
An Interoperability Tool for Low-Code Development

Platforms

Rita Clode Silva Jardim Fernandes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Miguel Leitão Bignolas Mira da Silva

Examination Committee

Chairperson: Prof. David Manuel Martins de Matos
Supervisor: Prof. Miguel Leitão Bignolas Mira da Silva

Member of the Committee: Prof. Sérgio Luís Proença Duarte Guerreiro

October 2021

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i

ii

Acknowledgments

First and foremost, I would like to express my gratitude to Prof. Miguel Mira da Silva my su-

pervisor for introducing me to this challenge back in April 2020 and for his guidance during this

research.

I would also like to acknowledge the Phoenix team, who gave me the opportunity to be a part of

this project and have taught me so much. In particular Leonardo for all the knowledge you shared

with me, for your guidance and support over this last year.

A special thanks my parents and sister Leonor for their friendship, encouragement and caring

over all these years, for always being there for me through thick and thin and without whom this

project would not be possible. You helped me grow as a person.

I thank my friends, family and colleagues that have crossed paths with me, taught me something

and had a positive impact in me.

Last but not least, to Dinis that has been there for me during the good and bad times in my life.

Thank you.

To each and every one of you, thank you.

iii

Abstract

The development of software systems commonly requires integration use cases, such as the data

exchange between multiple tools. Interoperability is defined as the ability of multiple software in-

termediaries to exchange information so that a tool is able to handle the information generated

by another one. Over the last few years, Low-Code Development Platforms (LCDPs) have gained

popularity, with a rising number of companies using them to build enterprise-grade apps and trans-

form their businesses. The lack of interoperability will raise a common problem, since applications

are changing from thick clients to thin web clients. We create a method to expose an Open Data

Protocol (OData) service dynamically from an LCDP application, in order to be further consumed

by other systems such as Business Intelligence tools. OData is a protocol that allows web clients

to publish, query, and update data in data services using simple HTTP requests. All the artifacts

necessary to have an OData service up are generated from an LCDP application’s data model, in-

cluding the translation of OData requests to SQL queries and compliance with the OData protocol.

Our approach creates an API exposing the data retrieved from the LCDP application. The model is

exposed as an OData service, allowing end-users to obtain data using the OData query language in

a simple way, and for the data to be consumed by other applications.

Keywords

Open Data Protocol (OData); Low-Code Development Platforms (LCDPs); Data Integration; OutSys-

tems.

v

Resumo

O desenvolvimento de sistemas de software geralmente requer ferramentas de integração, como a

integração de dados. A interoperabilidade é definida como a capacidade de múltiplos intermediários

de software de trocar dados para que uma ferramenta seja capaz de lidar com os dados gerados

por outra. A popularidade das plataformas de desenvolvimento de low-code aumentou nos últimos

anos, com o número crescente de empresas usando-as para criar aplicações de nível empresarial. A

falta de interoperabilidade levantará um problema comum. Nesta investigação criamos um método

para expor um serviço Open Data Protocol (OData) dinamicamente a partir de uma aplicação de

plataforma de desenvolvimento de low-code, para ser posteriormente consumido por outros sis-

temas, como ferramentas de Business Intelligence. OData é um protocolo HTTP que permite que

clientes da Web publiquem, consultem e atualizem dados em serviços de dados usando pedidos

HTTP simples. A partir de um modelo de dados inicial obtido a partir de uma aplicação low-code,

derivamos todos os artefatos necessários para ter um serviço OData que está em conformidade com

a definição do modelo, incluindo a conversão de pedidos OData em consultas SQL de acordo com

o protocolo OData. A nossa abordagem cria uma API expondo os dados recolhidos de uma apli-

cação low-code. O modelo é exposto como um serviço OData, permitindo que os clientes utilizem

a linguagem de consulta OData para obter as informações de que precisam de forma fácil, além de

permitir que sejam consumidas por outras aplicações.

Palavras Chave

Open Data Protocol (OData); Plataformas de Desenvolvimento Low-Code; Integração de Dados;

OutSystems.

vii

Contents

1 Introduction 1

1.1 Research Methodology . 3

1.2 Document Outline . 4

2 Low-Code Development Platforms 7

2.1 Architecture and Main Components of Low-Code Development Platforms 9

2.2 Development process in Low-Code Development Platforms 11

3 Systematic Literature Review 13

3.1 Planning the Review . 15

3.1.1 Motivation . 15

3.1.1.A Open Data Protocol . 16

3.1.2 Research Questions . 17

3.1.3 Search String and Data Sources . 17

3.1.4 Study Selection Criteria . 17

3.1.5 Data Extraction . 18

3.1.6 Data Synthesis . 18

3.2 Conducting the Review . 19

3.2.1 Results . 19

3.3 Reporting the Review . 20

3.3.1 RQ1. How does OData work? . 21

3.3.2 RQ2. What are the main benefits and utility of using OData? 24

3.3.3 RQ3. What are the main challenges and limitations of the OData protocol? 25

3.3.4 RQ4. What applications have been developed with OData? 26

3.4 Lessons Learned . 29

4 Research Problem 31

5 Proposal 35

5.1 Objectives . 37

5.2 Description . 37

ix

5.2.1 Creation of OData’s EDM . 38

5.2.2 Mapping between OData requests and SQL statements 39

5.2.3 De/Serialization Process . 41

6 Demonstration 43

6.1 Context . 45

6.2 Exposing an OData service in OutSystems . 45

6.2.1 Creation of OData’s EDM . 45

6.2.2 Mapping between OData requests and SQL statements 47

6.2.3 De/Serialization Process . 48

6.3 OutSystems CDS Project . 49

6.3.1 Example . 51

7 Evaluation 53

7.1 Test Application . 55

7.2 Unit Tests . 56

7.2.1 Service and Metadata Documents . 56

7.2.2 CRUD Operations . 56

7.2.3 Querying Requests . 58

7.2.4 PowerBI Integration . 61

8 Conclusion 63

8.1 Research Contributions . 65

8.2 Research Limitations . 65

8.3 Future Work . 65

Bibliography 67

A SLR Obtained Studies Table 73

B An OData Service Document Listing 75

C An OData Metadata Document Listing 77

x

List of Figures

1.1 DSRM process with the research context, adapted from [1]. 4

2.1 Layered architecture of LCDPs adapted from [2]. 10

2.2 Main components of LCDPs adapted from [2]. 10

3.1 Study selection process. 19

3.2 Distribution of the selected documents per dataset. 20

3.3 Distribution of the selected documents per year. 20

3.4 URI components of the Open Data Protocol. 23

5.1 Integration process using OData. 38

5.2 Example of a Product collection. 42

6.1 Entity diagram of CDS Project. 50

6.2 URL components of published and draft projects. 51

6.3 UI of the Overview screen when creating a new project. 51

6.4 UI of the Entities screen when creating a new project. 52

6.5 UI of the Security screen when creating a new project. 52

7.1 The Northwind DB entity diagram . 55

7.2 POST request and response of creating a new entity in Shipper collection, using Postman. 57

7.3 PUT request for updating a specific entity in Shipper collection, using Postman. 57

7.4 Getting OData feed data in a PowerBI report. 61

7.5 PowerBI report with the project’s OData feed loaded data. 62

xi

xii

List of Tables

3.1 Inclusion and exclusion criteria. 18

3.2 Data extraction form. 18

3.3 Description of HTTP requests in OData. 23

3.4 Most used query options. 24

5.1 Integration process of an OData producer (LCDP application) and consumer. 38

5.2 Transformation of the target resource path into the corresponding SQL statement,

through a query model. 40

5.3 Mapping query options into SQL statements, through a query model. 41

A.1 List of the obtained studies. 74

xiii

xiv

Listings

6.1 Example of an OData GET request mapping to SQL statement. 47

6.2 Example of an OData DELETE request mapping to SQL statement. 47

6.3 Example of an OData POST request mapping to SQL statement. 48

6.4 Example of an OData PUT request mapping to SQL statement. 48

6.5 Pseudo-code of OData requests execution. 49

7.1 GET request on Shipper entity set. 56

7.2 Shipper single entity with id=4. 57

7.3 Shipper single entity with id=4, after updating the company’s name. 58

7.4 Two of the top 3 most expensive beverages. 59

7.5 Checking the category of the product belonging to order detail with id=2. 59

7.6 Products with Chef names that aren’t discontinued, with the respective categories. . . . 60

7.7 Product out of stock awaiting order arrivals. 60

7.8 Inline count and second cheapest product query result. 61

B.1 Metadata document of the Northwind project. 76

C.1 Metadata document of the Northwind project. 77

xv

xvi

Acronyms

ACM Association for Computing Machinery

API Application Program Interface

BI Business Intelligence

BPMN Business Process Model and Notation

CDS Common Data Service

CoAP Constraint Application Protocol

CRM Customer Relationship Management

CRUD Create, Read, Update and Delete

CS Computer Science

CSDL Conceptual Schema Definition Language

DB Database

DSRM Design Science Research Methodology

EDM Entity Data Model

ERP Enterprise Resource Planning

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IS Information Systems

IT Information Technology

JSON JavaScript Object Notation

LCDP Low-Code Development Platform

OData Open Data Protocol

OGDI Open Government Data Initiative

PaaS Platform as a Service

xvii

REST Representational State Transfer

RQ Research Question

SCM Supply Chain Management

SDK Software Development Kit

SE Software Engineering

SLR Systematic Literature Review

SOS Sensor Observation Service

SQL Structured Query Language

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VGT Virtual Global Taskforce

XML Extensible Markup Language

xviii

1
Introduction

Contents

1.1 Research Methodology . 3

1.2 Document Outline . 4

1

2

The development of software systems commonly requires integration use cases, such as the

data exchange between multiple tools. Interoperability is defined as the ability of multiple software

intermediaries to exchange information so that a tool is able to handle the information generated

by another. Since the representation of transferred data differs between tools, implementing an

interoperability solution frequently calls for the use of syntactic and semantic mapping.

Low-code is a form of software development in which applications and processes are devel-

oped with little to no coding. A Low-Code Development Platform (LCDP) employs visual interfaces

through simple logic and graphical features instead of sophisticated code languages. These plat-

forms have become more popular as a cost-effective and time-saving alternative to traditional soft-

ware development [3].

However, there is a lack of advanced functionalities within the LCDPs resulting in a need for

interaction with other tools, such as data analytics and visualization tools. Such interaction fre-

quently involves exposing web services, through Application Program Interfaces (APIs), tools that

help support interoperability. OutSystems [4], one of the leading LCDPs has been trying to make

their applications interoperable for almost two decades.

This research intends to create a dynamic interoperability tool for Low-Code Development Plat-

forms using the Open Data Protocol (OData), a protocol which is further explained in Chapter 3.

Such method will allow complex queries against the exposed information, enable Create, Read, Up-

date and Delete (CRUD) operations over the service data, provide the means to navigate through

relationships between entities and ensure the OData service can be consumed by an OData con-

sumer.

1.1 Research Methodology

The research methodology adopted in this research is Design Science Research Methodology (DSRM).

DSRM generates and assesses IT artifacts such as constructs, models, methods, instantiations,

or any created item with an embedded solution, to an understood research topic in order to tackle

recognized research challenges [1]. It entails a rigorous technique for creating artifacts that follows

a six-step procedure:

• Problem identification and motivation involves outlining the research challenge and justi-

fying the solution’s usefulness in order to encourage the researcher to pursue it.

• Definition of the objectives for a solution includes inferring the solution’s objectives, either

quantitative or qualitative, from the problem statement and knowledge about the problem’s

current condition and potential solutions.

3

Figure 1.1: DSRM process with the research context, adapted from [1].

• Design and development entails the process of determining the artifact’s desired function-

ality and architecture, then building it.

• Demonstration implies demonstrating how the artifact is applied to resolve at least one in-

stance of the problem.

• Evaluation includes observing and measuring how effectively the artifact supports a solution

to the problem, by contrasting a solution’s objectives to real results from the demonstration’s

use of the artifact.

• Communication involves informing researchers and other relevant audiences about the topic

and its importance, as well as the artifact’s utility, novelty, and effectiveness.

This process, summarized in Fig. 1.1, is usually an iterative one. Researchers determine whether

to try to increase the effectiveness of the artifact by redesigning and redeveloping it or to move on

to communication and leave further improvement to future projects after analyzing the artifact [1].

This research was conducted using the DSRM [1] guiding principles, practice guidelines, and

procedure for artifact deployment and evaluation.

1.2 Document Outline

The remainder of this document is structured as follows. Chapter 2 concerns Low-Code Develop-

ment Platforms and how they work as our research field. OData is further described in Chapter 3

through a Systematic Literature Review (SLR) composed by the planning (Section 3.1), the conduct-

ing (Section 3.2), and the reporting phases (Section 3.3) with an analysis of the obtained results

(Section 3.4).

The Research Problem of this master’s thesis is presented in Chapter 4. A method for the dy-

namic integration process between an LCDP and an OData consumer through an OData service,

which is our proposal to mitigate the defined problem, is developed in Chapter 5.

4

The demonstration of the integration process is covered in Chapter 6, and its evaluation is done

in Chapter 7.

Finally, Chapter 8 exposes the contributions of our research, our main limitations and our inten-

tions for future work.

5

6

2
Low-Code Development Platforms

Contents

2.1 Architecture and Main Components of Low-Code Development Platforms 9

2.2 Development process in Low-Code Development Platforms 11

7

8

In this chapter, we introduce Low-Code Development Platforms as our main research field.

Low-Code Development Platforms are simple visual environments that are increasingly intro-

duced and promoted by major IT companies [2]. Such platforms help dealing with the shortage

of highly-skilled software developers by enabling end users, with little to no programming experi-

ence, to contribute in software development processes. The most representative LCDPs are OutSys-

tems [4], Mendix [5], Appian [6] and Kissflow [7].

LCDPs allow the development and deployment of fully functional software applications using

powerful graphical User Interfaces (UIs) and visual abstractions requiring minimal or no procedu-

ral code [8]. They are frequently delivered on the cloud via a Platform as a Service (PaaS) model.

PaaS is a cloud development and deployment environment that contains tools for building every-

thing from simple cloud-based applications to sophisticated enterprise software enabled through

the cloud [9]. PaaS help avoiding the cost and complexity of purchasing software licenses, devel-

opment tools, managing application infrastructure and other resources. Model-driven engineering

techniques are used to design these fully functional applications, which take advantage of cloud

infrastructures, automatic code generation and graphical abstractions. To ensure effective and ef-

ficient development, PaaS models are used alongside deployment and maintenance, and software

design patterns and architectures.

2.1 Architecture and Main Components of Low-Code Develop-

ment Platforms

According to Sahay et al. [2], from an architectural point of view LCDPs are composed by four main

layers, overviewed in Fig. 2.1:

1. Application Layer: The top layer consists of the graphical environment that users directly

interact with, along with the toolboxes and widgets used to build the UI of an application. The

authentication and authorisation mechanisms are also defined in this layer. Users also specify

the behaviour of the application being developed.

2. Service Integration Layer: This layer is used to connect with different services through APIs

and authentication mechanisms.

3. Data Integration Layer: The data integration layer is concerned with data integration from

different data sources, allowing the data to be operated and homogeneously manipulated, even

if heterogeneous sources are involved.

4. Deployment Layer: The developed application can be deployed on dedicated cloud infras-

tructures or on-premise environments, depending on which LCDP is being used.

9

Figure 2.1: Layered architecture of LCDPs adapted from [2].

Figure 2.2: Main components of LCDPs adapted from [2].

The individual components that make up any LCDP are represented in Fig. 2.2 and through

the expansion of the layered architecture defined in Fig. 2.1 they are divided into three tiers. The

application modeler is in the first tier, the server side and its many features are in the second tier,

and external services that are integrated with the platform are in the third layer.

The application modeler allows to specify applications using modeling constructs and abstrac-

tions. Once the application model is complete, it may be transferred to the platform back-end for

further analysis and manipulations, including the construction of a fully functional application that

has been tested and is ready to be deployed on the cloud. The middle tier takes the application

model received from the application modeler and performs model management operations such as

code generation and optimizations while also taking into account the involved services including

10

database systems, micro-services, API connectors, model repositories of reusable artifacts, and col-

laboration means.

The developer is not concerned about the application’s low-level architecture. All of the required

micro-services are established, orchestrated and managed in the back-end. Developers are also

relived from handling technical aspects manually such as business logic consistency, authentication,

data integrity, load balance and security.

LCDPs handle version control by providing developers with repositories capable of storing reusable

modeling artifacts. These platforms also offer capabilities that support development paradigms such

as agile, scrum and kanban. As a result, developers can quickly visualize the application develop-

ment process, define new tasks and sprints, deal with changes as soon as customers need them and

engage with other stakeholders.

2.2 Development process in Low-Code Development Platforms

The typical phases involved in designing applications with LCDPs according to Sahay et al. [2] are:

1. Data modeling - through visual interfaces users configure the data schema of the application

under development; such step includes generating entities, establishing associations, defining

constraints and dependencies and so on;

2. User interface definition - users configure forms and pages in order to construct application

views, followed by defining and managing user role and security mechanisms; drag-and-drop

features help speed up development and render multiple views rapidly;

3. Business logic rules and workflows specification - users usually manage workflows among

several forms or pages that require different operations on the interface components; Business

Process Model and Notation (BPMN)-like notations can be used to implement such processes

for visual-based workflows;

4. External services integration - LCDPs offer the consumption of external services by inte-

grating various third-party APIs;

5. Application deployment - most platforms allow users to easily preview and deploy the pro-

duced application with only a few clicks;

11

12

3
Systematic Literature Review

Contents

3.1 Planning the Review . 15

3.2 Conducting the Review . 19

3.3 Reporting the Review . 20

3.4 Lessons Learned . 29

13

14

In this chapter we perform a Systematic Literature Review on the Open Data Protocol.

A Systematic Literature Review is a strategy for identifying, assessing, and interpreting all rel-

evant research on a certain research issue or topic [10]. Systematic reviews attempt to give an

unbiased and reproducible appraisal of a research topic using a well-defined, trustworthy, rigorous,

and auditable process [10].

An SLR was conducted in order to summarize the existing information about the Open Data

Protocol, to identify any gaps in current research and to offer a background for effectively placing

new research activities relating to this topic. We performed our systematic research methodology

guided by Kitchenham’s Guidelines for performing Systematic Literature Reviews in Software Engi-

neering [10]. The process of an SLR can be summarised into a three phase approach:

1. Planning the Review: Verifying the necessity for carrying out a review is done in this first

phase. The major actions carried out here are identifying the research question(s) that the

review is going to tackle and creating a review protocol, describing the core techniques.

2. Conducting the Review: We create and execute a search strategy in this phase. The actual

relevance of the possibly relevant primary studies is assessed after they have been chosen. A

data extraction is performed to record the information collected from the primary investiga-

tions.

3. Reporting the Review: The outcomes of a systematic review must be written up in the last

phase. We also evaluate the data and explain the generalizability of the findings as well as the

review’s limitations.

3.1 Planning the Review

3.1.1 Motivation

As of today, the results delivered by several systems and organizations usually have little possibility

of access, interaction and analysis of the data. Access to enterprise data from both external and in-

ternal applications is required by business practices. Suppliers, for example, make their inventories

available to retailers, while health providers provide patients access to their medical records [11].

Data is frequently a scarce resource for small enterprises [12]. To see through this shortage of data

sharing principles, opening the data would allow automatic data integration in application by third

party users.

Many organizations plan to make a variety of data and services available to all or most client

devices [13]. When a new client platform is installed, data and services must typically be updated

15

and modified to accommodate the new platform. Similarly, when a new service is introduced, all

existing client platforms must be updated to accommodate it [13].

With the growing availability of data in all domains, a common standard for data description is

lacking. Thus, data sharing initiatives should be based on a common standard allowing interoper-

ability. For example, opening existing surveillance systems in the public health domain could allow

the development of innovative use of data and reduce the underuse of data, benefiting the public.

As the market trends towards easy access to data across different platforms and devices, this

standard approach of exposing and consuming data is required in order to develop a more open and

programmable web. Data services are a sort of web service that provide rich metadata, expressive

languages, and APIs for querying and receiving data from service providers to customers [11]. The

two most common approaches for consuming data services are through functions and queries [11].

Functions encapsulate data and restrict access to a set of carefully defined, usually application-

specific function signatures. Queries, on the other hand, can be written in a supported query lan-

guage based on the external model.

Companies are exposing their back-end business services all the more as plain old Hypertext

Transfer Protocol (HTTP) endpoints. For the time being, Representational State Transfer (REST)

has become the main protocol since web APIs are created depending only on Uniform Resource

Identifiers (URIs) and HTTP messages. REST APIs boost data-driven applications that integrate data

from different sources. Data-level integration refers to transferring, replicating, and transforming

the data from one from one application to another, without regard for application or business logic.

3.1.1.A Open Data Protocol

The Open Data Protocol is a web service data access protocol that provides simple and standard

building and consumption of queryable and interoperable RESTful APIs [14]. The service allows for

the creation of data services, in which Uniform Resource Locator (URL)-accessible resources are

specified using an Entity Data Model (EDM) and queried using conventional HTTP messages. EDM

is an abstract data model that uses concepts like entity types, entities, and associations from the

entity relationship model. The protocol also includes a URL-based query language as part of the

URL format that resembles Structured Query Language (SQL) in some ways. This facilitates clients

querying the data, through the uniform CRUD operations for the underlying data model. OASIS has

accepted the latest version of OData (4.01) for standardization.

Even though some research has been done for merging and comparing data from different ser-

vices, no SLR (Systematic Literature Review) has reviewed the literature regarding the use of the

Open Data Protocol.

As a result, it’s critical to gather all relevant studies in order to identify and comprehend the

16

present state of OData research. It’s therefore able to assess what concerns and questions have

been addressed and solved, as well as what the most pressing issues with OData are right now.

3.1.2 Research Questions

The most crucial component of an SLR is defining the Research Questions (RQs), as they drive the

entire review technique. This review intends to achieve two main objectives that are understanding

the OData protocol and where is the protocol being used. The following RQs were established in

order to meet the previously stated objectives:

• RQ1. How does OData work?

• RQ2. What are the main benefits and utility of using OData?

• RQ3. What are the main challenges and limitations of the OData protocol?

• RQ4. What applications have been developed with OData?

3.1.3 Search String and Data Sources

The Review Protocol is a detailed plan that outlines how a systematic review will be carried out [10].

It begins with a literature search, which outlines the specification of the search string that will be

used to conduct a search across the selected datasets in order to find the greatest number of papers

that may answer the research questions. The search string used to conduct the search, as well as

the datasets that were selected, are listed below.

Search String. "OData" AND "protocol"

Datasets. EBSCO Host, Web Of Science, IEEE Xplore Digital Library, ACM Digital Library and

Science Direct.

3.1.4 Study Selection Criteria

The study selection criteria of a systematic review are used to establish which research studies are

excluded and which are included. Its goal is to find studies that are related to the research topics

and provide direct proof. The review’s inclusion and exclusion criteria are listed in Table 3.1.

17

Table 3.1: Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria
- Written in English. - Not written in English.
- From one of these domains IT/CS/SE/IS. - Source type is patent.
- Source type is academic journal, conference
material, ebook/book, documentation, or jour-
nal.

- Studies not related to the research questions.

- Studies about the adoption of the OData pro-
tocol.
- Studies identifying the risk factors associated
with OData and impact on reliability.

Table 3.2: Data extraction form.

Data Item Description
1 Title Title of the study
2 Authors Name of the author(s)
3 Year Publication year of the study
4 Publication type Type of publication (e.g. conference/academic journal/book)
5 Data source Which data source was the study retrieved from
6 Study aim Aim of the study
7 Research focus Which research questions the study relates with

3.1.5 Data Extraction

The data extraction process defines how the information required from each study will be ob-

tained [10]. The purpose of this step is to create data extraction forms that correctly capture the

information that researchers get from the gathered studies [10]. Thus, our data extraction form

(Table 3.2) was designed. Data items 1 to 5 gathered basic information of the papers, including

the title of the document, the name(s) of the author(s), the year of publication, publication type and

respective data source which the document was retrieved from. After reading the publications, the

remaining data items (6-7) were obtained. The extracted data items were collected, which aided in

the data’s organization and analysis.

3.1.6 Data Synthesis

Data synthesis entails collating and summarising the results of the final set of studies. The 37 se-

lected studies were read noting recurrent methods and findings. Inconsistencies and discrepancies

were recorded and are presented further on.

For RQ1, we extracted the information from studies which mentioned explicitly the components

of OData and how this protocol works. Furthermore, we extracted the list of benefits, problems

and challenges of using this technology to answer both RQ2 and RQ3. Regarding RQ4, we checked

18

Figure 3.1: Study selection process.

whenever the studies would introduce a domain or a new tool that made use of the OData protocol.

3.2 Conducting the Review

The second stage of the SLR is undertaken in this section. The purpose is to use an objective search

approach to discover as many primary studies that relate to the research topic. The designated

search strategy is performed and the extracted data is analyzed.

The search string was applied to the Review Protocol’s specified resources, yielding a total of

229 publications. The duplicates were removed and we were left with 198. After applying inclu-

sion/exclusion criteria, 154 studies remained. Once the potentially relevant primary studies were

obtained, the abstracts were read to further exploit the importance of the documents. For our final

selection, we had a total of 37 studies. Fig. 3.1 presents the whole SLR execution process. Table A.1

contains the whole list of selected documents as well as some of the retrieved data items.

3.2.1 Results

In this section we examine at several aspects of the chosen research, such as their data sources and

dispersion through time.

Among the 37 selected documents, EBSCO Host is the most represented source followed by Web

of Science, as illustrated in Fig. 3.2. EBSCO host was expected to be the main source as it is one

19

Figure 3.2: Distribution of the selected documents per dataset.

Figure 3.3: Distribution of the selected documents per year.

of the largest multidisciplinary databases for academic web resources in the world, with over 36

disciplinary databases.

Regarding the distribution over the years of the selected studies, by analyzing Fig. 3.3 we can

check that 2012 has most relevant information related to our research. OData was created by

Microsoft in 2007. Versions 1.0, 2.0 and 3.0 were released under Microsoft Open Specification

Promise. In 2012, the OASIS international consortium launched an initiative to standardize OData.

Releasing in 2014, OData’s version 4.0 was already standardized at OASIS. Although this technology

has been around for almost 15 years, few researchers have embraced the protocol in their work.

3.3 Reporting the Review

The last phase of a systematic review entails reporting the findings, responding to our four research

questions, and communicating them to anyone who might be interested.

20

3.3.1 RQ1. How does OData work?

As already stated, Microsoft presented the Open Data Protocol back in 2007. By 2012, OData had

been proposed to OASIS, and in 2014 Version 4.0 was released by the international open standard

consortium. As of 2020, OData Version 4.01 has been published, which is a highly compatible,

incremental release over OData 4.0.

OData is an open protocol on top of HTTP that allows web clients to use basic HTTP queries to

publish, query, and update information in data services [15]. It enables you to develop resources

that are specified by an Entity Data Model and queryable by web clients through a SQL-like URL-

based query language [16]. This query language has a range of query options that allow customers to

exactly define the instance data they want. Simply described, OData is a standardized data transport

format with a defined data access interface [13]. The data is serialized and sent via HTTP using

the Extensible Markup Language (XML) or JavaScript Object Notation (JSON) standards. The latter

provide an alternative data format, which is supported in just about all web application technologies.

The OData client ecosystem has grown over the previous few years to the point that client libraries

are available for the main client devices and platforms, with more on the way [13]. The OData

ecosystem is composed of service producers and service consumers. OData service producers use

the OData protocol to expose their data, whereas OData consumers are simply applications that

consume data exposed using the OData protocol. OData consumers can range in sophistication

from a simple web browser to a custom application that exploits all of OData’s features. API Sever,

BrightstarDB, IBM App Connect, Lightswitch and Windows Azure Table Storage are some of the

many OData producers.

OData consists of the following four main parts [17]:

• OData protocol - The protocol specifies the way consumers can interact with data sources.

CRUD operations along with the supported XML and JSON serialization standards. The query

language includes a set of query parameters that enable customers to describe the data they

want.

• OData data model - An abstract data model, the EDM, defines the data structure and provides

a general mechanism to detail and arrange the data. It’s an instance of an entity relation-

ship model implementation, in which data is represented as entities and relationships between

them. A Service Metadata Document is provided by an OData service, and it describes the ser-

vice’s EDM-based model in the XML-based Conceptual Schema Definition Language (CSDL).

• OData service - An OData service exposes a callable endpoint that is used for accessing data

or calling functions. It employs the data model, implementing the OData protocol.

21

• OData client - An OData client uses the OData protocol and the corresponding OData data

model to connect to an OData service.

The service document lists all the top-level feeds for users to access them, since a service may

contain one or more feeds [15]. It helps service consumers to find the locations of the available

resource collections, since the document lists the collections of available resources provided by the

service. The service document is returned when making a get request on the service root URI. The

service metadata document specifies its Entity Data Model, through the “$metadata” request [15].

The OData metadata document is the standard way to let end-users know how to query the data, as

it presents information about the structure and organization of all the resources. The result is in

CSDL format.

Bellow we list the main concepts in the EDM:

• Entities are instances of entity types, such as Product or Category.

• Entity types are structured types with a name and a key [14]. They specify the entity’s prop-

erties and relationships. The key of an entity type is made up of a subset of the respective

primitive properties, such as ProductId or CategoryId.

• Navigation properties are used to represent relationships between entities. They are usually

defined as part of an entity type [18]. There is a specific cardinality to each relationship.

• Complex types are structured types with a name but no key, composed of a group of proper-

ties. They can’t be referred to outside of the entity that holds them. Usually addresses are

represented as a complex type.

• Entity sets are collections of entities with a specific name, for example Products is an entity

set containing Product entities. An entity’s key is used to identify it inside an entity set [18].

• Operations allow the execution of custom logic to be run on sections of the data model [18].

Functions and actions are operations. The main difference between them is that functions

don’t have side effects and allow further composition while actions allow side effects (such as

data modification) but cannot be further composed.

OData uses HTTP verbs (GET, PUT, POST, DELETE) to define actions on resources, and it uses

a common URI syntax to identify those resources. The client must perform an HTTP POST, GET,

PUT, or DELETE request to create, read, update, or delete an object, accordingly [11]. The HTTP

requests are summarized in Table 3.3.

22

Table 3.3: Description of HTTP requests in OData.

HTTP Request Description
GET serviceRoot/Products Returns the collection of Products.
DELETE serviceRoot/Products(3) Deletes the Product with ProductId = 3.
PUT serviceRoot/Products(3)
{ Updates the ProductName of the
“odata.type” : “#.Northwind.Product”, Product with ProductId = 3 to
“ProductName” : “Chai” “Chai”
}
POST serviceRoot/Product
{
“odata.type” : “#.Northwind.Product”,
“ProductId”: 6, Creates a new Product with the
“ProductName”: “Chai”, respective details
“CategoryId”: 1,
}

Figure 3.4: URI components of the Open Data Protocol.

OData also defines a set of rules for producing URIs to identify the data and information given by

an OData service [15]. The service root URI, the resource path, and the query options are the three

main URI components, which are displayed in Fig. 3.4. The root of an OData service is identified by

the service root URI [17].

The resource path specifies the resource with which the service consumers want to interact.

It is mostly used to address a collection, an entity within a collection, an entity’s attribute or a

relationship. To address a collection, the resource path is simply the name of that collection [15];

for example, https://myhost/Northwind.svc/Products would address the set of entities in the

Products entity set. To address an entity within a collection, the resource path is the name of the

collection followed by a key predicate in brace marks [15]. The URI https://myhost/Northwind.

svc/Products(2) would address the product with ID = 2. To address a property of an entity, we

must first find the entity and then determine the property’s name [15]; for example, https://

myhost/Northwind.svc/Products(1)/Name would retrieve the attribute Name of the product with

ID=1. To address a relationship between entities, we must attach the name of the relationship to the

end of the URI https://myhost/Northwind.svc/Products(2)/Category. It is possible to navigate

through several tiers of relationships using this syntax [19].

Query options in the URL request allow you to influence how the service processes a request.

To customize a request, OData offers a set of system query options. System query options are

prefixed with the $ character (optional in OData 4.01). The most used query options are explained

23

Query Option Description
$top=n The service returns the number of items that are available up

to and including the supplied value n.
$skip=n The service returns items starting at position n+1
$orderby=PropertyName Specifies the property to order by the items returned from the

service.
$count=true Indicates that the total number of items in a collection that

matches the request should be delivered with the result.
$filter=PropertyName eq Value Restricts the set of items returned over one or more specified

properties.
$select=PropertyName Only the properties, functions, dynamic properties and actions

that have been specifically requested should be returned by
the service.

$search=SearchExpression Only the items that match the supplied search query are in-
cluded in the result.

$expand=RelatedEntity Indicates the related entities that must be represented inline.

Table 3.4: Most used query options.

in Table 3.4.

For an OData service, the protocol specifies three conformance levels: minimal, intermediate

and advanced [14]. Each level includes a collection of requirements and suggestions that must be

met by a service in order to fulfill the level’s standards [14].

3.3.2 RQ2. What are the main benefits and utility of using OData?

OData is a big step forward in open interoperability standards, allowing users to retrieve and update

data across different platforms [20]. The same data can be consumed by multiple client systems,

ranging from phones to computers. Data from different sources such as file systems, traditional

websites, relational databases and content management systems can be retrieved via OData, en-

abling developers to build cross-platform web and mobile applications, facilitating connection and

information exchange across implementations [21].

Integration and interoperability are essential goals, but OData also allows data access. By using

modern and well-established web standards, OData provides refreshingly simple data access. It

has become the common choice for publishing datasets online due to its ease of use for both client

applications and end-users. In addition, client code is easy to maintain and deploy [22]. Developers

and web service architects will be comfortable with OData, since it is based on established standards

and familiar design methodologies. Moreover, because OData feeds are accessed via HTTP, they can

be displayed in any browser.

Service providers can never predict what kinds of queries/services will be requested by con-

24

sumers. They would always have to provide new services or add parameters in order to meet the

client’s needs. OData can help solve this problem, by enabling flexible querying. The protocol en-

ables flexible querying and filtering on all attributes, and this flexibility is critical when dealing with

larger amounts of data. The ability to project a subset of properties minimizes both the size of the

HTTP responses and the memory footprint of the client-side objects [19]. By updating the back-end

service to expose an OData endpoint, each client gains the flexibility of downloading only the fields

in which they are interested in.

OData has already been widely accepted by several companies due to its simplicity. It has a

strong ecosystem with abundant resources including:

• consumers

• applications exposing OData

• live services (producers)

• sample services

This standard is also supported by libraries and toolkits, many of which are open source for a variety

of platforms, making the construction of OData services easier.

OData also offers a rigorous specification for enabling new sources of data connectivity, despite

where or how such sources are connected. This data source access mechanism is a viable solution

for data services with a few dozen to a few hundred items and throughput up to a few hundred

samples per second [22].

3.3.3 RQ3. What are the main challenges and limitations of the OData

protocol?

In order to create an OData service, we need to [14]:

1. represent the data models in OData format

2. implement a converter that accepts OData requests and transforms them into SQL statements

or the target storage technology of choice

3. serialize/deserialize messages in accordance with the OData protocol

Thus creating OData services is a time-consuming and tedious task for data providers.

In today’s networking world, no data acquisition method can be safely used without security,

which includes authenticating the user and, in certain cases, encryption [22]. OData by itself is not

secured in a way that feels acceptable, especially being an open data initiative. To ensure the data

exposed is secured properly, the client must add an additional layer of protection.

25

OData is a protocol for service-oriented environments, hence it requires robust development

and security governance. In addition to this, clients must also cope with communication failures

and unreliable messages [23]. Because the server in REST is unable to retain any state, state

management must be performed by the client as well [23].

3.3.4 RQ4. What applications have been developed with OData?

Sensor Observation Service (SOS) by the Open Geospatial Consortium offers standard web service

protocols for securely transmitting sensor data online [15]. However, the SOS has a limited ecosys-

tem that makes it difficult to create and consume, supporting only predefined queries. A sensor

data mediator solution was proposed by Huang et al. [15] to establish an SOS Entity Data Model

for OData to bridge these two standards. The proposed system is able to covert between SOS and

OData services with ease. The transformed services can be used directly by both SOS and OData

clients that are compatible with the standards.

Ed-Douibi et al. [16] developed a model-based solution to automatically compose and orchestrate

data-driven REST APIs. This method creates a global API from a set of initial REST APIs that

are expressed as Unified Modeling Language (UML) models, exposing a single data model that

combines all data models of the original APIs [16]. The global model is provided as an OData

service, allowing users to quickly conduct queries using the protocol’s query language. Queries

on the global model are converted into queries on the many APIs that make up the underlying

infrastructure, dynamically.

The creation and implementation of a framework for symmetric integration of applications and

systems in cloud environments is proposed by Muntean et al. [24], with the goal of ensuring the

completeness and integrity of data during the integration process. OData served as an integrator

between SAP Hybris Cloud for Customer (C4C) and SAP S/4 HANA Cloud (S/4), for development

and validation of the presented framework. OData is the main technology used in SAP’s mobile and

web applications, such as SAP Fiori apps, to access corporate data [25]. SAP NetWeaver Gateway

technology, for instance, uses OData to expose SAP Business Suite software to customers on a

variety of platforms [26].

Cardoso et al. [27] created a data model to store data generated by an electromyography, opti-

mized for analytical processing. A web API was implemented to provide access to data in an agnostic

way to database management systems and data consumers, using OData.

To make data from Enterprise Resource Planning (ERP) systems more accessible for integration

with the Semantic Web, Kirchhoff et al. [28] developed an approach to implement SPARQL endpoints

on top of OData interfaces. To answer a particular SPARQL query, the approach decides which OData

services to be queried.

26

Although there are some Software Development Kits (SDKs) to develop OData applications, such

as RESTier2, and commercial tools that expose OData services from existing data sources, like Cloud

Drivers5, they still need sophisticated OData expertise to build the service’s business logic, and they

only support the OData standard to a limited extent [14]. Other programs, such as simple-odata-

server8 and JayDATA9, can construct a basic OData server from an OData-formatted entity model

and its associated database, but they only cover a subset of the protocol. Ed-Douibi et al. [14] derive

all the artifacts required to get an OData service up and running on top of a relational database

(that conforms to the model definition), from an initial UML class diagram.

To combat the proliferation of online child sexual abuse content, the Virtual Global Taskforce

(VGT) suggested for OData to be adopted globally. The protocol would give much-needed interop-

erability across law enforcement tools in the worldwide community when it comes to dealing with

criminal photographs and recordings [25].

In the public health domain, opening up current surveillance systems could benefit the pub-

lic by enabling the development of creative data uses and minimizing data underuse due to re-

stricted resources in research or surveillance teams. Using the Sentinelles system, which is a gen-

eral population public health information system, a general purpose standard using OData was

built by Turbelin et al. [29]. The OData web services exposing data and metadata are available at

http://odata.sentiweb.fr.

When it comes to sensor motes, the Constraint Application Protocol (CoAP) is now the focus

of both research and industry [17]. An embedded OData implementation on top of CoAP might

be useful for easily integrating sensor motes into enterprise networks. Thoma et al. [17] provided

this embedded OData implementation. The OData entity abstraction, which involves abstracting the

topology and the sensors (or actors) as entities, is well suited to a typical sensor network application

[17]. As a result, OData is a suitable abstraction for systems that can be thought of as sensor network

databases.

SmartCampusAAU [30] is an open, extensible platform that makes building indoor location-based

systems simple. It is designated to facilitate indoor positioning and navigation, offering an OData

back-end that allows researchers to share radio map and location tracking data [30].

OData makes it ideal for presenting both near-real-time time-series streaming data and data from

SQL back-end stores. Ross [22] demonstrates this with an implementation of an OData service-based

industrial automation time-series data streaming capability.

OData is assisting in the transformation of Open Government projects to make government data

available to the public. The cities of Regina and Medicine Hat in Canada, as well as the Colombian

government, have developed open data catalogs based on the OData protocol [26]. Following the

government’s decision to make Met Office weather data available to the public, OData is making

27

http://odata.sentiweb.fr

data more accessible to U.K. citizens. The Open Government Data Initiative (OGDI) is a Microsoft

Windows Azure-based service that allows government bodies to publish a wide range of open data

[19].

Moreover, the following applications also make use of OData:

• The back-end cloud service for the CLEO mobile sensing platform [31] uses the OData protocol

to make data available to other systems, such as the World-Wide Telescope.

• The jQuery plug-in called DataTables that allows to slice and dice the large amounts of data,

can consume data from publicly available OData services, as demonstrated by Lerman [32]

• EastBanc Technologies used OData to create a metro transit visualization application.

• Power Query, which is a popular plugin for Excel, has the ability to consume data from an

OData API to render live workbooks stored in the Platform for Science.

• Viecore representatives explained how they used OData to construct advanced decision sup-

port and control systems for the US military, noting OData’s flexibility and low client-server

coupling as reasons for their ability to rapidly iterate on application designs and needs.

• IBM’s WebSphere eXtreme Scale REST data service uses OData to provide access to the IBM

eXtreme Scale data grid and this was done without the assistance of the OData team, due to

the little technical friction.

• The PowerPivot add-in for Excel has an in-memory analysis engine that can be used directly

from within the Excel interface and it allows importing data via an OData feed, integrating into

data models that that also contain data from relational databases [13].

• WCF Data Services is a framework that automatically transforms an OData request into the

underlying store’s query language, based on the mapping between the EDM model and the

relational model of the store.

• The OData Service Validation tool seeks to strengthen the existing OData ecosystem by allow-

ing OData service developers to check their implementations against the OData standard to

ensure that they work with any OData client.

• All lists and documents within those lists can be exposed as an OData feed in Microsoft Share-

Point [19].

28

3.4 Lessons Learned

The foundation of modern business and industry is data. Data is collected and maintained in

databases by applications, data is stored on the cloud by businesses and many companies make

a living selling data. There are a plethora of data sources available and of potential clients: web

browsers, mobile apps, and Business Intelligence (BI) tools are just a few. It makes far more sense

to define a common methodology than exposing data sources in every possible way [23]. All that’s

required is agreement on how to model the data and a strategy for accessing to it.

Given our web-centric society, it would make sense to design this technology using existing web

standards [23]. The Open Data Protocol is a data access protocol that allows developers to easily

expose and access information from a variety of data sources such as relational databases, file

systems, and content management systems via web services with query and update capabilities in

a simple and standard way [14]. It offers a uniform and URI-based querying interface that maps

CRUD operations to HTTP verbs.

OData makes it easy for analysts and developers to consume data from any platform or device by

making it simple to interact with data from a wide range of apps and programming languages. It’s

the best solution to standardize the connection between applications and a wide range of enterprise

data sources, allowing for better integration and interoperability between information providers and

consumers [21].

Unfortunately, the protocol itself is not secured in a way that feels acceptable, especially being

an open data initiative. To ensure the data exposed is secured properly, the client must add an

additional layer of protection. Besides that, creating OData services is a time-consuming and tedious

task for data providers.

However, being a standard, flexible interface allows the same API to be used across a number of

clients. OData is the main technology used in SAP’s mobile and web applications to access business

data. It is also assisting in the transformation of Open Government projects to make government

data available to the public.

This OASIS standard’s long-term goal is to have an OData client library for every major technol-

ogy, programming language, and platform, allowing any client app to read OData feeds [19]. As the

OData specification evolves, new functionalities become available that service producers may seek

to make available to service consumers.

29

30

4
Research Problem

31

32

According to the Design Science Research Methodology, this Chapter corresponds to the “Prob-

lem Identification and Motivation” step.

The paradigm of distributed Information Technology (IT) architectures is shifting away from

monolithic programs running on a single node and moving towards distributed, dynamic environ-

ments [23]. Such environments enable the creation of applications by assembling existing services,

increasing code reuse while reducing development time [23]. Ensuring the quality of data integra-

tion between systems and applications in these environments is essential [24]. Data integration

refers to the transfer, replication, and transformation of data from one application to another with-

out regard for application or business logic.

Over the last few years, Low-Code Development Platforms have gained popularity, with a rising

number of companies using them to build enterprise-grade apps and transform their business. Ac-

cording to Gartner [33], low-code application development will account for more than 65% of all

app development functions by 2024, with 66% of large companies adopting at least four low-code

platforms. The lack of interoperability will raise a common problem, since applications are changing

from thick clients to thin web clients [23].

Instead of implementing complex integration frameworks for every enterprise-integrated appli-

cation (e.g., ERP, Customer Relationship Management (CRM), Supply Chain Management (SCM)

systems), working towards a generic data integration method that allows interoperability among

several applications should be our goal. This would allow interoperability between Low-Code De-

velopment Platforms and enterprise-integrated applications, Business Intelligence tools and other

systems.

As an OASIS approved standard, OData is a viable alternative for open data exchange services

[23]. Previous work has only focused on creating bridging applications or theoretical approaches

for exposing OData services in a non automatic way.

Thus, the problem identified in this research is that there is a lack of dynamic approaches

to expose an OData Service from an LCDP to be further consumed by other applications,

without the support of an extra tool or a bridging application.

33

34

5
Proposal

Contents

5.1 Objectives . 37

5.2 Description . 37

35

36

This chapter defines the solution’s objectives and explains our proposal in detail.

5.1 Objectives

The main goal related to this research is creating a method to expose an OData service dynamically

from a Low-Code Development Platform application, in order to be further consumed by other sys-

tems (OData consumers) such as Business Intelligence tools. For this to be achieved we defined the

following objectives:

• allow complex queries against the exposed information;

• enable CRUD operations over the service data;

• provide the means to navigate through relationships between entities;

• ensuring the OData service can be consumed by an OData consumer;

Trying to accomplish these objectives, we had in mind keeping the cost of our solution as low as

possible, without the support of extra tools or a bridging applications.

5.2 Description

We generate all the artifacts required to have an OData service up and running from a data model

retrieved from an LCDP application, through the translation of OData requests to SQL queries and

compliance with the OData protocol [14]. Our approach creates an API exposing the data retrieved

from the LCDP application. The model is exposed as an OData service, allowing end-users to obtain

data using the OData query language in a simple way, and for the data to be consumed by other

applications [16].

The integration process involves two independently designed applications, one of which is a

Low-Code Development Platform in our approach. Data is retrieved from the LCDP and stored in

the appropriate format in the Application Z illustrated in Fig. 5.1. Application Z stands for any

application that has the ability to consume an OData service.

The actions listed in Table 5.1 illustrate the scenario for integrating an LCDP application (OData

producer) with an OData consumer.

The OData service generation (A2) is the most complex action of the 3 listed. Developers should

first specify their data models in the EDM format, then add business logic to resolve URLs using the

OData query language to handle querying and modifying the data and finally translate such queries

into SQL statements [14]. Furthermore, to exchange messages with OData clients who follow the

37

Figure 5.1: Integration process using OData.

Action Id Action
A1 Retrieving table structures from the LCDP application’s data model.
A2 Generating the OData service that exposes the tables retrieved.
A3 Consuming the generated data service through Application Z.

Table 5.1: Integration process of an OData producer (LCDP application) and consumer.

protocol, a de/serialization mechanism is necessary. Thus, the entire process of generating an OData

service includes the following tasks:

1. The creation of the OData data model (EDM) from the received table structures.

2. The mapping between OData requests and SQL statements

3. The de/serialization process.

5.2.1 Creation of OData’s EDM

The first step in defining an OData service is designing the entity model [22]. The main components

of a database table are the table’s name, primary key and a list of attributes which correspond to the

table’s columns. Each attribute has a name, a type, whether it is a primary key, whether it is foreign

key referencing another table’s primary key and, if so, a pointer to the corresponding primary key.

The Entity Data Model is a collection of concepts that describe the structure of data, regardless

of how it is stored [18]. The entity type is the fundamental building block to express the structure

of data. A group of instances of a particular entity type is referred to as an entity set. Each entity

must have its own entity key within an entity set. Entity sets are all grouped in an entity container.

Properties establish the structure and characteristics of entity types. A Product entity type, for

example, might have properties like ProductId, Name and Price. A property can hold either primitive

data (e.g., text, integer, or Boolean values) or structured data using complex types. Association types

are used to describe relationships between two entity types. Every association has two association

ends which correspond to the two related entity types and a multiplicity representing the maximum

number of entities that can be at an association’s end. A navigation property on an entity type is an

optional property that allows users to navigate from one end of an association to the other end.

The mapping between a table structure and the corresponding EDM is the following:

38

• for each table an entity type is created, with the table’s name, primary key as the entity’s key;

• for each list of attributes from a table, properties are created within the corresponding entity,

with the respective name and type;

• for each foreign key a navigation property is created, linking the source and target entities

and is stored in the respective entity type;

• each record is placed within the corresponding entity set;

• an entity container is created to store the entity sets;

5.2.2 Mapping between OData requests and SQL statements

To transform OData requests to SQL statements we consider [14]:

• HTTP method - specifies if the request is either a query or a data modification action;

• resource path - identifies the resource to query or modify (e.g., products, a single product,

supplier of a product);

• query options - allows to specify the required instance data

We created a query model to perform the transformation of the target resource path into the

respective SQL statement with the specified query options. The model has the following structure:

• list of output tables - the tables to select from;

• list of join references - a join reference is composed of the table and the two columns to join

on;

• list of selected columns - the columns that are selected from the output and join tables;

• list of where conditions - a where condition is composed of unary or binary expressions that

contain the column name, the operator and the value (e.g., Name = ’John’); a where condition

can have more than one expression by using the logical operators OR and AND (e.g., Name =

’John’ AND Age > 25);

• list of orderby conditions - an orderby condition is composed of the column name and the

sort order (i.e., ascending or descending);

• offset number - the number of records to skip from the beginning;

• next number - the top n records to display;

39

Resource
Path

Example Model Parameters SQL Statement

Collection
of Entities

Product - Add Product table to the list of
output tables

SELECT *
FROM Product

Single En-
tity within a
Collection

Product(2) - Add Product table to the list of
output tables
- Add Product’s PrimaryKey = 2
to the list of where conditions

SELECT *
FROM Product
WHERE Product.Id = 2

Property of
a Single En-
tity

Product(2)/Name - Add Product table to the list of
output tables
- Add Product’s PrimaryKey = 2
to the list of where conditions
- Add Name column to the list of
selected columns

SELECT Product.Name
FROM Product
WHERE Product.Id = 2

Relationship
between En-
tities

Product(2)/Category - Add Products table to the list of
output tables
- Add Category table to the join
references with Category’s pri-
mary key and Product’s foreign
key to Category as join columns
- Add Product’s PrimaryKey = 2
to the list of where conditions
- Add all Category’s columns to
the list of selected columns.

SELECT Category.Id,
Category.Name
FROM Product JOIN
Category ON Prod-
uct.CategoryId = Cate-
gory.Id
WHERE Product.Id = 2

Table 5.2: Transformation of the target resource path into the corresponding SQL statement, through a query
model.

• count option - a boolean value that indicates if the total number of records should be dis-

played;

We designed a method to perform the transformation of the target resource path into the corre-

sponding SQL statement, which is detailed in Table 5.2. To query a collection of entities, the name

of the collection is added to the list of output tables. Now, to get a specific entity within a collection

besides adding the name of the collection to the list of output tables, one must specify a where

condition of the primary key stated. A property of a particular entity is retrieved the same way as

a single entity with the name of the property listed in the selected columns. Similarly, to navigate

through a relationship of a specified entity we add the attributes and table as a joining reference

and only specify the end of the relationship’s columns.

OData requests are refined through query options, so we also had to take them into account in

the mapping of the SQL statement. Table 5.3 describes which model parameters are defined and the

corresponding SQL statement for each query option. Query options top and skip specify the number

of records to be included and excluded in the request result through the offset and next numbers. To

order the OData payload a particular column and the sort order are added as order by conditions.

If no sort order is specified, our method assumes an ascending order, to comply with the OData

40

Query Option Model Parameters SQL Statement

$top=5 - Assign 5 to next number SELECT *
FROM Product
FETCH FIRST 5 ROWS

$skip=3 - Assign 3 to offset number
- Add Product’s PrimaryKey = 2 to
the list of where conditions

SELECT *
FROM Product
OFFSET 3 ROWS

$orderby=Price
desc

- Add Price column and descending
to the list of orderby conditions

SELECT *
FROM Product
ORDERBY Product.Price DESC

$count=true - Assign true to count option along
with the result

SELECT COUNT(*)
FROM Product
————————————————–
SELECT *
FROM Product

$filter=Price<10 - Add Price < 10 to the list of where
conditions

SELECT *
FROM Product
WHERE Product.Price < 10

$select=Price - Add Price column to the list of se-
lected columns

SELECT Product.Price
FROM Product

$search=Chai - Add column like ’Chai’ to the list of
where conditions for every column
in Product’s table

SELECT *
FROM Product
WHERE Product.Id like ’Chai’
OR Product.Name like ’Chai’ OR
Product.Price like ’Chai’ OR Prod-
uct.CategoryId like ’Chai’

$expand=Category - Add Category table to the join ref-
erences with Category’s primary key
and Product’s foreign key to Cate-
gory as join columns

SELECT *
FROM Product JOIN Category ON
Product.CategoryId = Category.Id

Table 5.3: Mapping query options into SQL statements, through a query model.

protocol. The inline count option is mapped into a boolean value and a second SQL statements is

run to extract the count value. Each filter condition is added to the where conditions list in our

model. The selected columns are also added to the designated list. The search query option gets

modelled into as much filter conditions using the like operator as the number of columns in the

target resource. Finally, an expansion is similar to requesting a relationship between to entities, but

instead of only exposing the end entity, the end entity is exposed within the source entity. This is

done by adding the end entity to the join tables list.

5.2.3 De/Serialization Process

This process creates an OData serializer and deserializer that supports both the OData JSON and

XML formats.

In order to construct the textual representation of the OData records according to the protocol’s

41

Figure 5.2: Example of a Product collection.

norms, the serializer applies a model-to-text transformation to the OData query result [14]. For

example, an entity is represented by a JSON object representing its properties, composed of list

of key/value pairs; and an entity collection is transformed to a JSON array holding the entities.

The serializer additionally takes into consideration the query model while generating the JSON

representation, for example the number of key/value pairs correspond to the number of selected

columns. Fig. 5.2 depicts an example of a Product collection. Apart from the entity’s properties, the

JSON object also includes the annotation odata.context as metadata, which provides the payload’s

root context URL.

The deserializer parses and processes the body of OData requests POST and PUT to construct

the details of the INSERT and UPDATE SQL queries [14]. In the resulting SQL statement, each

key/value pair in a JSON object is transformed to the corresponding field in the relevant database

and its respective value. For DELETE requests (see Table 3.3), we only need the resource path

component in the URL that targets a specific entity within a collection to be removed.

The XML representation format follows a similar procedure for the metadata document of the

OData service.

42

6
Demonstration

Contents

6.1 Context . 45

6.2 Exposing an OData service in OutSystems . 45

6.3 OutSystems CDS Project . 49

43

44

This chapter is related to the DSRM demonstration phase and illustrates how our research pro-

posal is used to solve the research problem described in Chapter 4. To demonstrate that the proposal

can be used to solve the research problem, we developed this method in a specific context, using a

particular Low-Code Development Platform and Business Intelligence tool to integrate them through

a dynamic approach exposing an OData Service.

6.1 Context

This master’s thesis was implemented in a professional environment, integrated in a company dedi-

cated to delivering digital solutions through developing cutting-edge enterprise software, PhoenixDX

[34].

The Low-Code Development Platform used for this validation was OutSystems [4]. OutSystems

is a modern low-code application platform that speeds up the creation of applications while also

providing exceptional flexibility and efficiency [4]. It enables the development of desktop and mobile

applications which may run either in the cloud or on local infrastructures. OutSystems has three

significant components:

• Integration Studio: allows database connections through either Java or .NET

• Service Studio: where the behaviour of the application being developed is specified

• Platform Server: the cloud server used to develop, orchestrating all runtime, deployment, and

managing activities for all applications

In order to validate our OData service, we consumed it through PowerBI [35]. PowerBI allows

to connect and visualize any data using the unified, scalable platform for self-service and enterprise

Business Intelligence tool [35]. It is a tool that is easy to use and helps gaining a deeper data insight.

To the extent of our knowledge, OutSystems has no built-in component to support exposing

OData services.

6.2 Exposing an OData service in OutSystems

According to our proposed approach in Chapter 5, the integration process involves three steps

(check Table 5.1), which are described in the following sections.

6.2.1 Creation of OData’s EDM

To expose an OData service dynamically, we used OutSystems’ metamodel. The metamodel specifies

what can be found in the model, from the data migration point of view. An OutSystems application

45

is made up of modules defined in Service Studio. Modules allow you to structure your application

into several pieces, implementing a specific purpose per piece. Every entity created and used in an

application is related to the module where it is defined.

When creating an entity within a module, you are to give it a logical name. Given that name, the

platform automatically creates internally a physical name. The mapping between the physical table

name and the logical name is found in a system entity in the metamodel and each entity is related to

its defining module. Besides this table, there is also another system entity that contains all attributes

that can be identified based on the entity id they are related to. With this information, we are capable

of identifying every entity and its own attributes defined in a specific module. Were a module to

create a new table, any application would be capable of dynamically extracting information about

the new table, using the system entities in the metamodel.

To expose an OData service, the OutSystems application must expose a REST service. Such

application exposes a REST service with 3 main procedures exposing the service document, the

metadata document, and result of any querying or modifying the data. The OData service endpoint

of the application has a defined context, which contains the required configuration for the service

to operate. The service context contains:

• ServiceRoot - the absolute URL of the Service Document

• EntityDefinitions - the definition of all entities and their attributes, exposed by the service

• Body - the HTTP request body for POST and PUT requests

Each OData request, in order to execute, needs access to the service context and to its inputs. The

input for a given OData request is the path of the request, which is a possibly empty string starting

after the service root and also including any query string of the request, and the body to insert or

update data. The path is composed of the target resource path and query options. When the path is

empty the service document is returned, and the metadata document is returned when the path is

$metadata.

Microsoft’s OData Core library [36] is designed to read and write all kinds of OData payloads,

such as service document, model metadata, entity set and references, etc. Through a .NET extension

of our OutSystems application we are able create and read such payloads. To build the metadata

XML, an EdmModel must first be built, through the OData Core library. In the OData library, the

object that represents all of the entities exposed on an OData service is called EdmModel. This con-

tains a list of entities, in a similar fashion to the list of entity definitions. Given the EdmModel and the

service root, writing metadata is simple by using ODataMessageWriter.WriteMetadataDocument().

The service document can also be generated automatically. The Service Document and the Metadata

Document, are requests simpler to execute since they only depend on the EdmModel and service

46

root. Writing other payloads is a more complex process, which is further detailed in the following

sections.

6.2.2 Mapping between OData requests and SQL statements

In order to execute a dynamic OData request we need to parse the path information. For this task,

we used the ODataUriParser class provided by the OData library. The ODataUriParser provides

detailed information of the multiple segments of the given Path, for example which entity type it

refers to, and if it has a key predicate. It also parses expressions related to the query options

keywords such as $filter, $orderby, $top, $skip, etc. However, this information is not directly suitable

to generate an SQL statement. To transform the output of ODataUriParser into SQL, we use a

QueryParser class. This class first builds a QueryModel object, which contains information directly

suitable to generate the SQL statement. This object contains information such as the list of selected

columns, the list of tables in the FROM clause, the list of conditions on the WHERE clause, etc. Once

obtained the QueryModel, transforming it into SQL is a simple operation of mostly concatenating

strings. We defined a specific query model to help the mapping to SQL statements for each data

transformation operation (i.e., create, read, update and delete).

The query model defined in Section 5.2.2 is used for the GET requests.

Listing 6.1: Example of an OData GET request mapping to SQL statement.

HTTP Method: GET

URL: https://myhost/Northwind.svc/Product(2)?$filter=Price+gt+15&$orderby=Name

Query Model:
List of output tables → {Product}
List of where conditions → {(Price > 15)}
List of orderby conditions → {(Name, ASC)}

SQL:
SELECT *
FROM Product
WHERE Product.Price > 15
ORDER BY Product.Name

For DELETE requests the query model contains an entity type and a key/value pair. The entity

type is the entity table from which the record is to be deleted, and the key/value pair defines the

primary key and the corresponding value to specify the record. These values are retrieved from the

target resource segment of the URL path. Listing 6.2 illustrates an example of a DELETE request.

Listing 6.2: Example of an OData DELETE request mapping to SQL statement.

HTTP Method: DELETE

URL: https://myhost/Northwind.svc/Product(2)

Delete Model:
Entity Type → Product
Key/Value Pair → (Id,2)

SQL:
DELETE FROM Product
WHERE Product.Id = 2

47

To insert a new record through the OData service, the query model is composed of an entity type

and a list of key/value pairs. Again, the entity type is the entity table from which the new record

is to be inserted. The list of key/value pairs have the name and value of all the attributes of that

specific entity type. The entity type and the key/value pairs are specified in the HTTP request’s

body. Listing 6.3 illustrates an example of a POST request.

Listing 6.3: Example of an OData POST request mapping to SQL statement.

HTTP Method: POST
URL: https://myhost/Northwind.svc/Product
Body:
{
"@odata.type": "Northwind.Product",
"Name": "Chai",
"Price": "20.00",
"CategoryId": "1"
}

Insert Model:
Entity Type → Product
List Key/Value Pairs → {(Name,'Chai'), (Price, 20.00), (CategoryId, 1)}

SQL:
INSERT INTO Product(Product.Name, Product.Price, Product.CategoryId)
VALUES ('Chai', 20.00, 1)

For PUT requests the query model is the similar to the insert model. However the key/value pairs

are a subset of the entity type’s attributes and corresponding values. In addition, there is a specific

key/value pair in the model that refers to a specific record, through the primary key. Once more, the

entity type and the key/value pairs are specified in the HTTP request’s body. Listing 6.4 illustrates

an example of a PUT request.

Listing 6.4: Example of an OData PUT request mapping to SQL statement.

HTTP Method: PUT
URL: https://myhost/Northwind.svc/Product(2)
Body:
{
"@odata.type": "Northwind.Product",
"Price": "23.99"
}

Update Model:
Entity Type → Product
Key/Value Pair → (Id, 2)
List Key/Value Pairs (Properties) → {(Price, 23.99)}

SQL:
UPDATE Product
SET Product.Price = 23.99
WHERE Product.Price = 2

After obtaining the SQL statement, we execute it using OutSystems’ database API. Such API

allows to retrieve an object of type IDataReader after executing the SQL command. This object,

which defines the query result, can then be used to read multiple rows, and multiple columns on

each row.

6.2.3 De/Serialization Process

The serialization of the XML metadata document and the JSON service document were already

described in the end of Section 6.2.1. For other types of OData payloads, we defined a specific

output class to help the the serialization process for each data transformation operation (i.e., GET,

48

POST, PUT, DELETE).

For updating and removing records, the payload has no content, therefore the serialization pro-

cess only requires setting the status code of the response to 204 (indicating no content).

When querying the data exposed by the service, the output class receives the query model com-

pleted in the previous section and the data table with the resulting records of such query. To seri-

alize into an OData payload, we used the ODataMessageWriter class provided by the OData Core

library. The ODataMessageWriter is a class for writing OData payloads. A collection of entities is

described by the ODataResourceSet class and for each data row of the query result we define a list

of ODataProperty class to describe the entity’s properties. In case there are nested entities that

were expanded using the $expand query option, an ODataResource is used to describe them. The

status code is set to 200 (OK) upon a successful request.

For new data records being inserted, the output class only receives the query model completed

in the previous section. From the model, the properties and respective values of the record are

extracted and converted into ODataProperty and written through the ODataMessageWriter. The

status code is set to 201 (created).

The deserializer parses and processes the body of OData requests to insert and update data, to

build the details of query model. For this, we use the ODataMessageReader class which is provided

by the OData Core library. The ODataMessageReader is a class for reading all OData payloads. It is

created using the request’s body and the body is parsed using an ODataReader to read a resource

within the body and proceed to filling in the corresponding query model.

Listing 6.5 represents the execution of OData GET, DELETE, POST and PUT requests in pseudo-

code.

Listing 6.5: Pseudo-code of OData requests execution.

1 ExecuteGET(model, serviceRoot, path):
2 if (path == ""):
3 return ServiceDocument(model, serviceRoot)
4 else if (path == "\$metadata"):
5 return MetadataDocument(model, serviceRoot)
6 else:
7 return Output(Query(Parse(model, path)), serviceRoot)
8

9 ExecuteDELETE(model, serviceRoot, path):
10 return Output(Delete(Parse(model, path)), serviceRoot)
11

12 ExecutePOST(model, serviceRoot, path, body):
13 return Output(Insert(Parse(model, path, body)), serviceRoot)
14

15 ExecutePUT(model, serviceRoot, path):
16 return Output(Update(Parse(model, path, body)), serviceRoot)

6.3 OutSystems CDS Project

Once we were able to expose an OData service that can query and manipulate data using CRUD

operations, a generic application was developed called Common Data Service (CDS) Project. CDS

49

Figure 6.1: Entity diagram of CDS Project.

Project allows authenticated users to create projects with whichever entities from the current Out-

Systems environment. A project has a name and a description and has one or more project versions

associated to it (check Fig. 6.1). Each project version is related to a single project, has a version

number and multiple definitions regarding to auditing and security. A project version status is either

draft or published.

In project versions with no authentication, the endpoint does not enforce any authentication. The

endpoint enforces HTTP Basic authentication, when AuthenticationType is basic. Project versions

also allow OAuth 2.0 authentication which is the most secure authentication type of the three, based

on short-lived access tokens.

ReadOnly AuthorisationType allows authorised users to access entities for reading information,

but not writing. ReadWrite allows user to access entities for reading and writing information. Role-

BasedReadWrite allows authorised users based on applicational roles to read and write information.

Such roles are specified in the project version’s ReadRole and WriteRole. Finally, the user is able to

specify an Audit Level. When a user selects a Basic AuditLevel, the user’s details and the request

payload are captured for all requests. For a Full AuditLevel, user details, the request and response

payloads are captured for all requests.

For each entity the project version exposes, a ProjectVersionEntity is created. When a version is

published and one of the exposed entities has been modified or deleted, the live version still keeps

the unchanged entity through the SnapshotName attribute.

50

Figure 6.2: URL components of published and draft projects.

Figure 6.3: UI of the Overview screen when creating a new project.

Each project version (draft or not) has a live OData service exposing the related entities. Any

authorised user is able to access it via a given URL. The OData service is exposed through the

OutSystems CDS application, which given a project version exposes all the related entities. The

endpoint contains the name of the project and the version number, as illustrated in Fig. 6.2. For

draft versions, the keyword drafts is included in the URL.

6.3.1 Example

When users create new projects, the screen they see is the Overview, shown in Fig. 6.3. Here the

user defines the name of the project as it is a new one (for new versions of existing projects the

name cannot be changed) and the description of the version. The OData service endpoint exposing

the project’s entities is live at the indicated URL. Users can also select the AuditLevel desired for

the current project version.

To select entities, the user must change to the Entities screen, shown in Fig. 6.4. Users are

allowed to add and remove entities, from all the active modules of the current OutSystems environ-

ment. Some entities are suggested based on the projects exposed entities. In our example, we can

check that entities from at least two different modules (NorthwindDB and OrderManagement_CS)

are being exposed.

Finally, on the last screen Security (Fig. 6.5) users are able to select the authentication and

51

Figure 6.4: UI of the Entities screen when creating a new project.

Figure 6.5: UI of the Security screen when creating a new project.

authorisation types. At any given moment, the user might discard the current draft or publish it,

making it a live project version.

52

7
Evaluation

Contents

7.1 Test Application . 55

7.2 Unit Tests . 56

53

54

Figure 7.1: The Northwind DB entity diagram

This Chapter addresses the evaluation phase of DSRM. Demonstrating the artifact’s use in one

or more cases is a standard means of ensuring that the artifact meets its goal [37]. For evaluating

the efficacy of our artifact, we demonstrate its response in several use cases [37]. As we were

developing our OutSystems solution, Unit tests were incrementally added to assess our artifact in

specific scenarios.

7.1 Test Application

In all of the following use cases, the test application we used was a project exposing the Northwind

Database (DB). The Northwind Database is a sample database that was created to exhibit the

performance of Microsoft’s products. The database contains sales information of a hypothetical

company that exports/imports specialty foods called Northwind. The DB being assessed has a simple

data model that is illustrated in Fig. 7.1.

A CDS project was created named Northwind, with all Northwind DB’s entities. No authentica-

tion is required to access the service and it is live in https://phoenixpressservicesptyltd-dev.

outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2.

55

https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2

7.2 Unit Tests

7.2.1 Service and Metadata Documents

Being able to expose the service and metadata documents is a requirement for any OData service.

The service document illustrated in Listing B.1 is retrieved with a GET request on the service root

URI. This JSON document lists the collections of available resources provided by the project’s

service. Listing C.1 is the response of a GET request to the metadata document, by appending the

segment $metadata to the service root URI. It describes each entity type of the project, listing their

properties and corresponding data types.

7.2.2 CRUD Operations

One of our goals was to be able to manipulate the data exposed in the service using CRUD op-

erations. First we decided to read the list of available shippers using a GET request on https://

phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/

Shipper. The response of the request is listed in Listing 7.1. The project has three shipping compa-

nies.

Listing 7.1: GET request on Shipper entity set.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/

rest/odata/Northwind/drafts/v2/$metadata#Shipper",
3 "value":
4 [
5 {
6 "Id":1,
7 "CompanyName":"Speedy Express",
8 "Phone":"(503) 555-9831"
9 },

10 {
11 "Id":2,
12 "CompanyName":"United Package",
13 "Phone":"(503) 555-3199"
14 },
15 {
16 "Id":3,
17 "CompanyName":"Federal Shipping",
18 "Phone":"(503) 555-9931"
19 }
20]
21 }

For a shipping company to be added to the Shipper collection, the service client must send a

POST request to that collection’s URL (https://phoenixpressservicesptyltd-dev.outsystemscloud.

com/CDS/rest/odata/Northwind/drafts/v2/Shipper). The POST body has to consist of a single

valid entity representation. To test this, we used Postman. Postman is an API platform for both

building and using APIs [38]. It allows you to send HTTP requests to web APIs, including simulating

requests with bodies which is important for POST and PUT request methods. The request (and cor-

responding response) in Fig 7.2 creates a Shipper entity whose company name is CTT. To check that

56

https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper

Figure 7.2: POST request and response of creating a new entity in Shipper collection, using Postman.

Figure 7.3: PUT request for updating a specific entity in Shipper collection, using Postman.

the entity has in fact been created, we typed the odata.id link and got the JSON listed in Listing 7.2.

Listing 7.2: Shipper single entity with id=4.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/

rest/odata/Northwind/drafts/v2/$metadata#Shipper",
3 "value":
4 [
5 {
6 "Id":4,
7 "CompanyName":"CTT",
8 "Phone":"(351) 211949182"
9 }

10]
11 }

To update an entity within a collection, the service client must send a PUT request to the spe-

cific entity’s URL (https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/

odata/Northwind/drafts/v2/Shipper(4)). The PUT body has to consist of a single valid entity

representation, composed of the properties the client desires to update. To test this functionality,

we a PUT request using Postman, represented in Fig. 7.3. PUT requests for OData services have no

content responses. Once more, to check our data has successfully been updated, we requested the

specific Shipper entity with id=4 and got the JSON listed in Listing 7.3.

57

https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)

Listing 7.3: Shipper single entity with id=4, after updating the company’s name.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/

rest/odata/Northwind/drafts/v2/$metadata#Shipper",
3 "value":
4 [
5 {
6 "Id":4,
7 "CompanyName":"CTT Correios de Portugal",
8 "Phone":"(351) 211949182"
9 }

10]
11 }

To remove an entity within a collection, one must send a DELETE request with the primary key

of the entity to be removed. The request bellow deletes the Shipper with id = 4.

DELETE https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/

drafts/v2/Shipper(4)

DELETE requests for OData services have no content responses. Again, to check our data has

successfully been removed, we requested the specific Shipper entity with id=4 and got an empty

value JSON.

7.2.3 Querying Requests

All of the query options in Table 5.3 were tested for simple cases and composed two by two. The

$filter query option was tested for different data types and data comparisons as well. We will

instance a small portion of the unit tests over querying the data, as more than 100 tests were

developed.

There are a total of 77 product instances in the previously created Northwind project. As de-

fault the products are ordered by id number. In order to know the top 3 most expensive beverages

we created a GET request with the following URL: https://phoenixpressservicesptyltd-dev.

outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId+eq+

1&$orderby=UnitPrice+desc&$top=3. Out of the 8 defined categories, beverages entity has id=1

and to get the most expensive ones we ordered the results by UnitPrice descending, selecting only

the top 3. To simplify the result, we only select three properties: the name of the product, the price

per unit and the quantity per unit (by adding $select=ProductName,UnitPrice,QuantityPerUnit to

the query options). The result of this query with only three selected columns is in Listing 7.4.

58

https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId+eq+1&$orderby=UnitPrice+desc&$top=3
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId+eq+1&$orderby=UnitPrice+desc&$top=3
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId+eq+1&$orderby=UnitPrice+desc&$top=3

Listing 7.4: Two of the top 3 most expensive beverages.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/

rest/odata/Northwind/drafts/v2/$metadata#Product",
3 "value":
4 [
5 {
6 "ProductName":"C\u00f4te de Blaye",
7 "UnitPrice":263.50000000,
8 "QuantityPerUnit":"12 - 75 cl bottles"
9 },

10 {
11 "ProductName":"Ipoh Coffee",
12 "UnitPrice":46.00000000,
13 "QuantityPerUnit":"16 - 500 g tins"
14 },
15 {
16 "ProductName":"Chang",
17 "UnitPrice":19.00000000,
18 "QuantityPerUnit":"24 - 12 oz bottles"
19 }
20]
21 }

Navigating through relationships was also tested. Every OrderDetail entity has a corresponding

product, which has a category associated with it. In order to get what is the category of the product

from the order detail with id=2, the following request was made: https://phoenixpressservicesptyltd-dev.

outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/OrderDetail(2)/Product/Category.

In this use case, two navigation properties were tested, from OrderDetail to Product and from Prod-

uct to Category. The response of this request is listed in Listing 7.6.

Listing 7.5: Checking the category of the product belonging to order detail with id=2.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/

rest/odata/Northwind/drafts/v2/$metadata#Category",
3 "value":
4 [
5 {
6 "Id":5,
7 "CategoryName":"Grains/Cereals",
8 "Description":"Breads, crackers, pasta, and cereal",
9 "Picture":"FRwvAAIAAAANAA4AFAAhAP////9CaXRtYXAgSW1hZ2UAUGFpbnQuUGlj

...CICwAAiAsAAAgAAA=="
10 }
11]
12 }

To test expanding entities within entities, we decided to check products with Chef names and re-

spective categories that haven’t been discontinued, through https://phoenixpressservicesptyltd-dev.

outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$search=Chef&$expand=Category&

$filter=Discontinued+eq+false. To search products with Chef names on it we used $search=Chef,

expanded the category within the products with the $expand query option and filtered the results

for Discontinued=false. The result of this request is listed in Listing 7.6.

59

https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/OrderDetail(2)/Product/Category
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/OrderDetail(2)/Product/Category
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$search=Chef&$expand=Category&$filter=Discontinued+eq+false
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$search=Chef&$expand=Category&$filter=Discontinued+eq+false
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$search=Chef&$expand=Category&$filter=Discontinued+eq+false

Listing 7.6: Products with Chef names that aren’t discontinued, with the respective categories.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com

/CDS/rest/odata/Northwind/drafts/v2/$metadata#Product",
3 "value":
4 [
5 {
6 "Id":4,
7 "ProductName":"Chef Anton's Cajun Seasoning",
8 "SupplierId":2,
9 "CategoryId":2,

10 "QuantityPerUnit":"48 - 6 oz jars",
11 "UnitPrice":22.00000000,
12 "UnitsInStock":53,
13 "UnitsOnOrder":0,
14 "ReorderLevel":0,
15 "Discontinued":false,
16 "Category":
17 {
18 "Id":2,
19 "CategoryName":"Condiments",
20 "Description":"Sweet and savory sauces, relishes,

spreads, and seasonings",
21 "Picture":"FRwvAAIAAAANAA4AFAAhAP////9

CaXRtYXAgSW1hZ2UAUGFpbn...AACICwAAiAsAAAgAAA=="
22 }
23 }
24]
25 }

The URL https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/

Northwind/drafts/v2/Product?$filter=UnitsInStock+eq+0+and+UnitsOnOrder+gt+0 queried which

products that were out of stock and awaiting order arrivals, by filtering both UnitsInStock and Unit-

sOnOrder properties. The result was a single product, described in Listing 7.7.

Listing 7.7: Product out of stock awaiting order arrivals.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com

/CDS/rest/odata/Northwind/drafts/v2/$metadata#Product",
3 "value":
4 [
5 {
6 "Id":31,
7 "ProductName":"Gorgonzola Telino",
8 "SupplierId":14,
9 "CategoryId":4,

10 "QuantityPerUnit":"12 - 100 g pkgs",
11 "UnitPrice":12.50000000,
12 "UnitsInStock":0,
13 "UnitsOnOrder":70,
14 "ReorderLevel":20,
15 "Discontinued":false
16 }
17]
18 }

Moreover, to check both the count of the total number of products and the second cheapest prod-

uct, we requested the following URL: https://phoenixpressservicesptyltd-dev.outsystemscloud.

com/CDS/rest/odata/Northwind/drafts/v2/Product?$orderby=UnitPrice&$top=1&$skip=1&$count=

true. The inline count is done through $count. Note that the inline count is not affected by $top and

$skip query options. We also ordered the result by unit price and the default sort order is ascending.

To get the second cheapest, after ordering the results we requested the top 1 with one record to

skip. The request response is listed in Listing 7.8.

60

https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=UnitsInStock+eq+0+and+UnitsOnOrder+gt+0
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=UnitsInStock+eq+0+and+UnitsOnOrder+gt+0
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$orderby=UnitPrice & $top=1 & $skip=1 & $count=true
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$orderby=UnitPrice & $top=1 & $skip=1 & $count=true
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$orderby=UnitPrice & $top=1 & $skip=1 & $count=true

Figure 7.4: Getting OData feed data in a PowerBI report.

Listing 7.8: Inline count and second cheapest product query result.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com

/CDS/rest/odata/Northwind/drafts/v2/$metadata#Product",
3 "@odata.count":77,
4 "value":
5 [
6 {
7 "Id":24,
8 "ProductName":"Guaran\u00e1 Fant\u00e1stica",
9 "SupplierId":10,

10 "CategoryId":1,
11 "QuantityPerUnit":"12 - 355 ml cans",
12 "UnitPrice":4.50000000,
13 "UnitsInStock":20,
14 "UnitsOnOrder":0,
15 "ReorderLevel":0,
16 "Discontinued":true
17 }
18]
19 }

7.2.4 PowerBI Integration

Finally, to further validate our project’s OData service and the reason why it was automatically

generated, we consumed it through PowerBI. In order to complete this integration, when a PowerBI

report is created the data source to get the data from has to be an OData feed. By inserting the

project’s service root URL we are able to load all the project’s data into the report. After selecting

the necessary authentication requirements, we are able to select all or a subset of the tables listed

in the OData feed, as shown in Fig. 7.4. To ensure the data was successfully loaded we created a

simple report listing the number of orders per customer’s country, shown in Fig. 7.5. By analyzing

the report, USA had the most amount of customer orders, followed by Germany and Brazil.

61

Figure 7.5: PowerBI report with the project’s OData feed loaded data.

62

8
Conclusion

Contents

8.1 Research Contributions . 65

8.2 Research Limitations . 65

8.3 Future Work . 65

63

64

8.1 Research Contributions

Overall, LCDPs are useful for organizations that have limited budget and IT resources since fully-

featured products can be delivered in a short amount of time. Third-party integration of the de-

veloped applications can be hampered depending on the extensibility capabilities of the employed

LCDPs.

With the growing relevance of low-code platform applications in enterprise landscapes it is fun-

damental that its applicational data is made available and interoperable in the speed of low-code.

This is a significant gap and as far we are concerned none of the most used LCDPs have a solution

in their short to medium term road-map. Such integration can be made possible with an OData

service.

We applied the Design Science Research Methodology to develop an artifact that would solve

our research problem, stated in Chapter 4. Such artifact creates an API exposing the data retrieved

from the LCDP application as an OData service. Not only does this allow end-users to easily get

the information in need through the OData query language, but it also enables the data to be con-

sumed by other applications. Our proposal was demonstrated using OutSystems applications and

the PowerBI tool as the systems being integrated through OData services. To evaluate the efficacy

of our artifact, we demonstrate its response in several use cases, checking that the stated objectives

were accomplished.

Low-code applications are now interoperable with the outside world through the OData protocol.

Not only can the data be updated without having access to the app but the data can be further

consumed by other tools and frameworks.

8.2 Research Limitations

Although the OData service is created automatically with our artifact, we still had to add a security

layer in our demonstration, since OData by itself is not secured in a way that feels acceptable,

especially being an open data initiative. Furthermore, we haven’t tested the systems integration

with large datasets.

8.3 Future Work

As future work, to facilitate the design and creation of more sophisticated aspects, we want to extend

our mapping features to capture further OData behavioral elements such as functions and actions.

We intend to expand our approach to include all features of the advanced OData conformance level.

65

66

Bibliography

[1] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science research

methodology for information systems research,” Journal of management information systems,

vol. 24, no. 3, pp. 45–77, 2007.

[2] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the understanding and

comparison of low-code development platforms,” in 2020 46th Euromicro Conference on Soft-

ware Engineering and Advanced Applications (SEAA). IEEE, 2020, pp. 171–178.

[3] “What is low-code? a full guide to low-code platforms | creatio,” https://www.creatio.com/page/

low-code, (Accessed on 09/2021).

[4] “Build applications fast, right and for the future | outsystems,” https://www.outsystems.com/,

(Accessed on 09/2021).

[5] “Low-code application development platform - build apps fast & efficiently | mendix,” https:

//www.mendix.com/, (Accessed on 09/2021).

[6] “Appian: Low-code automation | business apps | bpm | rpa,” https://appian.com/, (Accessed on

09/2021).

[7] “Kissflow - a unified digital workplace | all in one platform,” https://kissflow.com/, (Accessed on

09/2021).

[8] R. Waszkowski, “Low-code platform for automating business processes in manufacturing,”

IFAC-PapersOnLine, vol. 52, no. 10, pp. 376–381, 2019.

[9] “What is paas? platform as a service | microsoft azure,” https://azure.microsoft.com/en-us/

overview/what-is-paas/, (Accessed on 09/2021).

[10] S. Keele et al., “Guidelines for performing systematic literature reviews in software engineer-

ing,” Citeseer, Tech. Rep., 2007.

67

https://www.creatio.com/page/low-code
https://www.creatio.com/page/low-code
https://www.outsystems.com/
https://www.mendix.com/
https://www.mendix.com/
https://appian.com/
https://kissflow.com/
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/overview/what-is-paas/

[11] M. J. Carey, N. Onose, and M. Petropoulos, “Data services,” Communications of the ACM,

vol. 55, no. 6, pp. 86–97, 2012.

[12] G. Harrison, “Data marketplaces have yet to deliver on early promise -

database trends and applications,” https://www.dbta.com/Columns/Big-Data-Notes/

Data-Marketplaces-Have-Yet-to-Deliver-on-Early-Promise-98512.aspx, 2014, (Accessed on

06/2021).

[13] S. Burgess, “Open data protocol - build great experiences on any device with odata

| microsoft docs,” https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/september/

open-data-protocol-build-great-experiences-on-any-device-with-odata, 2011, (Accessed on

06/2021).

[14] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot, “Model-driven development of odata services:

An application to relational databases,” in 2018 12th International Conference on Research

Challenges in Information Science (RCIS). IEEE, 2018, pp. 1–12.

[15] C.-Y. Huang and S. Liang, “A sensor data mediator bridging the ogc sensor observation service

(sos) and the oasis open data protocol (odata),” Annals of GIS, vol. 20, no. 4, pp. 279–293, 2014.

[16] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot, “Apicomposer: Data-driven composition of rest

apis,” in European Conference on Service-Oriented and Cloud Computing. Springer, 2018, pp.

161–169.

[17] M. Thoma, T. Kakantousis, and T. Braun, “Rest-based sensor networks with odata,” in 2014 11th

Annual Conference on Wireless On-demand Network Systems and Services (WONS). IEEE,

2014, pp. 33–40.

[18] “Entity data model - ado.net | microsoft docs,” https://docs.microsoft.com/en-us/dotnet/

framework/data/adonet/entity-data-model, (Accessed on 09/2021).

[19] S. Burgess, “Practical odata - building rich internet apps with the open data pro-

tocol | microsoft docs,” https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/june/

practical-odata-building-rich-internet-apps-with-the-open-data-protocol, 2010, (Accessed on

06/2021).

[20] “Wso2 joins technology leaders in proposing oasis odata technical committee,” https://wso2.

com/about/news/wso2-joins-technology-leaders-in-proposing-oasis-odata-technical-committee/,

2012, (Accessed on 06/2021).

[21] “Oasis launches initiative to standardize rest-based open data protocol (odata) - oasis open,”

https://www.oasis-open.org/2012/08/27/odata-tc/, 2012, (Accessed on 06/2021).

68

https://www.dbta.com/Columns/Big-Data-Notes/Data-Marketplaces-Have-Yet-to-Deliver-on-Early-Promise-98512.aspx
https://www.dbta.com/Columns/Big-Data-Notes/Data-Marketplaces-Have-Yet-to-Deliver-on-Early-Promise-98512.aspx
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/september/open-data-protocol-build-great-experiences-on-any-device-with-odata
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/september/open-data-protocol-build-great-experiences-on-any-device-with-odata
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/entity-data-model
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/entity-data-model
https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/june/practical-odata-building-rich-internet-apps-with-the-open-data-protocol
https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/june/practical-odata-building-rich-internet-apps-with-the-open-data-protocol
https://wso2.com/about/news/wso2-joins-technology-leaders-in-proposing-oasis-odata-technical-committee/
https://wso2.com/about/news/wso2-joins-technology-leaders-in-proposing-oasis-odata-technical-committee/
https://www.oasis-open.org/2012/08/27/odata-tc/

[22] L. Ross, “Odata - visualize streaming data the easy way with odata | mi-

crosoft docs,” https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/april/

odata-visualize-streaming-data-the-easy-way-with-odata, 2015, (Accessed on 06/2021).

[23] R. Cupek and L. Huczala, “Odata for service-oriented business applications: Comparative anal-

ysis of communication technologies for flexible service-oriented it architectures,” in 2015 IEEE

International Conference on Industrial Technology (ICIT). IEEE, 2015, pp. 1538–1543.

[24] M. Muntean, C. Brândaş, and T. Cîrstea, “Framework for a symmetric integration approach,”

Symmetry, vol. 11, no. 2, p. 224, 2019.

[25] “Oasis approves odata 4.0 standards for an open, programmable web - oasis open,” https://

www.oasis-open.org/2014/03/17/oasis-approves-odata-4-0-standards-for-an-open-programmable-web/,

2014, (Accessed on 06/2021).

[26] W. Redmond, “Technology leaders support oasis standards for

open data protocol - stories,” https://news.microsoft.com/2012/05/24/

technology-leaders-support-oasis-standards-for-open-data-protocol/, 2012, (Accessed on

06/2021).

[27] P. Cardoso, N. Datia, and M. Pato, “Integrated electromyography visualization with multi tem-

poral resolution,” in 2017 11th International Symposium on Medical Information and Commu-

nication Technology (ISMICT). IEEE, 2017, pp. 91–95.

[28] M. Kirchhoff and K. Geihs, “Integrating odata services into the semantic web: a sparql interface

for odata,” in Proceedings of the 14th International Conference on Knowledge Technologies

and Data-driven Business, 2014, pp. 1–8.

[29] C. Turbelin and P.-Y. Boëlle, “Open data in public health surveillance systems: A case study

using the french sentinelles network,” International journal of medical informatics, vol. 82,

no. 10, pp. 1012–1021, 2013.

[30] R. Hansen, B. Thomsen, L. L. Thomsen, and F. S. Adamsen, “Smartcampusaau–an open platform

enabling indoor positioning and navigation,” in 2013 IEEE 14th International Conference on

Mobile Data Management, vol. 2. IEEE, 2013, pp. 33–38.

[31] W. Lee, B. Priyantha, T. Hart, G. DeJean, Y. Xu, and J. Liu, “The cleo mobile sensing platform,”

in Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, 2012, pp.

371–372.

[32] J. Lerman, “Msdn magazine: Data points - slice and dice odata with the jquery datatables

plug-in | microsoft docs,” https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/

69

https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/april/odata-visualize-streaming-data-the-easy-way-with-odata
https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/april/odata-visualize-streaming-data-the-easy-way-with-odata
https://www.oasis-open.org/2014/03/17/oasis-approves-odata-4-0-standards-for-an-open-programmable-web/
https://www.oasis-open.org/2014/03/17/oasis-approves-odata-4-0-standards-for-an-open-programmable-web/
https://news.microsoft.com/2012/05/24/technology-leaders-support-oasis-standards-for-open-data-protocol/
https://news.microsoft.com/2012/05/24/technology-leaders-support-oasis-standards-for-open-data-protocol/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/february/msdn-magazine-data-points-slice-and-dice-odata-with-the-jquery-datatables-plug-in
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/february/msdn-magazine-data-points-slice-and-dice-odata-with-the-jquery-datatables-plug-in

february/msdn-magazine-data-points-slice-and-dice-odata-with-the-jquery-datatables-plug-in,

2011, (Accessed on 06/2021).

[33] “Outsystems to discuss the transformational impact of low-code

at gartner application strategies & solutions summit | busi-

ness wire,” https://www.businesswire.com/news/home/20191204005674/en/

OutSystems-to-Discuss-the-Transformational-Impact-of-Low-Code-at-Gartner-Application-Strategies-Solutions-Summit,

2019, (Accessed on 08/2021).

[34] “Phoenixdx - transform your ideas into business value. fast.” https://phoenix-dx.com/, (Accessed

on 09/2021).

[35] “Data visualization | microsoft power bi,” https://powerbi.microsoft.com/en-us/, (Accessed on

09/2021).

[36] “Odata documentation - odata | microsoft docs,” https://docs.microsoft.com/en-us/odata/, (Ac-

cessed on 09/2021).

[37] N. Prat, I. Comyn-Wattiau, and J. Akoka, “Artifact evaluation in information systems design-

science research-a holistic view.” PACIS, vol. 23, pp. 1–16, 2014.

[38] “Postman api platform | sign up for free,” https://www.postman.com/, (Accessed on 09/2021).

[39] C. Sells, “Odata and atompub - building an atompub server using wcf data ser-

vices | microsoft docs,” https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/august/

odata-and-atompub-building-an-atompub-server-using-wcf-data-services, 2010, (Accessed on

06/2021).

[40] “Core informatics introduces odata api for platform for science,” https://www.prnewswire.co.

uk/news-releases/core-informatics-introduces-odata-api-for-platform-for-science-596654711.

html, 2016, (Accessed on 06/2021).

[41] J. Lerman, “Data points - create and consume json-formatted odata | mi-

crosoft docs,” https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/july/

data-points-create-and-consume-json-formatted-odata, 2012, (Accessed on 06/2021).

[42] D. Fiori and S. Guerrero, Custom Fiori Applications in SAP HANA. Springer, 2020.

[43] “Mendix helps enterprises drive digital innovation with new platform release

| business wire,” https://www.businesswire.com/news/home/20150715005344/en/

Mendix-Helps-Enterprises-Drive-Digital-Innovation-with-New-Platform-Release, 2015, (Ac-

cessed on 06/2021).

70

https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/february/msdn-magazine-data-points-slice-and-dice-odata-with-the-jquery-datatables-plug-in
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/february/msdn-magazine-data-points-slice-and-dice-odata-with-the-jquery-datatables-plug-in
https://www.businesswire.com/news/home/20191204005674/en/OutSystems-to-Discuss-the-Transformational-Impact-of-Low-Code-at-Gartner-Application-Strategies-Solutions-Summit
https://www.businesswire.com/news/home/20191204005674/en/OutSystems-to-Discuss-the-Transformational-Impact-of-Low-Code-at-Gartner-Application-Strategies-Solutions-Summit
https://phoenix-dx.com/
https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/odata/
https://www.postman.com/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/august/odata-and-atompub-building-an-atompub-server-using-wcf-data-services
https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/august/odata-and-atompub-building-an-atompub-server-using-wcf-data-services
https://www.prnewswire.co.uk/news-releases/core-informatics-introduces-odata-api-for-platform-for-science-596654711.html
https://www.prnewswire.co.uk/news-releases/core-informatics-introduces-odata-api-for-platform-for-science-596654711.html
https://www.prnewswire.co.uk/news-releases/core-informatics-introduces-odata-api-for-platform-for-science-596654711.html
https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/july/data-points-create-and-consume-json-formatted-odata
https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/july/data-points-create-and-consume-json-formatted-odata
https://www.businesswire.com/news/home/20150715005344/en/Mendix-Helps-Enterprises-Drive-Digital-Innovation-with-New-Platform-Release
https://www.businesswire.com/news/home/20150715005344/en/Mendix-Helps-Enterprises-Drive-Digital-Innovation-with-New-Platform-Release

[44] “New capabilities in wso2 open source integration platform enhance service and pro-

cess orchestration of internet of things applications,” https://wso2.com/about/news/

new-capabilities-in-wso2-open-source-integration-platform-enhance-service-and-process-orchestration-of-iot-applications/,

2015, (Accessed on 06/2021).

[45] S. Iannuzzi, “Odata - odata, the entity framework and micrsosoft azure access con-

trol | microsoft docs,” https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/october/

odata-odata-the-entity-framework-and-micrsosoft-azure-access-control, 2012, (Accessed on

06/2021).

[46] D. Kiely, “Odata in sql server,” https://www.itprotoday.com/web-application-management/

odata-using-wcf-data-services-access-sql-server, 2013, (Accessed on 06/2021).

[47] A. J. Brust, “Redmond review: Andrew brust likes what he sees with odata – visual studio mag-

azine,” https://visualstudiomagazine.com/articles/2010/04/01/open-data-open-microsoft.aspx,

2010, (Accessed on 06/2021).

[48] “Outercurve foundation announces contribution of odata validation project,” https://www.

prnewswire.com/news-releases/outercurve-foundation-announces-contribution-of-odata-validation-project-128316063.

html, 2011, (Accessed on 06/2021).

[49] “Progress enhances datadirect cloud with odata connectivity - sd times,” https://sdtimes.com/

progress-enhances-datadirect-cloud-odata-connectivity/, 2014, (Accessed on 06/2021).

[50] D. Esposito, “Cutting edge - queryable services | microsoft docs,” https://docs.microsoft.com/

en-us/archive/msdn-magazine/2015/april/cutting-edge-queryable-services, 2015, (Accessed on

06/2021).

[51] P. Modderman, C. Goebels, D. Nepraunig, and T. Seidel, SAP Gateway and OData. Rheinwerk

Publishing, 2019.

[52] C. Goebels, P. Modderman, D. Nepraunig, and T. Seidel, SAPUI5: The Comprehensive Guide.

Rheinwerk Publishing, 2020.

[53] M. Kirchhoff and K. Geihs, “Semantic description of odata services,” in Proceedings of the Fifth

Workshop on Semantic Web Information Management, 2013, pp. 1–8.

[54] M. Baxter-Reynolds, The Six Bookmarks Server Service. Springer, 2010.

71

https://wso2.com/about/news/new-capabilities-in-wso2-open-source-integration-platform-enhance-service-and-process-orchestration-of-iot-applications/
https://wso2.com/about/news/new-capabilities-in-wso2-open-source-integration-platform-enhance-service-and-process-orchestration-of-iot-applications/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/october/odata-odata-the-entity-framework-and-micrsosoft-azure-access-control
https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/october/odata-odata-the-entity-framework-and-micrsosoft-azure-access-control
https://www.itprotoday.com/web-application-management/odata-using-wcf-data-services-access-sql-server
https://www.itprotoday.com/web-application-management/odata-using-wcf-data-services-access-sql-server
https://visualstudiomagazine.com/articles/2010/04/01/open-data-open-microsoft.aspx
https://www.prnewswire.com/news-releases/outercurve-foundation-announces-contribution-of-odata-validation-project-128316063.html
https://www.prnewswire.com/news-releases/outercurve-foundation-announces-contribution-of-odata-validation-project-128316063.html
https://www.prnewswire.com/news-releases/outercurve-foundation-announces-contribution-of-odata-validation-project-128316063.html
https://sdtimes.com/progress-enhances-datadirect-cloud-odata-connectivity/
https://sdtimes.com/progress-enhances-datadirect-cloud-odata-connectivity/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/april/cutting-edge-queryable-services
https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/april/cutting-edge-queryable-services

72

A
SLR Obtained Studies Table

73

Table A.1: List of the obtained studies.

Title and Ref Year
1 A Sensor Data Mediator Bridging the OGC! Sensor Observation Service (SOS) and

the OASIS Open Data Protocol (OData) [15]
2013

2 APIComposer: Data-driven Composition of REST APIs [16] 2018
3 Build Great Experiences on Any Device with OData [13] 2011
4 Building an AtomPub Server Using WCF Data Services [39] 2010
5 Building Rich Internet Apps with the Open Data Protocol [19] 2010
6 Core Informatics Introduces OData API for Platform for Science [40] 2016
7 Create and Consume JSON-Formatted OData [41] 2012
8 Custom Fiori Applications in SAP HANA : Design, Develop, and Deploy Fiori Appli-

cations for the Enterprise [42]
2020

9 Data Marketplaces Have Yet to Deliver on Early Promise [12] 2014
10 Data services [11] 2012
11 Framework for a Symmetric Integration Approach [24] 2019
12 Integrated Electromyography Visualization with Multi Temporal Resolution [27] 2017
13 Integrating OData services into the semantic web: a SPARQL interface for OData

[28]
2014

14 Mendix Helps Enterprises Drive Digital Innovation with New Platform Release [43] 2015
15 Model-driven development of OData services: An application to relational databases

[14]
2018

16 New Capabilities in WSO2 Open Source Integration Platform Enhance Service and
Process Orchestration of Internet of Things Applications [44]

2015

17 OASIS Approves OData 4.0 Standards for an Open, Programmable Web [25] 2014
18 OASIS Launches Initiative to Standardize REST-based Open Data Protocol (OData)

[21]
2012

19 OData, the Entity Framework and Windows Azure Access Control [45] 2012
20 OData: Using WCF Data Services to Access SQL Server [46] 2013
21 OData for service-oriented business applications: Comparative analysis of communi-

cation technologies for flexible Service-Oriented IT architectures [23]
2015

22 Open data in public health surveillance systems [29] 2012
23 Open Data, Open Microsoft [47] 2010
24 Outercurve Foundation Announces Contribution of OData Validation Project [48] 2011
25 Progress Enhances DataDirect Cloud with OData Connectivity [49] 2014
26 Queryable Services [50] 2015
27 REST-based sensor networks with OData [17] 2014
28 SAP Gateway and OData [51] 2019
29 SAPUI5 : The Comprehensive Guide [52] 2020
30 Semantic Description of OData Services [53] 2013
31 Slice and Dice OData with the jQuery Data Tables Plug-In [32] 2011
32 SmartCampusAAU - An Open Platform Enabling Indoor Positioning and Navigation

[30]
2013

33 Tech Leaders Support OASIS Standards for Open Data [26] 2012
34 The CLEO mobile sensing platform [31] 2012
35 The Six Bookmarks Server Service [54] 2010
36 Visualize Streaming Data the Easy Way with OData [22] 2017
37 WSO2 Joins Technology Leaders in Proposing OASIS OData Technical Committee

[20]
2012

74

B
75

An OData Service Document Listing

Listing B.1: Metadata document of the Northwind project.

1 {
2 "@odata.context":"https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/

rest/odata/Northwind/v1/$metadata",
3 "value":
4 [
5 {
6 "name":"Category",
7 "kind":"EntitySet",
8 "url":"Category"
9 },

10 {
11 "name":"Customer",
12 "kind":"EntitySet",
13 "url":"Customer"
14 },
15 {
16 "name":"Employee",
17 "kind":"EntitySet",
18 "url":"Employee"
19 },
20 {
21 "name":"Supplier",
22 "kind":"EntitySet",
23 "url":"Supplier"
24 },
25 {
26 "name":"Shipper",
27 "kind":"EntitySet",
28 "url":"Shipper"
29 },
30 {
31 "name":"Product",
32 "kind":"EntitySet",
33 "url":"Product"
34 },
35 {
36 "name":"OrderDetail",
37 "kind":"EntitySet",
38 "url":"OrderDetail"
39 },
40 {
41 "name":"Order",
42 "kind":"EntitySet",
43 "url":"Order"
44 }
45]
46 }

76

C
An OData Metadata Document

Listing

Listing C.1: Metadata document of the Northwind project.

1 <edmx:Edmx Version="4.0">
2 <edmx:DataServices>
3 <Schema>
4 <EntityContainer Name="Container">
5 <EntitySet Name="Category" EntityType="Northwind.Category"/>
6 <EntitySet Name="Customer" EntityType="Northwind.Customer"/>
7 <EntitySet Name="Employee" EntityType="Northwind.Employee"/>
8 <EntitySet Name="Supplier" EntityType="Northwind.Supplier"/>
9 <EntitySet Name="Shipper" EntityType="Northwind.Shipper"/>

10 <EntitySet Name="Product" EntityType="Northwind.Product"/>
11 <EntitySet Name="OrderDetail" EntityType="Northwind.OrderDetail"/>
12 <EntitySet Name="Order" EntityType="Northwind.Order"/>
13 </EntityContainer>
14 </Schema>
15 <Schema Namespace="Northwind">
16 <EntityType Name="Category">
17 <Key>
18 <PropertyRef Name="Id"/>
19 </Key>
20 <Property Name="Id" Type="Edm.Int64" Nullable="false"/>
21 <Property Name="CategoryName" Type="Edm.String" Nullable="false"/>
22 <Property Name="Description" Type="Edm.String" Nullable="false"/>
23 <Property Name="Picture" Type="Edm.Binary"/>
24 </EntityType>
25 <EntityType Name="Customer">

77

26 <Key>
27 <PropertyRef Name="Id"/>
28 </Key>
29 <Property Name="Id" Type="Edm.String" Nullable="false"/>
30 <Property Name="CompanyName" Type="Edm.String" Nullable="false"/>
31 <Property Name="ContactName" Type="Edm.String" Nullable="false"/>
32 <Property Name="ContactTitle" Type="Edm.String" Nullable="false"/>
33 <Property Name="Address" Type="Edm.String" Nullable="false"/>
34 <Property Name="City" Type="Edm.String" Nullable="false"/>
35 <Property Name="Region" Type="Edm.String"/>
36 <Property Name="PostalCode" Type="Edm.String"/>
37 <Property Name="Country" Type="Edm.String" Nullable="false"/>
38 <Property Name="Phone" Type="Edm.String" Nullable="false"/>
39 <Property Name="Fax" Type="Edm.String"/>
40 </EntityType>
41 <EntityType Name="Employee">
42 <Key>
43 <PropertyRef Name="Id"/>
44 </Key>
45 <Property Name="Id" Type="Edm.Int64" Nullable="false"/>
46 <Property Name="LastName" Type="Edm.String" Nullable="false"/>
47 <Property Name="FirstName" Type="Edm.String" Nullable="false"/>
48 <Property Name="Title" Type="Edm.String" Nullable="false"/>
49 <Property Name="TitleOfCourtesy" Type="Edm.String" Nullable="false"/>
50 <Property Name="BirthDate" Type="Edm.Date" Nullable="false"/>
51 <Property Name="HireDate" Type="Edm.Date" Nullable="false"/>
52 <Property Name="Address" Type="Edm.String" Nullable="false"/>
53 <Property Name="City" Type="Edm.String" Nullable="false"/>
54 <Property Name="Region" Type="Edm.String"/>
55 <Property Name="PostalCode" Type="Edm.String" Nullable="false"/>
56 <Property Name="Country" Type="Edm.String" Nullable="false"/>
57 <Property Name="HomePhone" Type="Edm.String" Nullable="false"/>
58 <Property Name="Extension" Type="Edm.Int32" Nullable="false"/>
59 <Property Name="Photo" Type="Edm.Binary"/>
60 <Property Name="Notes" Type="Edm.String" Nullable="false"/>
61 <Property Name="ReportsTo" Type="Edm.Int32"/>
62 </EntityType>
63 <EntityType Name="Supplier">
64 <Key>
65 <PropertyRef Name="Id"/>
66 </Key>
67 <Property Name="Id" Type="Edm.Int64" Nullable="false"/>
68 <Property Name="CompanyName" Type="Edm.String" Nullable="false"/>
69 <Property Name="ContactName" Type="Edm.String" Nullable="false"/>
70 <Property Name="ContactTitle" Type="Edm.String" Nullable="false"/>
71 <Property Name="Address" Type="Edm.String" Nullable="false"/>
72 <Property Name="City" Type="Edm.String" Nullable="false"/>
73 <Property Name="Region" Type="Edm.String"/>
74 <Property Name="PostalCode" Type="Edm.String" Nullable="false"/>
75 <Property Name="Country" Type="Edm.String" Nullable="false"/>
76 <Property Name="Phone" Type="Edm.String" Nullable="false"/>
77 <Property Name="Fax" Type="Edm.String"/>
78 <Property Name="HomePage" Type="Edm.String"/>
79 </EntityType>
80 <EntityType Name="Shipper">
81 <Key>
82 <PropertyRef Name="Id"/>
83 </Key>
84 <Property Name="Id" Type="Edm.Int64" Nullable="false"/>
85 <Property Name="CompanyName" Type="Edm.String" Nullable="false"/>
86 <Property Name="Phone" Type="Edm.String" Nullable="false"/>
87 </EntityType>
88 <EntityType Name="Product">
89 <Key>
90 <PropertyRef Name="Id"/>
91 </Key>
92 <Property Name="Id" Type="Edm.Int64" Nullable="false"/>
93 <Property Name="ProductName" Type="Edm.String" Nullable="false"/>
94 <Property Name="SupplierId" Type="Edm.Int64" Nullable="false"/>
95 <Property Name="CategoryId" Type="Edm.Int64" Nullable="false"/>
96 <Property Name="QuantityPerUnit" Type="Edm.String" Nullable="false"/>
97 <Property Name="UnitPrice" Type="Edm.Decimal" Nullable="false"/>
98 <Property Name="UnitsInStock" Type="Edm.Int32" Nullable="false"/>
99 <Property Name="UnitsOnOrder" Type="Edm.Int32" Nullable="false"/>

100 <Property Name="ReorderLevel" Type="Edm.Int32" Nullable="false"/>
101 <Property Name="Discontinued" Type="Edm.Boolean" Nullable="false"/>
102 <NavigationProperty Name="Supplier" Type="Northwind.Supplier" Nullable="false"

ContainsTarget="true"/>
103 <NavigationProperty Name="Category" Type="Northwind.Category" Nullable="false"

ContainsTarget="true"/>

78

104 </EntityType>
105 <EntityType Name="OrderDetail">
106 <Key>
107 <PropertyRef Name="Id"/>
108 </Key>
109 <Property Name="Id" Type="Edm.Int64" Nullable="false"/>
110 <Property Name="OrderId" Type="Edm.Int64" Nullable="false"/>
111 <Property Name="ProductId" Type="Edm.Int64" Nullable="false"/>
112 <Property Name="UnitPrice" Type="Edm.Decimal" Nullable="false"/>
113 <Property Name="Quantity" Type="Edm.Int32" Nullable="false"/>
114 <Property Name="Discount" Type="Edm.Decimal" Nullable="false"/>
115 <NavigationProperty Name="Order" Type="Northwind.Order" Nullable="false"

ContainsTarget="true"/>
116 <NavigationProperty Name="Produto" Type="Northwind.Produto" Nullable="false"

ContainsTarget="true"/>
117 </EntityType>
118 <EntityType Name="Order">
119 <Key>
120 <PropertyRef Name="Id"/>
121 </Key>
122 <Property Name="Id" Type="Edm.Int64" Nullable="false"/>
123 <Property Name="CustomerId" Type="Edm.String" Nullable="false"/>
124 <Property Name="EmployeeId" Type="Edm.Int64" Nullable="false"/>
125 <Property Name="OrderDate" Type="Edm.Date" Nullable="false"/>
126 <Property Name="RequiredDate" Type="Edm.Date" Nullable="false"/>
127 <Property Name="ShippedDate" Type="Edm.Date"/>
128 <Property Name="ShipVia" Type="Edm.Int64" Nullable="false"/>
129 <Property Name="Freight" Type="Edm.Decimal" Nullable="false"/>
130 <Property Name="ShipName" Type="Edm.String" Nullable="false"/>
131 <Property Name="ShipAddress" Type="Edm.String" Nullable="false"/>
132 <Property Name="ShipCity" Type="Edm.String" Nullable="false"/>
133 <Property Name="ShipRegion" Type="Edm.String"/>
134 <Property Name="ShipPostalCode" Type="Edm.String"/>
135 <Property Name="ShipCountry" Type="Edm.String" Nullable="false"/>
136 <NavigationProperty Name="Customer" Type="Northwind.Customer" Nullable="false"

ContainsTarget="true"/>
137 <NavigationProperty Name="Employee" Type="Northwind.Employee" Nullable="false"

ContainsTarget="true"/>
138 <NavigationProperty Name="Shipper" Type="Northwind.Shipper" Nullable="false"

ContainsTarget="true"/>
139 </EntityType>
140 </Schema>
141 </edmx:DataServices>
142 </edmx:Edmx>

79

80

81

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Research Methodology
	1.2 Document Outline

	2 Low-Code Development Platforms
	2.1 Architecture and Main Components of Low-Code Development Platforms
	2.2 Development process in Low-Code Development Platforms

	3 Systematic Literature Review
	3.1 Planning the Review
	3.1.1 Motivation
	3.1.1.A Open Data Protocol

	3.1.2 Research Questions
	3.1.3 Search String and Data Sources
	3.1.4 Study Selection Criteria
	3.1.5 Data Extraction
	3.1.6 Data Synthesis

	3.2 Conducting the Review
	3.2.1 Results

	3.3 Reporting the Review
	3.3.1 RQ1. How does OData work?
	3.3.2 RQ2. What are the main benefits and utility of using OData?
	3.3.3 RQ3. What are the main challenges and limitations of the OData protocol?
	3.3.4 RQ4. What applications have been developed with OData?

	3.4 Lessons Learned

	4 Research Problem
	5 Proposal
	5.1 Objectives
	5.2 Description
	5.2.1 Creation of OData's EDM
	5.2.2 Mapping between OData requests and SQL statements
	5.2.3 De/Serialization Process

	6 Demonstration
	6.1 Context
	6.2 Exposing an OData service in OutSystems
	6.2.1 Creation of OData’s EDM
	6.2.2 Mapping between OData requests and SQL statements
	6.2.3 De/Serialization Process

	6.3 OutSystems CDS Project
	6.3.1 Example

	7 Evaluation
	7.1 Test Application
	7.2 Unit Tests
	7.2.1 Service and Metadata Documents
	7.2.2 CRUD Operations
	7.2.3 Querying Requests
	7.2.4 PowerBI Integration

	8 Conclusion
	8.1 Research Contributions
	8.2 Research Limitations
	8.3 Future Work
	Bibliography

	Bibliography
	Appendix A

	A SLR Obtained Studies Table
	Appendix B

	B An OData Service Document Listing
	Appendix C

	C An OData Metadata Document Listing

