory, and storage capacity.

Azure offers a wide variety of sizes to support many types of workloads.

Azure charges an hourly price based on the VM’s size and operating system. For partial hours, Azure

charges only the minutes used. Storage is priced and charged separately.

VMs use virtual hard disks (VHDs) to store their OS and data. The disk size and performance tier

(Standard or Premium) can be specified, and Azure creates and manages the disk. VHDs are also used

for the images chosen from to install an OS.

Azure provides a marketplace for images. Images have different operating systems, versions, and

software installed.

Azure has a Service Level Agreement of 99.9% for VMs when the VM is deployed with premium

storage for all disks.

All resources created in Azure are distributed across multiple geographical regions around the world.

Usually, the region is called location when creating a VM. For a VM, the location specifies where the

virtual hard disks are stored and VM resources are located.

2.6.2 App Services

The App Service[14] is PaaS. The App Service is an HTTP-based service for hosting web applica-

tions, REST APIs, and mobile back-ends. It supports many languages, be it .NET, .NET Core, Java,

Ruby, Node.js, PHP, or Python. Applications run and scale with ease on both Windows and Linux-based

environments. The implementation for .NET is based on IIS for Windows.

App Service adds advantages of the cloud such as security, load balancing, autoscaling, and auto-

mated management to the applications running on it. App Service also has DevOps capabilities, such as

continuous deployment from Azure DevOps, GitHub, Docker Hub, and other sources. Other capabilities

are package management, staging environments, custom domain, and TLS/SSL certificates.

With App Service, the pricing is determined by the Azure compute resources used. The compute

resources used are determined by the App Service plan that the application runs on.

Some of the key features of App Service are:

• Multiple languages and frameworks - App Service has first-class support for ASP.NET, ASP.NET

Core, Java, Ruby, Node.js, PHP, or Python. It can also run PowerShell and other scripts or exe-

cutables as background services.

• Managed production environment - App Service automatically patches and maintains the OS and

language frameworks.
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• Containerization and Docker - App Service can run dockerized apps and host a custom Windows

or Linux container. It can also run multi-container apps with Docker Compose.

• DevOps optimization - App Service supports continuous integration and deployment with Azure

DevOps, GitHub, BitBucket, Docker Hub, or Azure Container Registry. The updates can be pro-

moted through test and staging environments. Apps can be managed by using Azure PowerShell

or the cross-platform command-line interface (CLI).

• Global-scale with high availability - Apps can scale up or out manually or automatically. Apps

can be hosted anywhere in Microsoft’s global datacenter infrastructure, and the App Service SLA

promises high availability.

• Connections to SaaS platforms and on-premises data - It is possible to choose from more than

50 connectors for enterprise systems (such as SAP), SaaS services (such as Salesforce), and

internet services (such as Facebook). Access to on-premises data can be done using Hybrid

Connections and Azure Virtual Networks.

• Security and compliance - App Service is ISO, SOC, and PCI compliant. Users’ authentication can

be done with Azure Active Directory, Google, Facebook, Twitter, or Microsoft accounts.

• Application templates - Extensive list of application templates in the Azure Marketplace, such as

WordPress, Joomla, and Drupal.

• Visual Studio and Visual Studio Code integration - Dedicated tools in Visual Studio and Visual

Studio Code streamline the work of creating, deploying, and debugging.

• API and mobile features - App Service provides turn-key CORS support for RESTful API sce-

narios, and simplifies mobile app scenarios by enabling authentication, offline data sync, push

notifications, and more.

An App Service plan[15] defines a set of compute resources for a web app to run. These compute

resources are analogous to the server farm in conventional web hosting. One or more apps can be

configured to run on the same computing resources.

When creating an App Service plan in a certain region, a set of compute resources is created for

that plan in that region. The apps put into the App Service plan run on these compute resources as

defined by the App Service plan. Each App Service plan defines the OS, the region, the number of VM

instances, the size of the VM instances, and the pricing tier.

2.6.3 Function Apps

Azure Functions[16] is a PaaS serverless solution that allows to write less code, maintain less infras-

tructure, and save on costs.

Systems are often built to react to a series of critical events. Whether it is building a web API,

responding to database changes, processing IoT data streams, or even managing message queues,

every application needs a way to run some code as these events occur.
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To meet this need, Azure Functions provide “compute on-demand” in two significant ways:

1. Azure Functions allow the implementation of system logic into readily available blocks of code.

These blocks are called “functions”. Different functions can run anytime it is needed to respond to

critical events.

2. As requests increase, Azure Functions meets the demand with as many resources and function in-

stances as necessary, but only while needed. As requests fall, any extra resources and application

instances drop off automatically.

Providing compute resources on-demand is the essence of serverless computing in Azure Functions.

Common scenarios for Azure Functions are:

• Build a web API - Implement an endpoint for the web application using the HTTP trigger.

• Process file uploads - Run code when a file is uploaded or changed in blob storage.

• Build a serverless workflow - Chain a series of functions together using durable functions.

• Respond to database changes - Run custom logic when a document is created or updated in

Cosmos DB.

• Run scheduled tasks - Execute code on pre-defined timed intervals.

• Create reliable message queue systems - Process message queues using Queue Storage, Ser-

vice Bus, or Event Hubs.

• Analyze IoT data streams - Collect and process data from IoT devices.

• Process data in real-time - Use Functions and SignalR to respond to data in the moment.

Functions Apps can be developed in C#, Java, JavaScript, PowerShell, Python, or using a custom

handler to use virtually any other language.

When creating a function app, a hosting plan for the app has to be chosen[17]. There are three basic

hosting plans available for Azure Functions: Consumption plan, Premium plan, and Dedicated App

Service plan. All hosting plans are generally available on both Linux and Windows virtual machines.

The chosen hosting plan dictates the following behaviors:

• How the function app is scaled.

• The resources available to each function app instance.

• Support for advanced functionality, such as Azure Virtual Network connectivity.

The benefits of the Consumption plan are that it scales automatically and only charges for compute

resources when the functions are running. On the Consumption plan, instances of the Functions host

are dynamically added and removed based on the number of incoming events.
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The benefits of the Premium plan are that it automatically scales based on demand using pre-warmed

workers which run applications with no delay after being idle, it runs on more powerful instances, and it

connects to virtual networks.

The benefit of the Dedicated App Service plan is that it runs the functions within an App Service plan

at regular App Service plan rates. It is best for long-running scenarios where Durable Functions cannot

be used.

The operating system where the functions run influences the language that can be used. Linux

is the only supported OS for the Python runtime stack. Windows is the only supported OS for the

PowerShell runtime stack. Linux is the only supported operating system for Docker containers and it is

only supported in the Premium and Dedicated App Service plans.

In the Consumption plan, apps may scale to zero when idle, meaning some requests may have

additional latency at startup. The Consumption plan does have some optimizations to help decrease

cold start time, including pulling from pre-warmed placeholder functions that already have the function

host and language processes running.

In the Premium plan, perpetually warm instances are used to avoid any cold start.

In the Dedicated plan, the Functions host can run continuously, which means that cold start is not

really an issue.

The service limits for each plan are visible in Table 2.1.

Regardless of the function app timeout setting, 230 seconds is the maximum amount of time that an

HTTP triggered function can take to respond to a request. This is because of the default idle timeout of

Azure Load Balancer.

In the Consumption plan, the billing is based on the number of executions, execution time, and

memory used.

In the Premium plan, the billing is based on the number of core seconds and memory used across

needed and pre-warmed instances. At least one instance per plan must be kept warm at all times. This

plan provides the most predictable pricing.

In the Dedicated plan, the billing for function apps is the same as it would be for other App Service

resources.

2.6.4 Azure SQL

Azure offers three SQL Server services[19][20], two platform-as-a-service (PaaS) and one infra-

structure-as-a-service (IaaS). The two PaaS implementations are Azure SQL Database and Azure SQL

Managed Instance, and the IaaS implementation is SQL Server on Azure VMs.

The order of all these services from the point of the cloud migration effort, re-host to re-build, and the

administration continuum, higher administration to lower administration, is the following:

1. SQL Server on Azure VMs (IaaS);

2. Azure SQL Managed Instance (PaaS);

3. Azure SQL Database (PaaS).
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Resource Consumption plan Premium plan Dedicated plan
Default timeout
duration (min) 5 30 30

Max timeout
duration (min) 10 unbounded unbounded

Max outbound
connections (per
instance)

600 active (1200
total) unbounded unbounded

Max request size
(MB) 100 100 100

Max query string
length 4096 4096 4096

Max request URL
length 8192 8192 8192

ACU1

per instance 100 210-840 100-840

Max memory (GB
per instance) 1.5 3.5-14 1.75-14

Max instance
count 200 100 varies by SKU

Function apps per
plan 100 100 unbounded

App Service plans 100 per region 100 per resource
group

100 per resource
group

Storage 5 TB 250 GB 50-1000 GB
Custom domains
per app 500 500 500

Custom domain
SSL support

unbounded SNI SSL
connection included

unbounded SNI SSL
and 1 IP SSL
connections included

unbounded SNI SSL
and 1 IP SSL
connections included

1 Azure Compute Unit (ACU)[18] provides a way of comparing CPU performance across
Azure SKUs. ACU is currently standardized on a Small (Standard A1) VM being 100.

Table 2.1: Plans’ Service Limits Comparison

SQL Server on Azure VMs

The SQL Server on Azure VMs is a normal VM with the only difference being that it uses a pre-built

image with the SQL Server installed. This implementation is best for migrating workloads that require

100 percent SQL Server compatibility and OS-level access.

Some scenarios where this solution makes more sense are: re-host of rich SQL apps to the current

SQL Server version; migrate a single or a few applications to the cloud; re-host of sunset applications,

that is, applications that are being phased-out or terminated.

Some of the benefits of this implementation are: 100 percent SQL Server compatibility; full con-

trol of the operating system and SQL Server level; hybrid high availability and disaster recovery; SQL

Server Reporting Services (SSRS), SQL Server Analysis Services (SSAS), and SQL Server Integration

Services (SSIS) support.
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Azure SQL Managed Instance

The Azure SQL Managed Instance is almost the same as having the full SQL Server experience, with

the only difference being that it runs on a managed system. This implementation is best for modernizing

existing apps.

Some scenarios where this solution makes more sense is when there is a need to modernize and

migrate existing SQL applications to the new SQL Server version with minimal code changes.

Some of the benefits of this implementation are: rich, instance-centric programming model; fully

managed with no patching or maintenance required; virtual network integration; AI-driven performance

and security.

Azure SQL Database

The Azure SQL Database is the most cloud-optimized service of these three and the least like hav-

ing SQL Server running on an on-premises machine. It does not offer all the compatibility that Azure

SQL Managed Instance offers for migrating, since some functions, statements, triggers, views, stored

procedures are not supported, and, because of that, some re-build is needed, but it is a cheaper option

and the one with the least administration needed.

Some scenarios where this solution makes more sense is when building cloud applications from the

ground up on the current version of SQL Server.

Some of the benefits of this implementation are: simplicity and flexibility of SLA-backed deployments

and scale; AI-driven performance and security; hyperscale storage capabilities and available serverless

compute; fully managed, no patching or maintenance required.

2.6.5 Cosmos DB

Azure Cosmos DB[21] is a PaaS NoSQL database for modern app development. It offers single-digit

millisecond response times, automatic and instant scalability, guaranteed speed at any scale.

Business continuity is assured with SLA-backed availability and enterprise-grade security.

App development is faster and more productive thanks to turn-key multi-region data distribution any-

where in the world, open-source APIs, and SDKs for popular languages.

As a fully managed service, Azure Cosmos DB takes database administration off the user’s hands

with automatic management, updates, and patching.

Cosmos DB handles capacity management with cost-effective serverless and automatic scaling op-

tions that respond to application needs to match capacity with demand.

Cosmos DB’s free tier offers the first 1000 RU/s1 and 25 GB of storage for free.

Cosmos DB has guaranteed speed at any scale through SLA-backed speed and throughput, fast

global access, and instant elasticity. Real-time access with fast read and write latencies globally, and

throughput and consistency are all backed by SLAs. Multi-region writes and data distribution to any

1A request unit (RU) is the measure of throughput in Cosmos DB. A 1 RU throughput corresponds to the throughput of the GET
of a 1 kB document
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Azure region with the click of a button. Independently and elastically scaling storage and throughput

across any Azure region, even during unpredictable traffic bursts, for unlimited scale worldwide.

Simplified application development with open-source APIs, multiple SDKs, schemaless data, and no-

ETL analytics over operational data. Deeply integrated with key Azure services used in modern cloud-

native app development including Azure Functions, IoT Hub, Azure Kubernetes Service, App Service,

and more. Multiple database APIs including Core (SQL) API, API for MongoDB, Cassandra API, Gremlin

API, and Table API. Running no-ETL analytics over the near-real-time operational data stored in Cosmos

DB with Azure Synapse Analytics. Cosmos DB’s schemaless service automatically indexes all the data,

regardless of the data model, to deliver blazing-fast queries.

Mission-critical ready with guaranteed business continuity, 99.999% availability, and enterprise-level

security for every application. Cosmos DB offers a comprehensive suite of SLAs including industry-

leading availability worldwide. Ease of distributing data to any Azure region with automatic data repli-

cation. Enterprise-grade encryption-at-rest with self-managed keys. Azure role-based access control

keeps the data safe and offers fine-tuned control.

Fully managed and cost-effective due to end-to-end database management, with serverless and

automatic scaling matching the application and TCO needs. Fully-managed database service means

automatic, no-touch, maintenance, patching, and updates, saving time and money. The serverless

model offers spiky workloads automatic and responsive service to manage traffic bursts on demand.

Solutions that benefit from Azure Cosmos DB include any web, mobile, gaming, and IoT applica-

tion that needs to handle massive amounts of data, reads, and writes at a global scale with near-real

response times for a variety of data.

2.6.6 Application Insights

Application Insights[22] is a SaaS feature of Azure Monitor. It is an extensible Application Perfor-

mance Management (APM) service for developers and DevOps professionals.

Application Insights is used to monitor live applications. It will automatically detect performance

anomalies and includes powerful analytics tools to help diagnose issues and understand what users

actually do with the app. It is designed to help continuously improve performance and usability.

It works for apps on a wide variety of platforms including .NET, Node.js, Java, and Python hosted

on-premises, hybrid, or any public cloud.

It integrates with DevOps processes and has connection points to a variety of development tools.

Application Insights work by installing a small instrumentation package (SDK) in the application or by

enabling it using the Application Insights Agent when supported. The instrumentation monitors the app

and directs the telemetry data to an Azure Application Insights Resource using a unique GUID referred

to as an Instrumentation Key.

Application Insights can instrument not only the BankOnBox Engine application, but also any back-

ground components, and the JavaScript in the web pages themselves. The application and its compo-

nents can run anywhere, it does not have to be hosted in Azure.
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The impact introduced by Application Insights in the application is small. Tracking calls are non-

blocking and are batched and sent in a separate thread.

Application Insights monitors:

• Request rates, response times, and failure rates - Helping find out which pages are most popular,

at what times of day, and where the users are. Which pages perform best. If response times and

failure rates go high when there are more requests.

• Dependency rates, response times, and failure rates - Helping find out whether external services

are slowing the app.

• Exceptions - Both server and browser exceptions.

• Pageviews and load performance - reported by the users’ browsers.

• AJAX calls from web pages.

• User and session counts.

• Performance counters from Windows and Linux server machines - Such as CPU, memory, and

network usage.

• Host diagnostics from Docker or Azure.

• Diagnostic trace logs from the app - To correlate trace events with requests.

• Custom events and metrics.

2.6.7 Log Analytics

Log Analytics[23] is a SaaS tool in the Azure portal used to edit and run log queries with data in the

Azure Monitor Logs.

It allows writing a simple query that returns a set of records and then use features of Log Analytics

to sort, filter, and analyze them. Or to write a more advanced query to perform statistical analysis and

visualize the results in a chart to identify a particular trend. Log Analytics uses a custom query language

called Kusto.

Whether it is to work with the results of the queries interactively or to use them with other Azure

Monitor features such as log query alerts or workbooks, Log Analytics is the tool used to write and test

them.
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Chapter 3

Solution

In this chapter, the architecture proposed to be implemented is explained as well as the strategy to

migrate and implement the architecture.

3.1 Architecture

The current architecture of BankOnBox when simply ported to the cloud is not optimized for pro-

duction environments since it has multiple components of the logical architecture running in the same

resources and does not follow the principles of cloud architecture listed in Chapter 2.3.

A more appropriate architecture is proposed in Figure 3.1.

Figure 3.1: Proposed Architecture
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All current IIS sites get dedicated services. The BankOnBox website and the transaction manager

authentication are each their own App Service. The App Service was chosen because it is the Azure

equivalent to Windows’ IIS. The site composed of the transaction manager and integration components

is divided into Function Apps. This division is further explained in Chapter 3.1.1. The Function App

service was chosen because it is a serverless service and this is the component that would benefit the

most from the scalability it offers. Both the App Service and Function Apps have built-in auto-scalers

and load balancers, following the principle of cloud architecture that says to design to scale out.

Each database also gets its dedicated service. The BankOnBox website’s database and the contract

management & settings database are both Azure SQL Databases. This service was chosen from the

ones listed in Chapter 2.6.4 due to being the most cloud-optimized, and the cheapest of the managed

database services. The less compatibility that it offers when compared to a version of SQL Server

running on-premises is not relevant in this case since the service has built-in alternatives.

An Azure Cache for Redis is used to cache the responses of database queries. This is used instead

of an in-memory cache because the same cached response can be accessed by multiple instances.

The database used for applicational logging is replaced by the Log Analytics service. This service

allows easy querying and visualization of information about the logs which makes it an ideal solution.

The functional logs present in the contract management & settings database are moved to Cosmos

DB. Using Cosmos DB for storing logs allows the structure of these to change over time if needed without

changing the database schema. Another advantage is that the SQL databases are kept small since the

majority of the storage is occupied by logs.

The decisions of what service to use to store functional and applicational logs follow the principle of

cloud architecture that says to use the best data store for the job.

The contract management back-office application used by the bank’s staff is in an App Service.

The authentication of the bank’s staff in the back-office application is done using the Azure Active

Directory (Azure AD). The Azure AD is configured to replicate the on-premises Active Directory. For that

to be possible, it is necessary to have an on-premises machine running Azure AD Connect.

To have an added layer of security and the Azure services that communicate with the core system to

be viewed as if they were on-premises, the communications between Azure services and bank facilities

are all done through a VPN connection. The alternative would be to have an ExpressRoute connection,

but that requires a dedicated connection from the bank facilities to Azure, and it is a more expensive

solution.

Due to not existing a core system that can be used in this thesis, some components of the architecture

will not be implemented.

A core system database that is normally used when BankOnBox is in an offline state, to for example

make a backup, will be put on the cloud to simulate the core system. This means that transactions that

involve transfers of money cannot be implemented, only transactions to consult information.

The contract management back-office application used by the bank’s staff will also not be imple-

mented since an Active Directory to be replicated is necessary. The fact that the main focus is on the

architecture and performance of the transaction manager and integration components, and that this
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management application is being migrated to other technologies make this less of a priority.

3.1.1 Transaction Manager Architecture

A closer look into the architecture of the transaction manager and integration components is visible

in Figure 3.2.

Figure 3.2: Proposed Architecture Close-up

Currently, the transaction manager and integration components are part of a bigger component that is

responsible for all the execution of a transaction. The transaction manager is responsible for the orches-

tration of the code execution, the validations, and the functional logging. The integration is responsible

for the communication with the core system and the execution of the transaction-specific code.

The architecture proposed separates these two components into multiple Function Apps. An orches-

trator Function App and one Function App per transaction type.

The orchestrator Function App is responsible for, as the name implies, orchestrating the code exe-

cution, it is also responsible for the functional logging and the generic validations that all transactions

require.

The transactions’ Function Apps are responsible for all the logic that is transaction-specific, being

validation or execution. They are also responsible for communicating with the core system.

In the current architecture, the logic for each transaction type is added to the BankOnBox application

via plugins.

To maintain the plugin logic, all transaction Function Apps share a base URL, where the only part

that changes is the transaction type, and have one endpoint for the validation of the parameters, one for
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the transaction validations, and one for the execution.

The sequence of actions when a request arrives at the orchestrator is as follows:

1. The orchestrator loads the settings for the transaction type received. This also validates that the

transaction type does exist.

2. The orchestrator checks the application status, whether it is online or offline. This influences which

transactions can be executed.

3. The orchestrator logs the request. This log generates the id used to track the transaction.

4. The orchestrator does the generic validations.

5. The orchestrator makes a request to the validate parameters endpoint of the transaction Function

App.

6. The transaction Function App checks if the parameters are valid.

7. The orchestrator makes a request to the transaction validation endpoint of the transaction Function

App.

8. The transaction Function App checks transaction-specific validations.

9. The orchestrator based on the transaction type settings and the application status checks if the

transaction can be executed or if it has to be stored for later execution.

10. If the execution is possible, the orchestrator makes a request to the execution endpoint of the

transaction Function App.

11. The transaction Function App executes the transaction logic.

12. The orchestrator logs the response.

This sequence of actions means that for each request that the orchestrator receives, it makes three

requests to the transactions Function Apps.

This division into orchestrator and transactions allows for transactions that typically receive more

requests to scale out differently from transactions that receive less. This division also allows having

different transactions implemented with different technologies and in different locations more easily.

3.2 Migration Strategy

Since this thesis deals with an application that already exists and not with something new, before

arriving at the architecture proposed to be implemented, the overall solution will go through multiple

intermediary architectures. These architectures allow increasing the solution’s complexity gradually, to

measure the performance of each iteration and compare the results.

The multiple iterations are as follows:
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1. Lift & Shift;

2. Databases Re-Platforming;

3. Servers Re-Platforming;

4. Databases Re-Factoring;

5. Transaction Manager Re-Factoring.

3.2.1 Lift & Shift (First Iteration)

The goal for this first iteration is to take what currently exists and put it on the cloud to serve as a

baseline to which to compare all other iterations.

To achieve this it is necessary to have the websites, the web service, and the databases running on

virtual machines in the same virtual network in the cloud. It is also necessary to have a service mocking

the OTP for second-level authentication.

Since there is no core system, the offline database also needs to be running in the cloud.

The fact that there is no bank AD means that an Active Directory domain controller serving also

as the DNS server for the virtual network is needed. This is because the databases use Windows

authentication to authenticate the connections from the websites and the web service.

The architecture of this iteration is visible in Figure 3.3. It has two VMs in the same virtual network

and subnet.

Figure 3.3: First Iteration Architecture

The VM APP contains both the websites and the web service servers. This VM is also the domain
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controller for the Active Directory. This machine has to have a static private IP address to be configured

as the DNS server for the virtual network.

The VM SQL contains all the databases required by the application, in addition to the offline database

used to mock the core system.

3.2.2 Database Re-Platforming (Second Iteration)

The goal of this iteration is to move all databases from the VM SQL to Azure SQL Databases. This

means less administration is needed by moving to a PaaS service.

The architecture of this iteration is visible in Figure 3.4.

Figure 3.4: Second Iteration Architecture

The architecture is similar to the previous iteration in the fact that the VM APP is still running all the

same services.

The databases are all Azure SQL Databases. The authentication of the connections is changed from

Windows authentication to SQL Server login.

3.2.3 Server Re-Platforming (Third Iteration)

The goal of this iteration is to move the sites running in the VM APP to multiple App Services. This

means less administration is needed by moving to PaaS services.

The architecture of this iteration is visible in Figure 3.5.

In this architecture, the websites, the OTP mock, the TM authenticator, and the TM have each their

own App Service. The TM is comprised of the transaction manager and integration modules and is not

yet divided into sub-modules.
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Figure 3.5: Third Iteration Architecture

3.2.4 Database Re-Factoring (Fourth Iteration)

The goal of this iteration is to stop using SQL databases for logging and instead use more appropriate

solutions. This is the first iteration that needs the BankOnBox code to be re-factored.

The architecture of this iteration is visible in Figure 3.6.

In this architecture, the functional logs are moved from the contract management & settings Azure

SQL database to a Cosmos DB database. The applicational logs database is replaced by the Log

Analytics service.

3.2.5 Transaction Manager Re-Factoring (Fifth Iteration)

The goal of this iteration is to divide the transaction manager and integration modules into sub-

modules, in other to better divide the load and allow an architecture that scales better.

The architecture of this iteration is visible in Figure 3.7.

In this architecture, a Function App is added for the orchestrator and a Function App per each type

of transaction implemented. An Azure Cache for Redis is introduced to store the response of queries to

the database in a way that makes it accessible to multiple Function App instances at the same time.
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Figure 3.6: Fourth Iteration Architecture

Figure 3.7: Fifth Iteration Architecture
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Chapter 4

Implementation

In this chapter, the implementation process of the various iterations is explained as well as some

problems found and how they were solved.

As it has been said before, the focus of the implementation was on the users’ side of the architecture,

with a special focus on the transaction manager and integration component.

Before any migration, an effort was made to try and upgrade the version of the .NET Framework

being used. However, the tool used to assess the changes needed to upgrade the version reported that

much of the code would need to be changed to be compatible with current versions; because of that,

and due to the intention of having the various iterations, that upgrade was deemed not worth it.

After implementing each iteration, their performance was tested and the results were analyzed to try

to find possible performance bottlenecks, and validate the scalability where applicable.

4.1 Lift & Shift (First Iteration)

To try and achieve the goals for this iteration, previously referred on Chapter 3.2.1, it was necessary

to do the following.

In the Azure portal, it was necessary to create two VM resources, with the second one in the same

subnet as the first one. The VM APP is the VM with the BankOnBox servers and the VM SQL is the VM

with the databases. Both VMs use the same Windows Server image.

In the VM APP, it was necessary to install the Active Directory Domain Services (ADDS) and the In-

ternet Information Services (IIS). It was also necessary to copy all the published code of the BankOnBox

components to the VM.

After installing the ADDS it was necessary to promote this VM to a domain controller, doing that also

installs a DNS server in the machine. To promote the VM to a domain controller it was necessary to

add a new domain forest and a domain name. With the machine as a domain controller, all the virtual

machines in the virtual network needed to use it for DNS lookups. For that to be possible, the private IP

of the machine needed to be changed to a static one in Azure, and the DNS server of the virtual network

changed to that static IP instead of Azure’s default one.
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After installing the IIS it was necessary to create two IIS sites one for the websites component and

the other for the web service component. Since the transaction manager uses integrated security to

access its databases, a new user was created in the domain and a new application pool was created in

the IIS that runs with the identity of that user.

The site created for the web service runs on port 5000 with HTTP connections and is configured

for test purposes to allow connections from any IP, on a production environment only the websites’

component would be able to access the web service. Because of this, a new rule was created in the

network security group of this VM in Azure. Three applications were added to the created site, one for

the transaction manager authentication, one that is an OTP mock for second level authentication, and

one for the transaction manager and integration. The applications on this site were configured to use

the application pool running with the identity of the created user.

The site created for the websites runs on port 80 with HTTP. HTTPS was not configured because

there is no certificate issued for this prototype. Two applications were added to this site, one for the

bank’s business clients and the other one for the private customers. The applications were configured

to use the default IIS application pool.

Every application added to either of the sites points to its corresponding code in the file system. After

the installation of the VM SQL, it was necessary to change the connection strings in the configuration

files to point to the databases in that VM. For the websites component applications, it was also necessary

to change configuration files to point to the web service running on the local machine.

In the VM SQL was necessary to install the SQL Server 2019, and add this machine to the domain

that the other one is the controller of.

After installing the SQL Server, the schemas and the data of the databases were migrated to the VM

from their on-premises counterparts. The SQL user used by the websites and the domain user used by

the transaction manager were added to the database server logins, with only the domain user having

sysadmin privileges.

All the goals of this iteration were achieved and as so the architecture implemented after this iteration

is the same as the one in Chapter 3.2.1, and is visible in Figure 4.1.

4.2 Databases Re-Platforming (Second Iteration)

To try and achieve the goal for this iteration, previously referred on Chapter 3.2.2, to use one of

the SQL Server services that Azure offers instead of having a virtual machine with the databases, the

following was done.

The tool Data Migration Assistant (DMA)1 from Microsoft was used to assess the readiness of the

databases to be migrated to the Azure SQL Database service.

The tool reported that some features being used in the databases on-premises were not supported

in Azure SQL Database, but it did not find any migration blockers. A closer inspection of the reported

unsupported features showed that this was a non-problem as the feature, SQL Server Agent jobs, has

1https://docs.microsoft.com/en-us/sql/dma
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Figure 4.1: First Iteration Implemented Architecture

a counterpart in Azure SQL Database, elastic jobs, and that the only jobs that were relevant to the

databases in question were the backup job and the shrink job that are automatically taken care of by the

Azure platform.

After the assessment, it was time to create the databases in Azure. An SQL Server resource was

created in Azure and inside that SQL server, the databases used by the websites component, the web

service component, and the database used for when the BankOnBox is in offline state, used in this case

also as a mock of the bank’s core system, were created.

To migrate the databases’ schemas and data the DMA tool was also used. To be possible to migrate,

it was necessary to add a rule to the firewall of the SQL server in Azure to allow connections from the

machine running the tool.

For the services that run on the VM APP to use the Azure SQL databases, it was necessary to

change the connection strings in the configuration files. After doing that, one problem was encountered,

the VM did not have access to the databases, because the SQL server resource’s firewall did not allow

connections from the machine’s IP. To solve that problem three solutions were found.

The first solution was to change the public IP of the VM to a static one and create a rule in the firewall

of the SQL server resource allowing connections from that IP like it was done for the migration process.

The big problem with this solution, and the reason why it was not chosen, is that, even though both the

VM and the server are in Azure, the connection would go through the public Internet.

The second solution was to add a private endpoint to the virtual network where the VM is located,

which would allow the SQL server resource to be seen as being in that virtual network. This solution

has the added benefit of allowing on-premises machines that are connected to the virtual network via a

VPN connection to access the databases. This solution was not chosen because, in the context of this
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thesis, the added benefit was not relevant. In a real environment, this solution would make more sense

as it would allow the banks to have direct access to the databases and build their custom data exploring

solutions if needed. This solution also incurs more costs as it is a paid feature inside the virtual network

service.

The third solution was to add a virtual network service endpoint to Microsoft.SQL in the virtual net-

work subnet and then allow in the firewall of the SQL server resource connections from that virtual

network subnet. This solution was chosen because the connections do not go through the public Inter-

net and because this solution does not incur additional costs.

In the migration of the databases, it is not possible to migrate the certificate and the symmetric key

used in the on-premises databases to cipher some of the columns. The way that the key and certificate

were created on-premises does not allow to re-create them. Because of this, a new certificate and

symmetric key were created in the Azure database.

Since there is a new certificate and a new symmetric key, the data migrated that was ciphered with

the original ones would not be readable. Two solutions were found to solve this problem. The first

solution, and the best option in a real-world environment, would be to decipher the data before sending

it over from the on-premises database and cipher with the new key in the cloud database. The second

solution would be to reset the users’ passwords in the cloud database after the migration. The second

solution was chosen because it was faster to reset the necessary passwords than to develop a SQL

script to decipher all the passwords on-premises and cipher them when in the cloud.

After this process, the goal of this iteration was achieved with the implemented architecture, visible

in Figure 4.2, being the same as the one in Chapter 3.2.2.

Figure 4.2: Second Iteration Implemented Architecture
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4.3 Servers Re-Platforming (Third Iteration)

To try to achieve the goal previously referred on Chapter 3.2.3 the following was done.

Four App Service resources were created, one for the websites, one for the TM Authentication, one

for the OTP mock, and one for the transaction manager and integration. All of the App Services were

created within the same App Service Plan, and all with ASP.NET V4.8 as the runtime stack and Windows

as the operating system. The App Services were all created in the same App Service Plan because the

price paid is per App Service Plan and not per App Service.

Once an App Service is created there are three ways of deploying the code, continuous deployment

via a git repository, manual deployment using OneDrive or Dropbox, or via FTPS. Since all the code was

already published and in the VM APP, the deployment for all App Services was done via FTPS.

After all the code was deployed, the configurations were changed for each App Service so that they

all pointed to the versions running in App Services and the databases running in Azure SQL Database.

When testing this iteration, the website and the transaction manager servers seemed to be working

fine, but when trying to log in via the website an error would occur, although no error occurred when

trying to login via a SOAP request directly to the transaction manager server. The problem was in the

TM Authentication, as the technology used and the way that it is implemented is not compatible with the

Azure App Service due to necessary permissions that are not given and are not possible to change.

Because of this incompatibility, and since, it made no sense to try to solve this due to the website

component and TM Authentication being currently moved to a different technology by a team at LINK,

the configurations on the website in the VM APP were changed to point to the App Service containing

the transaction manager and the databases in the Azure SQL Database.

The goal of this iteration was not completely achieved, since only one App Service is being used,

the transaction manager and integration one. This is the most important one as it is the one where the

performance is tested. The other App Services were nice to have but are not essential for the thesis.

The implemented architecture for this iteration is visible in Figure 4.3.

4.4 Databases Re-Factoring (Fourth Iteration)

To try and achieve the goal for this iteration, previously referred on Chapter 3.2.4, to stop using a

SQL database and use more adequate services for logs, the following was done.

4.4.1 Functional Logs

For the functional logs, the contract management & settings database was duplicated in Azure and

the tables BackOfficeLogEntries, OperationAuthorizations, Operations, OperationsLogs, and Transac-

tionLogs were removed as they were suited to be moved to NoSQL databases.

In Azure, a Cosmos DB account was created with a database containing those five tables as con-

tainers. Each container has as its partition key an attribute that makes it so that all related items are

always in the same logical partition, and to ensure that there is a good distribution of values.
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Figure 4.3: Third Iteration Implemented Architecture

Due to the fact of the ids automatically generated by Cosmos DB being GUIDs instead of integers,

a table was added to the contract management and settings database, containing a mapping between

an auto-generated integer key and the Cosmos id. It was necessary to add this table since it is easier

for people to work with integers than with GUIDs, and the product support and bank IT staff will need to

work with these logs.

To update the SQL tables in the source code, it was only necessary to use the “update model from

database” functionality of Entity Framework 4. The model for the Cosmos DB had to be done by hand

since this version of Entity Framework does not support Cosmos and the Cosmos library used does

also not have that functionality. The library used for Cosmos was version 2 of the official Microsoft SQL

API library, this version is one version behind the current one, two versions behind the preview, and will

be supported until August 31st, 2024. This version was chosen because it was the most recent with

compatibility with the .NET Framework version used.

Most of the examples in the documentation of the Cosmos DB used async requests, however, to

change just some database requests was not feasible to change almost all the source code to async

methods, so the sync options available were used. These options, however, came with a problem, they

made as many trips to the database as required to fetch the entire result-set. This caused errors due to

too many RU/s being used per request as the database grew because the query was being processed

in the client instead of in the database.

The Application Insights resource associated with the App Service resource, described in the Chap-

ters 2.6.6 and 5.1, was used to help diagnose that a simple request to query a Cosmos table by id was

taking more than the 400 RU/s allowed in the free version of a container. That simple query usually
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takes around 22.5 RU/s. When the RU/s are surpassed Cosmos responds with 429 Too Busy.

The alternative was to use the async methods synchronously. Meaning it would be necessary to

block the thread waiting for the response. Since none of the documentation’s synchronous examples

used asynchronous methods, a bit of trial and error was necessary. The solution was to create the query

object as a DocumentQuery (this object only has asynchronous methods), and while the query says it

has more results and no result has come yet, ask for the next result and actively wait for the response.

Doing this only while the query has more results like it is done in the asynchronous examples, does

not work because the query can say that it has more results, the result had already arrived and the last

result is empty.

This problem does not exist in the next iteration since all the application code is re-factored.

4.4.2 Application Logs

For the applicational logs, the library being used by the current version of the BankOnBox was re-

moved and an alternative that integrated with Azure Log Analytics was searched.

In Azure, all that was necessary to do was to create a Log Analytics workspace resource.

No library was found that allowed to do the logging to the Log Analytics workspace the way that it

was being done. All the libraries that were found either did not support the .NET Framework version or

did not allow custom logs. To solve the problem, the Log Analytics’ HTTP API was used, allowing to

make custom logs.

To avoid the logging blocking the execution of a transaction, it was implemented using the ”fire and

forget” pattern. In this pattern, a new thread is created, in this case, a task, to send a message that the

response is not of interest. In the implemented code the task created is not awaited and its code retries

the sending of the request after a constantly increasing amount of time in case of the response being a

500 Internal Server Error, a 503 Service Unavailable, or a 429 Too Busy until it is successful.

All the code developed in this iteration was published to the App Service directly from Visual Studio.

The goal of this iteration was achieved and the implemented architecture is visible in Figure 4.4, this

architecture differs from the one in Chapter 3.2.4 due to the previous iteration.

4.5 Transaction Manager Re-Factoring (Fifth Iteration)

To try and achieve the goal for this iteration, previously referred on Chapter 3.2.5, to re-factor the

transaction manager and integration modules into sub-modules to an architecture that scales better, the

following was done.

Only three transactions were re-factored into this architecture, namely: login; user’s homepage,

which shows their assets and liabilities; and the viewing of the user’s default account movements. No

other transactions were implemented due to the unavailability of a core system to allow the support of

transactions that involved money transfers.

In Azure, four Function App resources were created, one for the orchestrator and the rest for the
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Figure 4.4: Fourth Iteration Implemented Architecture

transactions. All the Function Apps are code publish, have a .NET runtime stack with version Core 3.1,

are running Windows as the operating system, and have the consumption serverless plan. All the code

was published directly from Visual Studio.

All the functions in the Function Apps have HTTP request triggers. Since these triggers do not have

built-in support for SOAP requests, in this iteration the requests were changed to REST, this means

that this version does not support the websites running in the VM APP and as such this version of the

architecture does not have a GUI.

The code was all developed following the suggestions from Microsoft for .NET Core servers 2 and

Function Apps specifically 3. This means primarily using dependency injection and asynchronous pro-

gramming.

Objects in the .NET Core dependency injection can have one of three lifetimes:

• Singleton, where the objects are instantiated the first time they are requested, further requests

return the same instance, and have the lifetime of the program;

• Scoped, where they are instantiated once per client request (connection), they have the same

lifetime as the request, and the same instance is used during that lifetime;

• Transient, a new instance is created every time that is requested.

An injected object cannot depend on another that has a shorter lifetime.

2https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices?view=aspnetcore-3.1
3https://docs.microsoft.com/en-us/azure/azure-functions/performance-reliability
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Since pretty much all classes in BankOnBox were static, they are injected as singletons, meaning that

only one instance is created per application lifetime, saving time. The Entity Framework Core contexts,

used to query the databases, and which many of these classes depend upon, have by default a scoped

lifetime, this could not be as singletons cannot depend on scopeds, but changing the lifetimes of the

contexts to singleton introduces a concurrency problem as the context does not support multiple opened

result sets at the same time. To solve this problem, while continuing to use dependency injection a

factory of contexts need to be injected with a new context instance created every time that it is needed.

All the classes that have triggers are by definition scoped.

The code written for the orchestrator was based on the Windows Workflow currently used. The

current Windows Workflow was not used due to Function Apps not supporting either Windows Workflow

Foundation or an equivalent solution. The rest of the code was adapted from the existing one while

trying to modernize it wherever possible since a lot of the code is old, with some of it being essentially

Java code from a previous version of BankOnBox that was adapted to .NET.

All the requests made in the Functions Apps, being either to other Function Apps, to Azure SQL

Database, or to Cosmos DB are done using async requests. This allows the Function Apps to process

other requests while waiting for the responses. This theoretically allows for better throughput of requests.

The version of the Entity Framework Core used does not have a GUI, and as such, the process to

generate the database model in a database-first context like this one is necessary to use the Scaffold-

DbContext command in a NuGet Package Manager Console in a project that compiles, after installing a

compatible version of the Entity Framework Core library.

This version of Entity Framework Core supports Cosmos DB with SQL API, however, only the version

for .NET 5 supports ETags, that are being used in the code to verify in some situations if a document

has not already been updated. Because of this incompatibility, the latest stable version of the Microsoft

library for Cosmos DB was used.

The model for the Cosmos DB tables had to be implemented manually since the library does not

have that functionality.

All the logging in the re-factored code uses the logging library built into .NET Core that already

integrates with App Insights and with Log Analytics.

The orchestrator Function App at the moment is accessible by any machine on the Internet. The

Function Apps for the transactions need an authorization token with every request. This received token

is the same for every transaction Function App and needs to be manually added in the Azure resource

as an App Host key. The orchestrator Function App currently has this token in its configurations. The

orchestrator knows how to call the correct transaction and action (for example, do the transaction vali-

dations) by changing two variable parts of a base URL shared by the transaction Function Apps. All the

requests to Function Apps use HTTPS.

This iteration unlike the other ones does not use caching since the Redis Cache was not implemented

due to time constraints. This, however, needs to be implemented in future work, as no caching adds

latency to many of the requests.

The re-factoring part of this iteration was achieved, while the better scaling part needs testing to
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confirm. The implemented architecture is visible in Figure 4.5, this architecture differs from the one

in Chapter 3.2.5 because the SOAP requests were changed to REST, and the Redis Cache was not

implemented.

Figure 4.5: Fifth Iteration Implemented Architecture
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Chapter 5

Results

In this chapter performance and price for each iteration are listed, an overview of diagnostic tools

used is given, and an analysis of the results is done.

In a small bank, with 30 000 registered users, that uses the BankOnBox application there are in a

regular day: a total of around 76 700 requests; approximately 3 300 daily users; the average time that

takes the BankOnBox application to process the requests, including calls to the core system, is between

50 and 300 milliseconds. If we take that this data is from a 10-hour window that gives an average

of around 130 requests per minute and from that average, we assume there are around 50 users on

average in a minute.

5.1 Performance Diagnose Tools

During the development and testing of the iterations, Application Insights associated with the re-

sources, and features of the resources themselves were used to collect more information and debug

performance.

The Applications Insights have very useful and interesting functionalities to dive deep into the perfor-

mance of the resources, the ones used were Application Map, Performance, Live Metrics, and Logs.

The Application Map[24] allows having a view of the various external dependencies that a resource

has, the number of calls it made to that dependency, how much time it took on average, how many

different instances ran during that period of time, among others. An example is visible in Figure 5.1,

this is the Application Map for the Orchestrator Function App for a time period of 30 days. This example

shows the calls to Cosmos DB and to the transactions’ Function Apps. By clicking on one of the arrows it

is possible to see the slowest calls to that dependency by endpoint, the top failing status codes with the

number of requests that resulted in that status code. These metrics can be further explored by clicking

on a button that leads to the Performance pane with the data already filtered to the data that we want to

see.

The Performance allows to analyze and filter the request’s performance for a select time period. For

all the data it is possible to see the average time for a point time and to see the distribution of all the
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Figure 5.1: Application Insight’s Application Map Example

requests’ time in a histogram that also gives where the 50th, 95th, and 99th percentiles are located.

The data can be filtered by endpoints of the resource that is associated with the Application Insights, by

external dependency request, or by endpoint or method of the external dependency.

The Live Metrics[25] allow viewing a stream of metrics in real-time. The metrics are divided into

five sections: incoming requests, outgoing requests, overall health, sample telemetry, and servers. The

incoming requests section has line graphs for the request rate, request duration, and request failure rate.

The outgoing requests section has line graphs for the dependency call rate, dependency call duration,

and dependency call failure rate. The overall health section has line graphs for the committed memory,

the total CPU percentage, and the exception rate. The sample telemetry section has a list with all the

logs arriving at Azure related to the resource associated with the Application Insights. The servers

section has all the same data as the incoming requests, outgoing requests, and overall health sections

but it is separated by running instances, and the information is not in line graphs.

The Logs allows the creation of specific queries and graphs based on all the logs collected by Azure

on the resource. All other functionalities of Application Insights are built using the information in these

logs.

Aside from the Application Insights, a functionality of the App Services was used to debug the per-

formance of these. The functionality is called “Collect .Net Profiler Trace” and it collects a profiling trace

to identify the root cause of the app’s downtime and slowness by identifying the methods in the code

where the app spends the most time. This functionality is located in the “Diagnose and solve problems”
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pane under “Diagnostic Tools”.

5.2 Testing Methodology

The performance of each iteration of the architecture was tested by performing a load test using a

tool called SoapUI1. The SoapUI tool allows the creation of multiple threads that make the same set

of requests to an endpoint during a given time period or a given number of runs with a random delay

between the sets of requests. The tool, while making the requests, collects statistics like minimum, max-

imum, and the average time that the requests took, the number of requests made, how many returned

errors, among others. The times collected by this tool are not equivalent to the ones that serve as a

reference, as these are the total times the request took, including the time to arrive at the server and

back, and not the time that the application took to process them.

To test the iteration’s performance a given number of threads make a sequence of three requests

twenty times. The order of requests is login, user’s home page, and transactions consult. The number

of threads used is 1, 5, 10, 25, 50, and 100 to simulate different amounts of load. A thread can be

viewed as a user doing the necessary steps a user would have to do to consult their last transaction.

Between each run of the thread, there is a random wait time between 0 and 3 seconds. The requests in

all iterations are done directly to the transaction manager and integration component of the architecture.

Before each test, ten requests of each type of transaction are done to guarantee that the architecture’s

components are warm.

For the implemented Lift & Shift architecture (Chapter 4.1), the VMs are of the Standard D4s v3 SKU

(4 vCPUs, 16 GiB RAM, 6400 maximum IOPS) and are the equivalent to what is suggested to the banks

that use BankOnBox.

For the implemented Databases Re-Platforming architecture (Chapter 4.2), the VM is of the Standard

D4s v4 SKU (4 vCPUs, 16 GiB RAM, 6400 maximum IOPS), the Contract Management & Settings and

the Offline databases are Azure SQL Database General Purpose Serverless Gen5 with 10 vCores, and

the logging database is Azure SQL Database Basic with 5 DTUs.

For the implemented Servers Re-Platforming architecture (Chapter 4.3), the App Service is of the

Premium P2V3 SKU (4 vCPUs, 16 GiB RAM, 195 minimum ACU/vCPU) running the code in 64-bit, with

always-on turned on, and ARR affinity turned off. The SKU of the App Service is equivalent to the VMs’

SKUs of the previous iterations. The databases are of the same SKUs as the previous iteration.

For the implemented Databases Re-Factoring architecture (Chapter 4.4), the App Service is the

same as the previous iteration, the Contract Management & Settings and Offline databases are still

Azure SQL Database General Purpose Serverless Gen5 with 10 vCores, and the Cosmos DB is au-

toscale provisioned throughput between 400 and 4000 RU/s.

For the implemented Transaction Manager Re-Factoring (Chapter 4.5), the Function Apps are of

the Consumption Plan type and are configured with a maximum scale-out limit of 200 instances, each

instance can process up to 100 requests in concurrency with 100 more in the queue, and the code is

1https://www.soapui.org/
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running in 64-bit. The databases are the same as the previous iteration.

5.3 Performance Results

The performance results following the testing methodology are visible in the Tables 5.1, 5.2, 5.3, 5.4,

and 5.5. The Tables have the minimum, maximum, and average time of a request in milliseconds for

each of the three transactions implemented. The transactions are represented in the Tables by their

transaction code, login is SION, the user homepage is CPIN, and view movements is CMOV.

For Table 5.4 a column with the percentage of requests that return an Internal Server Error or a

Connection Timeout was added.

For Table 5.5 a column was added for each transaction with the initial and final number of Function

App instances that were processing requests. This column was also added for the orchestrator’s Func-

tion App. The values for the number of instances were obtained using the Live Metrics capability of the

Application Insights associated with each Function App.

For the first three iterations, the requests per second for 1 thread are around 1, that is, 60 per minute;

for 5 threads around 6 requests per second or 360 per minute; for 10 threads they are around 11 per

second or 660 per minute. For the first two iterations for 25 threads the requests per second are around

20 per second, 1 200 per minute, and around 23 per second, 1 380 per minute, for 50 and 100 threads.

For the third iteration, the requests per second for 25 threads are 25, 1 500 per minute; for 50 and 100

threads the requests per second are around 30, 1 800 per minute. For the fifth iteration, the requests

per second for 1, 5, 10, 25, and 50 threads are very similar to the third iteration, but for 100 threads there

are around 67 requests per second, 4 020 per minute.

SION CPIN CMOV
# Threads Min Max Avg Min Max Avg Min Max Avg
1 265 342 285.45 247 369 269.60 117 160 127.85
5 257 386 293.47 246 626 279.26 112 217 130.39
10 258 6 670 740.50 243 2 465 396.17 110 3 708 213.20
25 267 1 179 600.50 247 1 053 531.14 114 688 261.07
50 261 2 939 1 626.53 246 2 591 1 585.56 113 2 264 1 343.49
100 269 63 049 4 277.02 251 8 065 3 190.00 117 6 431 2 533.02

Table 5.1: Lift & Shift Performance Results

SION CPIN CMOV
# Threads Min Max Avg Min Max Avg Min Max Avg
1 382 587 426.30 332 474 379.55 191 289 215.10
5 332 869 420.66 289 687 374.10 135 462 212.47
10 331 592 397.38 299 641 377.55 132 317 181.46
25 340 1 975 651.77 312 2 005 595.97 131 1 470 306.42
50 351 3 914 1 849.20 313 3 221 1 365.47 139 2 066 888.28
100 1 351 8 510 3 885.58 415 6 566 3 886.47 137 6 151 3 562.03

Table 5.2: Databases Re-Platforming Performance Results
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SION CPIN CMOV
# Threads Min Max Avg Min Max Avg Min Max Avg
1 373 473 402.30 318 425 344.50 189 212 200.50
5 316 548 368.31 269 459 332.46 130 252 175.57
10 319 566 371.66 267 489 333.89 131 397 173.98
25 318 1 409 560.01 278 1 081 510.78 130 728 286.15
50 327 9 771 1 543.60 300 9 270 1 352.13 135 9 444 1 087.75
100 451 6 018 3 251.77 323 5 557 2 877.91 144 4 004 2 457.81

Table 5.3: Servers Re-Platforming Performance Results

SION CPIN CMOV TOTAL
# Threads Min Max Avg Min Max Avg Min Max Avg Error %
1 589 8 340 1 324.60 354 3 103 629.80 299 1 299 397.30 0
5 446 26 587 2 861.77 366 17 770 902.50 311 2 333 412.20 1
10 65 38 248 2 378.95 66 31 415 1 193.33 70 10 275 710.04 29
25 64 60 057 6 051.32 74 60 106 2 680.97 102 60 147 3 088.70 54
50
100

Table 5.4: Databases Re-Factoring Performance Results
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SION CPIN CMOV ORCH
# Threads Min Max Avg # Inst Min Max Avg # Inst Min Max Avg # Inst # Inst
1 462 1 208 700.20 1 355 1 012 665.60 1 491 992 770.40 1 1
5 406 17 169 1 075.09 1-4 290 16 349 1 049.73 1-4 441 19 587 1 095.78 1 1-5
10 375 1 035 550.65 4 282 1 109 385.25 4 416 1 344 584.39 1 5
25 326 1 328 522.89 4 275 1 675 408.95 4 398 1 787 641.23 1 4
50 337 1 595 501.65 4 261 2 185 388.36 4 381 1 730 585.08 1 4-6
100 329 1 751 531.49 4 264 15 887 438.41 4 391 18 974 2 040.43 1-5 6-8

Table 5.5: Server Re-Factoring Performance Results
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5.4 Pricing

Azure Pricing Calculator2 was used to calculate the pricing for each iteration. All the prices presented

are the monthly costs and only represent the resources necessary to run the transaction manager and

integration components. All these prices in a real-world situation would be lower because the enterprise

customer of Azure would have a contract with Microsoft that would give them discounted prices.

For the implemented Lift & Shift architecture (Chapter 4.1), the price for the VM APP with the D4s

v3 SKU running Windows with the OS License Included located in West Europe is 261,02C, the price

for the VM SQL with the same SKU and the Windows and SQL Server Standard licenses included is

515,29C, the total price is 776,31C. In alternative using the Azure Hybrid Benefit, where on-premises

licenses can be used in the cloud, the price for the VM APP is 147,75C, the VM SQL price is 400,22C

for a total of 547,97C.

For the implemented Databases Re-Platforming architecture (Chapter 4.2), the price for the VM APP

is the same at 261,02C with license included and 147,75C with Azure Hybrid Benefit; the Contract Man-

agement & Settings and Offline database in West Europe as Single Database Geo-Redundant backup

storage General Purpose Serverless Gen5 with local redundancy, 1 maximum vCore, 0,5 minimum

vCores, 32 GB of storage and a 0,5 CPU vCores and 2,02 GB used during a period of 892 800 seconds

per month are 84,51C each; the Logging database in West Europe as Single Database Geo-Redundant

backup storage DTU Basic with 5 DTU and 2 GB of storage is 4,13C; the total is 434,17C with the license

included and 320,90C with Azure Hybrid Benefit. The maximum vCores for the serverless databases

were set to 1 because during the testing the maximum ever used was 0,5 vCores. The 892800 seconds

come from assuming that during a day the databases spend one-third of the day with CPU being used.

For the implemented Servers Re-Platforming architecture (Chapter 4.3), the price of the App Ser-

vice in West Europe with Windows, Tier Premium V3, P2V3 SKU for a full month up is 422,74C; the

databases are the same price as the premium versions, the Contract Management & Setting and Offline

are 84,51C each, and the Logging database is 4,13C; the total is 589,30C. An alternative, although not

tested and depending on the necessities of the client, would be to use multiple instances of a cheaper

SKU with a load balancer.

For the implemented Databases Re-Factoring architecture (Chapter 4.4), the App Service has the

same price as in the previous version at 422,74C; the Contract Management & Settings and Offline

databases with the only difference being 8 GB of storage instead of 32 GB are 81,74C each; the Cosmos

DB with Autoscale, Single Region Write, maximum 4000 RU/s, an average of 15% RU/s utilization, and

32 GB of storage is 44,32C; the total is 624,95C.

For the implemented Transaction Manager Re-Factoring architecture (Chapter 4.5), the price of the

Function Apps in West Europe, Consumption Plan, 256 MB per execution, an average of 500 millisec-

onds per execution, and 9 436 400 executions per month is 12,23C; the prices of the databases are the

same, 81,74C for each SQL one, and 44,32C for the Cosmos DB; the total price is 220,03C. The num-

ber of execution per month comes from the daily number of requests, 76 700, times 31 days, times 4, for

2https://azure.microsoft.com/en-us/pricing/calculator/
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each orchestrator execution there are three transaction executions. To avoid cold starts from Function

App inactivity, a Function App Premium Plan, that allows multiple Function Apps to be deployed in the

same plan, and has more performance than a Consumption Plan, could be used. One instance of the

Premium Plan with an EP1 instance pre-warmed the whole month, plus an additional 2 instances for 80

hours per month (4 hours per 20 days a month), would cost 161,14C, raising the total price to 368,94C

(this option was not tested).

Recapitulating, the estimated monthly costs of running the transaction manager and integration com-

ponents and the databases for each iteration are:

• Lift & Shift - 776,31C or 547,97C

• Databases Re-Platforming - 434,17C or 320,90C

• Servers Re-Platforming - 589,30C

• Databases Re-Factoring - 623,95C

• Transaction Manager Re-Factoring - 220,03C

These prices do not include the resources necessary to run the current BankOnBox websites and

back-office application, and the resources to communicate with the core system. The monthly costs of

these resources are approximately the same for each iteration.

5.5 Results Analysis

The results of the Lift & Shift iteration are the baseline to which the other results are to be compared.

In this iteration, the performance is stable for 1 and 5 threads but it starts to decrease thereafter. The

performance for 10 and 25 threads is still in the acceptable range but is worse. For 50 and 100 threads

the performance enters in the unacceptable range, with a single request taking multiple seconds. The

interval of threads that best represent the small bank described at the beginning of the chapter would

be between 5 and 25 threads.

The results for the Databases Re-Platforming, the performance results are very similar to the first

iteration, but on average slightly worse due to the latency introduced by the databases no longer being

on the same subnet of the servers. These results being so close to the first iteration show, however, that

the bottleneck is located in the servers and not in the databases. This iteration comparing to the first

one has the advantage of being cheaper.

The results for the Servers Re-Platforming were expected to be very similar to the second iteration

since the App Service SKU is the equivalent to the VM SKU used. This is mostly true, but this iteration

has sightly better performance for 50 and 100 threads, although outside of the interval of threads that

best represent the small bank. This version also has the disadvantage of costing more than the second

iteration.
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The results for the Databases Re-Factoring are very bad from the beginning with the requests from

1 thread taking multiple seconds. This performance problem is due to the synchronous implementation

of the Cosmos DB calls and makes this implementation as-is unviable.

The results for the Transaction Manager Re-Factoring with a low number of threads are worse than

in the first three iterations, but still within an acceptable amount of time. This added time is due to

this version not caching the responses from the database requests. This iteration, unlike the others,

maintains the request times with the increasing of the load. This version, however, has occasional

requests that take upwards of 15 seconds due to the cold starts of new instances that are being created

to attend to the increasing load. This version also has the advantage of being much cheaper than the

others.
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Chapter 6

Conclusions

6.1 Achievements

The objectives and deliverables of this thesis were achieved, with a functional proof-of-concept de-

veloped following the proposed migration strategy.

The final version of the proof-of-concept takes better advantage of what the cloud has to offer when

compared to the Lift & Shift of the current version as it performs better with the increasing loads and is

overall a cheaper solution.

The work developed in this thesis gives a better insight in terms of performance, costs, and archi-

tecture to what could be the basis of a future version of the architecture of BankOnBox to the people in

charge of making these decisions.

6.2 Future Work

Following the end of this thesis, it is necessary to implement all other transactions that were not

subject to re-factoring and deploy in Azure the new versions of the websites and back-office application

components when finished. After this is implemented, it will be possible to measure the overall costs

and performance of the BackOnBox application running in Azure.

To fully implement the proposed architecture, it will also be necessary to implement the Redis Cache

that was not implemented due to time constraints.

Other future work includes the analysis of Azure services that could add value to an architecture

that has the one implemented as its basis. Services like Azure AD Authentication for second-factor

authentication, Azure Synapse Analytics for reporting on the data in the various databases, among

others.

It could also be of interest the analysis of solutions using other services that were not tested like

Azure Kubernetes Service and solutions that use other configurations of the databases.

53



6.3 Recommended Architecture

With all the work developed in this thesis and all the information gathered from the performance

results and pricing, the recommended architecture is the one in Figure 6.1.

Figure 6.1: Recommended Architecture

In this architecture, Function Apps are recommended instead of App Services due to the pricing and

the better scalability offered. The Function Apps are recommended for the new versions of the websites

and back-office application that are being developed at Link.

If there is a chance of long periods of inactivity, the usage of the Premium Plan for the Function

Apps is recommended. If this is not a problem, or if the cold starts from inactivity can be absorbed, the

Consumption Plan is recommended.

The rest of the architecture is the same as the one initially proposed in Chapter 3.
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