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We present a system that creates two-dimensional abstract animations based on audio files, using
a Computational Creativity approach. We start by segmenting the audio, such that each audio sec-
tion generates its own animation. The animations are created from audio-dependent mathematical
functions, obtained by randomly assembling elementary functions and variables into an expression
tree. We developed three animation analysis methods to select the final colormaps and functions
from a pool of randomly generated ones. Mood Matching looks for audio-animation matches by
evaluating their mood. The Preference Model emulates the aesthetic preference of the user, for
which we obtained a validation precision of 84.6%. Manual Selection corresponds to a co-creation
method, where the user chooses the final colormaps and functions from a set of high fitness samples.
The methods were evaluated through online forms, revealing that participants deemed the videos
creative, and the visuals were considered to align well with the audio. The Preference Model out-
performed Mood Matching, and Manual Selection exhibited potential for its use as a co-creation
tool to generate music visualizations. We believe our results further motivate the exploration of
Computational Creativity systems based on human preference modeling.
Keywords: Computational creativity; Music visualization; Computational aesthetic measures; Hu-
man preference modeling.

I. INTRODUCTION

The technological advancements of modern society
have allowed us to listen to songs on demand, and provide
a variety of mediums that enhance the auditory experi-
ence with the aid of the other senses. Music videos are
short videos that complement a song or album with visu-
als. A person is usually required to manually assemble a
video stream that visually matches the music in question
in some regard, since the desired aesthetics can greatly
vary depending on the song, and even between produc-
ers. When the perceived visual mood matches that of the
audio, the emotional impact of both the audio and the
visual experience can be reinforced [1].

In today’s personal computer and smartphone era, mu-
sic visualization tools are widespread across platforms,
and can range from a set of pre-existing visuals to visual-
izations generated by the combination of certain effects.
The goal of music visualization is to display animated
imagery that changes according to the audio’s progres-
sion, and should be highly correlated to music features
over time - the audio amplitude and frequency spectrum
are usually used. Typical music visualizations created by
such tools are distinct from conventional music videos,
as they are often real-time generated, and some tools can
even display distinct visuals every time the program runs.
Compared to music video creation tools, music visualiza-
tion systems lack flexibility in terms of user manipulation
of outputs, and are less likely to generate visuals that ad-
equately represent high-level audio features.

A considerable amount of music video generation tools
segment the audio and select video clips from available
footage to display in each section, such as Foote et al. [2].
A popular approach to computer-generated visual media
was initially described by Sims [3], which introduced the

use of symbolic expressions to create original visuals, and
has inspired similar works such as [4–6]. Our work was
further informed by aesthetic measures used to analyze
images and animations, such as the ones presented by Li
et al. [7] and by Unemi [6].

This work explores possible solutions to the problem
of animation generation from audio through a Computa-
tional Creativity (CC) approach. Our work had the fol-
lowing objectives: the visual features should be aligned
with the audio features in some manner; the animations
should be considered creative; the animations should be
enjoyable. Our system creates one animation per au-
dio section by parsing mathematical expressions that de-
pend on the frequency intensities of the audio and its
estimated tempo. We developed solutions based on the
audio mood and the aesthetic preference of the user, and
prototyped a co-creation tool using the previous meth-
ods. Videos created in the context of this work can be
found in https://vimeo.com/frommusic2animations.

We now briefly describe the organization of the sec-
tions that follow. We introduce our approach in Section
II. Audio analysis is described in Section III, Section IV
details our approach to animation generation, and Sec-
tion V specifies the different mechanisms developed for
animation analysis. The evaluation method and the ob-
tained results can be found in Section VI. We conclude
by highlighting our main conclusions in Section VII.

II. APPROACH

We now present our proposed solution to the challenge
of creating animations that use audio as the starting
point. Figure 1 presents an overview of the system’s ar-
chitecture, indicating the main modules that constitute
the system, and the elements that are passed between
components. The code was developed in Python.

https://vimeo.com/frommusic2animations
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FIG. 1: Overview of the architecture of the system. The main modules that constitute the system are: Audio Analysis,
Animation Analysis - which encompasses Colormap Analysis and Function Analysis, and Final Video Generation.

Our approach takes an audio file as input and outputs
a video file, which presents abstract animations that were
created based on the audio features, accompanied by the
original audio. The method used to create animations
was based on the seminal work of Sims [3]. We build
upon Sims’s idea of generating textures using symbolic
expressions as the starting point. A frame is achieved
by representing a function, and each function is obtained
through a random assortment of unit functions which
take as arguments the location of the pixel and time-
dependent variables. In our case, some of the variables
that change according to the frame are audio features or
otherwise determined by them, so the animation can be
directly influenced by the audio itself. In this way, in each
frame, each pixel is mapped to a number, and a colormap
is used to decide what color that value corresponds to.

To make the final video more compelling, the audio is
sectioned by determining peaks in audio novelty. These
sections produce one animation each, which can be gen-
erated using unique functions and colormaps, or repeated
ones. To reflect the structure of the audio in the video,
audio sections that exhibit a similar mood use the same
colormap, and audio sections with a similar frequency
distribution can use the same animation function. The
computations of colormap groups and function groups
occur independently.

To determine a colormap to be used, first a set of
250 random colormaps is gathered, and then a selection
method is deployed to pick one. The same applies to
functions, where one is selected out of a batch of 100 new
ones. We designed several methods that can be used to
select colormaps and functions: Mood Matching, Pref-
erence Model, and Manual Selection. Each method is
explained in more detail in Section V.

Once the colormaps and animation functions are de-
termined for every section, it is time to parse all the
section animations into the high-resolution frames that
will be used in the final video. The audio sections are
processed sequentially and, as the frames are computed,
they are assembled into the final sequence. Once the au-
dio is added, the final video is complete. Figure 2 shows
frames from videos produced by the system.

The following sections detail the intermediary steps

FIG. 2: Frames extracted from videos produced by the
system, manually chosen for their appeal and diversity.

needed to compute the video, according to our approach.

III. AUDIO ANALYSIS

Our system starts with the input of an audio file for
which a related video is expected to be generated. In this
section, we detail the audio features that are extracted
from the file to be further used by future modules.

A. Audio Features Extraction

To make sure that all audios are uniform, the audio
is resampled to have the sampling rate ω0 = 16 kHz,
and analyzed through frames of 0.08 seconds, without
overlap. These audio frames will each correspond to a
frame in the animation, resulting in a video of 12.5 frames
per second (fps).

The frequency intensities are obtained by applying a
Fast Fourier Transform (FFT). Following the method de-
scribed by Lu et al. [8], the intensities are grouped in a
way that is similar to the octave scale, forming the Sub-
band Intensity features, according to the intervals
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where ω0 = 16 kHz is the sampling rate and nsubs = 7 is
the number of subbands. This subband division is used
throughout the audio analysis and animation generation.

A brief overview of the audio features is represented
in Table I, and a more in-depth description of each one
can be found in [2] regarding most features, with the
exceptions of the MFCC features which were adapted
from [8], and the STFT features from [9]. The presented
list corresponds to what we call the primary features, as
they precede audio segmentation and mood estimation,
which are performed in later modules.

TABLE I: Primary audio features, adapted from [2],
with the exceptions of the MFCC features which were
adapted from [8], and the STFT features from [9]. The

use column indicates where the features are used:
Section Analysis (S), Mood Model (M), Animation

Generation (G), or Preference Model (P).

Feature Description use

Intensity Spectrum sum of the signal M,P
Subband Intensity Spectrum sum of the signal over each subband G,P

Subband
Intensity Ratio Spectrum distribution in each subband M,P

Brightness Centroid of short-time Fourier amplitude
spectrum M,P

Bandwidth Weighted average of the differences between
the spectral components and the centroid M,P

Roll off 95th percentile of the spectral distribution M,P

Spectral Flux 2-Norm distance of the frame-to-frame spec-
tral amplitude difference M,P

Subband Peak Average of a percent of the largest amplitude
values in the spectrum of each subband M,P

Subband Valley Average of a percent of the lowest amplitude
values in the spectrum of each subband M,P

Subband Contrast The difference between the Peak and Valley in
each subband M,P

Rhythm Strength The average onset strength in the onset se-
quence M,P

Average
Correlation Peak

The average strength (amplitude) of the local
peaks in the auto-correlation curve M,P

avr(A)/avr(V) The ratio between the average peak strength
and average valley strength M,P

Average Tempo Represents the average speed of the music per-
formance, also referred to as av_tempo

S,M,
G,P

Average Onset
Frequency

The ratio between the number of onsets and
the corresponding time duration M,P

MFCC FFT coefficients grouped into 20 bins accord-
ing to the Mel-frequency scaling P

STFT Logarithm of the magnitude of STFT coeffi-
cients, grouped into 30 bins S

B. Section Analysis

When it comes to music videos, it is frequent to see
drastic visual changes matching the beat. Based on the
work of Foote et al. [2], we detect temporal peaks in
audio novelty, which determine a transition in time from
one animation to another. The feature vector of frame i
is denoted as vi, and corresponds to the STFT features

described in Table I. Cosine similarity is used to com-
pare two frames, defining the Frame Similarity, S(i, j).
By computing the similarities between all the frames, we
can represent the Self-Similarity of the audio with a 2-
dimensional matrix, S. Figure 3 shows a detail of the S
matrix for the song Prelude In E Minor (opus 28, nº 4)
by Chopin.

To approximate the perception of a significant change
in the audio, we correlate a checkerboard-like kernel along
the diagonal of the S matrix. In our case, the kernel
indexes vary from −L to L, where L is dependent on the
Average Tempo of the audio. Using a Gaussian function
to reduce the importance of frames further away from the
center, the final kernel corresponds to

C(m,n) =

 exp
(
−m2+n2

2L2

)
, for 0 < m,n ∨m,n < 0,

− exp
(
−m2+n2

2L2

)
, otherwise,

(1)
where m,n ∈ Z : m,n ∈ [−L,L] are the kernel indexes.
The Novelty Score is formalized as:

N(i) =

L∑
m=−L

L∑
n=−L

C(m,n)S(i+m, i+ n), (2)

where i is the index of the frame of interest. The fi-
nal step is to compute the local peaks of the Novelty
Score. We defined the minimum frame distance that
the selected peaks should have as min_peak_distance =
int(min({0.9 ·av_tempo, 2})/spf) frames. The resulting
peaks determine the starting frames of new animations.
Figure 3 shows a detail of the Novelty Score and tran-
sition points for the song Prelude In E Minor (opus 28,
nº 4) by Chopin. The image illustrates that, the more
evident the checkerboard-like appearance of the diagonal
of the S matrix, the higher the Novelty Score.

C. Mood Model

A model was trained based on the features used in [8] to
estimate the mood present in an audio segment. Follow-
ing Thayer’s model of mood [10], the mood is character-
ized by two quantities: valence, a metric of how pleasant
a mood is; and arousal, which is proportional to how in-
tense or energetic a mood is. These can range from 0 to 1.
We use two regression models, one for arousal and one for
valence. The DEAM dataset [11] was used to gather song
samples with arousal and valence annotations per second.
Out of the regression models we tried, the best results
were obtained from Support Vector Regression (SVR)
models for both arousal (RMSE = 0.129, PCC = 0.890)
and valence (RMSE = 0.145, PCC = 0.819), which lead
to the usage of these models when computing the mood
metrics.
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FIG. 3: Close-up of the Self-Similarity Matrix and Novelty
Score for Prelude In E Minor (opus 28, nº 4) by Chopin,

showing the alignment between the Novelty peaks and the
corresponding matrix points.

D. Section Groups

Because we want to use the same colormap for sec-
tions with similar moods, the sections are clustered in
a hierarchical manner using arousal and valence as the
features. The colormap groups are obtained by applying
the OPTICS algorithm [12] as exemplified in Figure 4a,
such that sections in the same colormap group use the
same colors.

We also group sections based on frequency distribu-
tion similarity, to form what we call function groups. A
section is represented by the average feature vector of
all the frames belonging to that section. Each section
is compared with the previous sections through cosine
similarity, and the one with the highest similarity is con-
sidered. If they have a similarity above the threshold
(empirically set to 0.9997), then the two are considered a
match, and will use the same animation function. Addi-
tionally, a section is considered to not have a match if its
best match is the one right before it. In this way, we it-
eratively form groups of matched sections, which dictate
the use of the same animation function (Figure 4b).

IV. ANIMATION GENERATION

The recipes that generate animations have two main
components: a colormap and an animation function. We
now detail how new colormaps and functions are created.
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FIG. 4: Audio analysis of the song “plyPhon" by Autechre.
(a) Section clustering by mood. (b) Indication of the use of

the same animation function.

A. Colormap Generation

Colormaps are functions that map values in R to the
Red, Green, Blue (RGB) space. In our approach, the
colormaps only map values from the [0,1] range, to guar-
antee uniform colormap usage. When fetching a new col-
ormap, after deciding on the number of unique colors,
ncolors ∈ {2, 3, 4} (proportional to the audio arousal),
random values between 0 and 1 are gathered to form a
matrix with the shape ncolors×3, where the columns are
quantities of Red, Green, and Blue. The color sequence
is repeated or mirrored to increase the variability of col-
ors, and there is a chance that some colors are changed
to black or white, and all colors can be made lighter or
darker. Once we have the final sequence of RGB val-
ues, the colors are evenly associated with values in the
[0,1] range, and intermediary values are computed by lin-
early interpolating each RGB value between the two clos-
est colors. Examples of colormaps generated using this
method are shown in Figure 5.

FIG. 5: Examples of randomly generated colormaps.

B. Function Generation

We now turn our attention to the construction of a
function that takes each pixel position and frame index
and returns a value in the [0,1] range.

We achieve this by organizing in a tree-like format a
few nodes that represent either functions, variables or
constants. The final result constitutes the expression
tree that determines what is drawn in each frame. The
root node outputs values in the [0,1] range that are then
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mapped into colors. Since this node is a function with N
arguments, then it must have N children nodes, which
can be functions, variables or constants, and so on. The
terminals (leaves) of the tree must be variables or con-
stants, and the non-terminal nodes (interior nodes) must
be functions.

The function is parsed starting from the terminal
nodes, then their parent nodes are computed, until the
root is reached. To make sure that we have a consistent
mapping between any output and a color from the col-
ormap, we perform a transformation of the output of the
root into the [0,1] space as follows:

output′ =
1

2
· output

1 + |output|
+

1

2
. (3)

Figure 6 shows examples of trees and the frames ob-
tained from parsing them.

3

𝑥 𝑦

𝑟

𝑠𝑖𝑛 𝑐𝑜𝑠

+ −

∗

𝑥 𝑦 𝑥 𝑦

𝑡𝑎𝑛

𝑝𝑜𝑤

3𝑟

A B C

FIG. 6: Examples of function trees and the resulting frames,
obtained using the twilight colormap. All the values were
transformed through Equation 3. (A) Variables based on

pixel coordinates. (B,C) Examples of function trees.

The possible terminal nodes are: constants; variables
related to the location of the pixel, x, y, and r =√

x2 + y2; variables that change with time can be di-
rectly obtained from the Subband Intensities, or can be
sinusoidal functions with a periodicity of 0.5, 1, or 2 times
the Average Tempo; a linear function of time; and one of
the pattern nodes. The patterns are treated as terminals
because they are computed when the tree is assembled
and are frame-independent. These can be: 2D Perlin
Noise; angle and radius dependent patterns such as spi-
rals and flower-like textures; and patterns generated by
performing multiple convolutions with a random kernel
over a pure noise canvas.

The non-terminal nodes represent a function randomly
chosen from a function set, and require one or more ar-
guments, up to four. There are multiple possible types
of non-terminal nodes. Standard functions corresponds
to a set of functions that treat each pixel location and
frame index independently. Other non-terminal nodes
include: a convolution with a random kernel performed
several times over its child node; functions that treat its
two child nodes as x and y and create spirals and flower-
like textures (based on the pattern described above); and

the diffusion node, inspired by reaction-diffusion systems,
where the new value in a pixel location at a given frame is
dependent on the previous frame and on the surrounding
pixels.

The set of standard functions includes: arithmetic
operations, trigonometric functions, module, exponen-
tial, logarithm, squared, square root, power, Perlin
noise (1D, 2D, and 3D), blur, Prewitt, distance, mini-
mum/maximum between two child nodes, smoothclamp,
lerp, warp, and the operation if child1 > child2, then
child3, otherwise child4.

For the time-dependent nodes of the function tree, the
system fetches the required features (i.e., the Subband
Intensities) that match the timestamp of the frame. Fig-
ure 7 shows examples of frame sequences obtained from
time-dependent expressions.

FIG. 7: Examples of animations resulting from our system.
Each row shows one frame sequence, and time evolves from

left to right.

C. Animation Features Extraction

For analyzing the animations, we extract the features
presented in [7], since the features they considered were
shown to be useful to predict the user’s aesthetic prefer-
ence regarding images. We also evaluate how much the
colors change between frames, on average, following [6].
We transform information about frames into animation
features by computing their average over the animation.
All the features are computed on frames with 50×50 res-
olution, independently of what the final video resolution
will be, to ensure consistency of results. An overview of
the extracted features is shown in Table II.

Function Filtering is the enforcement of constraints
on the functions generated, to avoid: a large number
of frames having similar colors for all pixels, animations
perceived as almost static or that look like pure noise,
and functions that take too long to parse.

V. ANIMATION ANALYSIS

In this section, we consider the animation analysis
methods individually, detailing how each one selects the
colormaps and animation functions.
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TABLE II: Animation features that are extracted by
the system. The first six features were adapted from [7],
and Temporal Variation was adapted from [6]. The use
column indicates where the features are used: Function
Filtering (F), Mood Matching (M′), or the Preference

Model (P).

Feature Description use

Color moments Three central moments of hue, saturation and
lightness P

Lightness feature Lightness channel based on Benford’s Law P
Texture feature Local binary patterns (LBP) in four ranges P

Image complexity Information entropy of HSL, RGB and Y709 P
Image order Low complexity based on fractal compressor P

MC metric The image complexity (IC) and processing
complexity (PC) ratio P

Local Variation
Mean and standard deviation over the an-
imation of loc_var, which is computed as
Prewitt(Grayscale(frame))

F,
M′,
P

Local Variation
Percentage

Percentage of frames in the animation for
which the condition 0.05 < loc_var applies F

Temp. Variation

Mean and standard deviation of temp_var,
which is the average distance in the RGB
space between pixel colors of consecutive
frames in the same positions

F,
M′,
P

Temp. Variation
Percentage

Percentage of frame transitions where 0.01 <
temp_var

F

Movement
Correlation

Quantification of correlation between
temp_var and each Subband Intensity P

A. Mood Matching

In Mood Matching, we focus on the arousal and valence
of the audio to analyze animations.

1. Colormap Selection

To capture the arousal of the audio in the colormap,
we associated the use of more unique colors to higher
arousal: for audio arousal below 1/3, ncolors = 2; for
audio arousal above 2/3, ncolors = 4; and intermediary
arousal leads to ncolors = 3. The variable ncolors is pro-
vided to the colormap generator, which returns a set of
colormap candidates, that are analyzed by valence. To
capture the valence of a color, we looked for a function
that would provide higher valence for brighter colors and
lower valence for darker colors, but at the same time pro-
vide a low valence for gray colors and higher for more sat-
urated ones. The function that we believe best captured
this idea is:

V al = Lig10 + 1− sigm((1− Sat)2 + (1− Lig)2), (4)

where Sat, Lig ∈ [0, 1] represent the Saturation and
Lightness values regarding the HSL color space, and
sigm(·) is the sigmoid function. V al is further restricted
to the [0,1] domain. The final valence of a colormap cor-
responds to its average color valence, computed through

the discretization of the colormap into 50 colors. Exam-
ple colormaps and their valence are presented in Figure
8. The Mood Matching method chooses the colormap
with the valence closest to the audio valence.

FIG. 8: Valence values for different colormaps.

2. Animation Selection

To compare each animation with the audio mood, we
now only consider the arousal of the audio. It is our un-
derstanding that, for higher arousal, an animation should
have more edges and abundant movement, while lower
arousal is better represented by frames with fewer edges
and slower movements. For every sample animation,
the arousal_distance is defined as the maximum be-
tween |Audio_Arousal −mean_Local_V ariation| and
|Audio_Arousal − mean_Temporal_V ariation|. Be-
cause we want to guarantee that this value is small, the
animation with the lowest arousal_distance out of the
sample set is the one that is selected.

B. Preference Model

We developed a method that takes the user’s aesthetic
preference into account when looking for audio-animation
matches. A dataset was developed to gather user clas-
sifications of animations given a set of audios, and a se-
lection process was created to train and select the model
with the highest precision. The final model estimates the
fitness of each animation based on the audio, and the one
with the highest fitness is selected.

1. Training and Model Selection

Using the DEAM dataset, 55 audio samples of 10 sec-
onds were gathered, such that the final set of songs would
include a minimum of 4 examples for each music genre.
For each audio sample, 15 different animation samples
were generated independently, each one with a random
colormap and function. The short videos of 100 × 100
pixel resolution are shown to the user through an inter-
face, where they are animated synchronously with the
audio. For every audio, the user indicates for its 15 an-
imations which ones they prefer (class +1), which ones
they feel neutral about (class 0), and which ones they
do not like to see with that audio (class -1). The same
process is repeated for the next audio, and so on. Figure
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9 illustrates the interface used to collect user classifica-
tions.

FIG. 9: Preference Model interface used to classify each
audio-animation pair.

An audio-animation pair is represented by concatenat-
ing the audio and animation features indicated in Tables
I and II with “P" in the column use. The final classifica-
tions are used to train several models, namely Linear Re-
gression, Decision Tree, Support Vector Regression, and
Multilayer Perceptron. The model and parameters with
the highest average precision were selected, correspond-
ing to an SVR model, obtaining a validation precision
of 84.6% regarding the correct classification of class +1
(regression value equal to 0.5 or above). The model was
trained using our classifications, and the model selection
process can result in a different model for classifications
provided by another user.

2. Colormap Selection

In the context of the Preference Model approach,
selecting a colormap means choosing a colormap that
increases the likelihood of generating animations with
higher fitness. Three random functions are created, and
three sections from the colormap group are chosen. The
Mood Matching method is used to get 5 new colormaps,
and we use each one to create several sample animations
- one animation per colormap-function-section combina-
tion. The fitness of every animation is computed using
the preference regression model, and the colormap that
resulted in the highest average fitness is selected.

3. Animation Selection

The model trained on the user’s preference is used to
compute the fitness of every animation from a randomly
acquired set generated using the same audio, and the
function that generates the animation with the highest
fitness is selected for the function group.

C. Manual Selection

Besides the autonomous methods, we developed a so-
lution that allows the user to choose the samples that will
be used in the final video. This approach uses the auto-
matic methods to filter some of the samples so that only
the top ones are shown, and then the user can choose
their favorite. This approach can be seen as an example
of co-creation.

1. Colormap Selection

The process begins with the generation of 250 col-
ormap samples for the colormap group, from which the
top 5 according to Mood Matching is selected to be shown
to the user. The user has the possibility of asking for 5
more colormaps selected from a new set of 250 examples,
until they are pleased with one of them. Once the user
has found a colormap they are pleased with, they indicate
which one they want, and then the process is repeated
for the next colormap group.

2. Animation Selection

For animation selection of each function group, the
Preference Model is used to filter the animations. Given
a random set of 100 functions, the animations are created
based on the first section of the function group. Each fit-
ness is computed, and the top 15 is shown to the user
through a user interface, ordered from highest fitness to
lowest. All the animations move at the same time, synced
with the audio. The user indicates which one should be
used in the final video, and the process is repeated for the
next function group. This interface is shown in Figure 10.

VI. EVALUATION

To evaluate our system, we selected five songs, and
each one was used to generate one video per animation
analysis method: Mood Matching, Preference Model,
and Manual Selection. An additional control video was
generated per song, by using a video that was cre-
ated based on a different song and switching the au-
dio. The videos correspond to 12.5 fps and 720 × 720
pixels. The songs were chosen for their diversity in
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FIG. 10: Manual Selection interface to choose the
animations.

TABLE III: Songs used to evaluate our system, and the
corresponding forms.

Form Music

A Autechre - “plyPhon"
B Chet Baker - “It Could Happen To You"
C Chopin - “Prelude In E Minor (opus 28, nº 4)"
D Coro Madrigale Slovenico - “Sanctus"
E The Beatles - “Help!"

genre and mood, and are listed in Table III. Five
forms were developed such that, for each form, only
one song and the videos associated with it were shown.
The videos used in this evaluation can be found in
https://vimeo.com/frommusic2animations. No infor-
mation was provided to the participants regarding how
the animations were created, the videos were referred to
using a version number, and the method versions were
not the same in each form.

A. Form description

We now provide a short description of the form struc-
ture used. When asking questions about the artifacts,
the audio questions were asked first, then the questions
for version 1 of the video, then version 2, and so on. Af-
ter the demographic information was gathered, the par-
ticipant was shown the audio and videos and was asked
to provide adjectives or expressions that describe them.
Then, we collected opinions resorting to the Likert scale
method [13], by presenting statements to the participant,
and then asking them to indicate how much they agree or
disagree using the following scale: 1 - Strongly Disagree,
2 - Disagree, 3 - Undecided, 4 - Agree, 5 - Strongly Agree.
The Likert scale questions were different for audios and

videos. In the case of the audio, the statements were
“I like it a lot" and “I consider it very creative". Then,
for each video, we presented the statements “I consider
it a music video", “I like it a lot", “I consider it very cre-
ative", “I consider it abstract", and “I think the visuals
go well with the audio". The participant was also asked
to choose all the adjectives that apply out of a list. These
adjectives were: exciting, calm, happy, enjoyable, boring,
surprising, sad, aggressive, funny, interesting, disgusting,
fearful, confusing, numb, and tender. The last question
asked the participant to order the video versions from
most preferred to least preferred.

B. Results and Discussion

In total, there were 167 form submissions, obtained
from 84 different people. Each form had a similar answer
count, between 32 and 35.

Concerning the adjectives that participants selected
out of a list for the audios and videos, Figure 11 shows
the Bhattacharyya distance [14], DBC , between the ad-
jective distribution for the audio, and the distributions
regarding the videos.

A B C D E
Form

Videos w/o Control

Manual

Preference

Mood

Control

0.027 0.138 0.046 0.138 0.051

0.031 0.078 0.039 0.093 0.091

0.053 0.149 0.042 0.147 0.059

0.052 0.226 0.111 0.214 0.044

0.149 0.399 0.135 0.445 0.263

Bhattacharyya Distance

0.000

0.111

0.222

0.334

0.445

FIG. 11: DBC between the adjective selection distributions
of audio and the animation methods for each form.

With a few exceptions, the manual method distribu-
tions obtained better matches with the audio, followed
by the preference method, the mood method, and finally
the control method. In addition, some songs generated
smaller distance metrics than others. In particular, the
songs It Could Happen To You and Sanctus had videos
for which the selected adjectives were less related to the
audio when compared to the other songs. Overall, the
Bhattacharyya distances for the distributions obtained
by considering all video versions except control (Videos
w/o Control) were always less than 35% of their control
counterparts, which indicates a correlation between the
audio perception and the visual perception that these an-
imation methods produce.

Table IV shows metrics for the Likert scale questions,
and Figure 12 shows answer distributions regarding each
option of the Likert scale questions and preference order.

Overall, the videos were overwhelmingly considered ab-
stract, even the control videos, as contemplated in Figure
12a. Regarding the answer analysis presented in Figure

https://vimeo.com/frommusic2animations
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TABLE IV: Metrics per question and per method: mode (Mod), median (Med), average (Avg), and standard
deviation (Std).

Abstract Creative Music Video Video Fits Audio Liked
Mod Med Avg Std Mod Med Avg Std Mod Med Avg Std Mod Med Avg Std Mod Med Avg Std

Manual 5 5 4.49 0.89 5 4 3.71 1.25 5 4 3.59 1.38 5 4 3.73 1.31 5 4 3.38 1.36
Preference 5 5 4.43 0.91 4 4 3.57 1.16 5 4 3.49 1.37 4 4 3.47 1.22 4 3 3.17 1.28
Mood 5 5 4.44 0.90 4 4 3.58 1.21 5 4 3.35 1.39 4 3 3.20 1.31 4 3 3.07 1.33
Control 5 5 4.37 0.95 4 3 3.29 1.26 3 3 3.11 1.39 1 2 2.54 1.33 3 3 2.65 1.26

1 2 3 4 5

Manual

Preference

Mood

Control

0.02 0.03 0.07 0.20 0.68

0.02 0.04 0.08 0.24 0.63

0.02 0.03 0.08 0.23 0.63

0.01 0.05 0.10 0.23 0.61

"I consider it abstract."

0.00

0.17

0.34

0.51

0.68

(a) Abstract

1 2 3 4 5

Manual

Preference

Mood

Control

0.07 0.11 0.22 0.25 0.35

0.07 0.11 0.26 0.32 0.25

0.08 0.09 0.26 0.30 0.27

0.11 0.16 0.25 0.29 0.19

"I consider it very creative."

0.00

0.09

0.18

0.26

0.35

(b) Creative

1 2 3 4 5

Manual

Preference

Mood

Control

0.12 0.12 0.16 0.25 0.35

0.13 0.12 0.18 0.27 0.30

0.16 0.11 0.22 0.25 0.26

0.17 0.17 0.24 0.20 0.22

"I consider it a music video."

0.00

0.09

0.18

0.26

0.35

(c) Music Video

1 2 3 4 5

Manual

Preference

Mood

Control

0.09 0.11 0.15 0.27 0.38

0.10 0.12 0.22 0.36 0.21

0.15 0.14 0.25 0.27 0.19

0.29 0.22 0.26 0.12 0.11

"I think the visuals go well with the audio."

0.00

0.10

0.19

0.29

0.38

(d) Video Fits Audio

1 2 3 4 5

Manual

Preference

Mood

Control

0.12 0.17 0.21 0.22 0.28

0.13 0.19 0.25 0.26 0.17

0.17 0.19 0.18 0.32 0.14

0.23 0.24 0.25 0.20 0.08

"I like it a lot."

0.00

0.08

0.16

0.24

0.32

(e) Liked

4º 3º 2º 1º

Manual

Preference

Mood

Control

0.14 0.14 0.29 0.43

0.19 0.27 0.33 0.22

0.20 0.35 0.24 0.21

0.47 0.24 0.14 0.14

"Order the videos by preference."

0.0

0.1

0.2

0.3

0.4

0.5

(f) Preference

FIG. 12: (a)-(e) Answer distributions regarding the Likert scale questions. The values represent: 1 - Strongly Disagree, 2 -
Disagree, 3 - Undecided, 4 - Agree, 5 - Strongly Agree. (f) The distributions for the order of preference of the videos.

12b, while the manual method seems to be the most ef-
fective at producing videos deemed creative, with a mode
of 5, the preference and mood methods seem to perform
relatively well, with classifications mostly ranging from 3
to 5, with 4 as the median and mode. The control videos
also presented a considerable performance in this regard,
which we believe shows our system’s ability to generate
creative animations, even when they don’t match the au-
dio.

Regarding the statement that the videos were music
videos (Figure 12c), the control video produced opin-
ions almost evenly distributed, then the distributions get
more skewed to agreeing with the statement as the meth-
ods go from mood, to preference, to manual. This is
telling of the abilities of the different methods for select-
ing the best animations to go with an audio.

From the analysis of Figure 12d, the manual videos
appear to be ones with visuals that were considered to
go well with the audio more often. In addition, the au-
tomatic methods also performed considerably well, with
the preference method producing better results.

Opinions greatly diverged regarding liking the videos,
as can be seen in Figure 12e, which is coherent with the
notion that aesthetic tastes are based on subjective per-

sonal criteria, at least to some extent. Nevertheless, in
general, the control videos were not strongly liked, and
the manual videos, on the other hand, were the most
likable of all.

Inspecting Figure 12f, we can see that the manual
videos were often the favorite ones, followed by the prefer-
ence videos, then the mood videos, and the control videos
were frequently placed last. This is consistent with the
analysis regarding the analysis of whether the videos were
considered music videos, whether the visuals go well with
the audio, and if the videos were liked.

Regarding our objectives, we believe our solutions
showed positive results, as the automatic methods were
able to surpass the control versions in terms of perception
of audio and visual alignment. Furthermore, the Manual
Selection results reveal its potential as a co-creation tool.

VII. CONCLUDING REMARKS

We have presented a system that creates original
abstract videos with animations that depict a song.
The driving idea behind our system was the genera-
tion of animations by drawing time-dependent mathe-
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matical expressions frame by frame, which should move
in accordance with the audio. The videos gener-
ated in the context of this work can be consulted in
https://vimeo.com/frommusic2animations.

The audio is segmented according to audio novelty and
its average tempo, such that each audio section gener-
ates its own animation. Audio sections can use a re-
peated colormap or function according to section simi-
larity. New colormaps are generated by randomly assem-
bling sequences of RGB values. The animation functions
are obtained by arranging mathematical operations, con-
stants, pixel location variables, and time-dependent vari-
ables. We use the frequency intensities extracted from
the audio as the temporal variables, along with sinusoidal
functions that align with the average tempo of the audio.

To select the colormaps and functions to be used, first
a collection of samples is generated, then the final ones
are selected using one of the animation analysis methods.

The first developed method, Mood Matching, is fo-
cused on the audio mood for each section. It estimates
the average color mood by evaluating color Lightness and
Saturation, and estimates the arousal of animations as
being proportional to the average amount of detail and
color change between frames.

The Preference Model was generated by training an
SVR model on audio-animation pairs and user-provided
classifications regarding their fitness. The selected
model, SVR, obtained a validation set precision of 84.6%.

A final animation analysis method, Manual Selection,
relies on a human user to select the best colormaps out
of a collection filtered according to Mood Matching, and
the best animation functions out of a set filtered using
the Preference Model.

Online forms were deployed to measure our system
on different metrics, producing positive results. Specifi-
cally, evaluation of each method on five songs indicated
that the Preference Model performed better than Mood
Matching, and the Manual Selection method showed
promising results for its use as a co-creation tool to gen-
erate music visualizations that fit the audio.

We hope our work inspires further discussion regarding
creative artifacts, the creative process, and the possibility
of creative computational systems. We believe the results
obtained in this work further motivate the study of hu-
man preference modeling, with applications not only in
the evaluation of aesthetic measures, but also regarding
the development and improvement of co-creation tools.

It would be valuable to explore other ways of animat-
ing to music, as we have merely explored one possible
approach. Our system could be improved through time
optimization, which would make viable the deployment
of a Genetic Algorithm to iteratively increase the fitness
of the animations. An app for video creation could be
developed, allowing further study of the presented meth-
ods, and other features, models, parameters, and training
datasets could be explored.
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