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tese mas em todo o meu percurso no Técnico, nos bons e maus momentos. Agradeço ao meu pai,
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sem dúvida melhor graças a vocês. As amizades que fiz desde o inı́cio no Taguspark até esta conclusão
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Abstract

Head pose estimation, the task that deals with the prediction of the orientation of human heads from

images or videos, is a challenging Computer Vision problem that has been extensively researched and

has a wide variety of applications. Despite several studies having been carried out to achieve the most

accurate pose prediction possible, current state of the art systems still exhibit a much larger estimation

error in the presence of occlusions. This inaccurate prediction makes them inadequate and unreliable

for many task applications in such occlusion scenarios.

This thesis proposes to study different methodologies in order to achieve a robust head pose estima-

tion in occlusion scenarios, for images, videos and real-world applications. The implemented methodolo-

gies are based on the development of personalized occluded training and testing sets and the adaptation

of state of the art deep learning network frameworks and strategies.

We show that our models improve occluded head pose estimation and achieve state of the art non-

occluded estimation results. We demonstrate the application of our best method in the real-life context of

Feedbot, an autonomous feeding robotic arm. We reveal that our model performs better than a state of

the art model for the occlusions of the robotic arm, while achieving similar performance for non-occluded

estimation.
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Resumo

A estimação da pose da cabeça, a tarefa que envolve a previsão da orientação da cabeça a partir

de imagens ou vı́deos, é um problema desafiante que tem sido investigado extensivamente e possui

uma grande variedade de aplicações. Apesar de vários estudos terem sido realizados para alcançar a

estimação mais precisa possı́vel, os sistemas estado de arte ainda apresentam um erro de estimativa

considerável na presença de oclusões. Esta previsão imprecisa torna-os inadequados e pouco fiáveis

para muitas aplicações nas quais ocorre a oclusão da cabeça.

Esta tese propõe o estudo de diferentes metodologias a fim de se conseguir uma estimativa robusta

da pose da cabeça em cenários de oclusão, para imagens, vı́deos ou mesmo aplicações em tempo

real. Esta metodologia será baseada no desenvolvimento de datasets de treino e teste ocluı́dos e na

adaptação de estratégias baseadas em redes neuronais e que apresentam resultados estado de arte.

Comprovamos que os nossos modelos melhoram a estimativa da pose da cabeça com oclusões e

alcançam resultados estado da arte para imagens sem oclusão. Demonstramos a aplicação do nosso

melhor método no contexto da vida real do Feedbot, um braço robótico autónomo para alimentação

assistida. Verificamos que, na presença de oclusões do braço robótico, o nosso modelo apresenta

melhor estimação do que um modelo de estado de arte, alcançando um desempenho semelhante para

a estimação sem oclusões.

Palavras Chave

Estimação da Pose da Cabeça, Ângulos de Euler, Oclusão, Rede Neuronal
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1.1 Motivation

Extensively researched over the last 25 years [10], 2D Head Pose Estimation (HPE) is a challenging

but compelling and relevant computer vision problem, essentially due to the wide variety of applications

for which it can be used, such as driving aid systems [11], motion capture [12] and gaze estimation.

Succinctly, this problem consists in approximately determining the orientation of a head in a 2D image,

as exemplified in figure 1.1.

Figure 1.1: Head pose estimation in 2D image depicted by Euler rotation angles - Yaw, Pitch, Roll.

Many new methods have been introduced throughout the recent years to address the HPE problem.

The recent advances in deep learning have allowed to achieve significant improvements in the accuracy

and speed of estimations. Despite the constant progress, current state of the art systems scarcely ap-

proach one of the most challenging and common problems in HPE, the occurrence of facial occlusions.

This issue affects several aspects common to the estimation process, such as the detection of the face

or the detection of facial landmarks, and therefore often leads to highly inaccurate predictions in the

presence of object occlusions or self-occlusions, as exemplified in figure 1.2.

(a) Occlusions in driver attention systems (b) Occlusions in autonomous
assisted feeding

Figure 1.2: Head pose problem for occlusion scenarios (Blue axis points towards estimated face direction).
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Current state of the art HPE systems exhibit substantial estimation error when a face is partially

occluded by a certain object, which makes them unreliable for many real-world applications. One ex-

ample of this is the case of Feedbot [13] (figure 1.2(b)), an autonomous feeding robot arm developed

for people with upper arm disabilities, capable of acquiring the food from a plate and track the user’s

mouth in order to feed him. A limitation of the current Feedbot implementation1 is that the detection of

the user’s intention of feeding is time-based. An head pose estimator could be implemented to employ

a human-robot interface that would use the estimated pose to track the gaze of the user within a known

environment, and determine if the user is looking at the plate, and therefore intends to be fed. However,

the trajectory of the feeding robotic arm often occludes the user’s face, which means that an head pose

estimator that is robust to occlusions would be required, otherwise this implementation is impossible.

Lately, driving safety systems also use HPE as an evaluation parameter and tool for the detection of

driver distractions [14] [15] (figure 1.2(a)). This scenario is also susceptible to several occlusions from

either the wheel, arms or hands and therefore the reliability of this kind of system would also benefit

from an head pose estimation that is robust to occlusions.

To address the issue, this thesis aims to study different methods and ways of approaching the oc-

cluded HPE challenge, all based on the use of deep learning solutions and with the aid of synthetic

occluded datasets. We seek to achieve robust 2D head pose estimation for occluded faces and extend

on current works that achieve state of the art estimation in non-occluded benchmark datasets. The in-

tent is that the developed framework can be implemented in images, videos and real-world applications

where head occlusion occurs often and/or for long periods of time. In order to improve the robustness

of the estimation, our synthetic training dataset will include diverse occlusions for several different facial

regions and head orientations. With this work, we propose ways of accurately estimating the user’s head

pose, regardless of the part of the face that is occluded, and present a procedure to generate synthetic

face occlusions in any head pose dataset.

1.2 Problem and Contributions

Figure 1.3: Head pose estimation problem.

1http://users.isr.ist.utl.pt/~manuel/FeedBot/
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The head pose estimation problem is exemplified in figure 1.3. It corresponds to finding the three-

dimensional geometric transformation (translation and rotation) that maps the camera coordinate system

into the head coordinate system. In this dissertation we focus in approximately determining, from 2D im-

ages and even in the presence of occlusions, the orientation of an head in the reference world coordinate

system with respect to a camera.

The work and study developed throughout this thesis had the following scientific contributions:

• 2D Head Pose Estimation Methods For Face Occlusion Scenarios: We developed methods

that vastly improve the results that state of the art head pose estimation methods produce for

partially occluded face images, while also maintaining/improving the accuracy for non-occluded

images. The proposed strategies include:

1. A multi-loss neural network approach with latent space regression;

2. Face reconstruction from occluded images using auto-encoders;

3. Multi-loss auto-encoder for face reconstruction.

• Development Of Synthetic Occlusion Generation Procedure And Occluded Datasets For

Training And Testing: We established a procedure that allows the development of new syntheti-

cally occluded datasets of face images. We apply it to some of the most commonly benchmarked

datasets for head pose estimation, such as 300W-LP [16], BIWI [17] and AFLW2000 [18] and

generate occluded versions of them.

1.3 Outline

This thesis is organized in the following way:

• Chapter 1 - Introduction: Motivation, contributions and outline of this thesis.

• Chapter 2 - State of Art: Overview of the state of the art for the subject, featuring the projects that

display the best results in head pose estimation and how they approached the problem, featuring

the advantages and disadvantages of each.

• Chapter 3 - Generating a Synthetic Occluded Dataset: Describing a procedure for the genera-

tion of synthetically occluded face images and datasets to be used in training and testing.

• Chapter 4 - Methodologies For Head Pose Estimation With Occlusions: Presentation of the

methodologies and strategies studied and implemented throughout this thesis, with detailed frame-

work for each.

5



• Chapter 5 - Results and Discussion: Display of the head pose estimation results for all imple-

mented strategies, along with throughout discussion and comparison.

• Chapter 6 - Conclusions and Future Work: Overall conclusions for the developed work and

discussion of possible future improvements and strategies.
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2.1 Head Pose Estimation

Head Pose Estimation has become a very popular research area in the past two to three decades. New

approaches continue to emerge every year and set new state of the art estimation results in the main

benchmark datasets [16] [17] [18]. Deep Learning (DL) has contributed to improve the performance of

many Computer Vision systems, in particular, to solve the HPE task efficiently, with real-time estimation

with acceptable low error.

Essentially, this task consists in approximately determining the orientation and position of a human

head with respect to a camera within a 3D environment. Envisioning the head as a rigid object, it

corresponds to the 3D rigid transformation (rotation and translation) that maps the camera coordinate

system into the head model coordinate system (figure 2.1).

Figure 2.1: Rigid transformation that defines head pose estimation [1].

As described in the extensive study of HPE given in [19], the literature for this task is divided in

methods based 2D images and methods based on depth data [20] [21] [22]. Our focus is the estimation

of pose in 2D images that can be implemented with any conventional RGB camera. Since we will be

dealing with 2D data, determining the position of the head mainly comes down to estimating it’s location

in an image rather that in the 3D coordinates, hence being a face localization task. Therefore, the focal

point of HPE will be to predict the 3D orientation of the head. This orientation is commonly depicted

through Euler angles - Yaw, Pitch and Roll - exemplified in figure 2.2.

Generally, there are two main distinct ways of handling this problem in 2D data: The model-based

approach and the learning-based approach. Model-based methods resort to the estimation of facial

landmarks and 3D computer vision techniques for pose estimation. These landmarks correspond to

main facial features such as the nose, eyes, mouth and chin (figure 2.3).

Learning-based methods go for a more straightforward end-to-end approach of directly performing

the estimation from 2D RGB images inputs to neural networks. We will analyze related works for both

courses of action as well as some works that deal with the occlusion challenge.

9



Figure 2.2: Head Pose Euler Angles - Yaw, Pitch and Roll.

Figure 2.3: Facial landmarks detection example [2].

2.1.1 Model-Based Strategies

Yinguobing [23] provides a simple way of performing HPE through 3 steps: first, the detection of a face

using a built-in face detector from OpenCV [24] which provides a face box containing a detected face.

Then the cropped face box is used as input in a deep-learning facial landmark tracker implemented on

TensorFlow [25] that outputs 68 facial landmarks as seen in figure 2.3. Once the image landmarks are

obtained, the pose is calculated by solving a PnP problem [26], which is modeled by the pinhole camera

model (figure 2.4). This problem consists in estimating the pose of an object (in this case, a head)

given a set of 3D object points in the world, their corresponding 2D image projections, and the calibrated

intrinsic camera parameters that define the matrix K in the figure below. The estimated pose consists

in the rotation R and translation T that transforms the 3D points expressed in the world frame into the

camera frame.

The authors from [4] extend on their previous work [27] [28] and propose a method developed for reli-

10



Figure 2.4: PnP problem illustration [3] and pose (R, T ) in the pinhole camera model.

able real-time use that similarly uses 68 landmark prediction for head pose estimation but also computes

the pose using predicted 2D keypoints of the head. These keypoints do not have fixed locations and can

be located not only in facial areas but also in the back or top of the head. This characteristics make the

pose estimation more robust to possible occlusions and illumination differences. They are detected us-

ing the Features from Accelerated Segment Test (FAST) [29] algorithm and a pyramidal Lucas-Kanade

feature tracker [30] is implemented to find 2D keypoint correspondences between frames using optical

flow [31]. A Kalman Filter [32] is used for the fusion of two strategies: a keypoint-based tracking strategy

used for the prediction step of the Kalman Filter; and a facial-landmark detection strategy, used for the

correction step. This pipeline is exemplified in figure 2.5.

Figure 2.5: Pose estimation through Keypoints and Landmarks [4].

Ultimately, as shown in [4], this fusion method shows better results than using exclusively either

standard keypoint or facial landmarks HPE methods.

The work developed in [5] focuses on the practical applications of performing 3D face alignment in

11



2D images, one of which HPE, and tries to achieve a balance between speed, accuracy and stability.

It approaches the 3D face alignment problem as a 3D Morphable Model (3DMM) [33] parameters re-

gression problem. These parameters include the vectorized similarity transformation matrix, face shape

parameters and face expression parameters. According to [5], the similarity transformation matrix, which

contains the rotation matrix and translation vector that define the 3D orientation and location of the head,

is used for regression instead of Euler angles. The reason for that is to avoid the ambiguity caused by

the gimbal lock [34] problem that occurs when faces get close to profile view. This ambiguity is undesired

as it would degrade the performance of the implemented regressor. The architecture of this method is as

exemplified in figure 2.6, with the 3DMM parameters being regressed using a fast lightweight backbone

Convolutional Neural Network (CNN) such as MobileNet [35]. The authors implement a strategy called

meta-joint optimization, which consists in applying a cost function with two terms, Weighted Parameter

Distance Cost (WPDC) and Vertex Distance Cost (VDC). This losses minimize the vertex distances be-

tween a fitted 3D face and the ground truth. A landmark-regression regularization is also implemented

to further aid the optimization problem to achieve higher accuracy. To ensure better stability on videos

or real-time estimations, the authors establish a 3D aided short-video-synthesis method where one still

image is transformed into a short synthetic video using in-plane and out-of-plane rotations. This helps

to obtain a trained model that produces smoother results and avoid random jittering when running on

videos.

Figure 2.6: Architecture of the method in [5].

2.1.2 Occlusion Related Works

There are not many works that directly address the facial occlusion problem. The authors in [36] detail

an algorithm which estimates the head pose of partially occluded faces by tracking the displacement

of a face feature with respect to the center of the head. CamShift [37], an object tracking algorithm
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method, is used to track the center of the head and a iterative Lucas-Kanade optical flow tracker [30]

is used to track the feature face point. However, this method is specifically oriented for head-mounted

displays and requires the mouth not to be occluded. Furthermore, it is based on outdated software and

hardware, and does not present relevant quantitative results. The authors of [38] focus on achieving

robust facial landmark detection for severe occlusions and images with large head poses. To tackle both

challenges, it introduces the estimation of landmark visibility probabilities to measure if a landmark is

visible, and performs occlusion prediction. One unified model is trained to be able to deal with different

kinds of occlusion. A prior occlusion pattern loss is added as a constraint to aid the performance of

the prediction. This work, however, does not have real-time tracking capabilities and does not focus on

estimating poses.

The method of [6] improves on this and proposes a unified framework (figure 2.7) for simultaneous

estimation of facial landmark locations, head pose and facial deformation under facial occlusions. This

framework achieves robustness to facial occlusion by estimating landmark visibility probabilities, similarly

to [38]. Only visible points are used for pose estimation, which aids to attain more accurate results.

Figure 2.7: Combined framework for the method in [6].

Within this method, landmark locations are initialized using a mean face, all landmarks are presumed

to be visible, and it is assumed that there is a frontal initial pose and no non-rigid facial deformation. The

facial landmark locations, head pose, facial deformation coefficients and landmark visibility vector are

then estimated by performing an iterative cascade method. This procedure allows to fully exploit their

joint relationships and update each parameter based on the previously estimated values of the others.

According to the authors, the combined framework outperforms the baseline landmark estimation results

of [38] and achieves better results in head pose estimation than other methods that use all landmarks

(as a rigid model) instead of only the ones that are visible. Despite pose estimation being one of it’s

goals, this work only evaluates yaw angles and has low accuracy for larger yaws.
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2.1.3 Learning-Based Strategies

The authors from [7] claim that methods that compute the head pose by estimating keypoints or land-

marks and solving the 2D to 3D correspondence Perspective-n-Point (PnP) problem with a mean human

head model are more fragile methods as they rely on the head model chosen and are very sensitive to

any errors that might occur in the detection and tracking of landmarks/keypoints. Another mentioned

disadvantage is that landmark-to-pose methods can’t output poses if there aren’t sufficient detected

landmarks. To avoid these drawbacks, they propose another way of approaching this problem by skip-

ping the landmark detection step and using a deep neural network to predict the Euler angles directly

from 2D RGB images intensities. The method developed in [7], follows the framework exemplified in

figure 2.8.

Figure 2.8: Multi-loss deep leaning architecture [7].

This architecture involves the input of normalized 2D RGB face images into a backbone network that

might consist of any CNN, even though the authors highlight the performance of ResNet50 [39] and

AlexNet [40]. The network is augmented with three fully-connected layers that share the previous con-

volutional layers, each one predicting a different Euler angle, establishing a three-branch neural network

framework that implements a multi-loss approach for each angle. The fully-connected layers output log-

its, vectors of n raw (non-normalized) binned predictions which are passed to a softmax function that

generates a vector of normalized probabilities for each possible class/bin. For this classification, the

authors propose using vectors of 66 bins with a width of 3◦. This vectors cover the range [−99◦,99◦]

for all angles. The multi-loss approach defines that the overall loss in every branch is the sum of a

bin classification cross-entropy loss that uses predicted probability distribution vectors (the output of

softmax layers) and a regression fine-grained Mean Squared Error (MSE) loss for the computed expec-

tation of each output angle from the binned output. The use of separate layers for each Euler angle

is advantageous since it makes possible to optimise losses individually, given that the regression loss

is weighted. The classification component aids the model to predict the vicinity of the pose and the
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regression component helps it to achieve fine-grained estimation.

Another solution, FSA-Net [2], defines a more complex method for pose estimation from a single RGB

image based on regression and feature agreggation, applying the Soft Stagewise Regression (SSR)

problem defined in [41] to the HPE challenge. Figure 2.9 exemplifies the overall architecture for the

method, in which input face images go through two streams where feature maps are extracted and fused

together across K stages. The fused feature maps are spatial grids in which each cell contains a feature

representation of a particular spatial location. Afterwards, they are fed into a module that performs

fine-grained structure mapping to extract a set of representative features, which are then aggregated to

obtain a final smaller set of features, one for each stage, and used for soft-stage wise regression. The

pose estimation problem in this method is interpreted as a pose bin/class classification, where stage

outputs are probabilities distributions for the angle interval classes. Each successive stage refines the

decision within an angle group assigned by the previous stage. The estimated pose is given by the SSR

function, which corresponds to the summation of the product between probability distribution and the

values of pose groups at each stage.

Figure 2.9: FSA-Net architecture [2].

The method img2pose presented in [42] proposes 3D face pose estimation based on Faster R-CNN

[43] with Feature Pyramid Networks (FPN) [44], without facial landmarks or the use of face detectors.

They point out disadvantages in HPE through landmark detection. Landmark detectors are optimized

to the bounding boxes produced by specific face detectors, which means updating the face detector

requires a new optimization of the landmark detector. Furthermore, the 68 facial landmarks are hard to

detect in tiny faces in images, which makes it complicated to estimate their poses. To address these

limitations they introduce a novel real-time capable solution to perform 6 Degree of Freedom (DoF) head

pose estimation (3D rotation and translation vectors) in an image without requiring a prior face detection

step. This approach is easier to estimate that landmark-based approaches since it is a 6-dimensional

regression problem, while 5-point 2D landmark detection is 10-dimensional (5x2D), and 68 landmark

implies the regression of 68x2D=136 elements. Moreover, 6 DoF pose can be transcribed to a 3D-2D
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projection matrix which means that, with known intrinsic camera parameters, it possible to align the

3D face with its location in an image. For this reason, [42] performs simultaneous face detection and

head pose estimation by regressing the 6 DoF which further improves the speed and robustness of the

estimation.

The authors of Wide Headpose Estimation Network (WHENet) [10] builds on the end-to-end multi-

loss approach of Hopenet [7] and extends it for full 360◦ yaw estimation, being the first fine-grained

modern method applicable to the full-range of head yaws. The overall architecture is identical to the one

of figure 2.8. However, there are four main differences in order to improve the method and adapt it to

work with a yaw range of 360◦. Firstly, the authors used binary-cross entropy with sigmoid activation as

the classification loss, since this loss improved the estimation accuracy for the full-range task. The re-

gression loss was also adapted to work with a full-range of yaws, since the MSE loss behaved erratically

for bigger absolute yaw values. To replace the MSE loss, the authors introduced a wrapped loss that

penalizes the minimal rotation angle required to align each yaw prediction with its corresponding dataset

annotation:

Lwrap =
1

Nbatch

Nbatch∑
i

min[|Θpred −Θtrue|2, (360− |Θpred −Θtrue|)2] (2.1)

This wrapped loss decreased errors in large yaws in approximately 50% when compared to MSE.

Since their focus was developing a lighter mobile network that can be used in low-power systems, they

opted to use a lighter backbone network, EfficientNet-B0 [45]. Another innovation is the introduction and

generation of a new training dataset. Since no head pose dataset provides examples with (absolute)

yaws larger than 100◦, the authors generated a new dataset combining 300W-LP with computed Euler

angle data from the CMU Panoptic Dataset [46]. The modifications made to Hopenet achieved state-of-

the art of performance for full-range HPE.

2.2 Summary

Throughout the previous section, several works related to head pose estimation were analyzed as to

explore different procedures and learn their respective advantages and disadvantages in regard to the

objectives of this thesis. We saw that the literature on the challenge of occlusion in head pose estimation

is scarce. The system in [36] presents a solution specifically intended for head-mounted display occlu-

sion, using outdated software and hardware. The procedure in [38] addresses occlusions but focuses

on landmark detection and is not extended for real-time tracking, and while the method in [6] includes

pose estimation, it only evaluates yaw angles and displays low accuracy for large yaw values.

We also saw that model-based methods [23] [4] [33] have some crucial drawbacks in comparison to
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end-to-end learning-based methods [7] [2] [42] [10]. They rely on the chosen head/face model (mainly

those that do not account for facial deformation) and the estimation is very sensitive to landmark de-

tection and tracking errors. They are also more susceptible both to self-occlusions (extreme poses for

example) and object occlusions, since having a smaller number of detected landmarks greatly reduces

the precision of the estimation of the pose.

Learning-based methods do not require the detection of landmarks and therefore avoid the occlu-

sion problem mentioned above, a crucial drawback to the objective of this thesis. Furthermore, recent

learning-based approaches have outperformed model-based methods and currently hold state of the art

results [47]. For these reasons, our work will follow a learning-based approach and develop strategies

based on some of the studied end-to-end deep learning frameworks while adapting them to be able to

deal with the challenge of facial occlusions in head pose estimation.
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In this work, we will follow a learning-based approach and resort to deep neural networks, which are

multi-layered neural networks that learn to map specific sets of input to the desired outputs. To train

these networks for the problem at hand, it is required to use adequate training data that comprises a

wide variety of input facial occlusions images and respective labeled output head poses in order to allow

the network mapping to work properly not only for the given examples, but also on new examples that

were not seen by the model during the training, and therefore gain the ability to generalize.

Despite the fact that most head pose datasets include some partial occlusion examples, there aren’t,

to the best of our knowledge, datasets that are specifically oriented towards the occlusion challenge.

For that reason, it is necessary to develop our own exclusively occluded datasets. Within this chapter,

we will describe a procedure to generate synthetic occlusions in images and explain how we used it to

create the datasets required to train and test our models.

3.1 Synthetic Occlusion Generation Procedure

Instead of recording our own images and manually labelling the respective head poses, a lengthy and

difficult process since it is hard to capture sufficient distinct examples and to define the ground truth

poses with precision, we opted for a different course of action. We use current existing head pose

datasets that contain thousands of images and respective ground truth pose annotations in order to

generate synthetic occlusions for all images and thus develop the new occluded datasets required for

the training and testing of the deep neural networks.

Our procedure to generate synthetic occlusions in images is based on the use of 2D RGB color

data and depth data (camera distance to an object). To that end, we require RGB-D sensors such as

Microsoft’s Kinect [48] or Intel’s RealSense [49], which are depth sensing devices that work in associa-

tion with a conventional RGB sensor camera and are capable of simultaneously recording 2D coloured

images and the respective map of per-pixel depth information (figure 3.1).

Figure 3.1: RGB image, depth Image (with scaled colors, representing depth in millimeters) and RGB-D camera
(Kinect example).
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Figure 3.2: Overview of our synthetic occlusion generation procedure.

The main idea of this methodology is to perform depth-based object segmentation in videos recorded

with RGB-D cameras in order to be able to insert any desired occlusion object in non-occluded face

images. Figure 3.2 displays an overview of this procedure.

A first step in this procedure is to use the RGB-D sensor to record a video of RGB and depth data

where different regions of the face of a person are occluded by an object. An essential aspect of this

video is that, in the first frame, the face is not occluded. The reason for this is that initially we need to

detect the face in the image in order to find the depth points that correspond to the image pixels within

the face detection box [50]. We use the depth information determine the face point at minimum distance

from the camera. This distance will serve as a threshold to separate the depth points that correspond to

the head of the person from those that will correspond to occlusion objects. This procedure is exemplified

in figure 3.3.

The depth data captured by RGB-D cameras might contain outliers that may be caused by the reflec-

tive nature of an object, by light intensities or sensor limitations [51]. When determining the threshold

distance it is important to make sure that the depth points within the face detection region are actually

face points and not sensor outliers, as that could lead to a wrong threshold. For that reason, we imple-

ment the Density-based spatial clustering of applications with noise (DBSCAN) algorithm [52], a density-

based clustering algorithm that groups together points based on a distance measurement (commonly

Euclidean distance, the length of the line that connects two points) and a minimum number of points

for the clusters. With DBSCAN, points that exist in low-density regions and are not reachable from any
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Figure 3.3: Determining threshold depth for occlusion segmentation.

other point are classified as outliers and are discarded in the clustering process. The face/head points

can therefore be identified as the biggest cluster detected by the algorithm among the points contained

in the face detection box and, free of outliers, the threshold distance can be correctly determined.

Figure 3.4: Synthetic occlusion generation in non-occluded images.

When this threshold is determined we can start to reproduce a synthetic occlusion in a given following

frames. Figure 3.4 exemplifies the procedure with different video frames. For a given occluded frame

of the video, the depth points corresponding to the RGB image points within the face detection box are

extracted. From these depth points we select those that are at a shorter distance than the threshold,

as they will correspond to face occlusions. By carrying out the inverse process and determining the
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RGB data for the selected depth points, we obtain the RGB image pixels where the occlusion object is

represented.

Once the RGB pixels are determined, the next step is to insert the object into a face image and

generate the proposed synthetic facial occlusion. Since the size of the face detection box in the video

captured with the RGB-D camera is different from the size of the face in the image which we want to

occlude, it is necessary to first re-scale the object image to the dimensions of the non-occluded face

image, and only then we superimpose the object in the original image.

Following establishment of the threshold distance that allows to detect occlusions from depth infor-

mation, and given a set of non-occluded face images, it is possible to iterate the process exemplified in

figure 3.4 using an occlusion from an occluded frame for each individual face image in a dataset, and

therefore generate a new occluded dataset.

3.2 Head Pose Datasets

As mentioned before, the purpose of synthesizing occlusion in images is the application of that method

to datasets that are commonly used in the training and/or benchmark for head pose estimation as to

generate new occluded versions of them to be used in the implementation of this dissertation method-

ologies, which are based in neural networks. The datasets in question are the 300W-LP [16], BIWI [17]

and AFLW2000 [18].

The 300W-LP dataset [16] is a synthetic augmented expansion of the 300W [53] dataset consisting

of 61225 unconstrained generated face samples and respective vertically flipped versions of them for a

total 122452 examples. It covers a large variation of identity, expression, illumination conditions, pose,

occlusion and face size, and since it was initially developed for facial landmark localization, it provides

annotations for both 2D 68 landmarks and the 2D projections of 3D landmarks from which it is possible

to extract the pose of the head. Despite the original purpose, it is commonly used in the training process

of head pose estimation works [7] [10].

The BIWI dataset [17] contains over 15000 images of 20 people recorded sitting in front of a Kinect

turning their head around, in order to span the most varied poses possible, covering about ±75 degrees

yaw and ±60 degrees pitch. It was developed specifically for head pose estimation and is one of the

most commonly benchmarked datasets [7] [10] [42]. For each frame, it provides a depth image, the

corresponding RGB image (both 640x480 pixels), and the ground truth pose annotation.

AFLW2000 [18] is a dataset that contains 2000 images of diverse head poses under challenging

conditions (hard to detect by a face detector). It has been annotated with 68-point 3D facial landmarks

from which pose can be extracted and is commonly used for both the evaluation of 3D facial landmark

detection models and head pose estimation models.
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We will use the occluded 300W-LP as the training dataset due to the larger number of samples,

variety of poses, and the fact that it was used as training dataset in some of the state of the art works

[7] [10] from which we will base our methodologies. Since the benchmarked datasets for head pose

estimation in [47] are BIWI and AFLW2000, and due to their also varied pose span and challenging

characteristics, we will use occluded and non-occluded versions of those datasets for testing.

Figure 3.5 displays examples of the data used in all methodologies, which includes synthetically

occluded and original non-occluded images, as well as ground truth poses for each (here represented

in images with respective head pose coordinate systems).

Figure 3.5: Examples of image data and ground truth pose in datasets.
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4.1 End-to-end Multi-loss Approach With Latent Space Regres-

sion

Figure 4.1: Multi-loss HPE framework with latent space regression.

This approach follows a similar framework to the work developed in [7]. Unlike landmark-to-pose

methods, which require the estimation of 68 2D or 3D landmarks to perform face alignment and estimate

the pose of the head, we use deep learning networks to train a model to predict pose directly from 2D

RGB image intensities and avoid the extra landmark step, along with its complications (dependency

on chosen head model and inability to estimate pose if landmark detection fails). The framework is as

exemplified in figure 4.1: A 2D RGB image is input to any backbone network of choice, such as Resnet-

50 and Alexnet mentioned in [7] or EfficientNet used in [10]. This backbone network is expanded with

three extra fully-connected layers which will be used to output the predictions for each Euler angle (figure

4.2). A fully-connected layer connects every neuron in the input layer to every neuron in the output layer,

which mathematically corresponds to a linear transformation function from Rm to Rn, y(x) = Wx + B,

where W is the weight matrix (Rn×m), B is the bias vector (Rn×1), x is the input vector (Rm×1) and

y is the output vector (Rn×1). Here, the output of the final layer in the backbone network, a multi-

dimensional matrix that encloses the latent space representation, is flattened to unfold all its values into

a vector which will be the input x to the fully-connected layer. The output y for each one of this layers

will be a vector of logits, which are raw prediction scores (real numbers ranging from [−∞, +∞]) for the

predicted angle belonging to a certain w degree bin. The size of these vectors depends on both the

angle interval/span for each bin, and the full prediction range for the given Euler angle.

Figure 4.2 displays the input and output of each fully-connected layer. The flattened latent space

vector has 2048 elements. We adopt the binned vector dimensions of [7] with 66 classification bins each

with a width of 3◦ (e.g. [0◦,3◦], [3◦,6◦], ...) and covering a range from −99◦ to 99◦ for all yaw, pitch and

roll predictions. This range therefore covers extreme profile poses.

Henceforward, the output of each fully-connected layers is used in a multi-loss scheme that com-

29



Figure 4.2: Euler angle prediction vector through fully-connected layer.

prises the combination of a classification component and a regression component to provide an overall

loss for a given Euler angle. For the classification task, a softmax activation function plus a cross-entropy

loss (also known as categorical cross-entropy loss or softmax loss) is applied to the n-dimensional vector

output of the fully-connected layer. The softmax function turns logits into probabilities by computing the

exponents of each bin output and normalizing it by the sum of those exponents so that all probabilities

in the activated vector add up to 1:

S(yi) =
eyi∑n
j=1 e

yj
(4.1)

Afterwards the cross-entropy loss result is computed by equation 4.2, where ti and S(yi) are the

ground-truth (0 or 1) and the activation result of the score for each of the C angle classes/bins, respec-

tively.

Lclass = CE = −
C∑
i

tilog(S(yi)) (4.2)

In addition to the classification loss, the regression component is introduced to determine and regress

the error between the predicted angle and the ground truth in degrees. It is possible to determine the

predicted angle in degrees by using the bin probabilities obtained from softmax activation to calculate

the expectation of the given angle:

θpred = w

N∑
i=1

pi(i−
1 +N

2
) (4.3)

Where θpred is the predicted angle in degrees, w is the width of the bin in degrees (3, in our case), N

is the number of bins for classification (66, in our case), and pi is the probability of the angle belonging
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to bin i. The offset 1+N
2 shifts the bin indices to the respective bin centres, as mentioned in [10]. The

loss used for the regression component is the MSE between the predicted angle θpred and the ground

truth angle θgt, for N predictions.

Lreg = MSE =
1

N

N∑
i=1

(θpred − θgt)2 (4.4)

The classification component aims to help the model predict the vicinity of each pose angle by clas-

sifying it in a angle interval bin and the regression error is introduced to aid the model in achieving

fine-grained angle predictions. While adopting this multi-loss system for the estimation of yaw, roll and

pitch, we introduce an extra regression loss for the latent space of the backbone network, specifically

added to aid the model deal with the occlusion challenge. Convolutional neural networks reduce the

dimensionality of an input across each layer, compressing its information and learning distinct features

at each layer, given that deeper layers in the network encode higher-level, more general features. The

latent space is the abstract multi-dimensional space that contains the highest-level feature values. This

values encode the most relevant inner representation of the observed input data. This concept is at

the core of deep learning since it is, essentially, how the model interprets real word images provided

and finds the patterns and features that better and most generally characterize them. To understand

how to use the latent space to help deal with the occlusion challenge, let’s introduce an overview of the

procedure carried out in this end-to-end multi-loss approach with latent space regression.

Firstly, we need to train or use a pre-trained model for head pose estimation in non-occluded images,

with the same framework as figure 4.1 apart from the latent space loss. Then, using this model, we

perform inference for each non-occluded image and store the flattened output of the final layer in the

backbone network, which corresponds to the model’s latent space representation for that given image.

Finally, we use the occluded dataset and train the full framework of figure 4.1, where Laclass and Lareg are

the cross-entropy classification loss and MSE regression loss for Euler angle a (yaw, pitch or roll), and

Llatentreg is the MSE regression loss for the latent space.

The classification and regression loss for the Euler angles are combined with a parameter α that

allows to vary the weight of each regression loss. Overall, four losses are used to train the model:

Lyaw = Lyawclass(y, ŷ) + αLyawreg (y, ŷ)

Lpitch = Lpitchclass(y, ŷ) + αLpitchreg (y, ŷ)

Lroll = Lrollclass(y, ŷ) + αLrollreg (y, ŷ)

Llatent = Llatentreg (y, ŷ)

(4.5)

where y is the predicted value and ŷ is the ground truth for the respective loss. The ground truth for
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all Euler angles is provided in the training dataset, and the ground truth for the latent space regression

corresponds to the stored latent space output of the inference for the respective non-occluded dataset

images (figure 4.3).

Figure 4.3: Ground truth latent space and error minimization.

By introducing this latent loss we ensure that the latent space of the re-trained model for occlusions

does not deviate much from the one produced by the previous training for non-occluded images, which

leads to good estimation results. This allows the model to better identify and distinguish poses regard-

less of the varying occlusions that may occur, while at the same time maintaining the correct estimation

for images without occlusion. The total loss is given by function that combines the four losses:

Ltotal = (1− β)(Lyaw + Lpitch + Lroll) + βLlatent (4.6)

The influence of both the latent space regression loss and the angle losses is balanced by a weight

parameter β.

4.2 Occluded Head Pose Estimation Through Face Reconstruc-

tion

The backbone network from the previous approach is a feedforward neural network that compresses

the input to produce a more compact, low dimensional and higher-level code known as the latent space

representation. Feedforward networks such as these are called encoders, since they encode the input.

They are frequently part of a larger kind of unsupervised neural networks named autoencoders, which
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learn to copy its input to its output. They are composed of a encoder that maps the input into the code

and a decoder that maps the code into a reconstruction of the input. Appendix A conveys a more detailed

description of this framework. Instead of directly adapting the head pose estimation model to deal with

occlusions as we did previously, we benefit from the reconstruction capabilities of an autoencoder and

train it to output reconstructed occlusion-free faces from facial occluded inputs. The idea is that the

outputs of the autoencoder with removed occlusions and reconstructed faces are then input to a trained

head pose estimation network. We use the HPE multi-loss pipeline defined in [7]. The framework is as

exemplified in figure 4.4.

Figure 4.4: Framework for occluded head pose estimation through face reconstruction.

Standard autoencoders suffer from a loss of feature information when the input dimensions are re-

duced in the encoder, which affects the quality of facial reconstructions. For that we reason, we base

ourselves in the approach carried out by the authors of mask2face [54] and employ the U-Net [9] archi-

tecture as the chosen autoencoder structure. The advantage is that U-Net adds connections between

layers in the encoder and layers of identical dimension in the decoder (skip connections) to pass infor-

mation directly from the encoder to the decoder. This improvement accelerates the learning process of

the network and helps to reduce the loss of information and achieve more fine-grained face reconstruc-

tions to input to the head pose estimation network. A simplified representation of the U-Net architecture

(further described in appendix A) is presented in figure 4.5.

4.2.1 Reconstruction Loss

The autoencoder receives occluded face inputs and is trained to minimize the reconstruction error be-

tween the predicted output and the ground truth face without occlusion. Since the inputs correspond

to face images that we’re synthetically occluded, we utilize the respective original non-occluded face
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Figure 4.5: Simplified standard U-Net architecture.

images as ground truth in the reconstruction loss function, Lrec. This training procedure is exemplified

in figure 4.6.

We define the reconstruction loss function as the combination of two losses: The l1 the SSIM losses.

The l1 loss or Mean Absolute Error (MAE) applied to images consists in the mean of per-pixel absolute

difference between the intensities in the image generated by the autoencoder and the ground truth

non-occluded image. For each image this loss corresponds to:

Ll1(Irec, Igt) =
1

N
‖Irec − Igt‖1 =

1

N

∑
p∈Irec,Igt

|Irec(p)− Igt(p)| (4.7)

where p is a pixel, N the number of pixels in the images and Irec,Igt are the intensity values of that pixel

in the reconstructed image and in the ground truth, respectively. As mentioned in [55], this loss function

leads to better performance when restoring images that the l2 (MSE) loss (similar, but based on pixel

intensity squared differences), since it does not over-penalize larger errors and is therefore less prone

to over-smooth the output image.

The Structural Similarity Index Measure (SSIM) [56] is a metric used for the measurement of the

similarity between two images. This index is calculated on local NxN windows that move across the

images, since localized quality measurement provides more information about the quality degradation

of a sample image in comparison to a reference image. Unlike most metrics that quantify the difference

between the intensity of corresponding pixels between sample and reference images (such as MAE and

MSE), SSIM extracts and compares three different measures between images: the luminance (l) , the

contrast (c) and the structure (s).
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Figure 4.6: Training framework for autoencoder.

l(x, y) =
2uxuy + c1
u2x + u2y + c1

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
s(x, y) =

σxy + c3
σxσy + c3

(4.8)

where x, y are windows of both images; (ux, uy) is the average of (x, y); (σx, σy) is the standard deviation

of (x, y) ;(σ2
x, σ

2
y) is the variance of (x, y); σxy is the covariance of x and y; c1 and c2 are constants

included to avoid instability when µ2
x + µ2

y and σ2
x + σ2

y are close to zero and c3 = c2
2 .

The SSIM measure is obtained by combining the three measures of equation 4.8:

SSIM(x, y) = [l(x, y)]µ · [c(x, y)]φ · [s(x, y)]ψ SSIM(x, y) =
(2uxuy + c1)(2σxy + c2)

(u2x + u2y + c1)(σ2
x + σ2

y + c2)
(4.9)

with µ > 0, φ > 0 and ψ > 0 as parameters used to adjust the relative importance of each component in

the index are commonly set to 1.

Since the SSIM outputs a value between 0 and 1, the loss function for this metric applied to each

image will actually be:

LSSIM (Irec, Igt) =
1

N

∑
x,y∈Irec,Igt

1− SSIM(Irec(x), Igt(y)) (4.10)

where x, y are windows in the image predicted by the autoencoder Irec and in the ground truth image

Igt and N is the number of windows. By comparing the three different measures, SSIM becomes more

capable of identifying the differences between the structural information of sample and reference images,
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which allows to better preserve the contrast and edges from the reference image. However, as denoted

in [55], it preserves the brightness and colors worse than the l1 loss, since this loss weights errors equally

regardless of the local structure. For that reason, we combine both losses for the image reconstruction

loss that we implement in the autoencoder:

Lrec(Irec, Igt) = Ll1(Irec, Igt) + γLSSIM (Irec, Igt) (4.11)

where γ is the parameter that regulates the weight of the loss function for the SSIM metric.

4.3 Multi-Loss Autoencoder For Occluded Head Pose Estimation

The pipeline explained in the previous section included two different neural networks, the autoencoder

and the head pose estimation network. Despite the fact that this allows for more flexibility in the choice of

the network that predicts the pose, since its input is a non-occluded (reconstructed) face, it also means

that the entire process is computationally heavier and slower than using a single network.

Having that in mind, this section discusses a different approach that combines the face reconstruction

task with the estimation of the pose in a single neural network. The pipeline of this procedure is illustrated

in figure 4.7.

Figure 4.7: Multi-Loss autoencoder high-level pipeline.

As mentioned before, the neural network involved in the task of estimating the pose of the head is,

by nature, an encoder. It receives an input image and maps it to a compressed lower-dimensional rep-

resentation rich in feature information, the latent space, which then is shared by three different branches
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for the estimation of each of the Euler angles. This means that we can add a decoder to the network

and convert the network’s structure to that of an autoencoder. The encoder is combined with the fully-

connected layers to estimate the pose and combined with the decoder to reconstruct the face. This way,

we can merge and adapt both tasks instead of having a different neural network for each. We use the

U-Net architecture for the designed autoencoder in this approach as well. The details of this architecture

(number of layers, dimension) depend on the encoder network used for head pose estimation. We base

ourselves in the ResNet-Unet architecure described by the authors of [57] and use ResNet-50 [39] as

the encoder for pose estimation.

The training plan (figure 4.8) for this procedure is as follows: In the first stage the encoder and

fully connected layers are trained for the estimation of all three Euler angles. This training involves the

minimization of the regression and classification losses for each angle, as in section 4.1. In the second

stage, the decoder is trained for the reconstruction of the face without the occlusion. This training

involves the minimization of the reconstruction loss between reconstructed and non-occluded ground-

truth images, as in 4.2. In the third and last stage, the the entire autoencoder and fully-connected layers

are trained. This training involves the minimization of all losses involved in the first and second stage.

The purpose of the first and second stages is to provide good initialization for the entire framework

in the third stage and therefore aid the convergence of the learning model. In the first stage the encoder

learns the latent space representation for pose estimation. In the second stage the decoder learns to

map this compressed data to generate reconstructed faces without occlusion. The third stage stems

from both and combines them so that the pose estimation is adapted to the reconstruction of occluded

faces. The losses involved in the training stages of the autoencoder are:

Lyaw = Lyawclass(y, ŷ) + αLyawreg (y, ŷ)

Lpitch = Lpitchclass(y, ŷ) + αLpitchreg (y, ŷ)

Lroll = Lrollclass(y, ŷ) + αLrollreg (y, ŷ)

Lrec = Ll1(Irec, Igt) + γLSSIM (Irec, Igt)

(4.12)

The 1st stage involves Lyaw, Lpitch, Lroll (head pose estimation training), the 2nd stage involves Lrec

(face reconstruction), and the 3rd stage (combined training) requires the minimization of all losses with

the ρ parameter to define the weight of angle components:

Ltotal = Lrec + ρ(Lyaw + Lpitch + Lroll) (4.13)
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(a) 1st and 2nd stages

(b) 3rd stage

Figure 4.8: Training procedure stages for the pipeline described in figure 4.7.
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5.1 Results

5.1.1 Multi-loss Head Pose Estimation With Latent Space Regression

We evaluate this method on both the original and synthetically occluded versions of the BIWI and

AFLW2000 datasets. ResNet-50, a 50 layers deep convolutional neural network with over 23 million

trainable parameters, is used as the backbone network for this method. We choose ResNet-50 since

it produces the HPE best results in the work developed in [7], from which this method is based on. All

networks in this section are trained for 25 epochs and their parameters are initialized with a pre-trained

model for 300W-LP non-occluded images provided by the authors of [7]. To optimize the parameters we

use the Adam [58] optimization algorithm with a learning rate of 10−5.

We train the framework defined in section 4.1 using synthetically occluded versions of 300W-LP.

Since the images in this dataset include large backgrounds and elements external to the faces, we

extract information from the provided 2D face landmark annotations to define a face bounding box and

adjust the margins of the bounding box to capture the entire face/head. This procedure is described in

appendix A. We apply the same practise to the images of AFLW2000. For BIWI, we use the face detector

provided by Google’s Mediapipe [59], an open source cross-platform framework. Both for training and

testing, the images of all datasets are cropped to the pre-defined input dimension of the ResNet-50

network, 224x224 pixels, and the mean and standard deviation of ImageNet [60] is used to normalize

the data. The annotations for ground truth pose angles are converted from radians to degrees in all

datasets. We use 66 3◦ bins for classification, within a range from −99◦ to 99◦ for each one of the Euler

angles. There are 31 images of the AFLW2000 dataset that are not used in testing since their pose

angles surpass this range.

5.1.1.A Angle Regression Weight Study

In order to extrapolate the best regression weight for the estimation of each of the Euler angles, we train

the framework without the latent space regression loss and with 5 different α parameter values (equation

4.5). The head pose estimation MAE results in synthetically occluded and non-occluded datasets are

listed in tables 5.1 and 5.2. We can observe that, generally, α = 2 produces the smallest average MAE

errors. In particular for occluded images, the lowest MAE errors across all datasets correspond to the

networks trained with that parameter value. Despite the fact that the results do not show substantial

differences, we can also observe that the largest errors tend to occur for α = 1. Since this α value

corresponds to an equilibrium between the regression and classification losses, this result highlights the

importance of correctly distributing their weight. For the following tests, we use α = 2 as the weight for

the head pose multi-loss framework.
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BIWI Occluded Images Non-Occluded Images

Reg. Weight yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

α = 0.5 5.250 6.529 4.255 5.345 4.259 4.704 3.580 4.181 4.763
α = 1 5.533 6.916 4.036 5.495 4.765 4.493 3.956 4.405 4.950
α = 2 5.110 6.832 3.629 5.190 4.242 4.041 3.845 4.043 4.617
α = 5 5.477 6.542 4.304 5.441 4.474 4.043 3.494 4.004 4.723
α = 10 5.218 7.565 4.344 5.709 4.196 4.503 3.628 4.109 4.909

Table 5.1: Head pose estimation MAE◦ tests with BIWI for different angle regression weights (α).

AFLW2000 Occluded Images Non-Occluded Images

Reg. Weight yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

α = 0.5 6.227 8.271 5.713 6.737 5.281 6.544 4.497 5.441 6.089
α = 1 6.411 8.713 6.017 7.047 5.675 6.868 4.760 5.768 6.4075
α = 2 5.672 8.101 5.783 6.519 4.886 6.636 4.643 5.389 5.954
α = 5 6.156 8.279 5.841 6.759 5.403 6.413 4.546 5.454 6.1065
α = 10 5.4044 8.407 5.923 6.578 4.986 6.695 4.696 5.459 6.0185

Table 5.2: Head pose estimation MAE◦ tests with AFLW2000 for different angle regression weights (α).

5.1.1.B Latent Space Regression Weight Study

Having verified the proper α weight parameter for the estimation of the Euler angles, we proceeded to

analyze the influence of the latent space regression loss. We trained 4 different HPE networks, one for

each different β (equation 4.6), the parameter that balances the weight of this loss and of Euler angle

losses, and compared the results with Hopenet [7]. All networks were trained for 25 epochs. We use the

latent space produced by the pre-trained model in non-occluded inference as ground truth. The datasets

for training and testing include 25 different regions of occlusion. Tables 5.3 and 5.4 display the results

for each dataset. ML LSR stands for multi-loss with latent space regression.

We observe that when the latent space loss is not used (β = 0), despite substantially decreasing

the error for occluded images when compared to Hopenet, the head pose estimation worsens for non-

occluded images. This is more evident in the BIWI dataset, where the average MAE for non-occluded

images increases by nearly 1◦. We can also observe that as the the influence of the latent space regres-

sion loss (β parameter) increases over the influence of Euler angle losses, the average MAE becomes

lower for both occluded images and non-occluded images. In fact, for the AFLW the non-occluded es-

timation results are better when β ≥ 0.5 than the ones of Hopenet which was trained for non-occluded

images. This confirms that introducing this loss helps not only to achieve improved generalization for

occlusions, but also to avoid detouring from accurate non-occluded pose estimation. When only the

latent space regression loss is used (β = 1), we obtain the best results for pose estimation in BIWI

and the pitch and roll MAE decreases in both occluded and non-occluded images. This reveals that
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the pre-trained encoder (which was optimized with Euler angle losses in non-occluded images) already

produces a good latent space representation for angle estimation and therefore the model is better

optimized when exclusively trained to maintain that representation for occluded images.

BIWI Occluded Images Non-Occluded Images

Methods yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

Hopenet 6.725 8.616 7.338 7.560 4.375 3.559 3.348 3.761 5.661
ML LSR (β = 0) 5.990 7.778 4.346 6.038 4.940 4.873 3.911 4.575 5.307

ML LSR (β = 0.5) 5.797 7.394 4.537 5.910 4.413 4.910 3.556 4.293 5.102
ML LSR (β = 0.990) 5.798 6.881 4.572 5.750 4.204 4.343 3.750 4.099 4.925
ML LSR (β = 0.999) 5.174 6.622 4.117 5.304 4.297 4.186 3.617 4.033 4.669

ML LSR (β = 1) 5.429 4.823 3.467 4.573 4.291 3.086 3.179 3.519 4.046

Table 5.3: Head pose estimation MAE◦ tests with BIWI for different latent space regression weights (β).

AFLW2000 Occluded Images Non-Occluded Images

Methods yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

Hopenet 12.438 10.277 8.586 10.434 4.965 5.250 3.956 4.724 7.579
ML LSR (β = 0) 5.057 7.120 4.961 5.713 4.114 6.002 4.061 4.726 5.220

ML LSR (β = 0.5) 4.891 6.424 4.918 5.411 3.855 5.447 3.947 4.416 4.914
ML LSR (β = 0.990) 4.714 6.360 4.906 5.327 3.709 5.517 4.083 4.436 4.882
ML LSR (β = 0.999) 4.741 6.254 4.765 5.253 3.813 5.420 4.003 4.412 4.833

ML LSR (β = 1) 5.117 6.075 4.590 5.261 4.258 5.272 3.888 4.473 4.867

Table 5.4: Head pose estimation MAE◦ tests with AFLW2000 for different latent space regression weights (β).

Re-optimizing the model along with the fully-connected layers and Euler angle losses deviates the

encoder from the latent space representation original pre-trained model. However, we verify that the yaw

MAE increases when compared to the model with β = 0.999. Figure 5.1 shows the histograms of Euler

angle bin frequency for both the training and testing datasets. From this figure we observe that the fact

that the yaw estimation is better when β = 0.999 is quite relevant, since the yaw is the angle that covers

the biggest range of values and therefore the most important angle in head pose estimation. These

results also show that the introduction of the Euler angle losses can be beneficial in occlusion training

to improve the estimation of the angles with the biggest range of values and the biggest frequency of

extreme values in the training dataset. We also observe that the reason why BIWI results for β = 1 are

greatly improved is that it is the dataset with the largest range of varied pitch and roll poses, while being

the one with the smallest range of yaw values.
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Figure 5.1: Histograms of Euler angle bin frequency for each dataset.

5.1.2 Occluded Head Pose Estimation Through Face Reconstruction

Within this section we present a study regarding the use of an U-Net autoencoder for the purpose of

removing occlusions and reconstructing faces whose pose is to be estimated. The training and testing

datasets are the same we used in the previous approach. We train the autoencoder for 25 epochs and

use a batch size of 116. During the first epoch of training the networks are trained to reconstruct the faces

with non-occluded image inputs. This is done to provide better initialization for the following epochs, for

which the model is trained with batches of 100 occluded images and 16 non-occluded images. The

images are cropped as in the previous approach but they are not normalized. In order to enhance the

robustness of the reconstruction, we apply image transformations during training to randomly adjust the

brightness, contrast, saturation and hue during training. The learning rate is set to 10−5 and Adam is

selected as the optimization algorithm.

We train 3 models with distinct weights for the SSIM loss in the reconstruction loss function defined

in equation 4.7 (section 4.2.1). The first is setting γ = 0, which amounts to using only the l1 loss.

Afterwards we set γ = 1 and include the SSIM loss in training. Lastly we increase the weight of the

SSIM loss in the reconstruction loss function to γ = 2.
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Figure 5.2: Reconstruction comparison for different loss weights.

Figure 5.2 displays examples of the different reconstructions generated by each model. The pre-

sented 300W-LP examples are not included in training. We observe that when only the l1 loss is used

(γ = 0), the reconstructed regions are blurrier and less detailed, with faded edges and lower contrast.

The introduction of the SSIM metric loss improves this aspects and allows the model to better replicate

the main features of a face (mouth, nose, eyes). As we increase the influence of this loss over the l1

loss, we see even better results, with significant improvement over the first model. Lips become more

defined, and complicated details such as the outline of nostrils in noses and the iris in each eye are

now more visible in the reconstruction. While the l1 loss helps to generate good results regarding the

brightness and color intensities of the reconstructed area, the SSIM loss improves the structural details

of faces and helps to produce more fine-grained results.

In figure 5.3 we can observe some examples of face reconstructions for each dataset. The quality

of the reconstruction depends on the resolution of the original image. The models reconstruct the faces

better in 300W-LP and AFLW2000, since these datasets contain higher resolution images. The original

images in the BIWI dataset have lower resolution and the faces occupy a much smaller region than they

do in the other datasets, which leads to worse reconstructions in this dataset.

We used the head pose estimation network and model of Hopenet to estimate the poses from the

occluded/non-occluded images and from the images reconstructed by each autoencoder model. The

results for each dataset are listed in table 5.5. We can observe that the estimation error decreases for all

reconstruction models, in both occluded and non-occluded images. The improvements for the average
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Figure 5.3: Examples of face reconstruction results for each dataset.

MAE in occluded image range from around 1.5◦ in BIWI to nearly 5◦ in AFLW2000. The fact that the

models don’t reduce the errors in the BIWI dataset as much they do in the remaining datasets is related

to the lower resolution of the images in this dataset. It is also noticeable that the error decreases when

the SSIM loss is used (γ > 0), with the best results corresponding to the highest weight used for this loss

(γ = 2). For AFLW2000, the average MAE head pose estimation error for the reconstruction of occluded

images with γ = 2 is less than 1◦ higher that the one produced with the original non-occluded images.

This confirms that the extra structural fine-grained detail added by the SSIM loss helps to produce face

reconstructions closer to the original ones and lead to the most substantial error reduction in head pose

estimation.

Occluded Images Non-Occluded Images

BIWI yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

Hopenet 6.725 8.616 7.338 7.560 4.375 3.559 3.348 3.761 5.661
Rec. (γ = 0) 5.979 6.526 5.755 6.087 4.137 3.392 3.324 3.618 4.853
Rec. (γ = 1) 5.755 6.306 5.852 5.971 4.117 3.389 3.313 3.606 4.789
Rec. (γ = 2) 5.847 6.323 5.727 5.966 4.133 3.391 3.326 3.617 4.792

AFLW2000 yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

Hopenet 12.438 10.277 8.586 10.434 4.965 5.250 3.956 4.724 7.579
Rec.(γ = 0) 5.738 6.392 4.962 5.697 4.978 5.250 3.959 4.729 5.335
Rec. (γ = 1) 5.674 6.196 4.812 5.560 4.676 5.353 3.965 4.665 5.113
Rec. (γ = 2) 5.546 6.138 4.690 5.458 4.675 5.345 3.956 4.658 5.058

Table 5.5: Head pose estimation MAE◦ results for reconstructed images in both datasets. The results of Hopenet
correspond to the original inputs to the network.
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5.1.3 Multi-Loss Autoencoder For Occluded Head Pose Estimation

In this set of experiments we train a single autoencoder U-Net network to remove face occlusions and

estimate the pose. More specifically, we use the architecture of ResNet-UNet [57] with a ResNet-50

network as the down-sampling encoder. The data is pre-processed in the same way of the multi-loss

latent space regression method, with cropped normalized images. Each training has 3 stages and 3

different models are trained. The first stage of this method implies exclusively training the encoder

for head pose estimation, the second only the decoder for face reconstruction and the third the entire

framework. In the first stage we use the pre-trained encoder provided by the authors of [7] for all 3

models. The distinction between the models arises from the differences in the second and third stages.

For simplification, we name each model as ResUnet 1,2 and 3. In ResUnet 1, the reconstruction loss of

the second stage is applied for images normalized with ImageNet’s mean and standard deviation. We

set the parameter γ = 0 (equation 4.12), since the SSIM loss does not work for negative values in color

channels. For the third stage, these parameters are unchanged and the weight for pose estimation is

ρ = 0.1 (equation 4.13). In both ResUnet 2 and 3 we reverse the normalization of the channels of the

output image and apply the reconstruction loss for images without normalization. We set γ = 2 in the

second and third stage. The difference between the two models is that ρ = 0.1 in ResUnet 2, while in

ResUnet 3 we increase it to ρ = 1. The parameter for the weight for each angle regression loss is set

to α = 2 (equation 4.12) in all models. The networks were trained for 25 epochs in each stage, using

Adam optimization, a learning rate of 10−5 and image batches of 116 images. In ResUnet 1 and 3, we

use 100 occluded and 16 non-occluded images in each batch, and in ResUnet 2 we use only occluded

images in each batch. Table 5.6 summarizes the different parameters for each model and 5.7 lists the

results for all models in each dataset.

Method α γ ρ Normalized Images
ResUnet 1 2 0 0.1 Yes
ResUnet 2 2 2 0.1 No
ResUnet 3 2 2 1 No

Table 5.6: Parameters for each ResUnet trained model.

By comparing the results from ResUnet 1 and ResUnet 2 we observe that training the model with

the reconstruction loss applied to images without normalization helps to produce better HPE results in

occluded images. This may be due to the addition of the SSIM loss in ResUnet 2 which allows for better

image reconstructions and leads the network to produce embeddings closer to those of an face image

without occlusion. However, ResUnet 2 has worse results in regards to non-occluded pose estimation.

This seems to be a consequence of using only occluded images in the second and third stages of

training. ResUnet 3, which includes non-occluded images in training batches, improves non-occluded
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Occluded Images Non-Occluded Images

BIWI yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

Hopenet 6.725 8.616 7.338 7.560 4.375 3.559 3.348 3.761 5.661
ResUnet 1 6.874 6.462 4.994 6.110 4.586 4.193 3.654 4.144 5.127
ResUnet 2 6.192 7.218 4.355 5.922 4.798 4.944 3,712 4.845 5.384
ResUnet 3 5.377 6.318 4.564 5.420 4.380 4.175 3.669 4.075 4.747

AFLW2000 yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

Hopenet 12.438 10.277 8.586 10.434 4.965 5.250 3.956 4.724 7.579
ResUnet 1 5.557 6.859 5.372 5.929 4.237 5.623 4.173 4.678 5.304
ResUnet 2 5.329 6.550 4.978 5.619 4.380 5.699 4.196 4.758 5.189
ResUnet 3 5.123 6.354 4.633 5.370 4.235 5.569 4.126 4.643 5.001

Table 5.7: Head pose estimation MAE◦ results for ResUnet.

results when compared to both previous models. Furthermore, setting the weight parameter for pose

estimation losses to ρ = 1 leaded the network to produce the best results for all occluded datasets,

despite using less occluded examples in batches than ResUnet 2. As a result of these improvements,

we observe that ResUnet 3 has the lowest overall average MAE in both datasets.

5.2 Method Results Comparison and Discussion

BIWI Occluded Images Non-Occluded Images

Methods yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

Hopenet 6.725 8.616 7.338 7.560 4.375 3.559 3.348 3.761 5.661
ML LSR (β = 0.999) 5.174 6.622 4.117 5.304 4.297 4.186 3.617 4.033 4.669

ML LSR (β = 1) 5.429 4.823 3.467 4.573 4.291 3.086 3.179 3.519 4.046
Rec. (γ = 2) 5.847 6.323 5.727 5.966 4.133 3.391 3.326 3.617 4.792
ResUnet 3 5.377 6.317 4.564 5.420 4.380 4.175 3.669 4.075 4.747

Table 5.8: Method comparison in BIWI.

AFLW2000 Occluded Images Non-Occluded Images

Methods yaw pitch roll Avg.
MAE◦

yaw pitch roll Avg.
MAE◦

Avg.
MAE◦

Hopenet 12.438 10.277 8.586 10.434 4.965 5.250 3.956 4.724 7.579
ML LSR (β = 0.999) 4.741 6.254 4.765 5.253 3.813 5.420 4.003 4.412 4.833

ML LSR (β = 1) 5.117 6.075 4.590 5.261 4.258 5.272 3.888 4.473 4.867
Rec. (γ = 2) 5.674 6.138 4.690 5.458 4.675 5.345 3.956 4.658 5.058
ResUnet 3 5.123 6.354 4.633 5.370 4.235 5.569 4.126 4.643 5.001

Table 5.9: Method comparison in AFLW2000.
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Tables 5.8 and 5.9 display the head pose estimation results in the respective dataset, for the best

models of each method. We can observe that all of them substantially reduce the head pose estimation

errors in occluded images when compared to Hopenet. The reductions in the average MAE for occluded

images range from 2◦ to 5◦. Furthermore, they sustain accurate results for non-occluded images and in

some cases even lower the MAE of Hopenet, despite being trained mostly or completely with occluded

examples. This is important since it was also an objective of the developed methodologies to maintain

the best accuracy possible in non-occluded images. By comparing the different procedures we observe

that the reconstruction method produces the worst results in occluded images, specially in the BIWI

dataset. This is mainly due to the sensitivity of the reconstruction autoencoder to the resolution of the

input images. Images of lower resolution such as the ones from BIWI lead to worse reconstructed

faces which in turn leads the separate pose estimator to produce worse estimations. However, this

method improves the head pose estimation for non-occluded images in both datasets when compared

to inputting the original image directly in Hopenet. The ResUnet method improves these results in BIWI

and AFLW occluded examples, which corroborates that combining the reconstruction of faces with the

estimation of the pose in one network leads to a model that generalizes better for occlusions. Ultimately,

the latent space regression methodology produces the lowest occluded and global average MAE for both

BIWI and AFLW2000 datasets. Moreover, this method allows to further decrease error in non-occluded

images when compared to Hopenet. Both these factors make it the method that better fulfills the main

purpose of achieving the best occluded head pose estimation, while preserving or improving on state of

the art non-occluded head pose estimation. Using β = 1 achieves the best results on BIWI, the dataset

with smallest range of yaw values, and largest range of pitch and roll values. On the other hand, using

β = 0.999 achieves the best results on AFLW which has a bigger range in yaw values. Since in real-life

applications the yaw Euler angle, which defines if a head is turned left, center or right, is the most varied

and therefore most important angle in the pose estimation, we consider the model trained with β = 0.999

to be the best for such scenarios.

5.2.1 Testing Pose Estimation in the Feedbot Scenario

We also tested our best method (with β = 0.999) in the real world feeding scenario of Feedbot [13], a

robotic arm for autonomous assisted feeding of people with upper-extremity disabilities, to find out how

our model performs and compare it to Hopenet. Feedbot’s framework combines the robotic arm with a

camera to perceive the environment, so that it can localize and track the head and mouth of the user,

as well as the end-effector (identified by a QR-code) of the arm where a spoon is located. With this

cooperative scheme, it performs the feeding task by placing the end-effector in a comfortable position

for the user to eat up the food. The context framework is illustrated in figure 5.4.

We used both our and Hopenet’s models to estimate the head pose of the user from the frames
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Figure 5.4: Feeding context of Feedbot.

captured by the camera that perceives the environment, as the robot performs the feeding task. Since

we do not have the ground truth pose in this testing conditions, we carry out a qualitative analysis

and evaluation in this section using the estimated pose coordinate systems. The frames in figure 5.5

show the perspective of that camera, where both the end-effector and the user are seen. Initially, the

end-effector does not occlude the face of the user. We verify that for these non-occluded frames both

Hopenet and our model outputs good pose estimations regarding each one of the Euler angles.

After the robot collects the food, it moves the end-effector towards the mouth and places it in the

correct position for the user to eat. As the end-effector approaches the mouth, it partially occludes the

face of the user. These occlusions can be seen in the frames from figure 5.6. From the head pose

estimation results for those frames, we observe how Hopenet struggles with occlusions. The most

affected pose angle is yaw (rotation around the green axis), as the model is seen to indicate head

poses of opposite direction to that of which the head is turned, namely estimating the head to be rotated

towards the left of the image when it is rotated towards the right. Our model, on the contrary, indicates

head poses much closer to reality despite the existing occlusions. We verify that it greatly improved the

yaw rotation when compared to Hopenet. In the far right image we also observe improvements in the

roll rotation around the blue axis.

There are, however, occluded frames for which the head pose estimated by of our model is not

entirely accurate. This occurs particularly when the end-effector covers several facial regions at once.

Figure 5.7 displays some examples of such larger occlusions. In left and center examples, despite the

user looking straight at the camera, the yaw rotation estimated by our model indicates that the head
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Figure 5.5: Head pose estimation comparison between Hopenet and our model in frames that are not occluded by
the end-effector. Pose coordinate systems represented in the center of the detected face.

is slightly tilted to the left of the images. For the example in the right, our model estimates yaw and

roll angles correctly, but the pitch rotation (around the red axis) indicates the head is tilted down, when

it is tilted upwards. Nonetheless, our model still performs better than Hopenet in these cases. While

roll rotation is correctly estimated by both our and Hopenet’s models in all examples, our model shows

evident improvements in yaw and pitch angles.
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Figure 5.6: Head pose estimation comparison between Hopenet and our model in frames that are occluded by the
end-effector. Pose coordinate systems represented in the center of the detected face.

Figure 5.7: Frames with larger occlusions for which our model is not as accurate, while still performing better than
Hopenet. Pose coordinate systems represented in the center of the detected face.
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6.1 Conclusions

In this work, we developed three different learning-based methodologies to deal with the occlusion prob-

lem in head pose estimation. To be able to implement and test these approaches, we also introduced

a procedure to generate synthetic occlusions in face images, using an RGB-D camera. We show how

to segment occlusions based on depth data captured by the camera and how to inpaint the occlusion in

any RGB face image. We applied this procedure to three datasets which are commonly used and bench-

marked in head pose estimation problems, 300W-LP, BIWI and AFLW2000, and generated synthetically

occluded versions for each one of them.

We conceived a new multi-loss head pose estimation framework combined with a latent space re-

gression loss. We showed how introducing and increasing the influence of this loss improves the ac-

curacy and generalization for occluded images and non-occluded images. We developed and experi-

mented a different approach which resorts to the use of an autoencoder to reconstruct non-occluded

faces from occluded images in order to input the reconstructions to a head pose estimation network. We

demonstrate that combining the minimization of the absolute deviation of color intensities along with the

minimization of perceived differences in the structural information of images leads to more fine-grained

face reconstructions. We also verify that improving the quality of the face reconstructions contributes to

achieve better estimation of head poses. Lastly, we combined head pose estimation with face recon-

struction in a unique autoencoder which adapts both tasks through three training stages. We saw that

adding the reconstruction loss metric to minimize structural differences between images, and increasing

the weight of angle losses in the overall framework leads to better and more generalized pose estima-

tion results. We also found that these results surpassed those of the previous approach, which used two

different networks to solve tasks separately.

By performing ablation studies for each method we measured the influence of losses used in both

face reconstruction tasks and head pose estimation frameworks and determined the best training con-

figurations and models. We verified that all methodologies improved occluded head pose estimation and

equaled or surpassed the estimation performance for the original non-occluded datasets.

We carried out qualitative tests using our best model in the real world application of the Feedbot,

an autonomous assisting feeding robot. We confirmed that our model improved the head pose estima-

tion for the occlusions of the robotic arm when compared to a state of the art estimation model, while

achieving identical performance without occlusions.

6.2 Method Limitations and Future Work

Despite achieving good results, the developed methodologies have some limitations and further work

could be done to improve them. The RGB-D Microsoft Kinect camera has low image resolution (640x480
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pixels) and a minimum depth range of 0.8 meters. When recording occlusions for the synthetic occlusion

generation procedure, this means that the faces and occlusion objects have to be farther than that

distance and therefore the segmented occlusions occupy a small region in the image. When scaling

occlusions to dataset face images this leads to less natural synthetic occlusions. An RGB-D sensor of

higher resolution would improve this aspect.

ResNet-50, the encoder used in pose estimation frameworks, is a large network with over 23 million

parameters and is therefore slower to train and requires more GPU power. A network such as Efficient-

Net [45] could be used to improve this, since it has only 11 million parameters and achieves superior

accuracy on the ImageNet dataset, for which the pose estimation model is pre-trained.

The performance of our reconstruction models depends on the resolution of the detected face. An

interesting improvement would be to explore the recent progress in face generation capabilities of a

Generative Adversarial Network (GAN) to implement a more robust model that generate further fine-

grained reconstructions.

Ultimately, we plan to implement and quantitatively evaluate these head pose estimation frameworks

in the autonomous feeding Feedbot system in order to further assert their robustness to occlusions of

the feeding robotic arm.
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A
Autoencoder and U-Net Architecture

A.1 Autoencoder

An autoencoder is an unsupervised artificial neural network that learns to efficiently encode unlabelled

input data (hence unsupervised) and afterwards reconstruct it from the encoded representation, as close

to the original input as possible. The structure of an autoencoder has three main parts (figure A.1): The

encoder, which reduces the input dimensions and compresses its data into a lower dimensional encoded

representation, the latent space; The bottleneck, the layer which contains this compressed information

and therefore has the lowest dimensional representation of data in the entire network; and the decoder,

which decompresses the encoded data and maps it to a reconstruction of the input. In order to be able to

reconstruct the output as close to the original image as possible, autoencoders are trained by minimizing

and a reconstruction error loss which measures the differences between the reconstructed output and

the original input and allows the model to learn the most important latent attributes to recover the input

information in the best way possible.

The fact they learn to encode and decode information without the need for any labels means they

are an unsupervised learning technique, able to generate their own labels from the training data. This is
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Figure A.1: Basic autoencoder structure.

an advantage as it makes them simpler to train. Another advantage is that unlike Principal Component

Analysis (PCA) [61] [62], a common linear dimensionality-reduction method which aims to discover a

lower dimensional hyperplane (subspace with one less dimension than that its original space) that best

describes the original data, autoencoders are capable of learning more complex non-linear representa-

tions of data due to the non-linear activations of the encoder and decoder, which are neural networks,

and therefore are a more powerful generalization of the PCA technique (an autoencoder without the

non-linear activations acts in the same way as PCA).

Despite these important advantages, standard autoencoders also have some issues. As the input

dimensions are reduced in the encoder through down-sampling, there is a loss of image information

which might be relevant to the quality of the facial reconstruction. The authors of mask2face [54] carried

out a machine-learning project that aimed to develop a model to show what a person wearing a face

mask looks like without that mask. For that purpose they employed the U-Net architecture, an enhanced

autoencoder pipeline which reduces the information loss of standard autoencoders and achieves more

fine-grained results.

A.1.1 U-Net architecture

U-Net is a convolutional neural network architecture developed originally for biomedical image segmen-

tation [9], but since then broadened for a wide variety of tasks, such as image reconstruction, inpainting
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Figure A.2: PCA(linear) vs. autoencoder(non-linear) dimensionality reduction [8].

or colorization. The original U-Net pipeline is exemplified in figure A.3.

Essentially, this U-shaped architecture is that of an autoencoder. There is a contracting path (en-

coder) which consists of convolutions, each followed by a Rectified Linear Unit (ReLU) activation function

that nullifies non-positive outputs, and max-pooling operations which calculate the maximum value for

patches in a feature map to generate a down-sampled (pooled) feature map. This encoder generates an

embedding with the lowest spatial information but highest feature information (bottleneck), which is after-

wards expanded back to the original input dimensions through a series of up-samplings with transposed

convolutions and regular convolutions (decoder). There is, however, a crucial difference in regards to

the standard autoencoder. U-Net implements links called skip connections between feature maps of the

encoder and feature maps of equal dimensions in the decoder. Skip connections concatenate feature

maps of an encoder layer to the corresponding decoder layer that results from each up-sampling, a

process that speeds up the learning process, while stabilizing training and convergence, and tackles the

vanishing gradient problem [63]. Another advantage is that, since skip-connections pass the information

from the encoder directly to the decoder, they ensure that the features that are learned in the encoding

process are actually used in the reconstruction process and therefore help to recover from the loss of

information that occurs during the down-sampling in the encoder.
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Figure A.3: U-Net architecture from [9].
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B
Data Pre-Processing

For 300W-LP and AFLW2000 datasets we use provided 2D landmark annotations to extract a face

bounding box:

xmin = min(L2D
x ) xmax = max(L2D

x )

ymin = min(L2D
y ) ymax = max(L2D

y )
(B.1)

where xmin, xmax, ymin, ymax are the margins of the bounding box for x and y image coordinates, and

L2D
x , L2D

x are x and y face landmark coordinates. Furthermore, we widen the margins of the bounding

boxes so that the cropped images which will be inputted to the network better capture the face and

head. This approach is based in the work developed in [64], which studies the benefits of adjusting

the bounding box margins of detected faces to achieve better head pose estimation results. For that

purpose, we define the adjusted box margins according to a margin control parameter K (equation B.3).

The ymin margin is multiplied by two, since the top of the original bounding box is defined very close

to the eyes. Figure B.1 shows the bounding box defined with 2D face landmarks and the bounding box

with adjusted margins in an example image of the 300W-LP dataset.
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xmin = xmin − k(xmax − xmin)

xmax = xmin + k(xmax − xmin)

ymin = ymin − 2× k(ymax − ymin)

ymax = ymax + k(ymax − ymin)

(B.2)

Figure B.1: Original and adjusted bounding boxes.

Pose labels are provided in radians and converted to degrees:

Euler◦ =
Eulerrad ∗ 180◦

π
(B.3)

The continuous labels for the regression losses correspond directly to the converted angles, and the

labels for classifications correspond to the indices of the bins to which each angle value belongs.
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