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Producing the ordered products in the right quantity and at the right time is the main purpose of a Just-in-Time (JIT) production
system. If, on the one hand, delays in the delivery of the orders can carry high losses and jeopardise the reputation of the company,
on the other hand, producing too early will translate into unnecessary inventory costs. The Unrelated Parallel Machines with
Job Sequence-Dependent Setup Times, Job Families and Precedence Constraints (UPM-JSDST-JF-PC) scheduling problem is the
problem under study. The problem is addressed with an exact model, unable to provide optimal solutions in reasonable times for
most of the generated instances. Then, two heuristic methods are proposed to address the problem under study: Multi-Start Iterated
Local Search - Randomised Variable Neighbourhood Descent (MS ILS-RVND) heuristic and Adaptive Large Neighbourhood Descent
(ALNS-RVND) heuristic. Despite not guaranteeing the optimality of the solutions, both heuristics provide higher quality solutions
in shorter computation times than the exact model, for most of the generated instances. A performance comparison between the
heuristic methods is also established.

Index Terms—Just-in-Time; Scheduling; Earliness and tardiness; Parallel machines; Optimisation; Heuristics.

I. INTRODUCTION

SCheduling is a decision-making process that is used in
the industries, dealing with the allocation of resources

to jobs along time. Hence, analysing a scheduling problem
and developing a procedure for dealing with it is, in the real
world, a great challenge [26]. These problems started being
studied in the 1950s, aiming to model complex real problems
and optimise economic indicators. Over the years, scheduling
problems with different processing characteristics, constraints
and production environments were studied. Despite the great
interest into investigating these problems, many real problems
remain unstudied, which have different characteristics from
the problems already addressed.

Aiming to optimise resources and fulfil customer orders,
production scheduling is a crucial process on any company,
developed at operational level. Production scheduling is the
process that aims to minimise the production time and costs,
by choosing when to produce, with which workforce, and on
which machinery.

Scheduling problems have a proper notation to be defined
proposed by [26]. The majority of authors in the existing
literature adopt this notation. Let n and m denote, respectively,
the number of jobs and the number of machines. The set of
jobs is denoted by N , being N = {1, 2, ..., n} and, the set of
machines is denoted by M , being M = {1, 2, ...,m}. A job
is denoted by j, where j ∈ N and, a machine is denoted by i,
where i ∈M . A scheduling problem is described by a triplet
α|β|γ, where:

• α describes the machine environment and contains only
a single entry;

• β describes processing characteristics and constraints, and
can contain no entries, a single entry or multiple entries;

• γ describes the objective to be minimised and usually
contains a single entry.

There are three types of parallel machine environment,

which are distinguished depending on the job processing time:
identical parallel machine environment (Pm), uniform parallel
machine environment (Qm) and unrelated parallel machine
environment (Rm). The abbreviations between parenthesis are
the entries of the α of the triplet α|β|γ. Let pij denote the
processing time of job j on machine i. In an identical parallel
machine environment, the processing time of the job j does
not depend on the machine i, that is, pij = pj . In an uniform
parallel machine environment, the processing time of the job
j depends on the processing speed of the machine i, that is,
pij = pj/vi for all i and j, where vi is the speed of machine
i, and pj is the processing time per unit speed. In an unrelated
parallel machine environment, the processing time of the jobs
is arbitrary.

Scheduling problems can have different job characteris-
tics that include precedence constraints (prec), release dates
(rj), sequence-dependent setup times (sjk), machine eligibility
constraints (Mj), preemption (prmp) and batch processing
(batch). The abbreviations between parenthesis are the entries
of the β of the triplet α|β|γ.

The objective function to be optimised is usually known
as a performance indicator and it is always a function of the
completion times of the jobs, which depends on the schedule.
Some examples of minimisation objectives, which are the
most approached ones in the literature, are: the makespan,
the lateness, the tardiness, the earliness and the number of
tardy jobs. The entry in the γ field of the triplet α|β|γ is the
mathematical expression that defines the objective function.

Just-in-Time (JIT) philosophy emerged in the 1970s, and
in the last decades has been adopted by many companies
worldwide. Producing the orders in the proper quantity at the
right time is the main purpose of a JIT production system. The
growing interest in this philosophy has motivated the study of
scheduling models. The JIT scheduling is concerned with the
earliness and tardiness of job completion. On the one hand,
delayed delivery negatively influences customer satisfaction
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and company reputation and, on the other hand, early job
completion can increase inventory costs. The JIT scheduling
problems can be separated according to the approach of their
due dates and the classification of the objective function [33],
as illustrated in Figure 1.

Fig. 1: Framework of JIT scheduling problems, adapted from [31]

There are two different due date approaches: due date as
a given parameter or due date as a decision variable. Firstly,
when the due dates result from a choice made by the decision-
maker and constitute the input data, it is considered as a
given parameter. The due dates can be common for all jobs,
denoted by d, or distinct for all jobs, denoted by dj . Lastly,
an interesting aspect of JIT scheduling is the possibility of
due date negotiation [14]. Sometimes the decision-maker and
his customer negotiates about the due date of a job and, in
this case, the decision-maker needs to set up an algorithm
which returns a schedule and a preferable due date [33]. When
this happens, the due date is considered as a decision variable
and is common for all jobs. The jobs may are subject to a
unrestricted common due date or to a restricted common due
date, that is, the due date must be lower than the sum of the
processing times of all jobs.

The JIT scheduling problems have proper objective func-
tions to be minimised, according to [31]: Mean Absolute Devi-
ation (MAD), Weighted Sum of Absolute Deviation (WSAD),
and Total Weighted Earliness and Tardiness (TWET). Let be,
respectively, αj and βj the earliness and the tardiness of the
job j. The goal of a MAD problem is to find a schedule
considering that the earliness and tardiness of the jobs are both
equally penalised and is defined as 1

n

∑
j∈N (Ej+Tj). WSAD

objective allows a different weight for earliness, α, and tardi-
ness, β, which is modelled by

∑
j∈N (αEj+βTj). In a TWET

problem, each job may have different earliness weight, αj and
tardiness weight, βj and is defined by

∑
j∈N (αjEj + βjTj).

The weights may be symmetric, αj = βj and α = β, or
asymmetric, αj ̸= βj and α ̸= β, in WSAD and TWET
problem, respectively.

Scheduling problems with earliness and tardiness penalties
are commonly encountered in today’s manufacturing environ-
ment due to the current emphasis on the JIT philosophy [29].

II. LITERATURE REVIEW

The reviewed publications about the JIT scheduling consid-
ering due date as a given parameter. Table I summarises papers

reviewed that consider due date as given parameter. For each
reviewed publication, it summarises the machine environment,
the processing characteristics and constraints, the objective
function, the due date approach and the solution procedures.
Some authors considers the due date common for all jobs and
others authors considers it distinct for all jobs.

A. Common due date for all jobs

[9] address a TWET problem in identical parallel machine
environment with a common due date for all jobs. Genetic
Algorithm (GA) is applied to solve this problem. [5] consider
a TWET problem too, but in an unrelated parallel machine
environment. A release date is given for each job, and a
common due date is given for all jobs. They suggested
different constructive algorithms for an heuristic solution of
the problem, which are composed of two-stage procedures.
The first phase assigns the jobs to machines, and then, for each
machine and the corresponding set of jobs, a single machine
problem is solved. The authors also proposed some iterative
algorithms, which they use for performance comparison [31].

B. Distinct due date for all jobs

Considering an identical parallel machine environment, [20]
address JIT scheduling problem: minimising the TWET with
deadlines. As opposed to due dates, which may be violated at
the weight of tardiness, deadlines must be met and cannot be
violated. The authors present a search heuristic, combining el-
ements of the solution methods known as Greedy Randomised
Adaptive Search Procedure (GRASP) and tabu search.

[13] propose a heuristic procedure to deal with the
WSAD scheduling on unrelated parallel machines, subject to
job sequence-dependent setup times and machine eligibility
restrictions. Their heuristic solution procedure involved two
stages: at a first stage, a single machine sequencing heuristic
is developed, and at the second stage, this single machine
heuristic is built into a machine assignment heuristic.

[32] address the TWET problem. A set of independent jobs
with sequence-dependent setups is given to be scheduled on
a set of uniform parallel machines and each job has its own
release date. The authors employ two GAs to deal with this
problem: one with a crossover operator which is developed to
solve multi-component combinatorial optimisation problems,
and the other with no crossover operator. The results on
960 randomly generated instances indicate that GAs are an
efficient algorithm. [4] consider the same problem as [32]
and present a Mixed Integer Programming (MIP) model.
[4] perform computational experiences using this model to
solve small sized problems. To solve problems of larger size,
the authors suggest a solution approach based on Bender’s
decomposition, that is a primal-dual-based procedure which
brackets the optimum solution by iterating between a primal
master problem and a dual subproblem. They realised that it
is time consuming and using other solution approaches, such
as heuristic approaches, to solve the "master" problem may
accelerate the process allowing more rapid solution of larger
problems.
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Considering an identical parallel machine environment, [29]
address the WSAD problem when α = β = 1. Job sequence-
dependent set-up times are taken into account. They provide
the first step towards obtaining near-optimal solutions for this
problem using LS heuristics in the framework of a meta-
heuristic technique known as Simulated Annealing (SA).

[10] consider a set of jobs to be processed on a set of
unrelated parallel machines subject to precedence constraints,
where the objective is to minimise the WSAD. The authors
develop an exact exponential-time algorithm. [28] extend the
work performed by [10]. [28] model it as a MIP formulation,
and solved using MASH , a deterministic heuristic based on
Multi-Agent Systems (MAS).

[35] propose a MIP model for TWET problem in an unre-
lated parallel machine environment, considering job sequence-
dependent setup times. The model can provide the optimal
schedule to problems involving nine jobs and three or fewer
machines in a reasonable computation time. The authors
realised that the size of most industrial problems exceeds the
capability of the proposed model and that could be beneficial
if heuristic solution procedures were developed.

[2], [34], [24] and [15] consider the same problem as
[35] but all of them propose different solution approaches.
[2] explore the use of Artificial Neural Network (ANN). [34]
propose a GA to address the problem. [24] propose three
different heuristics: the first is a simple GRASP heuristic, the
second heuristic includes an intensification procedure based
on Path Relinking technique, and the third uses an Iterated
Local Search (ILS) heuristic in the LS phase of the GRASP
algorithm. [15] propose an exact solution approach: a MIP is
proposed to formulate the problem and is solved optimally in
small size instances. The authors employ Parallel Net Benefit
Compression-Net Benefit Expansion (PNBC-NBE) heuristic,
two meta-heuristics and a hybrid technique to solve medium-
to-large sized instances.

Considering an identical parallel machine environment, [25]
address the TWET problem with job families and product
batches. A sequence-dependent setup time is incurred, when
the production changes over from a job of one family to a job
of another family. The authors develop a MIP formulation,
which can provide optimal solutions for instances with up to
18 jobs and 4 families. They realised that an opportunity for
further research is the use of heuristic methods for solving
large real-life instances with hundreds of jobs.

[30] consider the TWET scheduling problem in an uniform
parallel machine environment earliness–tardiness with job
sequence-dependent set-up times. The authors propose a SA-
fuzzy logic approach. The SA algorithm identifies the best
sequences for the different weighted combinations of earliness
and tardiness measures for each given set of jobs. The fuzzy
logic is then used to select the optimal weighted combination,
which satisfies the combined objective function to a larger
extent.

[11] address the TWET scheduling problem on identical
parallel machines with job sequence-dependent setup times.
The authors apply a Squeaky Wheel Optimisation (SWO)
framework to solve the problem.

In an identical parallel machine environment also, [17] ad-

dress a TWET scheduling of a set of jobs with distinct release
date for all jobs. Precedence constraints are taken into account
on their problem. The authors propose new lower bounds,
classified into two families: first, two assignment-based lower
bounds for the single machine problem are generalised for the
parallel machine case, and second, a time-indexed formulation
of the problem is developed to derive an efficient lower bounds
through column generation or Lagrangean relaxation. The
authors also present a simple LS algorithm to generate an
upper bound.

[22] develop a Parallel Machine Moving Block Heuris-
tic (Pm-MBH) to address the WSAD scheduling with unit
symmetrical weights, α = β = 1, in identical parallel
machine environment. Precedence constraints are considered.
They present a MIP model in order to analyse the quality of the
Pm-MBH solutions, and based on the computational results,
they consider that Pm-MBH obtains good solutions in a short
amount of computation time.

[23] extends the work performed by [17] and propose an
MIP formulation to find the exact solution for small instances.
To address large instances, the problem is approximately
solved via two constructive approaches, three meta-heuristics
and several hybrid heuristics.

TABLE I: Summary of the reviewed papers

Paper Problem Due date Solution approach
[20] Pm | | TWET distinct Heuristic
[9] Pm | | TWET common Heuristic
[13] Rm | sjk, Mj | WSAD distinct Heuristic
[32] Qm | sjk, rj | TWET distinct Heuristic
[4] Qm | sjk, rj | TWET distinct Exact
[29] Pm | sjk | WSAD distinct Heuristic
[35] Rm | sjk | TWET distinct Exact
[5] Rm | rj | TWET common Heuristic
[10] Rm | prec | WSAD distinct Exact
[25] Pm|Mj , fmls, batch|TWET distinct Exact
[17] Pm | rj , prec | TWET distinct Heuristic
[11] Pm | sjk | TWET distinct Heuristic
[30] Qm | sjk | TWET distinct Heuristic
[2] Rm | sjk | TWET distinct Heuristic
[22] Pm | prec | WSAD distinct Heuristic
[23] Pm | rj , prec | TWET distinct Exact + Heuristic
[34] Rm | sjk | TWET distinct Exact + Heuristic
[3] Pm | | TWET distinct Heuristic
[15] Rm | sjk, Mj | TWET distinct Exact + Heuristic
[28] Rm | prec | TWET distinct Heuristic
[24] Rm | sjk | TWET distinct Heuristic
[36] Rm | rj , prmp | TWET distinct Heuristic
[1] Pm | prmp | TWET distinct Heuristic
[15] Pm | | TWET distinct Heuristic
[8] Rm | | WSAD distinct Exact + Heuristic

[3] and [16] address the TWET scheduling problem in
identical parallel machines. [3] presents a hybrid algorithmic
strategy involving GA with a smart LS approach. [16] propose
a Mixed Integer Linear Programming (MILP) model for the
considered problem. The authors apply a PNBC-NBE heuris-
tic. An Intelligent Water Drop (IWD) algorithm, a new swarm-
based nature-inspired optimisation, is also adopted to approach
this problem.

[36] and [1] consider TWET scheduling, allowing jobs pre-
emption. [1] propose two meta-heuristic algorithms, the Non-
Dominated Sorting Genetic Algorithm II (NSGAII) and Non-
Dominated Ranking Genetic Algorithm (NRGA) to approach
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the problem on identical parallel machines. [36] address the
problem on unrelated parallel machines with distinct release
date for all jobs. The authors perform a Benders decomposition
algorithm to solve the preemptive relaxation formulated as a
MIP model, offering a near-optimal assignment of the jobs to
the machines.

III. MATHEMATICAL MODEL

This section describes the proposed mathematical model.
First, the problem under study is described. Then, the mathe-
matical model is presented.

A. Problem Description

Despite the vast existing and revised literature on JIT
scheduling on parallel machines, not all scenarios are studied.
There are still many production plants that are not reflected
in the existing literature. In order to explore a new scenario
of production, the scheduling problem that will be addressed
considers a combination of processing characteristics not yet
studied in the literature. The Unrelated Parallel Machines
with Job Sequence-Dependent Setup Times, Job Families
and Precedence Constraints (UPM-JSDST-JF-PC) scheduling
problem is the problem to be addressed, which is described
by problem (1). This problem is a JIT scheduling to minimise
TWET considering job sequence-dependent setup times, job
families and precedence constraints. The due date is taken as
a given parameter and distinct for all jobs. The UPM-JSDST-
JF-PC scheduling problem is not yet studied in the reviewed
literature.

Rm | sjk, fmls, prec |
∑
j∈N

(αjEj + βjTj) (1)

The characteristics presented in the UPM-JSDST-JF-PC
scheduling problem are similar to the real problems of produc-
tion firms. The UPM-JSDST-JF-PC scheduling problem can
be illustrated by the following industrial scenario from the
painting industry: a set of unrelated parallel machines that
paint products with different types of ink (primary ink, colour
ink and varnish) and different colours. Jobs that consists in
painting with similar tones (e.g. dark tones, light tones, etc.)
are considered from the same family since there is no need to
clean the machine, so, there is no changeover time. The time
needed to clean the machine between jobs is sequence-depend
since it depends on the type of the ink and colour that need
to be cleaned and the type of the ink and colour that need to
be prepared. Therefore, this example considers job sequence-
dependent setup times. Jobs also have precedences since the
varnish only can be applied after the colour ink whereas the
colour ink only can be applied after the primary ink.

B. Problem Formulation

The problem under study is to schedule n jobs with
sequence-dependent setup times and different due dates on m
unrelated parallel machines. The following assumptions are
considered for formulating the problem. All jobs are available
at time zero, that is, the ready time is zero. The presence of
idle times is not allowed and no job preemption is allowed.

All machines are available for processing and can process any
job. The problem has been formulated for jobs that belong
to different families and have precedence constraints between
them with probability D.

1) Sets, indexes, parameters and decision variables
Table II presents the sets, the indexes, the parameters and

the decision variables to be considered in the mathematical
model, which is a MILP model.

TABLE II: Sets, indexes, parameters and decision variables

Sets

N set of jobs
M set of machines
F set of families
Fg set of jobs belonging to family g ∈ F

P (j) set of predecessors of job j, where P (j) ⊂ N

Indexes

j, k ∈ N indexes for job
i ∈ M index for machine
g, h ∈ F indexes for family

Parameters

pji processing time for job j using machine i

sjk setup time for job k when it immediately follows job j

dj due date of job j

αj earliness cost per unit of time for job j

βj tardiness cost per unit of time for job j

Ggh changeover time from job j belongs to family g to a job k
belongs to a family h; Ggh is equal to 0 when job j and job
k belong to the same family

M+ a large positive number

Decision variables

Non-negative variables
Ej length of time job j is early
Tj length of time job j is tardy
Cj completion time of job j

Binary variables
Xji 1 if job j is the first processed on machine i; 0, otherwise
Yji 1 if job j is done on machine i, but not in the first place; 0,

otherwise
Zjk 1 if job j precedes job k; 0, otherwise

2) Objective functions
The objective function, which is the function that needs to

be optimised, is presented. Expression (2) defines the objective
function as the minimisation of the sum of total weighted
earliness and tardiness.

min
∑
j∈N

(αjEj + βjTj) (2)

3) Constraints
The constraints of the mathematical model are detailed,

taking into account the specific characteristics of the problem
under study, which is the UPM-JSDST-JF-PC scheduling
problem.
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Constraints (3) define the earliness and tardiness of job j.
Each job can only be tardy or early, if it is not delivered timely,
so it is obvious that Tj and Ej cannot take a positive value
simultaneously.

Cj − Tj + Ej = dj ∀j ∈ N (3)

Constraints (4) ensure that each job is processed on one and
only one machine, and also, that all jobs are processed.∑

i∈M

(Xji + Yji) = 1 ∀j ∈ N (4)

Constraints (5) enforce that a job and its direct successor
are both processed on the same machine.

Xji + Yji + Zjk + Zkj ≤ Yki + 1

∀j, k ∈ N : j ̸= k ∀i ∈M
(5)

Constraints (6) guarantee that machine i has, at most, one
job in the first place.∑

j∈N

Xji ≤ 1 ∀i ∈M (6)

Constraints (7) enforce that a job is either the first to be
processed, or succeeds another.∑

i∈M

Xji +
∑
k∈N

Zkj = 1 ∀j ∈ N (7)

Constraints (8) ensure that every job should be at most
immediately succeeded by another job, unless it is the last
job. ∑

k∈N

Zjk ≤ 1 ∀j ∈ N (8)

Constraints (9) ensure that the processing start time for a
job can never be lower than the completion time of its direct
predecessor job. Constraints (10) ensures that the processing
start time for a job can never be higher than the completion
time of its direct predecessor job. Constraints (9) and (10)
guarantee that idle times are not allowed.

Cj +Ggh + sjk +
∑
i∈M

pki(Xki + Yki) ≤ Ck +M+(1− Zjk)

∀g, h ∈ F, ∀j ∈ Fg, ∀k ∈ Fh

(9)

Ck ≤ Cj +Ggh + sjk +
∑
i∈M

pki(Xki + Yki) +M+(1− Zjk)

∀g, h ∈ F, ∀j ∈ Fg, ∀k ∈ Fh

(10)

The value of M+ is calculated according to equation (11) to
make the constraints redundant when job j does not precede
job k.

M+ =
∑
j∈N

(
max
i∈M

pij +max
k∈N

sjk +max
k∈N

Gjk

)
(11)

Constraints (12) state that completion time of a job must be
higher than or equal to its processing time.

Cj ≥
∑
i∈M

pji(Xji + Yji) ∀j ∈ N (12)

Constraints (13) state that completion time of a job must be
lower than or equal to its processing time, when the job is the
first job to be processed.

Cj ≤ pjiXji+M+(1−Xji) ∀j ∈ N ∀i ∈M (13)

Constraints (14) define the precedence constraints.

Ck ≥ Cj +
∑
i∈M

pki(Xki + Yki) ∀k ∈ N ∀j ∈ P (k)

(14)
Constraints (15) define the domain of binary variables.

Xji, Yji, Zjk ∈ {0, 1} ∀j, k ∈ N ∀i ∈M (15)

Constraints (16) define the domain of non-negative vari-
ables.

Tj , Ej , Cj ≥ 0 ∀j ∈ N (16)

The problem under study is modelled as a MILP model,
which is an exact model. However, the exact model cannot
address the large instances in an acceptable computational
time. Therefore, heuristic methods are widely used to approach
the large instances, due to the fact that these methods find
good solutions within a time period smaller than the required
by an exact method, and requiring less computational effort.
Although they do not guarantee optimality, heuristic methods,
in some cases, manage to reach the optimal solution. To
approach the problem under study, in the next chapter, will
be proposed heuristic methods.

C. Heuristic approaches

In this section the two proposed heuristic approaches are
described. Firstly, the MS ILS-RVND heuristic is characterised
and, lastly, the ALNS-RVND heuristic is described.

1) MS ILS-RVND heuristic
[18] propose the Multi Start Iterated Local Search - Ran-

domised Variable Neighbourhood Descent (MS ILS-RVND),
which is a unified heuristic algorithm for a large class of
earliness and tardiness scheduling problems capable of pro-
ducing high quality solutions when compared to the state-of-
the-art methods available in the literature. Therefore, the UPM-
JSDST-JF-PC scheduling problem will be addressed with the
MS ILS-RVND algorithm. However, the algorithm needs some
adaptions since [18] do not consider neither job families nor
precedence constraints.

MS ILS-RVND is a meta-heuristic, which hybridises a
multi-start ILS with a RVND meta-heuristic and is defined
by the pseudo-code of the Algorithm 1 heuristic, which is
characterised by restarting the ILS-RVND heuristic IR times.
The MS ILS-RVND heuristic starts by generating an initial
solution. At each restart, a new initial solution is generated
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and the ILS-RVND algorithm is applied. When IR is achieved
then the heuristic stops and returns the best solution found.

Algorithm 1 MS ILS-RVND
Parameters: IR

1: S ← ConstructInitialSolution()
2: S∗ ← S
3: i← 1
4: while i ≤ IR do
5: S ← ConstructInitialSolution()
6: S

′ ← ILS-RV ND(S)
7: i← i+ 1
8: if f(S

′
) ≤ f(S∗) then

9: S∗ ← S
′

Algorithm 2 illustrates the pseudo-code used to construct the
initial solutions. The Candidate List (CL) is built measuring
the benefit of selecting each element. The earlier the due
date is, the greater the benefit is of choosing the job first to
be inserted in the initial solution. Precedence constraints are
satisfied in the CL. Then, Restricted Candidate List (RCL) is
generated, which is the list of the best candidates of CL. One
of the jobs in the RCL is randomly chosen to be inserted in
the solution. The feasibility is verified, that is, the precedence
constraints have to be satisfied. Then, the job is added to the
machine with the shorter completion time, that is, the freest
available machine. A initial solution is constructed when the
RCL is empty and all the jobs has assigned to a machine.

Algorithm 2 ConstructInitialSolution

1: S ← BuildEmptySolution(m)
2: CL← GenerateCL(n,D) ▷ Using EDD method and

satisfying the precedence constraints
3: while CL is not empty do
4: RCL← GenerateRCL(CL, S)
5: j = SelectElementAtRandom(RCL)
6: if Feasible(j) then ▷ Verify if the precedence

constraints are satisfied
7: S ← InsertInFreestMachine(j, S) ▷ Insert

into machine with shorter completion time
8: CL← Remove(j, CL) ▷ Remove the inserted

job from the CL

Algorithm 3 illustrates the pseudo-code of ILS-RVND
heuristic, which is based on Local Search (LS) and pertur-
bations that are applied until the termination condition is
satisfied, which is the maximum number of consecutive per-
turbations without improvements (IILS). The LS part of ILS-
RVND is managed by the RVND algorithm. The perturbation
is used to escape from local optima by changing current
solution in a random way. The used perturbation algorithm
consists of moving a job j from a machine i to a machine
i′, while a job j′ is moved from machine i′ to machine i.
The jobs, machines and positions to be inserted are chosen
at random and such procedure is repeated three consecutive
times, as proposed by [18].

Algorithm 4 illustrates the RVND meta-heuristic. The
algorithm uses a set of neighbourhood structures N =

Algorithm 3 ILS-RVND
Parameters: IILS

1: S∗ ← ILS-RV ND(S)
2: i← 1
3: while i ≤ IILS do
4: S

′ ← perturb(S∗)
5: S

′′ ← ILS-RV ND(S
′
)

6: i← i+ 1
7: if f(S

′′
) ≤ f(S∗) then

8: S∗ ← S
′

9: i← 1

{N1, ..., Nv} in a random way until the solution S∗ becomes
a local optimum for each of them. RVND starts by exploring
a neighbourhood. If an improvement has been found within
a neighbourhood, the neighbourhood for the new solution is
applied again. If no improvement has been found, the next
neighbourhood is explored. The algorithm terminates if all
neighbourhoods for the current solution are explored without
finding an improvement, that is, the current solution is a local
optimum for all neighbourhoods. The searching of solutions
in the neighbourhoods is performed until the best neighbour
is found.

Algorithm 4 RVND

1: S∗ ← S
2: {ij}vj=1 ← randomIndexes(1, v)
3: n← 1
4: while n ≤ v do
5: S

′ ← Nin(S
∗)

6: if f(S
′
) ≤ f(S∗) then

7: S∗ ← S
′

8: n← 1
9: else

10: n← n+ 1

We consider five neighbourhoods. The neighbourhoods
are described using blocks, which are sub-sequences of l
consecutive jobs. The neighbourhoods used are based on
insertion and swap moves of blocks. The neighbourhood
InsertionIntraMachine consists of moving the block from
the current position p to a forward position p+2 or to a back-
ward position p− 2 in the same machine. The neighbourhood
SwapIntraMachine consists of interchanging a block in
position p with the block in the position p+2 belonging to the
same machine. The neighbourhood InsertionInterMachine
consists of removing a block in position p from a machine i
and inserting it in machine i′ at same position. The neighbour-
hood SwapInterMachine consists of interchanging a block
in a position p of a machine i with the block in position p of a
machine i′. The neighbourhood SwapMachines consists of
interchanging all the jobs from machine i to machine i′. Neigh-
bourhoods 1 to 4 are proposed by [18] and neighbourhood 5
is proposed within the scope of this dissertation because it
causes improvements in the quality of the solution obtained
by the meta-heuristic for the problem addressed.
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2) ALNS-RVND heuristic
[27] suggest that the Adaptive Large Neighbourhood

Search (ALNS) is an efficient heuristic to address scheduling
problems and [19] propose the combination between the
ALNS and a LS meta-heuristic with a certain probability.
Therefore, in order to use a novel heuristic for the problem
under study, we developed the Adaptive Large Neighbour-
hoods Search - Randomised Variable Neighbourhood Search
(ALNS-RVND) heuristic to address the UPM-JSDST-JF-PC
scheduling problem. It is equipped with destroy and repair
methods applied according to weights that are the dynamically
adjusted throughout the search process.

The pseudo-code of the ALNS-RVND heuristic is illustrated
by Algorithm 5. The sets of neighbourhoods are divided into
two: the set of destroy neighbourhoods Ω− and the set of
repair neighbourhoods Ω+. The weights of each destroy and
repair neighbourhood are denoted by ρ− and ρ+, respectively,
and initially all the methods have the same weight.

Algorithm 5 ALNS-RVND

1: S ← ConstructInitialSolution()
2: S∗ ← S
3: i← 1
4: ρ− ← (1, ..., 1)
5: ρ+ ← (1, ..., 1)
6: while i ≤ IALNS do
7: Select destroy and repair methods d ∈ Ω− and r ∈

Ω+ using ϕ− and ϕ+

8: S
′ ← r ( d (S) )

9: Apply RVND to S
′

with probability prob
10: if f(S

′
) ≤ f(S) then

11: S ← S
′

12: if f(S
′
) ≤ f(S∗) then

13: S∗ ← S
′

14: i← i+ 1
15: Update ϕ− and ϕ+

The stopping criteria is when the number of iterations
performed, i, is equal to the maximum number of iterations,
IALNS . In each iteration, a roulette wheel is used to choose
a destroy and a repair methods, according to the probabilities
schemes of ALNS (see in [27]).

Then, the chosen destroy and repair methods are applied
to the current solution and a new temporary solution S

′
is

built. Since ALNS-RVND algorithm applies a LS procedure
with a certain probability, the RVND is applied to the new
temporary solution S

′
with the probability prob. Afterwards,

if the temporary solution S
′

is better than the current solution
S, S become equal to S

′
, if the temporary solution S

′
is better

than the best solution found until now S∗, S∗ become equal
to S

′
. Finally, the procedure updates the weights, ρ− and ρ+

(see in [27]).
Three destroy methods and two repair methods were de-

veloped for the UPM-JSDST-JF-PC scheduling problem. The
destroy methods are the following:

1) RandomRemoval, as the name suggests, randomly
selects Q jobs using a uniform distribution and removes

them from the solution, in order to explore other parts
of the solution space.

2) WorstRemoval consists of removing the Q jobs with
the highest cost in the solution, that is, the jobs with
the highest total earliness and tardiness in the current
solution.

3) RelatedRemoval happens when a job is randomly se-
lected and the remaining Q−1 are sorted in a decreasing
order of relatedness. Relatedness is a weighted sum of
two factors, which are enumerated below. All the factors
have the same weight and the total relatedness is defined
as rel(j, k) = 1

2rel1(j, k) +
1
2rel2(j, k). The rel1(j, k)

is equal to 1 if jobs j and k belong to the same family
and 0, otherwise and the rel2(j, k) is equal to 1 if jobs
have precedence between them and 0, otherwise. The
Q− 1 jobs with highest relatedness with job j and job
j are removed from the current solution.

The repair methods are the following:
1) SelfishRepair consists of greedly inserting the re-

moved jobs based on the cheapest insertion. The job
is inserted in all possible positions and its individual
cost, that is, the earliness and tardiness of the job, is
calculated. The chosen position is where the job has the
lowest cost;

2) AltruistRepair consists of inserting the removed jobs
in the position that minimises the objective function,
using the exact model.

3) RandomRepair consists of inserting the job randomly
in a position chosen using a uniform distribution.

All the repair methods guarantee that the precedence con-
straints are satisfied.

IV. RESULTS

A. Instances generation

The scheme for the instance generation is similar to that
presented by [21] and [24]. Job families are generated ac-
cording the proposal from [7]. Jobs precedence are generated
according [12] and [10]. According to the number of jobs n
and the number of machines m, the instances are classified
in two sets: set I and set II . Set I contains small instances
with n ∈ {10, 20, 30} and m ∈ {3, 5}. Set II contains large
instances with n ∈ {50, 80, 120} and m ∈ {10, 20}.

B. Exact model

Table III presents the average computational time in seconds
(time [s]), the average gap in percentage (gap [%]) and the
number of optimal solutions (# optimums), for each set of in-
stances grouped by number of jobs (n). The exact method only
obtains all the optimal solutions for instances with n = 10,
which are the smallest instances. For instances with n = 20,
the model solves 1 instance. Regarding n ∈ {30, 50, 80, 120},
the model does not find any optimal solution for the instances
within the time limit. Therefore, the exact model is not suited
to address the instances with the number of jobs higher than
10, because it is suited to address to the obtain optimal
solutions.
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The exact is not able to provide a feasible solution within
the time limit for instance with n = 50, m = 20 and D = 0,
instance with n = 80, m = 20 and D = 0.005 and instances
with n = 120, m = 20 and D ∈ {0, 0.005, 0.01}.

TABLE III: Comparison between the instances by number of jobs

n time [s] gap [%] # optimum
10 36 0 12 / 12
20 3305 66 1 / 12
30 3600 78 0 / 12
50 3600 93 0 / 12
80 3600 95 0 / 12

120 3600 95 0 / 12

Table IV has the same structure as Table III, but the set of
instances are grouped by the probability of precedence (D).
The instances with a higher value of precedence probability
take less time than the instances with a low value of D. More-
over, the higher quality solutions are obtained for the instances
with higher precedence probability. It happens because when
D takes a higher value, the model becomes more constrained
and with a smaller amount of feasible job orders and solution
space.

TABLE IV: Comparison between the instances by job precedence
probability

D time [s] gap [%] # optimum
0 2411 80 2 / 12

0.005 3005 80 2 / 12
0.01 3011 77 2 / 12
0.02 3006 76 2 / 12
0.1 3001 65 2 / 12
0.3 2705 50 3 / 12

C. Heuristic results

Firstly, the results of MS ILS-RVND heuristic are presented.
Secondly, the results of the ALNS-RVND heuristics are sum-
marised. Lastly, a comparison between the performance of the
heuristics is provided.

We will evaluate the quality of the solutions obtained by
the heuristic algorithms using the gap in percentage. The gap
is defined as in Equation (17). The reference objective is the
feasible solution provided by the exact model within the time
limit. The gap metric allows to identify if a given heuristic
solution is better than the exact solution, since it will be
negative if that is the case. This metric to evaluate heuristics
was inspired in [6].

gap =
objectiveheuristic − objectiveexact

objectiveexact
· 100 (17)

When the exact model does not find any feasible solution
within the time limit, the reference objective used is the Best
Know Objective (BKO) of this instance. All the experiments
are repeated for 5 different seeds, since the heuristic has
some random components, and then the average values are
calculated.

1) MS ILS-RVND heuristic
The parameters was tuned in a set of pre-experiments:

l = 1, IILS = n/2 and IR = 5. Table V summarises the
results grouped by number of jobs provided by the MS ILS-
RVND heuristic. This table contains the number of jobs (n),
the average minimum gap in percentage (gapmin [%]) and
the average time in seconds (time [s]). The MS ILS-RVND
heuristic provides better quality solutions than the exact model,
especially for the large instances. In all instances, excepted
when n = 10, the heuristic provides a negative average gap,
meaning that the solutions found is better than those provided
by the exact model.

TABLE V: Summary of the results provided by MS ILS-RVND
heuristic for the instances grouped by number of jobs

n gapmin [%] time [s]
10 1.743 0.205
20 -4.677 1.643
30 -18.908 6.294
50 -75.987 141.948
80 -80.275 675.981

120 -80.306 2601.468

When the number of jobs increases, the value of the
average gap decreases. In other words, the MS ILS-RVND
provides lower BKOs, which is great since the objective is of
minimisation, when the instances are large.

2) ALNS-RVND heuristic
Table VI summarises the results grouped by number of jobs

provided by the ALNS-RVND heuristic. This table has the
same structure as Table V. The parameters was tuned in a set
of pre-experiments: prob = 0.3, IALNS = 5 and λ = 0.55.

For instances n = 10, the ALNS-RVND heuristic reaches all
the optimal solutions, since the average minimum gap is equal
to 0%. The ALNS-RVND obtains on average a better solution,
for instances with n ∈ {20, 30, 50, 80, 120} because the
average minimum gap value is negative. The computational
times are also lower, when compared to the times taken by
the exact model. The higher the number of jobs, the lower
is the gap, meaning that when the instances are larger, BKOs
found by the heuristic is further from the objective found by
the exact method.

The ALNS-RVND heuristic is unable to the UPM-JSDST-
JF-PC scheduling problem in all instances with n = 10 since
it finds the optimal solutions in less computational time. For
the other instances, the solution found by the heuristic has, in
average, more quality than the exact method solution and is
obtained in less computational time.

TABLE VI: Summary of the results provided by ALNS-RVND
heuristic for the instances grouped by number of jobs

n gapmin [%] time [s]
10 0 1.415
20 -7.046 4.839
30 -20.124 11.639
50 -76.191 107.823
80 -79.652 274.753

120 -80.422 683.655

Similarly to the MS ILS-RVND heuristic, the ALNS-RVND
heuristic seems to provide a good compromise between the
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quality of the solution and the computational time and the ap-
plication of this heuristic to the JIT industries brings benefits,
since it can reach good solutions in reasonable computation
times.

3) Comparison between the MS ILS-RVND and ALNS-
RVND heuristics

A comparison between MS ILS-RVND and ALNS-RVND
heuristics is established in order to understand which heuristic
is more adequate to address the UPM-JSDST-JF-PC schedul-
ing problem.

Table VII summarises the results obtain by MS ILS-
RVND and ALNS-RVND heuristics, considering the instances
grouped by the number of jobs (n). The best average minimum
gap is highlighted in bold. The last row of the tables are the
global average of the metrics.

To solve instances with n = 10, the ALNS-RVND heuristic
obtains better quality solutions, that is, reaches always the
optimal solution. Therefore, to address these instances, we
suggest to use ALNS-RVND heuristic. However, to address
instances with n ∈ {20, 30, 50, 80, 120}, there is no
consensus about which heuristic should be chosen, since there
is no heuristic that is able to provide the best quality solution
in every instance tested.

The MS ILS-RVND heuristic takes a shorter computational
times for instances with n ∈ {10, 20, 30} and, the ALNS-
RVND heuristic takes a shorter computational times for in-
stances with n ∈ {50, 80, 120}. The ALNS-RVND heuristic
obtains lower values of the average minimum gap for instances
with n ∈ {10, 20, 30, 50, 120}. For instances with n = 80,
the MS ILS-RVND obtains a better average minimum gap.

TABLE VII: Comparison between the results provided by both
heuristic methods grouped by number of jobs, n

Instance MS ILS-RVND ALNS-RVND
n gapmin [%] time [s] gapmin [%] time [s]
10 1.743 0.205 0 1.415
20 -4.677 1.643 -7.046 4.839
30 -18.908 6.294 -20.124 11.639
50 -75.987 141.948 -76.191 107.823
80 -80.275 675.981 -79.652 274.753
120 -80.306 2601.468 -80.422 683.655

average -43.068 571.257 -43.906 180.687

Table VIII summarises the results obtained by MS ILS-
RVND and ALNS-RVND heuristics, considering the instances
grouped by the probability of precedence D. This table was
constructed in the same manner as Table VII. The ALNS-
RVND heuristic obtains better solutions for all the instances
than the MS ILS-RVND heuristic. The ALNS-RVND heuristic
takes less average computational times.

TABLE VIII: Comparison between the results provided by both
heuristic methods grouped by probability of precedence, D

Instance MS ILS-RVND ALNS-RVND
D gapmin [%] time [s] gapmin [%] time [s]
0 -44.667 981.310 -45.015 331.143

0.005 -39.696 1255.281 -41.122 272.395
0.01 -47.670 624.960 -49.522 175.380
0.02 -49.984 266.979 -50.360 91.992
0.1 -39.479 116.123 -40.715 96.938
0.3 -21.850 152.887 -22.093 116.275

Although it is difficult to choose between the two heuristics,
as shown in Table VII, the global average minimum gap and
the global average computational time of the MS ILS-RVND
is -43.068% and 571.257 seconds, respectively, whereas the
global average minimum gap and the global average compu-
tational time of the ALNS-RVND heuristic are -43.906% and
180.687 seconds, respectively.

The MS ILS-RVND and the ALNS-RVND heuristics are
both suited to address the UPM-JSDST-JF-PC scheduling
problem since, in general, both cause major improvements in
overall objective function when compared to the exact method.
Since the exact model did not obtain acceptable solutions in
a reasonable time, it is necessary to use heuristic algorithms
to obtain good quality solutions efficiently. However, it is not
possible to prefer one heuristic over the other, as there is no
one that finds the lowest cost solution for all instances.

It is difficult to suggest a single heuristic because each
production context is unique and needs to be studied according
with their specific characteristics. To make the best decisions,
production managers need to have the best solutions with
them in the shortest possible time, as both the quality of the
solution and the time to obtain it affect the efficiency of their
production. We suggest to the production manager of an JIT
factory to choose an heuristic approach, since the proposed
heuristics present better solutions when compared to the exact
model, especially when applied to large instances.

V. CONCLUSIONS AND FUTURE RESEARCH

The literature regarding JIT scheduling on parallel machines
is quite vast. However, not all scenarios are studied. In order to
study a new scenario of JIT scheduling on parallel machines,
a mathematical model is proposed. First, the UPM-JSDST-JF-
PC problem is modelled as MILP. The exact method can only
reach the optimal solution in reasonable computational times
for the smallest instances, which are instances with n = 10.

Then we adapt the MS ILS-RVND heuristic found in the
literature for similar problems and include the characteristics
of the UPM-JSDST-JF-PC problem. To develop a novel solu-
tion approach to the problem under study, the ANLS-RVND
is used to address it.

To assess the performance of the heuristic solutions, the
objectives found by the exact method was taken as reference
values. Both proposed heuristics can address the problem
under study, obtaining higher quality solutions than the exact
method in shorter computational times.

It is not possible to prefer one heuristic over the other,
since none of them can provide the best quality solution in
every instance tested. It is difficult to suggest a single heuristic
because each production context is unique and needs to be
studied according their specific characteristics.

As a future research line, we would like to study the UPM-
JSDST-JF-PC scheduling problem with different number of
jobs families, since in this dissertation the number of families
is considered to be equal to 20% of the number of jobs. In
an industrial context, there are many production lines with
job families, thus, evaluating the performance of the proposed
heuristics, considering different number of families, would
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be interesting to bring the model closer to some industries,
such as the chemical, metallurgical and textile industries.
Other line for the future research is to address the UPM-
JSDST-JF-PC scheduling but with the due date is a decision
variable. The due date would be considered common for
all jobs (d), so, it must be the same for all the jobs. The
proposal of research problem can be modelled as the problem
Rm | d, sjk, fmls, prec |

∑
j∈N (αjEj+βjTj). This problem

is not yet studied in the reviewed literature. The objective
function would be the same as the problem under study.
The main difference is that the due date is considered as
a decision value and takes a unique value for all jobs. The
possibility of due date negotiation is one interesting aspect of
JIT scheduling, thus, in some cases, the production manager
and his customer may negotiate about the due date of a
job and, in this case, the decision-maker needs to set up an
algorithm which returns a schedule and a preferable due date.
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