
An Interoperability Tool for Low-Code Development

Platforms

Rita Clode Silva Jardim Fernandes
ritacsjfernandes@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract

The development of software systems commonly requires integration use cases, such as the
data exchange between multiple tools. Interoperability is defined as the ability of multiple software
intermediaries to exchange information so that a tool is able to handle the information generated by
another. Over the last few years, Low-Code Development Platforms (LCDPs) have gained popularity,
with a rising number of companies using them to build enterprise-grade apps and transform
their businesses. The lack of interoperability will raise a common problem, since more and more
client-side applications are moving from thick clients to thin web clients. We create a method to
expose an OData service dynamically from a Low-Code Development Platform application, in order
to be further consumed by other systems such as business intelligence tools. OData is a protocol that
allows web clients to publish, query, and update data in data services using simple HTTP requests.
From an initial data model obtained from an LCDP application, we derive all the artifacts required to
have an OData service up and running on top of a database that conforms to the model definition,
including the conversion of OData requests to SQL queries and compliance with the OData protocol.
Our approach creates an API exposing the data retrieved from the LCDP application. The model is
exposed as an OData service, thus allowing end-users to use the OData query language to get the
information they need in an easy and standard way as well as allowing it to be consumed by other
applications.
Keywords: Open Data Protocol (OData), Data Integration, Low-Code Development Platforms,
OutSystems

1. Introduction

The development of software systems commonly
requires integration use cases, such as the data
exchange between multiple tools. Interoperabil-
ity is defined as the ability of multiple software
intermediaries to exchange information so that a
tool is able to handle the information generated
by another. Since the representation of trans-
ferred data differs between tools, implementing
an interoperability solution frequently calls for
the use of syntactic and semantic mapping.

Low-code is a form of software development
in which applications and processes are devel-
oped with little to no coding. A Low-Code De-
velopment Platform (LCDP) employs visual in-
terfaces through simple logic and graphical fea-
tures instead of sophisticated code languages.
These platforms have become more popular as a
cost-effective and time-saving alternative to tra-
ditional software development [10].

However, there is a lack of advanced function-
alities within the LCDPs resulting in a need for
interaction with other tools, such as data analyt-
ics and visualization tools. Such interaction fre-
quently involves exposing web services, through
Application Programming Interfaces (APIs), tools
that help support interoperability. So as to de-
velop a dynamic interoperability tool for Low-
Code Development Platforms using the Open
Data Protocol (OData), we followed the guide-
lines provided by the Design Science Research
methodology [20].

2. Research Background

2.1. Low-code Development Platforms

Low-code development platforms (LCDPs) are
simple visual environments that are increasingly
introduced and promoted by major IT companies
[23]. Such platforms help dealing with the short-
age of highly-skilled software developers by en-

1

abling end users, with little to no programming
experience, to contribute in software develop-
ment processes. The most representative LCDPs
are OutSystems [2], Mendix [6], Appian [1] and
Kissflow [5].

LCDPs allow the development and deployment
of fully functional software applications using
powerful graphical User Interfaces (UIs) and vi-
sual abstractions requiring minimal or no pro-
cedural code [25]. They are frequently deliv-
ered on the cloud via a Platform as a Service
(PaaS) model. PaaS is a cloud development and
deployment environment that contains tools for
building everything from simple cloud-based ap-
plications to sophisticated enterprise software
enabled through the cloud [11]. PaaS helps
avoiding the cost and complexity of purchasing
software licenses, development tools, managing
application infrastructure and other resources.
Model-driven engineering techniques are used to
design these fully functional applications, which
take advantage of cloud infrastructures, auto-
matic code generation and graphical abstrac-
tions. To ensure effective and efficient develop-
ment, PaaS models are used alongside deploy-
ment and maintenance, and software design pat-
terns and architectures.

2.2. Open Data Protocol

Microsoft presented the Open Data Protocol
(OData) back in 2007. By 2012, OData had been
proposed to OASIS, and in 2014 Version 4.0 was
released by the international open standard con-
sortium. As of 2020, OData Version 4.01 which
is a highly compatible, incremental release over
OData 4.0 was published.

OData is an HTTP protocol that allows web
clients to use basic HTTP queries to publish,
query, and update information in data services
[18]. It enables you to develop resources that
are specified by an Entity Data Model (EDM)
and queryable by web clients through an SQL-
like URL-based query language [16]. This query
language has a range of query options that al-
lows customers to exactly define the instance
data they want. Simply described, OData is a
standardized data transport format with a de-
fined data access interface [13]. The data is
serialized and sent via HTTP using the XML or
JSON standards. The latter provide alternative
data formats, both of which are supported in
just about all web application technologies. The
OData client ecosystem has grown over the pre-
vious few years to the point that client libraries
are available for the main client devices and plat-

forms, with more on the way [13]. The OData
ecosystem is composed of service producers and
service consumers. OData service producers use
the OData protocol to expose their data, whereas
OData consumers are simply applications that
consume data exposed using the OData proto-
col. OData consumers can range in sophistica-
tion from a simple web browser to a custom ap-
plication that exploits all of OData’s features.

OData consists of the following four main parts
[24]:

• OData protocol - The protocol specifies
the way consumers can interact with data
sources. Create, Read, Update and Delete
(CRUD) operations along with XML and
JSON serialization standards are supported.
The query language includes a set of query
parameters that enable customers to de-
scribe the data they want.

• OData data model - An abstract data model,
the EDM, defines the data structure and pro-
vides a general mechanism to detail and ar-
range the data. It’s an instance of an entity
relationship model implementation, in which
data is represented as entities and relation-
ships between them. A Service Metadata
Document is provided by an OData service,
and it describes the service’s EDM-based
model in the XML-based Conceptual Schema
Definition Language (CSDL).

• OData service - An OData service exposes a
callable endpoint that is used for accessing
data or calling functions. It employs the data
model, implementing the OData protocol.

• OData client - An OData client uses the
OData protocol and the corresponding
OData data model to connect to an OData
service.

The service document lists all the top-level
feeds for users to access them, since a service
may contain one or more feeds [18]. It helps ser-
vice consumers to find the locations of the avail-
able resource collections, since the document
lists the collections of available resources pro-
vided by the service. The service document is re-
turned when making a get request on the service
root URI. The service metadata document spec-
ifies its Entity Data Model, through the “$meta-
data” request [18]. The OData metadata docu-
ment is the standard way to let end-users know
how to query the data, as it presents information
about the structure and organization of all the
resources. The result is in CSDL format.

OData uses HTTP verbs (GET, PUT, POST,

2

Figure 1: URI components of the Open Data Protocol.

DELETE) to define actions on resources, and it
uses a common URI syntax to identify those re-
sources. The client must perform an HTTP POST,
GET, PUT, or DELETE request to create, read, up-
date, or delete an object, accordingly [14].

OData also defines a set of rules for producing
URIs to identify the data and information given
by an OData service [18]. The service root URI,
the resource path, and the query options are the
three main URI components, which are displayed
in Fig. 1. The root of an OData service is identi-
fied by the service root URI [24].

The resource path specifies the resource with
which the service consumers wants to interact
with. It is mostly used to address a collection, an
entity within a collection, an entity’s attribute or
a relationship.

Query options in the URL request allow you to
influence how the service processes a request.
To customize a request, OData offers a set of
system query options. System query options are
prefixed with the $ character (optional in OData
4.01). The most used query options are explained
in Table 1.

3. Research Problem
The paradigm of distributed IT architectures is
shifting away from monolithic programs running
on a single node and moving towards distributed,
dynamic environments [15]. Such environments
enable the creation of applications by assem-
bling existing services, increasing code reuse
while reducing development time [15]. Ensuring
the quality of data integration between systems
and applications in these environments is essen-
tial [19]. Data integration refers to the trans-
fer, replication, and transformation of data from
from one application to another without regard
for application or business logic.

Over the last few years, Low-Code Develop-
ment Platforms have gained popularity, with a
rising number of companies using them to build
enterprise-grade apps and transform their busi-
ness. According to Gartner [12], low-code appli-
cation development will account for more than
65% of all app development functions by 2024,
with 66% of large companies adopting at least
four low-code platforms. The lack of interoper-

ability will raise a common problem, since appli-
cations are changing from thick clients to thin
web clients [15].

Instead of implementing complex integra-
tion frameworks for every enterprise-integrated
application (e.g., Enterprise Resource Plan-
ning (ERP), Customer Relationship Management
(CRM), Supply Chain Management (SCM) sys-
tems), working towards a generic data in-
tegration method that allows interoperability
among several applications should be our goal.
This would allow interoperability between Low-
Code Development Platforms and enterprise-
integrated applications, Business Intelligence
(BI) tools and other systems.

As an OASIS approved standard, OData is a vi-
able alternative for open data exchange services
[15]. Previous work has only focused on creating
bridging applications or theoretical approaches
for exposing OData services in a non automatic
way.

Thus, the problem identified in this research
is that there is a lack of dynamic approaches
to expose an OData Service from an LCDP to
be further consumed by other applications,
without the support of an extra tool or a bridging
application.

4. Proposal
This section describes the objectives of the solu-
tion and explain in detail our proposal.

4.1. Objectives
The main goal related to this research is creat-
ing a method to expose an OData service dynam-
ically from a Low-Code Development Platform
application, in order to be further consumed by
other systems (OData consumers) such as Busi-
ness Intelligence tools. For this to be achieved
we defined the following objectives:

• allow complex queries against the exposed
information;

• enable CRUD operations over the service
data;

• provide the means to navigate through rela-
tionships between entities;

• ensuring the OData service can be con-
sumed by an OData consumer;

Trying to accomplish these objectives, we had in
mind keeping the cost of our solution as low as
possible, without the support of extra tools or a
bridging applications.

3

Query Option Description
$top=n The service returns the number of available items up to but not

greater than the specified value n.
$skip=n The service returns items starting at position n+1
$orderby=PropertyName Specifies the property to order by the items returned from the

service.
$count=true Specifies that the total count of items within a collection

matching the request be returned along with the result.
$filter=PropertyName eq Value Restricts the set of items returned over one or more specified

properties.
$select=PropertyName Requests that the service return only the properties, dynamic

properties, actions and functions explicitly requested.
$search=SearchExpression Restricts the result to include only those items matching the

specified search expression.
$expand=RelatedEntity Indicates the related entities that must be represented inline.

Table 1: Most used query options.

4.2. Proposal Description

We generate all the artifacts required to have an
OData service up and running from a data model
retrieved from an LCDP application, through the
translation of OData requests to SQL queries and
compliance with the OData protocol [17]. Our
approach creates an API exposing the data re-
trieved from the LCDP application. The model is
exposed as an OData service, allowing end-users
to obtain data using the OData query language
in a simple way, and for the data to be consumed
by other applications [16].

Developers should first specify their data mod-
els in the EDM format, then add business logic to
resolve URLs using the OData query language to
handle querying and modifying the data, and fi-
nally translate such queries into SQL statements
[17]. Furthermore, to exchange messages with
OData clients who follow the protocol, a de/seri-
alization mechanism is necessary. Thus, the en-
tire process of generating an OData service in-
cludes the following tasks:

1. The creation of the OData data model (EDM)
from the received table structures.

2. The mapping between OData requests and
SQL statements

3. The de/serialization process.

4.2.1 Creation of OData’s EDM

The first step in defining an OData service is de-
signing the entity model [22]. The main compo-
nents of a database table are the table’s name,
primary key and a list of attributes which cor-
respond to the table’s columns. Each attribute
has a name, a type, whether it is a primary key,
whether it is foreign key referencing another ta-

ble’s primary key and if this stands the corre-
sponding referenced primary key.

The Entity Data Model is a collection of con-
cepts that describe the structure of data, regard-
less of how it is stored [4]. The entity type is
the fundamental building block to express the
structure of data. A group of instances of a
particular entity type is referred to as an en-
tity set. Each entity must have its own entity
key within an entity set. Entity sets are all
grouped in an entity container. Properties es-
tablish the structure and characteristics of entity
types. A Product entity type, for example, might
have properties like ProductId, Name and Price.
A property can hold either primitive data (e.g.,
text, integer, or Boolean values) or structured
data using complex types. Association types are
used to describe relationships between two en-
tity types. Every association has two association
ends which correspond to the two related entity
types and a multiplicity representing the maxi-
mum number of entities that can be at an asso-
ciation’s end. A navigation property on an entity
type is an optional property that allows users to
navigate from one end of an association to the
other end.

The mapping between a table structure and
the corresponding EDM is the following:

• for each table an entity type is created, with
the table’s name, primary key as the entity’s
key;

• for each list of attributes from a table, prop-
erties are created within the corresponding
entity, with the respective name and type;

• for each foreign key a navigation property
is created, linking the source and target en-

4

tities and is stored in the respective entity
type;

• each record is placed within the correspond-
ing entity set;

• an entity container is created to store the en-
tity sets;

4.2.2 Mapping between OData requests and
SQL statements

To transform OData requests to SQL statements
we consider:

• HTTP method - specifies if the request is
either a query or a data modification action;

• resource path - identifies the resource to
query or update (e.g., products, a single
product, supplier of a product);

• query options - allows to specify the re-
quired instance data

We created a query model to perform the
transformation of the target resource path into
the corresponding SQL statement with the spec-
ified query options. The model has the following
structure:

• list of output tables - the tables to select
from;

• list of join references - a join reference is
composed of the table and the two columns
to join on;

• list of selected columns - the columns that
are selected from the output and join tables;

• list of where conditions - a where condi-
tion is composed of unary or binary expres-
sions that contain the column name, the op-
erator and the value (e.g., Name = ’John’); a
where condition can have more than one ex-
pression by using the logical operators OR
and AND (e.g., Name = ’John’ AND Age >
25);

• list of orderby conditions - an orderby
condition is composed of the column name
and the sort order (i.e., ascending or de-
scending);

• offset number - the number of records to
skip from the beginning;

• next number - the top n records to display;
• count option - a boolean value that indi-

cates if the total number of records should
be displayed;

We designed a method to perform the transfor-
mation of the target resource path into the cor-
responding SQL statement. To query a collection
of entities, the name of the collection is added to
to the list of output tables. Now, to get a spe-
cific entity within a collection besides adding the
name of the collection to the list of output ta-

bles, one must specify a where condition of the
primary key stated. A property of a particular
entity is retrieved the same way as a single en-
tity with the name of the property listed in the
selected columns. Similarly, to navigate through
a relationship of a specified entity we add the at-
tributes and table as a joining reference and only
specify the end of the relationship’s columns.

OData requests are refined through query op-
tion, so we also had to take them into account
in the mapping of the SQL statement. Query op-
tions top and skip specify the number of records
to be included and excluded in the request result
through the offset and next numbers. To order
the OData payload a particular column and the
sort order are added as orderby conditions. If
no sort order is specified, our method assumes
an ascending order. The inline count option is
mapped into a boolean value and two SQL state-
ments are run. Each filter condition is added to
the where conditions list in our model. The se-
lected columns are also added to a designated
list. The search query option gets modelled into
as much filter conditions using the like operator
as columns exist in the target resource. Finally
an expansion is similar to requesting a relation-
ship between to entities, but instead of only ex-
posing the end entity, the end entity is exposed
within the source entity. This is done by adding
the end entity to the join tables list.

4.2.3 De/Serialization Process

This process creates an OData serializer and de-
serializer that supports both the OData JSON and
XML formats.

In order to construct the textual representa-
tion of the OData records according to the proto-
col’s norms, the serializer applies a model-to-text
transformation to the OData query result [17].
For example, an entity is represented by a JSON
object representing its properties composed of
list of key/value pairs, and an entity collection
is transformed to a JSON array holding the en-
tities. The serializer additionally takes into con-
sideration the query model while generating the
JSON representation, for example the number of
key/value pairs correspond to the number of se-
lected columns. Apart from the entity’s proper-
ties, the JSON object also includes the annota-
tion odata.context as metadata, which provides
the payload’s root context URL.

The deserializer parses and processes the body
of OData requests POST and PUT to construct
the details of the INSERT and UPDATE SQL
queries [17]. In the resulting SQL statement,

5

each key/value pair in a JSON object is trans-
formed to the corresponding field in the relevant
database and its respective value. For DELETE
requests, we only need the resource path com-
ponent in the URL that targets a specific entity
within a collection to be removed.

The XML representation format follows a sim-
ilar procedure for the metadata document of the
OData service.

5. Demonstration
5.1. Context

This master’s thesis was implemented in a pro-
fessional environment, integrated in a com-
pany dedicated to delivering digital solutions
through developing cutting-edge enterprise soft-
ware, PhoenixDx [8].

The Low-Code Developed Platform used for
this validation was OutSystems [2]. OutSystems
is a modern low-code application platform that
speeds up the creation of applications while also
providing exceptional flexibility and efficiency
[2]. It enables the development of desktop and
mobile applications which may run either in the
cloud or on local infrastructures. OutSystems
has three significant components:

• Integration Studio: allows database connec-
tions through either Java or .NET

• Service Studio: where the behaviour of the
application being developed is specified

• Platform Server: the cloud server used to
develop, orchestrating all runtime, deploy-
ment, and managing activities for all appli-
cations

In order to validate our OData service, we con-
sumed it through PowerBI [3]. PowerBI allows to
connect and visualize any data using the unified,
scalable platform for self-service and enterprise
Business Intelligence tool [3]. It is a tool that is
easy to use and helps gaining a deeper data in-
sight.

To the extent of our knowledge, OutSystems
has no component to support OData.

5.2. Exposing an OData service in OutSystems

According to our proposed approach in Sec-
tion 4, the integration process involves three
steps, which are described in the following sec-
tions.

5.2.1 Creation of OData’s EDM

To expose an OData service dynamically, we used
OutSystems’ metamodel. The metamodel speci-
fies what can be found in the model, from the
data migration point of view.

To expose an OData service, the OutSystems

application must expose a REST service. Such
application exposes a REST service with 3 main
procedures exposing the service document, the
metadata document, and result of any querying
or modifying the data. The OData service end-
point of the application has a defined context,
which contains the required configuration for the
service to operate. The service context contains:

• ServiceRoot - the absolute URL of the Ser-
vice Document

• EntityDefinitions - the definition of all enti-
ties, and their attributes, exposed by the ser-
vice

• Body - the http request body for POST and
PUT requests

Each OData request, in order to execute, needs
access to the service context and to its inputs.
The input for a given OData request is the path
of the request, which is a possibly empty string
starting after the service root and also includ-
ing any query string of the request, and the body
to insert or update data. The path is composed
of the target resource path and query options.
When the path is empty the service document is
returned and the metadata document is returned
when the path is $metadata.

Microsoft’s OData Core library [7] is designed
to read and write all kinds of OData payloads,
such as service document, model metadata, en-
tity set and references, etc. Through a .NET
extension of our OutSystems application we are
able create and read such payloads. To build
the metadata XML, an EdmModel must be built
first, through the OData Core library. In the
OData library, the object that represents all of
the entities exposed on an OData service is called
EdmModel. This contains a list of entities, in
a similar fashion to the list of entity defini-
tions. Given the EdmModel and the service root,
writing metadata is simple by using ODataMes-
sageWriter.WriteMetadataDocument(). The ser-
vice document can also be generated automati-
cally. The Service Document and the Metadata
Document, are requests simpler to execute since
they only depend on the EdmModel and service
root. Writing other payloads is a more complex
process, which is further detailed in the follow-
ing sections.

5.2.2 Mapping between OData requests and
SQL statements

In order to execute a dynamic OData request we
need to parse the path information. For this task,
we used the ODataUriParser class provided by
the OData library. The ODataUriParser provides

6

detailed information of the multiple segments of
the given Path, for example which entity type it
refers to, and if it has a key predicate. It also
parses expressions related to the query options
keywords such as $filter, $orderby, $top, $skip,
etc. However, this information is not directly
suitable to generate an SQL statement. To trans-
form the output of ODataUriParser into SQL, we
use a QueryParser class. This class first builds
a QueryModel object, which contains informa-
tion directly suitable to generate the SQL state-
ment. This object contains information such as
the list of selected columns, the list of tables in
the FROM clause, the list of conditions on the
WHERE clause, etc. Once obtained the Query-
Model, transforming it into SQL is a simple op-
eration of mostly concatenating strings. We de-
fined a specific query model to help the mapping
to SQL statements for each data transformation
operation (i.e., create, read, update and delete).

For DELETE requests the query model con-
tains an entity type and a key/value pair. The
entity type is the entity table from which the
record is to be deleted, and the key/value pair
defines the primary key and the corresponding
value to specify the record. These values are re-
trieved from the target resource segment of the
URL path.

To insert a new record through the OData ser-
vice, the query model is composed of an entity
type and a list of key/value pairs. Again, the
entity type is the entity table from which the
new record is to be inserted. The list of key/-
value pairs have the name and value of all the
attributes of that specific entity type. The entity
type and the key/value pairs are specified in the
HTTP request’s body.

For PUT requests the query model is the sim-
ilar to the insert model. However the key/value
pairs are a subset of the entity type’s attributes
and corresponding values. In addition, there is a
specific key/value pair in the model that refers to
a specific record, through the primary key. Once
more, the entity type and the key/value pairs are
specified in the HTTP request’s body.

After obtaining the SQL statement, we execute
it using OutSystems’ database API. Such API al-
lows to retrieve an object of type IDataReader
after executing the SQL command. This object,
which defines the query result can then be used
to read multiple rows, and multiple columns on
each row.

5.2.3 De/Serialization Process

The serialization of the XML metadata document
and the JSON service document were already de-
scribed in the end of Section 5.2.1. For other
types of OData payloads, we defined a specific
output class to help the the serialization process
for each data transformation operation (i.e., GET,
POST, PUT, DELETE).

For updating and removing records, the pay-
load has no content, therefore the serialization
process only requires setting the status code of
the response to 204 (indicating no content).

When querying the data exposed by the ser-
vice, the output class receives the query model
completed in the previous section and the data
table with the resulting records of such query.
To serialize into an OData payload, we used
the ODataMessageWriter class provided by the
OData library. The ODataMessageWriter is a
writer class used to write all kinds of OData pay-
loads. A collection of entities is described by
the ODataResourceSet class and for each data
row of the query result we define a list of ODat-
aProperty class to describe the entity’s proper-
ties. In case there are nested entities that were
expanded using the $expand query option, an
ODataResource is used to describe them. The
status code is set to 200 (OK) upon a successful
request.

For new data records being inserted, the out-
put class only receives the query model com-
pleted in the previous section. From the model,
the properties and respective values of the
record are extracted and converted into ODat-
aProperty and written through the ODataMes-
sageWriter. The status code is set to 201 (cre-
ated).

The deserializer parses and processes the body
of OData requests to insert and update data,
to build the details of query model. For this,
we use the ODataMessageReader class which is
provided by the OData library. The ODataMes-
sageReader is a reader class used to read all
OData payloads. It is created using the re-
quest’s body and the body is parsed using an
ODataReader to read a resource within the body
and proceed to filling in the corresponding query
model.

6. Evaluation

For evaluating the efficacy of our artifact, we
demonstrate its response in several use cases
[21]. As we were developing our OutSystems so-
lution, Unit tests were incrementally added to as-
sess our artifact in specific scenarios.

7

6.1. Test Application
In all of the following use cases, the test ap-
plication we used was a project exposing the
Northwind DB. The Northwind DB is a sam-
ple database that is used to exhibit the perfor-
mance of Microsoft’s products. The database
contains sales information of a hypothetical com-
pany that exports/imports specialty foods called
Northwind.

An application was created named
Northwind, with all Northwind DB’s en-
tities. No authentication is required
to access the service and it is live in
https://phoenixpressservicesptyltd-dev.
outsystemscloud.com/CDS/rest/odata/
Northwind/drafts/v2.

6.2. Unit Tests
6.2.1 Service and Metadata Documents
Being able to expose the service and metadata
documents is a requirement for any OData ser-
vice. The service document is retrieved with a
GET request on the service root URI. This JSON
document lists the collections of available re-
sources provided by the project’s service. By ap-
pending the segment $metadata to the service
root URI of a GET request the metadata docu-
ment is retrieved. It describes each entity type
of the project, listing their properties and corre-
sponding data types.

6.2.2 CRUD Operations
One of our goals was to be able to manipulate
the data exposed in the service using CRUD
operations. First we decided to read the list
of available shippers using a GET request on
https://phoenixpressservicesptyltd-dev.
outsystemscloud.com/CDS/rest/odata/
Northwind/drafts/v2/Shipper.

For a shipping company to be added to the
Shipper collection, the service client must
send a POST request to that collection’s URL
(https://phoenixpressservicesptyltd-dev.
outsystemscloud.com/CDS/rest/odata/
Northwind/drafts/v2/Shipper). The POST
body has to consist of a single valid entity
representation. To test this, we used Postman.
Postman is an API platform for both building
and using APIs [9]. It allows you to send HTTP
requests to web APIs, including simulating
requests with bodies which is important for
POST and PUT request methods. The request
(and corresponding response) in Fig 2 creates a
Shipper entity whose company name is CTT.

To update an entity within a collec-
tion, the service client must send a

Figure 2: POST request and response of creating a
new entity in Shipper collection, using Post-
man.

Figure 3: PUT request for updating a specific entity
in Shipper collection, using Postman.

PUT request to the specific entity’s URL
(https://phoenixpressservicesptyltd-dev.
outsystemscloud.com/CDS/rest/odata/
Northwind/drafts/v2/Shipper(4)). The PUT
body has to consist of a single valid entity repre-
sentation, composed of the properties the client
desires to update. To test this functionality, we
a PUT request using Postman, represented in
Fig. 3. PUT requests for OData services have no
content responses.

To remove an entity within a collection, one
must send a DELETE request with the primary
key of the entity to be removed. DELETE re-
quests for OData services have no content re-
sponses. The request bellow deletes the Shipper
with id = 4.

DELETE https://

phoenixpressservicesptyltd-dev.

outsystemscloud.com/CDS/rest/odata/Northwind/

drafts/v2/Shipper(4)

6.2.3 Querying Requests

All of the query options in Table 1 were tested
for simple cases and composed two by two. The
$filter query option was tested for different data
types and data comparisons as well. We will
instance a small portion of the unit tests over
querying the data, as more than 100 tests were
developed.

There are a total of 77 product instances in the
previously created Northwind project. As default
the products are ordered by id number. In order

8

https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Shipper(4)

to know the top 3 most expensive beverages we
created a GET request with the following URL:
https://phoenixpressservicesptyltd-dev.
outsystemscloud.com/CDS/rest/odata/
Northwind/drafts/v2/Product?$filter=
CategoryIdeq1&$orderby=UnitPricedesc&
$top=3. Out of the 8 defined categories, bev-
erages entity has id=1 and to get the most
expensive ones we ordered the results by Unit-
Price descending, selecting only the top 3. To
simplify the result, we only select three prop-
erties: the name of the product, the price per
unit and the quantity per unit (by adding $se-
lect=ProductName,UnitPrice,QuantityPerUnit
to the query options).

Navigating through relationships was also
tested. Every OrderDetail entity has a cor-
responding product, which has a category
associated with it. In order to get what is the
category of the product from the order detail
with id=2, the following request was made:
https://phoenixpressservicesptyltd-dev.
outsystemscloud.com/CDS/rest/odata/
Northwind/drafts/v2/OrderDetail(2)
/Product/Category. In this use case, two
navigation properties were tested, from Or-
derDetail to Product and from Product to
Category.

To query which products that were out
of stock and awaiting order arrivals, by fil-
tering both UnitsInStock and UnitsOnOrder
properties, the following URL was requested
https://phoenixpressservicesptyltd-dev.
outsystemscloud.com/CDS/rest/odata/
Northwind/drafts/v2/Product?$filter=
UnitsInStockeq0andUnitsOnOrdergt0 .

6.2.4 PowerBI Integration

Finally, to further validate our project’s OData
service and the reason why it was automatically
generated, we consumed it through PowerBI.
In order to complete this integration, when a
PowerBI report is created the data source to get
the data from has to be an OData feed. By insert-
ing the project’s service root URL we are able to
load all the project’s data into the report. After
selecting the necessary authentication require-
ments, we are able to select all or a subset of
the tables listed in the OData feed, as shown in
Fig. 4. To ensure the data was loaded we created
a simple report listing the number of orders per
customer’s country, shown in Fig. 5. By analyz-
ing the report, USA had the most amount of cus-
tomer orders, followed by Germany and Brazil.

Figure 4: Getting OData feed data in a PowerBI re-
port.

Figure 5: PowerBI report with the project’s OData
feed loaded data.

7. Contributions and Future Work

With the growing relevance of low-code plat-
form applications in enterprise landscapes it is
fundamental that its applicational data is made
available and interoperable in the speed of low-
code. This is a significant gap and as far we are
concerned none of the most used LCDPs have
a solution in their short to medium term road-
map. Such integration can be made possible with
OData services.

We applied the Design Science Research
Methodology to develop an artifact that would
solve our research problem, stated in Section 3.
Such artifact creates an API exposing the data
retrieved from the LCDP application as an OData
service. This allows end-users to use the OData
query language to get the information they need
in an easy and standard way as well as en-
ables the data to be consumed by other appli-
cations. Our proposal was demonstrated using
OutSystems applications and the PowerBI tool as
the systems being integrated through OData ser-
vices. To evaluate the efficacy of our artifact, we
demonstrate its response in several use cases,
checking that the stated objectives were accom-
plished.

9

https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId eq 1 & $orderby=UnitPrice desc & $top=3
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId eq 1 & $orderby=UnitPrice desc & $top=3
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId eq 1 & $orderby=UnitPrice desc & $top=3
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId eq 1 & $orderby=UnitPrice desc & $top=3
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=CategoryId eq 1 & $orderby=UnitPrice desc & $top=3
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/OrderDetail(2)/Product/Category
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/OrderDetail(2)/Product/Category
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/OrderDetail(2)/Product/Category
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/OrderDetail(2)/Product/Category
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=UnitsInStock eq 0 and UnitsOnOrder gt 0
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=UnitsInStock eq 0 and UnitsOnOrder gt 0
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=UnitsInStock eq 0 and UnitsOnOrder gt 0
https://phoenixpressservicesptyltd-dev.outsystemscloud.com/CDS/rest/odata/Northwind/drafts/v2/Product?$filter=UnitsInStock eq 0 and UnitsOnOrder gt 0

Although the OData service is created auto-
matically with our artifact, we still had to add a
security layer in our demonstration, since OData
by itself is not secured in a way that feels ac-
ceptable, especially being an open data initiative.
Furthermore, we haven’t tested the systems inte-
gration with large datasets.

As future work, to facilitate the design and cre-
ation of more sophisticated aspects, we want to
extend our mapping features to capture further
OData behavioral elements such as functions and
actions. We intend to expand our approach to in-
clude all features of the advanced OData confor-
mance level.

References
[1] Appian: Low-code automation | business apps | bpm |

rpa. https://appian.com/. (Accessed on 09/2021).

[2] Build applications fast, right and for the future | out-
systems. https://www.outsystems.com/. (Accessed on
09/2021).

[3] Data visualization | microsoft power bi. https:
//powerbi.microsoft.com/en-us/. (Accessed on
09/2021).

[4] Entity data model - ado.net | microsoft docs.
https://docs.microsoft.com/en-us/dotnet/
framework/data/adonet/entity-data-model. (Ac-
cessed on 09/2021).

[5] Kissflow - a unified digital workplace | all in one plat-
form. https://kissflow.com/. (Accessed on 09/2021).

[6] Low-code application development platform - build apps
fast & efficiently | mendix. https://www.mendix.com/.
(Accessed on 09/2021).

[7] Odata documentation - odata | microsoft docs. https:
//docs.microsoft.com/en-us/odata/. (Accessed on
09/2021).

[8] Phoenixdx - transform your ideas into business value.
fast. https://phoenix-dx.com/. (Accessed on
09/2021).

[9] Postman api platform | sign up for free. https://www.
postman.com/. (Accessed on 09/2021).

[10] What is low-code? a full guide to low-code platforms
| creatio. https://www.creatio.com/page/low-code.
(Accessed on 09/2021).

[11] What is paas? platform as a service | mi-
crosoft azure. https://azure.microsoft.com/en-us/
overview/what-is-paas/. (Accessed on 09/2021).

[12] Outsystems to discuss the transformational impact
of low-code at gartner application strategies &
solutions summit | business wire. https://www.
businesswire.com/news/home/20191204005674/en/
OutSystems-to-Discuss-the-Transformational-Impact-of-Low-Code-at-Gartner-Application-Strategies-Solutions-Summit,
2019. (Accessed on 08/2021).

[13] S. Burgess. Open data protocol - build great
experiences on any device with odata | mi-
crosoft docs. https://docs.microsoft.com/
en-us/archive/msdn-magazine/2011/september/
open-data-protocol-build-great-experiences-on-any-device-with-odata,
2011. (Accessed on 06/2021).

[14] M. J. Carey, N. Onose, and M. Petropoulos. Data ser-
vices. Communications of the ACM, 55(6):86–97, 2012.

[15] R. Cupek and L. Huczala. Odata for service-oriented
business applications: Comparative analysis of commu-
nication technologies for flexible service-oriented it ar-
chitectures. In 2015 IEEE International Conference on
Industrial Technology (ICIT), pages 1538–1543. IEEE,
2015.

[16] Ed-Douibi, Hamza, Izquierdo, J. L. Cánovas, and
J. Cabot. Apicomposer: Data-driven composition of rest
apis. In European Conference on Service-Oriented and
Cloud Computing, pages 161–169. Springer, 2018.

[17] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot. Model-
driven development of odata services: An application to
relational databases. In 2018 12th International Con-
ference on Research Challenges in Information Science
(RCIS), pages 1–12. IEEE, 2018.

[18] C.-Y. Huang and S. Liang. A sensor data mediator
bridging the ogc sensor observation service (sos) and
the oasis open data protocol (odata). Annals of GIS,
20(4):279–293, 2014.

[19] M. Muntean, C. Brândaş, and T. Cîrstea. Frame-
work for a symmetric integration approach. Symmetry,
11(2):224, 2019.

[20] K. Peffers, T. Tuunanen, M. A. Rothenberger, and
S. Chatterjee. A design science research methodology
for information systems research. Journal of manage-
ment information systems, 24(3):45–77, 2007.

[21] N. Prat, I. Comyn-Wattiau, and J. Akoka. Artifact evalu-
ation in information systems design-science research-a
holistic view. PACIS, 23:1–16, 2014.

[22] L. Ross. Odata - visualize streaming data the easy way
with odata | microsoft docs. https://docs.microsoft.
com/en-us/archive/msdn-magazine/2015/april/
odata-visualize-streaming-data-the-easy-way-with-odata,
2015. (Accessed on 06/2021).

[23] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pieranto-
nio. Supporting the understanding and comparison of
low-code development platforms. In 2020 46th Euromi-
cro Conference on Software Engineering and Advanced
Applications (SEAA), pages 171–178. IEEE, 2020.

[24] M. Thoma, T. Kakantousis, and T. Braun. Rest-based
sensor networks with odata. In 2014 11th Annual Con-
ference on Wireless On-demand Network Systems and
Services (WONS), pages 33–40. IEEE, 2014.

[25] R. Waszkowski. Low-code platform for automating busi-
ness processes in manufacturing. IFAC-PapersOnLine,
52(10):376–381, 2019.

10

https://appian.com/
https://www.outsystems.com/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/entity-data-model
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/entity-data-model
https://kissflow.com/
https://www.mendix.com/
https://docs.microsoft.com/en-us/odata/
https://docs.microsoft.com/en-us/odata/
https://phoenix-dx.com/
https://www.postman.com/
https://www.postman.com/
https://www.creatio.com/page/low-code
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://www.businesswire.com/news/home/20191204005674/en/OutSystems-to-Discuss-the-Transformational-Impact-of-Low-Code-at-Gartner-Application-Strategies-Solutions-Summit
https://www.businesswire.com/news/home/20191204005674/en/OutSystems-to-Discuss-the-Transformational-Impact-of-Low-Code-at-Gartner-Application-Strategies-Solutions-Summit
https://www.businesswire.com/news/home/20191204005674/en/OutSystems-to-Discuss-the-Transformational-Impact-of-Low-Code-at-Gartner-Application-Strategies-Solutions-Summit
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/september/open-data-protocol-build-great-experiences-on-any-device-with-odata
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/september/open-data-protocol-build-great-experiences-on-any-device-with-odata
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/september/open-data-protocol-build-great-experiences-on-any-device-with-odata
https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/april/odata-visualize-streaming-data-the-easy-way-with-odata
https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/april/odata-visualize-streaming-data-the-easy-way-with-odata
https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/april/odata-visualize-streaming-data-the-easy-way-with-odata

	Introduction
	Research Background
	Low-code Development Platforms
	Open Data Protocol

	Research Problem
	Proposal
	Objectives
	Proposal Description
	Creation of OData's EDM
	Mapping between OData requests and SQL statements
	De/Serialization Process

	Demonstration
	Context
	Exposing an OData service in OutSystems
	 Creation of OData’s EDM
	Mapping between OData requests and SQL statements
	De/Serialization Process

	Evaluation
	Test Application
	Unit Tests
	Service and Metadata Documents
	CRUD Operations
	Querying Requests
	PowerBI Integration

	Contributions and Future Work

