
Toward Tool-Independent Summaries for Symbolic
Execution

Frederico Duarte Ramos

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Pedro Miguel dos Santos Alves Madeira Adão
Prof. José Faustino Fragoso Femenin dos Santos

November 2021

Acknowledgments

First and foremost I must thank my dissertation supervisors Prof. Pedro Adão and Prof. José Santos

for their insight, support and sharing of knowledge that not only made this thesis possible, but also made

it an extremely fun project. I would also like to give a special thanks to my colleague Nuno Sabino for

his time, patience, and friendship that allowed me to build this thesis on top his previous work.

Last but not least, I must thank my friends and family for always being there for me, specially my

girlfriend Cristiana, without whom this project would not be possible.

i

Abstract

Symbolic execution is a program analysis technique that has been successfully used to find various

types of bugs in industrial codebases. Despite being extensively used in practice, this technique suffers

from two main limitations when applied to real-world code: path explosion and interactions with the

runtime environment. To address both of these problems, current symbolic execution engines make use

of symbolic summaries. These interact with the symbolic state of a given program so as to simulate the

behaviour of both external and internal functions without having to symbolically execute them. Symbolic

summaries can therefore be used to mitigate the number of paths explored and also allow for the analysis

of external calls. Despite their advantages, there is a clear lack of mechanisms for sharing symbolic

summaries across different tools and for their uniform validation.

In this thesis we introduce a methodology for implementing tool-independent symbolic summaries for

the C programming language. This methodology consists of an API containing a set of symbolic reflec-

tion primitives for explicit manipulation of C symbolic states. Symbolic summaries implemented using

our API can be shared across different symbolic execution tools, provided that these tools implement

the proposed API. Additionally, due to being written directly in C, these summaries can themselves be

symbolically executed as standard C code. Hence, we also introduce a summary validation tool that can

systematically evaluate the correctness of a symbolic summary with respect to its concrete reference

implementation.

Keywords

Symbolic Execution, Runtime Modelling, Symbolic Summaries, Summary Correctness

iii

Resumo

Execução Simbólica é uma técnica de análise de programas que tem sido aplicada com sucesso para

encontrar vários tipos de bugs em codebases industriais. Apesar de ser bastante utilizada na prática,

esta técnica sofre de duas limitações principais quando aplicada ao código de programas reais: exp-

losão de caminhos e interações com o ambiente. De forma a tratar ambos os problemas, os motores de

execução simbólica atuais fazem uso de sumários simbólicos. Estes interagem com o estado simbólico

de um determinado programa de forma a simular o comportamento de funções internas e externas

sem ter que executá-las simbolicamente. Os sumários simbólicos podem assim ser usados para mit-

igar o número de caminhos explorados e permitir a análise de chamadas externas. Apesar das suas

vantagens, há uma clara falta de mecanismos para compartilhar sumários simbólicos entre diferentes

ferramentas bem como para a sua validação uniforme.

Neste projeto apresentamos uma metodologia para implementar sumários, independentes de fer-

ramentas, para a linguagem de programação C. Esta metodologia consiste numa API que contém um

conjunto de primitivas de reflexão simbólica para manipulação explı́cita de estados simbólicos de C.

Os sumários simbólicos implementados utilizando nossa API podem ser compartilhados entre difer-

entes ferramentas de execução simbólica, assumindo que estas ferramentas implementam a API pro-

posta. Além disso, por serem escritos diretamente em C, estes sumários podem ser executados sim-

bolicamente como qualquer código C. Desta forma propomos também uma ferramenta de validação

de sumários que pode avaliar sistematicamente a correção de um sumário de acordo com a respetiva

implementação de referência.

Palavras Chave

Execução Simbólica, Modelação de Runtime, Sumários Simbólicos, Correção de Sumários

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem . 3

1.3 Goals . 5

1.4 Evaluation . 6

1.5 Contributions . 6

1.6 Thesis Outline . 7

2 Related Work 9

2.1 Symbolic Execution . 11

2.1.1 Classic Symbolic Execution - Example . 11

2.1.2 Limitations . 13

2.1.3 Advanced Symbolic Execution . 13

2.2 Function Summaries . 14

2.2.1 Symbolic Reflection . 15

2.2.2 Properties of Summaries . 16

2.3 libc support on Symbolic Execution Tools . 17

3 Symbolic Reflection API 23

3.1 Symbolic Reflection API . 25

3.2 Summary Families . 27

3.2.1 String Manipulation . 27

3.2.2 Parsing of Numbers . 29

3.2.3 Input/Output . 31

3.3 Supporting the Symbolic Reflection API . 32

3.3.1 Extending AVD . 33

3.3.2 Extending angr . 34

3.3.3 Modelling Symbolic Restrictions in C Code . 35

vii

4 Summary Correctness 37

4.1 Summary Properties . 39

4.1.1 Backward Soundness . 42

4.1.2 Forward Soundness . 42

4.1.3 Completeness . 43

4.1.4 Generalized Properties . 43

4.1.4.A Generalized Backward Soundness . 43

4.1.4.B Generalized Forward Soundness . 45

4.1.4.C Generalized Completeness . 46

4.2 Summary Validation Tool . 48

4.2.1 Examples . 49

4.2.1.A Function - strlen . 49

4.2.1.B Function - strcmp . 52

4.2.1.C Function - memcpy . 56

4.3 Supporting the Validation Tool . 57

4.3.1 Model Simplification . 59

5 Evaluation 61

5.1 Evaluation Questions . 63

5.2 EQ1: Time Performance of Tool Independent Summaries 63

5.2.1 CGC Data Set . 65

5.2.2 HashMap Library . 66

5.3 EQ2: Summary Correctness . 68

5.4 EQ3: Bugs in Symbolic Execution tools . 70

5.4.1 Bug in angr . 70

5.4.2 Bug in Manticore . 72

6 Conclusion 75

6.1 Conclusions . 77

6.2 Future Work . 77

Bibliography 84

A AppendixA 85

viii

List of Figures

2.1 Symbolic execution tree of the program in Listing 2.1 . 12

2.2 Symbolic execution of a concrete function versus a corresponding summary. 15

2.3 Example of Symbolic Reflection for eager evaluation . 16

2.4 Standard Correctness Properties . 17

3.1 AVD extended to support the Symbolic Reflection API. 33

3.2 Supporting the Symbolic Reflection API in angr. 35

3.3 Modelling symbolic restrictions in C code . 36

4.1 Backward Soundness . 42

4.2 Forward Soundness . 42

4.3 Completeness . 43

4.4 Generalized Backward Soundness . 44

4.5 Generalized Forward Soundness . 45

4.6 Generalized Completeness . 47

4.7 Summary Validation Tool . 48

4.8 Illustration of AVD computing a boolean formula Φ . 59

5.1 Overhead scatter plot for the GCG dataset. 66

5.2 Overhead scatter plot for the HashMap dataset. 68

5.3 Illustration of an if-then-else tree produced by Manticore’s strcmp summary. 72

ix

x

List of Tables

2.1 libc summaries implemented by C compatible symbolic execution tools 18

3.1 Symbolic Reflection API: General Functions . 26

3.2 Symbolic Reflection API: Operations with symbolic variables 26

3.3 Symbolic Reflection API: Operations with symbolic restrictions 27

3.4 String manipulation summaries . 28

3.5 Number parsing summaries . 30

3.6 Input/Output summaries . 31

5.1 Summarized results for the HashMap dataset . 69

5.2 Correctness properties of the implemented summaries . 70

5.3 Generalized correctness properties of the implemented summaries 71

xi

xii

List of Listings

2.1 Example of a test function for symbolic execution . 12

3.1 Implementation of summary strlen2 . 29

3.2 Implementation of summary strlen3 . 30

3.3 Shortened implementation of summary atoi2 . 31

3.4 Implementation of summary fgets1 . 32

3.5 Implementation of the primitive: summ is symbolic in AVD. 34

3.6 Implementation of the primitive: summ new sym var in angr’s driver program. 36

4.1 Implementation of summary strlen4 . 50

4.2 Implementation of summary strlen1 . 51

4.3 Summarized implementation of summary strcmp2 . 53

4.4 Implementation of summary memcpy2 . 58

5.1 test3-1 from the HashMap data set. 67

A.1 Complete implementation of summary atoi2 . 85

A.2 Complete implementation of summary strcmp2 . 86

xiii

xiv

Acronyms

CGC Cyber Grand Challenge

CTF Capture the Flag

CVE Common Vulnerabilities and Exposures

I/O Input/Output

PoV Proof of Vulnerability

SMT Satisfiability Modulo Theories

xv

xvi

1
Introduction

Contents

1.1 Motivation . 3

1.2 Problem . 3

1.3 Goals . 5

1.4 Evaluation . 6

1.5 Contributions . 6

1.6 Thesis Outline . 7

1

2

1.1 Motivation

The complexity of modern software systems renders the process of bug-finding extremely hard, espe-

cially when done manually. This leaves room for undetected security vulnerabilities in production code,

which can then be exploited by malicious users and have serious consequences for both organizations

and individuals. For instance, the Heartbleed bug [1,2], present in version 1.0.1 of the OpenSSL crypto-

graphic library, allowed for the leakage of sensitive information protected by SSL/TLS encryption, which

is used to secure most types of Internet traffic.

Symbolic execution [3, 4] is a program analysis technique that allows for the exploration of all the

execution paths of the given program up to a bound by executing that program with symbolic values

instead of concrete ones. For each execution path, the symbolic execution engine builds a first order

formula, called path condition, which accumulates the constraints on the symbolic inputs that cause

the execution to take that path. Symbolic execution engines rely on an underlying Satisfiability Modulo

Theories (SMT) solver both to check the feasibility of execution paths as well as to check the validity of

the assertions supplied by the developer.

Symbolic execution has been successfully used to find a wide variety of bugs and security vulnerabil-

ities in large industrial codebases. For instance, KLEE [5] found various fatal bugs in GNU COREUTILS

(version 6.10) and a large number of critical bugs in other software systems, such as BUSYBOX [6]

and MINIX [7]; SAGE [8] found many vulnerabilities in Windows patches and applications, such as

MS07-017 patch and Office 2007; SLAM [9] found many bugs in Windows Device Drivers; and Java

PathFinder [10], developed by NASA, was used to test the Orion Spacecraft’s control software.

1.2 Problem

Despite being extensively used in practice, symbolic execution suffers from two main limitations when

applied to real-world code: interactions with the runtime environment and path explosion.

Most real-wold programs interact with their runtime environment via complex heterogeneous applica-

tion programming interfaces (APIs), whose source code is often not available for static analysis. These

interactions, which include operations involving the network, the operating system, the file system, and

system devices, may have a considerable effect on the execution of the program at hand and there-

fore must be taken into account by symbolic execution engines. Nevertheless, the symbolic analysis of

such interactions is not straightforward as they often step outside the perimeter of the programming lan-

guage being analysed. For instance, system calls cannot be directly symbolically executed since their

implementation is not part of the program being analysed, belonging instead to the underlying operating

system. The standard approach to support such interactions is to create summaries of the external run-

time functions called by the program to be analysed. These symbolic summaries constrain the symbolic

3

state of the given program so as to simulate the behaviour of the external functions without having to

symbolically execute them.

Let us now consider the path explosion problem. All but the smallest programs have an unmanage-

able number of possible execution paths, which is exponential in the number of executed conditional

instructions. For this reason, a naive symbolic execution engine that attempts to explore all possible

paths will never scale to real-world programs. The standard approach to deal with the path explosion

problem is to use sophisticated merging algorithms to combine multiple symbolic execution paths into a

single path [11], abstracting away the differences between the merged paths. Nevertheless, such gen-

eral algorithms can be too coarse, forgetting details that would be useful for detecting specific bugs/vul-

nerabilities, since the optimal merging strategy is oftentimes dependent on the type of bug/vulnerability

that one is searching for.

Alternatively, one can leverage symbolic summaries to contain the number of paths explored during

symbolic execution. The idea is that instead of symbolically executing the code of a given concrete

function on some symbolic inputs, one can choose to implement a symbolic summary that models the

behaviour of that function, and then execute the summary instead of the concrete function. Symbolic

summaries have two main advantages with respect to concrete implementations. First, they allow de-

velopers to choose which execution paths are to be explored by the symbolic execution engine, steering

the execution towards the paths that may potentially lead to bugs/vulnerabilities. Second, they allow de-

velopers to merge different symbolic execution paths into the same one by explicitly interacting with the

current symbolic state (e.g., extending the current path condition and creating new symbolic variables).

Hence, symbolic summaries provide an effective merging mechanism, allowing developers to deal with

the path explosion problem in an application-specific way.

In general, symbolic summaries can only approximate the behaviour of their corresponding concrete

functions. This means that, as a general rule, the symbolic paths captured by a symbolic summary

do not exactly coincide with those that would have been generated by the symbolic execution of its

corresponding function. When it comes to correctness guarantees, we distinguish two main categories

of symbolic summaries: backward sound [12] and forward sound [13]. We say that a symbolic summary

is backward sound if all the execution paths modelled by the summary are contained in the set of

concrete paths of its corresponding function. In other words, a backward sound symbolic summary

guarantees that all of its generated paths correspond to concrete paths. Conversely, we say that a

symbolic summary is forward sound if it models all the concrete paths of its corresponding function; that

is, a forward sound symbolic summary must take into account all possible concrete paths, even if that

means also including wrong paths. It is often the case that one cannot be at the same time backward and

forward sound. The type of property to be aimed at depends on how the summary is going to be used.

For instance, security applications often require forward soundness in order to guarantee the absence

4

of security vulnerabilities, while debugging tools often choose to be backward sound, only reporting the

bugs that are guaranteed to exist.

Currently each symbolic execution tool implements its own symbolic summaries in the programming

language used to build the tool. For instance, angr ’s summaries are implemented in Python, KLEE ’s

summaries are implemented in C, and BINSEC’s summaries are implemented in OCaml, even though all

these tools target C code. Furthermore, symbolic summaries often rely on specific aspects of the tools

for which they are implemented. In particular, they interact with the symbolic states of the programs

being analysed through the APIs provided by each tool. Hence, it is not only extremely difficult to

share symbolic summaries between symbolic execution tools, but also to check whether or not the

implemented summaries satisfy the properties that their authors intended them to. Surprisingly, although

there is a clear lack of appropriate tool support for developing and sharing symbolic summaries across

different symbolic execution tools, the research community has not yet given much attention to this topic.

1.3 Goals

In this thesis we introduce a methodology for implementing tool-independent symbolic summaries for the

C programming language. At the core of the proposed methodology is a new API consisting of a set of

symbolic reflection primitives [14] for explicit manipulation of C symbolic states in a tool-independent way.

Our symbolic primitives include a variety of instructions for: creating symbolic variables and first-order

constraints, checking the satisfiability of constraints, and extending the current path condition or symbolic

state with a given constraint. Symbolic summaries implemented using our API can be shared across

different symbolic execution tools, provided that these tools implement the proposed API. To illustrate the

applicability of our methodology, we extended the symbolic execution tools angr [15] and AVD [16] with

support for the proposed API and developed tool-independent symbolic summaries for three classes of

libc functions: string manipulation functions, number-parsing functions, and input/output functions.

Given that our symbolic summaries are directly implemented in C, they can themselves be symboli-

cally executed as standard C code. By comparing the execution paths generated by the symbolic execu-

tion of a summary against those generated by its corresponding function, we can determine whether or

not the summary satisfies the soundness properties discussed above. If a summary is backward sound,

its execution paths must be included in those of its corresponding function. Conversely, if a summary is

forward sound, its execution paths must include those of the corresponding concrete function.

In this thesis, we extended AVD with an infrastructure for automatically checking whether or not a

given summary satisfies backward/forward soundness by comparing its execution paths against those

of its corresponding function. In a nutshell, our validation tool receives as input a symbolic summary,

its corresponding function, and a set of symbolic inputs, checking whether or not the paths generated

5

by the summary when executed on those inputs are contained in the paths generated by its concrete

implementation and vice-versa. Importantly, our validation tool does not provide a verification guarantee

with respect to the backward/forward soundness of the given summary; it simply tries to find counterex-

amples for both properties. It is the job of the developer to provide sufficiently many symbolic inputs to

make sure that results are trustworthy/generalizable.

1.4 Evaluation

In order to assess if our symbolic reflection API is expressive enough to allow for the development

of useful symbolic summaries, we implement a set of summaries modelling 20 different libc functions

and use our validation tool to check their soundness. Additionally, we evaluate the performance of the

summaries implemented using our proposed API. To this end, we implement a subset of the native

libc summaries originally included in AVD directly in C and compare their relative performances on two

distinct data sets.

In order to evaluate the effectiveness and scalability of our summary validation tool, we use it to

test symbolic summaries included in real-world symbolic execution tools so as to find soundness bugs

inadvertently introduced by tool developers. To this end, using our symbolic reflection API, we implement

a subset of the libc summaries included in the symbolic execution tools angr and Manticore [17] and

use our summary validation tool to check if the obtained summaries satisfy either backward or forward

soundness. Out of a total of 14 analysed summaries, we found two buggy summaries, one in angr and

one in Manticore. Both summaries include spurious paths and exclude correct paths, meaning that they

are neither backward nor forward sound.

1.5 Contributions

This thesis focus on the development and porting of symbolic summaries across different symbolic

execution tools, making the following contributions:

• An API for the development of reusable summaries for C;

• Library of summaries modelling 20 libc functions, each function with several summaries satisfying

different correctness properties;

• Extension of the state-of-the-art symbolic execution tools angr and AVD with support for the sym-

bolic reflection API;

• Auxiliary tool for automatic summary validation and debugging;

6

• Experimental evaluation of the performance of platform-independent summaries on both an exter-

nal dataset of binaries and an HashMap data structure;

• Experimental evaluation of the summary validation tool with external summaries implemented by

symbolic execution tools.

1.6 Thesis Outline

The remaining of this document is organized as follows: in Chapter 2 we cover the symbolic execution

technique and the common approaches used to mitigate its core limitations, with special focus on sym-

bolic summaries, and how they are used by state-of-the-art symbolic execution tools. Chapter 3 presents

our symbolic reflection API for implementing tool independent summaries and how it is supported in the

symbolic execution tools AVD and angr. In Chapter 4 we go over our proposed correctness properties

for evaluating symbolic summaries and how we implemented the summary validation tool to systemati-

cally check these properties. Chapter 5 covers the evaluation results for all the elements of our solution

(symbolic summaries and summary validation tool). Finally, Chapter 6 concludes this document with a

final overview of our contributions and possible future work.

7

8

2
Related Work

Contents

2.1 Symbolic Execution . 11

2.2 Function Summaries . 14

2.3 libc support on Symbolic Execution Tools . 17

9

10

In this section we start by going over the symbolic execution technique, discussing its core limita-

tions and common optimization strategies employed by symbolic execution tools (Section 2.1). Then,

we cover the concept of function modelling and explain how different types of summaries can be imple-

mented to improve the scope and scalability of symbolic execution (Section 2.2). Finally, we conduct a

survey to analyse how modern symbolic execution tools utilize summaries to support and model the libc

(Section 2.3).

2.1 Symbolic Execution

Modern software testing relies on automatic detection tools that, given a program, can autonomously

detect bugs and vulnerabilities with minimal user input. Many of these tools are based on Symbolic

Execution [11] to allow for going through and analysing all the possible execution paths of a program.

This software analysis technique, explores multiple execution paths in a program by abstracting concrete

inputs with symbols, consequently allowing to express execution paths in terms of constraint formulas

over symbolic inputs, called path conditions. Essentially, path conditions accumulate the constraints on

the symbolic inputs that cause the execution to take a given path.

2.1.1 Classic Symbolic Execution - Example

Consider the function test in Listing 2.1, a function with only 3 execution paths, where a bug is repre-

sented by a failed assertion in line 7. Even in this very simple case, it is not immediately obvious what

combination of arguments x and y will cause the execution to reach the bug (e.g., {x = 1, y = 4}). We

can see that vulnerability detection quickly becomes a very difficult problem as the software complexity

increases, specially considering that in most real cases, the faulty line is not known beforehand.

Figure 2.1 shows the execution tree, produced by symbolically executing the example of Listing 2.1.

The symbolic execution engine maintains for each node in the tree a memory store that maps variables

to their concrete or symbolic values, and the current path condition. The execution starts with a single

node containing x and y as symbolic inputs variables, and the path condition is initialized as True. For

every step the memory store is updated according to the declarations of new variables and operations

between them. The path conditions are updated every time the execution may branch with the formula

that forces the execution to take the corresponding branch. At the end of each execution path, the SMT

solver can be used to check whether the path is realizable, and what assignment of concrete values to

the symbolic arguments satisfies that path’s formula.

11

1 void test(int x, int y){

2 i = 2 * x;

3 if(y > i){

4 if(x < y - 2){

5 assert(0 == 1); /*ERROR (Assert Fail)*/

6 }

7 }

8 }

9 int main(){

10 x = symbolic_var();

11 y = symbolic_var();

12 test(x,y);

13 return 0;

14 }

Listing 2.1: Example of a test function for symbolic execution

Mem:
Path Cond.:

Mem:
Path Cond.:

Mem:
Path Cond.:

Mem:
Path Cond.:

e.g.:

False True

False

e.g.:

True

e.g.:
Assert Fail

.

Figure 2.1: Symbolic execution tree of the program in Listing 2.1

12

2.1.2 Limitations

In recent year, we have seen a great many number of new applications of symbolic execution appearing

due to significant advances in constraint solving, which is still one of the technique’s main bottlenecks.

A constraint solver is needed to reason about the execution paths expressed as logical formulas, and

to generate models for those formulas. These interactions can be reduced to the boolean satisfiability

problem (SAT) which naturally is an NP-complete problem. Despite that, modern SMT solvers like

Z3 [18] and CVC4 [19] have pushed the boundaries for what can be attainable in practical applications.

Another major hindrance to symbolic execution is the path explosion problem. When performing

pure symbolic execution on a target program, such as the example of Figure 2.1, a symbolic engine’s

executor will fork and create a symbolic state at each conditional statement. We can see that for real

programs this can exponentially add up to an enormous number of paths, or even an infinite number of

paths when considering loops that branch on symbolic values. For this reason, the standard approach

to deal with the path explosion problem is to use sophisticated merging algorithms to combine multiple

symbolic execution paths into a single path [11], abstracting away the differences between the merged

paths.

Finally, one other key limitation of symbolic execution is the modelling of the runtime environment.

Real world code is not self-contained as it interacts with its execution environment via runtime libraries

and system calls. This can be an issue not only because the external code may not be available for

symbolic execution, such as code dependencies and frameworks, but also because execution can reach

elements that are outside the scope of the symbolic engine. Programs frequently interact with system

components, for example, the file system, environment variables, devices, or external elements such as

the network. Ignoring these interactions altogether, or even executing external calls concretely, can lead

to a loss of relevant execution paths.

2.1.3 Advanced Symbolic Execution

Modern symbolic execution techniques use a variety of dynamic approaches to support the analysis of

larger scale programs. For example Concolic Testing [20] mixes concrete and symbolic execution, using

an initial concrete input and collecting the symbolic constraints along the execution path generated by

that input. At the end of the execution the SMT solver is used to compute a new input, guiding a new

execution towards a different path. Heuristics like DFS, BFS, random search, etc, can also be used

to direct path exploration, or even static control-flow graphs (CFG) that allow guiding the exploration

towards paths with specific properties [21]. A common technique is to try passing the complexity of

reducing the search space to the constraint solver, e.g., AEG [22] proposed by Avgerinos et al uses

preconditioned symbolic execution, a technique that prunes execution paths that do not satisfy a certain

13

precondition. Most tools concerned with supporting the runtime interactions, implement some variation

of symbolic summaries to abstract library code and system calls [15, 16, 23], while some tools even try

to model parts of the execution environment, for instance KLEE employs a symbolic file system to allow

reading and writing from files during an analysis [5]. AEG in addition to the file system, also tries to

model most of the elements that can be used as user input such as sockets and environment variables.

Furthermore, some tools like S2E go one step further and use virtualization to let target programs

interact with “real” environments during an analysis [24].

2.2 Function Summaries

In the context of symbolic execution, there are various strategies for modelling runtime functions and

system calls. A naive approach is to simply add concrete implementations of the runtime functions to be

supported by the program to be analysed. We refer to such concrete implementations as concrete mod-

els. Concrete models have two main drawbacks: first they promote path explosion by introducing extra

code that must be executed symbolically, for example the strlen function will create a new execution path

for each character of a symbolic string. Second, most of the interactions with the runtime environment

cannot be captured by the programming language. In the case of system calls, execution will reach

elements that are not under control of the symbolic execution engine. For instance, fgets interacts with

the kernel to read from the stdin.

Given the limitations of concrete models, the standard approach to model the behaviour of runtime

functions and system calls is to use symbolic summaries [11]. A symbolic summary is a model of a

function that simulates its behaviour by interacting directly with a symbolic state and the underlying

symbolic engine. Symbolic summaries are therefore an excellent device to scale symbolic execution

for larger programs, reducing the time spent during the symbolic execution itself, as well as pruning

the search space by capturing the outcome paths of a function call in a reduced number of branches

compared to a concrete model. Summaries can achieve this by updating the path condition of a symbolic

state with the constraints representing the new states that would have been created by a concrete

function. Furthermore, with symbolic summaries, one can analyse even the system/runtime calls that

cannot be modelled using concrete implementations by simply executing their corresponding summaries

with the supplied arguments. Figure 2.2 illustrates the difference between the symbolic execution of a

concrete implementation and a symbolic summary for libc’s strlen function, considering an input string

with N symbolic characters.

There are two main approaches for implementing symbolic summaries. The most common approach

consists of implementing symbolic summaries in the programming language used to build the symbolic

execution tool itself that can directly access and manipulate the symbolic state. For example angr [15]

14

and KLEE [5] both implement symbolic summaries in their respective native programming languages

as part of the tools themselves. Alternatively some symbolic execution tools implement symbolic sum-

maries in the assembly language used for intermediate representation of the target program, for example

BINSEC [25] uses OCaml to generate assembly code comprising a symbolic summary, which is then

injected in the addresses of external function calls.

int main(){

int len = strlen(s);

char[] s = symbolic;

size_t strlen(char *s){

const char *p = s;

while(*s) ++s;

return s - p; }if(len > 10){

... N new branches

int main(){

int len = summ_strlen(s);

char[] s = symbolic;

if(len > 10){

...

Update Path Conditions

Create
new branchConcrete Function

Symbolic Summary

Figure 2.2: Symbolic execution of a concrete function versus a corresponding summary.

2.2.1 Symbolic Reflection

In the context of symbolic execution, symbolic reflection is a mechanism that can be applied by a sym-

bolic engine to infer runtime properties of the symbolic state during an analysis. For example, as illus-

trated in Figure 2.3, symbolic reflection can be used at a conditional statement to determine if a certain

branch is feasible according to the preceding path conditions. Checking branch satisfiability at each con-

ditional statement is a state pruning technique called eager evaluation that can be employed to optimize

15

symbolic execution [11]. Symbolic reflection is not only useful for implementing dynamic approaches to

help scale symbolic execution, but it is also very convenient for developing symbolic summaries, as it

allows to model the behaviour of a summary according to the specific symbolic runtime properties of its

input arguments in a given symbolic state.

int main(){

if (x > 10){

...

SMT Solver

//Inside if

Satisfiable?

Target Program

} // Outside if

True
new branch

int x = symbolic;

Figure 2.3: Example of Symbolic Reflection for eager evaluation

2.2.2 Properties of Summaries

Due to the limitations we have covered in section 2.1.2, usually symbolic execution can only approximate

the behaviour of real-world code. This means that when considering larger scale programs, specially

those that interact with their runtime environment, as a general rule it is impossible to guarantee that

symbolic execution covers all and only the correct execution paths. For example when analysing a

program with possible infinite execution paths due a symbolic loop (e.g., while(n) where n is symbolic),

a symbolic execution tool may resolve this by unravelling the loop to a concrete number of iterations,

thus potentially losing important paths. On the other hand when considering a program that reads from

an external file, a tool may model this interaction by creating symbolic bytes to simulate all the “read”

data, possibly leading to invalid execution paths.

The correctness of an analysis is often evaluated according to the properties of Backward and For-

ward Soundness [12, 13]. A backward sound analysis guarantees that all generated paths are correct

with respect to the concrete execution. Conversely, in a forward sound analysis all the possible execu-

tion paths are taken into account, even if that means covering wrong paths. Figures 2.4(a) and 2.4(b)

illustrate the properties of Backward and Forward Soundness respectively. As a device that intrinsi-

16

cally affects the correctness of an analysis, these properties can also be directly applied to symbolic

summaries.

It is often the case that one has to sacrifice backward soundness (precision) for forward soundness

and vice-versa. The type of property to be achieved depends on how the summary is going to be used.

For instance, security analyses often require sound summaries: if symbolic execution says that there

is no security bug, then there is no security bug. In contrast, debugging/testing tools require precise

summaries given that developers do not want to waste their time fixing bugs that do not exist: if symbolic

execution says that there is a bug, then the bug must exist. Unfortunately, in general, it is not possible to

have both.

Start

FinishSymbolic

Concrete

(a) Backward Soundness

Start

Finish

Symbolic

Concrete

(b) Forward Soundness

Figure 2.4: Standard Correctness Properties

2.3 libc support on Symbolic Execution Tools

In order to understand how current symbolic execution tools for C make use of symbolic summaries,

we analyse how such tools model interactions with libc. More concretely, we survey 12 C compatible

symbolic execution tools, checking for each tool the number of libc summaries that it implements. Results

are shown in Table 2.1, which divides the libc summaries into 7 categories: string manipulation functions,

Input/Output (I/O) functions, file handling functions, memory functions, process management functions,

socket functions, and other system calls. Below we give a small description of each tool, focusing on

their support for libc summaries.

angr angr [15] is a multi-architecture binary analysis toolkit, developed by researchers of the Computer

Security Lab at UC Santa Barbara and SEFCOM1 at Arizona State University, with the ability to perform

1Laboratory of Security Engineering for Future Computing

17

Table 2.1: libc summaries implemented by C compatible symbolic execution tools

angr AVD BE-PUM BINSEC Kite KLEE Manticore Mayhem Otter pysymemu S2E Triton
Implementation
Language Python Python - OCaml - C Python ? C Python C++ -

String
Manipulation 19 13 0 5 0 16 5 ? 0 0 6 0

Input/Output 12 7 0 1 0 2 2 ? 3 1 1 0

File
Handling 33 4 0 7 0 7 28 ? 29 10 1 0

Memory 7 7 0 6 0 8 15 ? 18 1 2 0

Process
Management 7 1 0 0 0 2 5 ? 3 7 0 0

Sockets 9 0 0 0 0 1 11 ? 8 2 0 0

Other
System Calls 18 4 0 1 0 0 22 ? 24 10 0 0

Total 105 36 0 20 0 36 88 ≥30 85 31 10 0

dynamic symbolic execution, and various static analyses on binaries. angr is written in Python and

uses VEX [26] as its intermediate representation, supporting various architectures such as x86, x86-

64, ARM, MIPS, etc, among many other binaries. To improve the time performance and support for

system calls, angr implements SimProcedures, a dedicated library of function summaries, modelling

the behaviour of the most common library functions, including the libc. angr is the most comprehensive

symbolic execution tool analysed regarding the number of libc functions modelled, implementing a total

of 105 libc SimProcedures for different categories. The developers intend to extend the SimProcedures’

list even more for future work. angr was used as the backbone of Team Shellphish’s Cyber Reasoning

System for the DARPA2 Cyber Grand Challenge (CGC), enabling them to win third place in the final

round [27].

AVD AVD or Automatic Vulnerability Detection [16] is a symbolic execution tool developed at IST for

x86/x64 binary. AVD is written in Python and uses BAP [28] for intermediate representation, lifting the

binary into an ADT format. The lifted instructions are parsed using a visitor, effectively creating an

interpreter for the intermediate language. Symbolic execution is performed using standard DFS search,

that can be guided to prioritize paths using an additional heuristic responsible for dynamically directing

the symbolic execution along a previously computed execution trace e.g., a known trace that triggers a

bug. To further improve scalability and support external calls, AVD also implements symbolic summaries

for 36 libc functions, including common system calls.

BE-PUM BE-PUM or Binary Emulation for Pushdown Model [29] is a binary analysis tool with the main

2Defense Advanced Research Projects Agency

18

focus on generating Control Flow Graphs of malware. BE-PUM disassembles x86 binary code handling

common obfuscation techniques such as indirect jump, self-modification, overlapping instructions, and

structured exception handler, using concolic execution to generate a model of the binary code. BE-PUM

does not support any type of external function call, and has mostly been used for research on malware

analysis, in particular for malware model generation [29–31].

BINSEC BINSEC [25] is a binary analysis tool developed by the BINSEC project. This tool is built

based on an extension of the DBA (Dynamic Bit-vector Automata) intermediate representation [32],

currently supporting only x86-32/ELF. From the intermediate representation BINSEC generates Control

Flow Graphs of the executable to be analysed through four different solutions: recursive disassembly,

linear disassembly, a combination of both recursive and linear disassembly, and symbolic execution.

External functions are supported by stubs; a block of DBA instructions generated in OCaml is injected

at an address of a function call whose code is not available. These stubs work as function summaries

modelling the behaviour of external calls, totalling 24 libc stubs. This tool is responsible for a series of

accolades, the most recent ones were the discovery of 30 new bugs in 6 widely used programs (GPAC,

GNU Patch, Perl 5, MuPDF, Boolector, fontforge), 7 of which would lead to new CVEs [33], and the

analysis of 338 cryptographic primitives (from e.g HACL*, OpenSSL, BearSSL and NaCL) finding 3 new

binary-level timing-attack vulnerabilities [34].

Kite Kite [35] is a symbolic execution tool built on LLVM, developed as a proof of concept for Conflict-

Driven Symbolic Execution (CDSE). CDSE tries to address the path explosion problem during symbolic

execution by reducing the search space with the following key insight: if a combination of path conditions

makes a specific branch impossible, i.e., raises a conflict, that conflict can be stored in order to prune

other execution branches also leading to that conflict. Fruit of being a proof of concept for a novelty

technique Kite does not support external function calls.

KLEE KLEE [5] is a dynamic symbolic execution engine built on LLVM, that can be used for auto-

matic test generation and bug finding even on programs that interact frequently with their execution

environment. This tool functions as an “operating system for symbolic processes” [5], with each sym-

bolic process having its own symbolic state and path conditions. KLEE dynamically guides the symbolic

execution by combining two heuristics: Random Search that randomly selects an execution path, and

Coverage-Optimized Search which tries to maximize code coverage. To support calls to external func-

tions, KLEE provides a set of runtime libraries to simulate the Linux environment, offering summaries for

36 libc functions. In order to resolve system calls that are not modelled natively, KLEE concretizes their

arguments and forwards these calls to the real operating system. Additionally, the code for undefined

functions can also be provided by the user by linking external libraries. However, in this case, external

calls can also be at most executed with concrete arguments. KLEE is one of the most popular state-

19

of-the-art symbolic execution tools, with extensive use from both Industry and Academia, counting over

1700 citations of its introducing paper [5], and responsible for finding a large number of critical bugs in

various software systems.

Manticore Manticore [17] is a symbolic execution tool developed by the cybersecurity research firm

Trail of Bits, that can be employed for bug finding and input generation on binaries and smart con-

tracts. This tool aims to support a wide variety of environments while minimizing external dependencies.

Currently, Manticore’s supports the analysis of ELF binaries (x86, x86 64, aarch64, and ARMv7), We-

bassembly modules (Wasm) and Ethereum smart contracts (EVM bytecode). To allow for the tool’s

flexibility, Manticore’s authors implement a generic symbolic execution engine that operates over sym-

bolic states whilst making few assumptions over the specific program being analysed. Manticore also

includes support for the Linux environment modelling a total of 84 system calls. However, in the vast

majority of these models, symbolic arguments passed to the system calls are concretized as the au-

thors consider these interactions unreasonable to modelled symbolically [17]. Despite this, the authors

intend to expand the list of supported system calls even further. Additionally, Manticore also includes 5

symbolic summaries modelling 4 standard libc functions: strlen, strcmp, strcpy and strncpy. This tool

was used as the foundation of Trail of Bits’s Cyber Reasoning System for the CGC, allowing the team to

place nineth in qualifying round [36].

Mayhem Mayhem [23] is a closed source binary analysis tool, that combines guided fuzzing with

symbolic execution for bug finding, generating control flow hijack exploits for every bug found. May-

hem is built on the BAP intermediate representation [28], supporting x86 64, x86, and ARM binary.

This tool uses an hybrid approach to symbolic execution, combining both concolic and forward (classic)

symbolic execution to maximize the effectiveness of each technique. The execution starts in forward

mode, switching to concolic when a memory limit is reached. In concolic mode execution no longer

branches at conditional statements, instead checkpoints are created that can later be used to resume

the forward execution. Mayhem also uses dynamic taint analysis to help detect which paths depend

on tainted values, e.g. paths where a jump instruction is tainted. According to [23], Mayhem models

30 Linux system calls, however due to being closed source, no more information was found about the

specific functions that it models and the technique used to implement them. Mayhem has found many

vulnerabilities in recent years, being responsible for 5 new CVEs in 2020, which were found on 4 differ-

ent systems/libraries: OpenWRT RCE (CVE-2020-7982) [37], cereal (CVE-2020-11104 [38] and CVE-

2020-11105) [39], MP3Gain (CVE-2020-15359) [40], and the GNU C Library (CVE-2020-10029) [41].

Otter Otter [42] is a symbolic execution tool originally developed to study how configuration options

affect the behaviour of a program in practice. This research showed that the actual number of possible

20

configurations is much smaller than its corresponding mathematical upper bound (which is typically

exponential in the number of parameters). Originally Otter was implemented as a simplified version of

KLEE and did not support any type of external calls or function modelling. Otter was latter extended

with two new symbolic execution techniques [43]: shortest-distance symbolic execution (SDSE) and

call-chain-backward symbolic execution (CCBSE). SDSE is a strategy that computes the shortest path

from the start of a program to a specific line of code, using an inter-procedural control-flow graph. On the

other hand, CCBSE starts at a line of code and symbolically executes the program backwards, trying

to find a feasible path from the beginning of the program that reaches that specific line. Additionally,

Otter also received libc support through the use of newlib (a C library implementation intended for use

on embedded systems) and “a partial model of POSIX system calls” [43] with support for 85 different

functions.

pysymemu pysymemu [44] is a symbolic execution tool for x86/amd64 used to generate inputs for code

coverage. This tool’s goal is to be plug-and-play, with simple usage, and using only 3 dependencies:

Capstone [45] for binary lifting, pyelftool [46] to parse ELF files, and z3 as the SMT solver. Even though

it tries to be as simple as possible, this tool still partially simulates the Linux environment, modelling 31

POSIX system calls.

S2E S2E [24, 47] is a binary analysis tool for x86, x86-64, or ARM, that uses symbolic execution to

analyse the properties and behaviour of software systems. S2E is able to scale to large systems by using

two key techniques: selective symbolic execution, a strategy that minimizes the amount of symbolically

executed code during an analysis by automatically switching between symbolic and concrete execution,

and execution consistency models, S2E offers 6 consistency models that specify the accuracy of the

analysis in terms of over/under-approximation of paths generated by the symbolic execution. This tool

also represents parts of the environment in a virtual machine state that interacts with both the symbolic

and concrete executions. This allows S2E to support system calls without having to effectively execute

them. Additionally, to minimize path explosion, S2E offers a plugin containing models for common

library functions with summaries for 10 standard C library functions. This tool has been used by security

researchers across the world and is responsible for finding 6 new CVEs from 2015 to 2017 [48–53].

Triton Triton [54] is a dynamic binary analysis (DBA) framework developed by two MSc students at

Bordeaux University and sponsored by the software security company Quarkslab [55]. Triton supports

x86, x86-64, ARM32 and AArch64 architectures by converting them to a common AST format. This

framework combines its concolic execution engine with a taint analysis module in a hybrid way, allowing

the symbolic execution to be guided by the taint analysis and vice-versa. Triton uses uClibc [56], a small

C library implementation intended for use on embedded systems for concrete calls, not supporting any

type of function modelling, although it is a feature intended for future work.

21

Summary From this analysis, we can conclude that only three tools, angr, Manticore and Otter, take

significant advantage of the scalability offered by symbolic summaries, implementing an already exten-

sive list of summaries for modelling both standard library functions and system calls. The other tools

that implement summaries are mostly focused on modelling very common libc functions (e.g., strlen), or

supporting basic environment interactions through the most used system calls (e.g., read /write), mostly

without much concern about the correctness of the models, but rather focusing on having a simple

working environment. Despite this, almost all the teams in charge of developing the analysed symbolic

execution tools intend to expand their support for libc functions by implementing appropriate models.

This is, in general, a hard task that requires understanding the specific internals of each symbolic exe-

cution tool. angr is the only tool that comes with an infrastructure for users to write and use their own

summaries, albeit with a lot of extra work. Our goal is to render the task of writing new symbolic sum-

maries significantly easier, while at the same time streamlining summary re-use across different tools

and summary validation.

22

3
Symbolic Reflection API

Contents

3.1 Symbolic Reflection API . 25

3.2 Summary Families . 27

3.3 Supporting the Symbolic Reflection API . 32

23

24

Symbolic summaries are an effective technique for improving the scalability of symbolic execution

tools. The key idea is that instead of symbolically executing the concrete code of a given library func-

tion, which can lead to an intractable amount of branching, one executes a symbolic summary instead.

Symbolic summaries model the behaviour of their original concrete functions while, at the same time,

minimizing the amount of branching. Traditionally, symbolic summaries have been implemented in the

programming language of the tool that is using them. For instance, the symbolic summaries of angr

are implemented in Python as angr is itself implemented in Python. In order to allow for the reuse of

symbolic summaries between different symbolic execution tools, we propose that symbolic summaries

be implemented in the analysed language, in our case C. To this end, we introduce a symbolic reflec-

tion API consisting of a set of symbolic reflection primitives, which can be used to implement symbolic

summaries and which symbolic execution tools need to implement natively in order to execute those

summaries. Hence, instead of interpreting these primitives as standard code, symbolic execution tools

must have for each primitive an internal algorithm that implements the primitive’s expected behaviour

by interacting with the current symbolic state. Extending the targeted tools with support for the required

API is substantially simpler than designing and implementing the symbolic summaries from scratch. In

fact, most of the existing symbolic execution tools for C already provide some of the functions required

by our API, albeit with different names.

In this chapter we start by introducing our API for developing symbolic summaries (Section 3.1).

Then, we illustrate how the proposed API can be used to develop symbolic summaries for three classes

of libc functions (Section 3.2): string manipulation functions, number-parsing functions, and input/output

functions. Finally, we describe how we extended the AVD and the angr symbolic execution tools for them

to support the proposed API.

3.1 Symbolic Reflection API

This section introduces our symbolic reflection API. We organize the functions of the API into 3 cate-

gories: General Functions, Operations with symbolic variables, and Operations with restrictions. Re-

garding the functions for manipulation of symbolic variables, our symbolic reflection API assumes that

symbolic values are internally modelled as bit vectors. This is not an unreasonable assumption since

most symbolic execution tools for C represent symbolic values as bit vectors, regardless of the value type

(integers, chars, etc. are all modelled as bit vectors). Below we describe the functions corresponding to

each of the three categories.

General Functions The primitives in this category provide the functionality required to interact with the

symbolic execution engine (Table 3.1). These primitives represent the core behaviour needed to develop

symbolic summaries. In fact, all the implemented summaries use at least one of these primitives. For

25

instance, the primitive summ is symbolic is used for checking whether or not a given runtime value is

symbolic, while the primitive solver is it possible checks if its argument denotes a satisfiable formula

in the current path condition; e.g., the call summ_is_symbolic(&var,32) checks if the 32 bit variable

var is symbolic, while the call solver_is_is_possible(restr) checks whether the formula given as

argument is possible, where restr is an arbitrary restriction such as var > 0. Additionally, this category

also includes an API primitive that is specific for the validation tool. The primitive summ memory addr

can be used to specify which memory addresses must be taken into account during the evaluation of a

summary that interacts with memory (e.g., a summary for memcpy).

Table 3.1: Symbolic Reflection API: General Functions

summ_not_implemented_error(char *fname) Stops the execution and returns a message to the user saying
that function <fname> must be implemented.

summ_print_byte(char byte) Prints a byte, be it symbolic or concrete.

summ_maximize(symbolic sym_var, size_t length) Takes the symbolic variable <sym var> with <length> bits and returns
the maximum value that it may denote given the current path condition.

summ_is_symbolic(symbolic sym_var, size_t length) Checks if variable <sym var> with <length> bits is symbolic.

summ_new_sym_var(int length) Returns a new symbolic variable denoting a value with <length> bits.

_solver_is_it_possible(restr_t restr) Queries the solver to check if the restriction <restr> is satisfiable given
the current path condition.

summ_assume(restr_t restr) Adds the restriction <restr> to the current path condition of the symbolic state.

summ_memory_addr(void* addr, void* n, size_t length) Marks the <n>+ 1 consecutive memory addresses, starting from <addr>

inclusive, to be evaluated by the summary validation tool (<n> can be symbolic).

Operations with symbolic variables The primitives in this category are responsible for manipulating

the bit vectors denoting symbolic variables (Table 3.2). For instance, the primitive solver Concat con-

catenates two symbolic variables, while the primitive solver SignExt extends a symbolic variable with

extra sign bits, which can be used for signed up-casting (e.g., int to long).

Table 3.2: Symbolic Reflection API: Operations with symbolic variables

_solver_Concat(symbolic sym_var, symbolic sym_var2, int length1, int length2) Generates a new symbolic variable denoting the
concatenation of the two given symbolic variables.

_solver_Extract(symbolic sym_var, int start, int end, int length) Generates a new symbolic variable denoting the bits
from indexes <start> to <end> (exclusive) from <sym var>.

_solver_ZeroExt(symbolic sym_var, int to_extend, int length) Generates a new symbolic variable denoting the extension
of the sequence of bits denoted by <sym var> with
<to extend> additional 0 bits (the bits are added to the left).

_solver_SignExt(symbolic sym_var, int to_extend, int length) Generates a new symbolic variable denoting the extension
of the sequence of bits denoted by <sym var> with
<to extend> additional sign bits (the bits are added to the left).

Operations with symbolic restrictions The primitives in this category are responsible for building re-

strictions/constraints over symbolic variables (Table 3.3). These restrictions can then be queried for sat-

isfability and/or added to the current symbolic state. For instance the primitive call: _solver_EQ(&a, &b, 32)

26

builds an equality restriction over two 32 bit symbolic variables such that a = b.

Table 3.3: Symbolic Reflection API: Operations with symbolic restrictions

_solver_NOT(restr_t restr) Builds the restriction: ¬ restr

_solver_Or(restr_t restr1, restr_t restr2) Builds the restriction: restr1 ∨ restr2

_solver_And(restr_t restr1, restr_t restr2) Builds the restriction: restr1 ∧ restr2

_solver_EQ(symbolic symvar, symbolic symvar2, size_t length) Builds the restriction: symvar1 = symvar2

_solver_NEQ(symbolic symvar, symbolic symvar2, size_t length) Builds the restriction: symvar1 6= symvar2

_solver_LT(symbolic symvar, symbolic symvar2, size_t length) Builds the restriction: symvar1 < symvar2

(assumes the values are unsigned)

_solver_LE(symbolic symvar, symbolic symvar2, size_t length) Builds the restriction: symvar1 ≤ symvar2
(assumes the values are unsigned)

_solver_SLE(symbolic symvar, symbolic symvar2, size_t length) Builds the restriction: symvar1 < symvar2

(assumes the values are signed)

_solver_SLE(symbolic symvar, symbolic symvar2, size_t length) Builds the restriction: symvar1 ≤ symvar2
(assumes the values are signed)

_solver_IF(restr_t restr, symbolic symvar1, symbolic symvar2, size_t length) Returns a value in a similar fashion as the C
ternary operator: restr ? symvar1 : symvar2

3.2 Summary Families

In this section we illustrate how the symbolic reflection API can be used to implement symbolic sum-

maries for three different families of libc functions: string manipulation functions, number-parsing func-

tions, and input/output functions. The C Standard Library includes a large number of functions, for

example the GNU C implementation (glibc), used in most Linux systems, offers over 1600 different

functions [57]. This is an unmanageable number of symbolic summaries to implement and evaluate in

the time frame of this thesis. Hence, we chose to focus the development of summaries on the most

commonly used functions found in the CGC binaries, the main data set that we used to evaluate our

approach. Importantly, the CGC binaries [58] provide a good understanding of the common libc us-

age, since they include a large variety of real-world like programs that must implement their own libc

equivalent functions.

3.2.1 String Manipulation

Table 3.4 summarizes the summaries that we have implemented for libc string manipulation functions.

For each summary we give the number of lines of the summary and the number of different symbolic

primitives that it uses. Furthermore we indicate if the summary is self-contained, i.e., if it does not

27

makes use of auxiliary functions. Importantly, most functions are associated with several summaries,

each satisfying a different property and tailored to a specific type of application. For instance, backward

sound summaries are more appropriate for bug finding analyses which should have low false positive

rates, while forward sound summaries are more appropriate for security analyses which should not drop

execution paths. To distinguish between summary implementations for the same function, all summaries

are named using a unique suffix, e.g., strcpy1 and strcpy2 are two summaries implemented for the strcpy

function.

Table 3.4: String manipulation summaries

Lines of code API primitives Self contained Symbolic return

(sufix) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

memchr 17 33 13 86 - 2 6 5 9 - yes yes yes yes - no no yes yes -
memcmp 21 88 109 18 - 2 10 11 8 - yes yes yes yes - no yes yes yes -
memcpy 17 20 - - - 2 4 - - - yes yes - - - no no - - -
memmove 25 28 - - - 2 4 - - - yes yes - - - no no - - -
memset 15 18 - - - 2 4 - - - yes yes - - - no no - - -
strcat 12 28 - - - 1 3 - - - no no - - - no no - - -
strchr 12 35 12 19 79 1 4 5 7 7 yes yes yes no no no no yes yes yes
strcmp 18 83 119 20 - 1 9 11 7 - no no no no - no yes yes yes -
strcpy 10 24 - - - 1 4 - - - yes yes - - - no no - - -
strlen 10 18 24 39 - 1 4 6 9 - yes yes yes yes - no no yes yes -
strncat 23 33 37 - - 2 4 6 - - no no no - - no no no - -
strncmp 26 110 124 317 - 2 9 12 8 - no no no no - no yes yes yes -
strncpy 19 33 38 - - 2 5 6 - - yes yes yes - - no no no - -
strpbrk 10 19 67 - - 1 5 8 - - no no no - - no no yes - -
strrchr 16 30 19 75 - 1 4 8 7 - no no no no - no no yes yes -

Below we present both a backward sound and a forward sound summary for the function strlen,

respectively strlen2 and strlen3. This function receives a string as an argument and returns its length.

In C, strings are defined as sequences of characters (char type) terminated by a special null character

('\0'). For this reason, string manipulation functions will often lead to path explosion when called with

symbolic strings. These strings may have symbolic characters, leading the symbolic execution to branch

at every index for which the corresponding character may or may not be equal to the null character.

Symbolic summary strlen2 Listing 3.1 shows the implementation of strlen2. This summary iterates

over an input string until it finds a concrete null character. During this process, if it finds a symbolic char-

acter it tries to prove that the corresponding byte can only be a null character. If it succeeds, the summary

returns the current length, otherwise it assumes that the current character is not the null character and

continues iterating. In particular, if a character s[i] is symbolic, the API primitive solver is it possible

queries the solver to check if that symbolic byte can only be the null character, which is translated to

the query: “ is it possible that s[i] 6= '\0' ? ”. If the answer is negative then that byte must be '\0'.

On the other hand if the answer is positive, the restriction s[i] 6= '\0' is built using the API primi-

tive solver NEQ and added to the current path condition using the primitive summ assume. The path

28

condition is updated to guarantee that it is consistent with the explored path, making the summary back-

ward sound. For instance, given the symbolic string: “sym1|a|sym2|\0 ”, where sym1 and sym2 denote

symbolic characters and the character '|' is used to separate the different characters occurring in the

string, the summary will output the value 3 and add the restrictions: sym1 6= '\0' and sym2 6= '\0' to

the current path condition.

1 int strlen2(char* s){

2 char charZero = '\0'; int i = 0;

3 while(1){

4 if(summ_is_symbolic(&s[i],CHAR_SIZE)){ //s[i] is symbolic

5

6 //Build restriction: s[i] 6= '\0'

7 restr_t restr = _solver_NEQ(&s[i], &charZero, CHAR_SIZE);

8

9 //Check satisfiability of restr

10 if(!_solver_is_it_possible(restr)) break;

11

12 else summ_assume(restr); //Add restr to symbolic state

13 }

14 else if(s[i] == charZero) break;

15 i++;

16 }

17 return i;

18 }

Listing 3.1: Implementation of summary strlen2

Symbolic summary strlen3 Listing 3.2 shows the implementation of strlen3. This summary also iter-

ates over the input string until it finds a concrete null character, while trying to prove that any symbolic

byte found can only be a null character. However, unlike the previous summary, if that proof fails, the

summary assumes right way that the return value must be greater than or equal to the length of the string

analysed so far, returning a symbolic value. In particular, if the solver proves that s[i] 6= '\0' is pos-

sible, a new unconstrained symbolic variable, retval, is created with a call to summ_new_sym_var. This

new variable is then constrained to retval ≥ i using the primitive _solver_SGE to build the appropriate

restriction. By returning a symbolic variable denoting all the possible return values for the length of the

given string, the summary is forward sound. For instance, given the symbolic string: “a|sym1|sym2|\0”,

this summary will return: retval ≥ 1.

3.2.2 Parsing of Numbers

Table 3.5 shows the summaries implemented for libc’s number parsing functions. Out of these sum-

maries, we explain in detail atoi2, a forward summary for libc’s atoi function. The atoi function is a

simple parser that converts a string representing a number into an integer value. In abstract terms, a

29

1 int strlen3(char* s){

2 char charZero = '\0'; int i = 0;

3 while(1){

4 if(summ_is_symbolic(&s[i],CHAR_SIZE)){ //s[i] is symbolic

5

6 //Build restriction: s[i] 6= '\0'

7 restr_t restr = _solver_NEQ(&s[i], &charZero, CHAR_SIZE);

8

9 //Check satisfiability of restr

10 if(!_solver_is_it_possible(restr)) break;

11

12 //Assume retval ≥ i

13 else{

14 symbolic retval = summ_new_sym_var(INT_SIZE);

15 restr_t r = _solver_SGE(&val, &i, INT_SIZE);

16 summ_assume(r);

17 return retval;

18 }

19 }

20 else if(s[i] == charZero) break;

21 i++;

22 }

23 return i;

24 }

Listing 3.2: Implementation of summary strlen3

parser is a software element that builds data structures from input data according to well defined rules.

For instance, the atoi function builds an integer value from its string representation. In general, even

simple parsers are challenging for symbolic execution when given symbolic inputs, as they force the

symbolic execution engine to branch on every possible output that can be produced from the symbolic

inputs. In the case of atoi, if a symbolic string is received as an argument, returning any single integer

would result in the loss of potentially important paths.

Table 3.5: Number parsing summaries

Lines of code API primitives Self contained Symbolic return

(sufix) 1 2 3 1 2 3 1 2 3 1 2 3

atoi 118 34 106 10 8 10 no no no yes yes yes

Symbolic summary atoi2 Listing 3.3 shows a shortened implementation of our summary atoi2. In

particular it shows the part responsible for handling strings containing symbolic characters (the complete

implementation can be found in Listing A.1). The key for guaranteeing that summary is forward sound is

to return an interval denoting all possible integers that can be parsed from a specific symbolic string. To

this end, we determine the maximum conceivable length for the input string and use it to compute the

interval of possible return values. For example, considering a symbolic string: “sym1|sym2|sym3|\0”,

30

our summary will return a symbolic variable retval such that: retval ∈ [−99, 999].

1 int atoi2(char *str){

...

18 else {

19 symbolic retval = summ_new_sym_var(INT_SIZE);

20 int size = strlen1(str);

21 //Determine bounds

22 int lower_bound = pow(10,size-1) * -1;

23 int upper_bound = pow(10,size);

24

25 //Build interval with restrictions

26 restr_t val_GT_lower = _solver_SGT(&retval, &lower_bound, INT_SIZE);

27 restr_t val_LT_upper = _solver_SLT(&retval, &upper_bound, INT_SIZE);

28 restr_t bounds_restr = _solver_And(val_GT_lower,val_LT_upper);

29 summ_assume(bounds_restr); //Add restrictions to symbolic state

30 return retval;

31 }

32 }

33 return res * sign;

34 }

Listing 3.3: Shortened implementation of summary atoi2

3.2.3 Input/Output

Table 3.6 shows the summaries implemented for libc’s I/O functions. To illustrate how summaries for

this family of functions are implemented we present a summary for libc’s fgets function. I/O functions

commonly play an important role during symbolic execution as input functions represent a valid source

of symbolic data that must be taken into account in order to maximize the soundness of an analysis.

These functions are usually some of the first to be modelled by a symbolic execution tool as all I/O

functions interact with, or are itself system calls, which as we have seen, cannot be analysed without

some type of symbolic modelling.

Table 3.6: Input/Output summaries

Lines of code API primitives Self contained Symbolic return

(sufix) 1 2 1 2 1 2 1 2

fgets 18 24 3 5 yes yes no no
getchar 2 - 1 - yes - yes -
puthar 2 - 1 - yes - no -
puts 11 21 2 4 yes yes no no

Symbolic summary fgets1 Listing 3.4 shows the implementation of our summary fgets1. To simulate

a call to fgets this summary creates a new unconstrained symbolic variable with 8 bits (one byte) for

31

every character “read”. When the number of characters to be read (length) is symbolic, the argument is

concretized to its maximum possible value according to the current path condition, through a call to the

primitive summ maximize. This is done to prevent the path explosion that would result from branching

the symbolic execution on every possible length. We choose the maximum value for the length argument

as bugs in programs tend to appear at the extreme cases of input. Even though we generate a string with

the maximum possible length, this string can actually represent the empty string, as the first symbolic

byte can denote a null character.

1 char* fgets(char *str, unsigned int length, void* stream){

2 int i = 0;

3 //If length is symbolic maximize to a concrete length

4 if(summ_is_symbolic(&length, INT_SIZE)){

5 length = summ_maximize(&length, INT_SIZE);

6 }

7 while(length-1 > 0){

8 symbolic sym_var = summ_new_sym_var(CHAR_SIZE); //Create a new symbolic variable

9 str[i++] = sym_var;

10 length--;

11 }

12 str[i] = '\0';

13 return str;

14 }

Listing 3.4: Implementation of summary fgets1

3.3 Supporting the Symbolic Reflection API

To demonstrate the portability of our summaries, we extended two symbolic execution tools: AVD [16]

and angr [15], with support for the Symbolic Reflection API. As AVD was implemented at IST, it provides

a familiar platform that was easy to extend with support for the required summary API. In addition,

AVD also serves as the test bed for developing and testing symbolic summaries, as its symbolic engine

provides the foundation that our summary validation tool is built upon which we will go over in Section 4.2.

On the other hand, angr is a tried symbolic execution tool that offers a flexible and well documented

toolkit, making it a great candidate for demonstrating the portability of the Symbolic Reflection API in an

unfamiliar tool.

32

3.3.1 Extending AVD

In AVD summaries are implemented as subclasses of the abstract Summary class. This class provides

the two default methods for abstracting the processes of loading the function arguments and returning an

appropriate value after the summary is executed. The behaviour of the summary itself is implemented

in the execute method, that all summaries must override, which receives an instance of a Memory class

for the summary to interact with. Each Memory instance represents the symbolic state associated with

a symbolic execution tree node. The API primitives are implemented as standard summaries, added

under the Summaries directory, and interact with the symbolic execution memory in the same manner

as the native summaries. The function names (or symbols) corresponding to the symbolic summaries

are listed in a global configuration file (Config), so that when the symbolic execution reaches one of

these symbols, the execution is stopped, and the execute method of corresponding summary is called.

To prevent the native libc summaries from being used, the standard libc symbols should also be also be

added to the list of symbols to be ignored in the Config file. The main execution driver Sym exec can

then take the target binary, compiled with the libc summaries, and start the execution. Figure 3.1 shows

a simplified model of AVD, extended to support the Symbolic Reflection API.

Z3

AVD

Memory

Run()

Sym_exec

Config

X86/X64
Binary

Analysis
Results

Summaries

CGC

Libc

API

Summary

Compiled with
Libc summaries

Figure 3.1: AVD extended to support the Symbolic Reflection API.

Listing 3.5 shows the API primitive summ is symbolic implemented in AVD. In the example we can

see that summ is symbolic inherits from the Summary class so that it was access to the load args and

33

ret methods. As mentioned, these are the methods that abstract the interactions with the symbolic

memory for loading arguments and returning values. Importantly, this summary also makes use of the

function is symbolic, which is implemented by the default in AVD’s standard architecture, effectively

trivializing this summary’s implementation, which only needs to assert that size is a multiple of 8 bits, in

line with the standard types of C.

1 class summ_is_symbolic(Summary):

2 def __init__(self):

3 super().__init__('summ_is_symbolic')

4

5 def execute(self, executor, mem):

6 sym_var, size = self.load_args(mem, [Pointer, uint])

7 assert size % 8 == 0, "Size is in bits but must be divisible by 8"

8 sym_val = mem.load(sym_var, size).val

9 if is_symbolic(sym_val):

10 self.ret(mem, 1)

11 else:

12 self.ret(mem, 0)

Listing 3.5: Implementation of the primitive: summ is symbolic in AVD.

3.3.2 Extending angr

angr is implemented as a Python framework, hence, to start an analysis it requires a driver program

that is responsible for taking the target binary and instantiating a Project class, which is angr ’s main

interface. Consequently, and as recommended in the tool’s documentation, a user can implement his

own symbolic summaries directly in the driver script. Accordingly, we implemented our API primitives as

standard user summaries, which angr calls sim procedures. Similarly to AVD, all sim procedures inherit

from the abstract class SimProcedure that abstracts the complexity of interacting with the symbolic state

(SimState class), for loading the procedure’s arguments and returning values. A sim procedure is imple-

mented by overriding the run method. However, unlike AVD, for each summary call a new SimProcedure

object is created and automatically tied to an instance of a SimState. Every sim procedure is stored in a

global accessed dictionary that maps a procedure class to its respective symbol or address. In the case

of user defined sim procedures, such as our API primitives, the Project class offers an hook method

that can be used to store a sim procedure with a corresponding symbol (or address) in the procedure’s

dictionary. Additionally, the Project class also allows to specify function symbols to be ignored, thus

preventing angr from using its native procedures instead of the API. After this initial configuration, the

Project class can then take the target binary compiled with the libc summaries, instantiate a initial sym-

bolic state (Entry state), and start a normal execution. Figure 3.2 shows a simplified model of angr and

34

a respective driver program with support for the Symbolic Reflection API.

angr

Procedures

Libc

JAVA

CGC

SimProcedure

SimState

Procedure
Dictionay

Analysis
Results

Solver

zProject

 hook()

execute()

LibVEX
supported

binary

Driver Program

API

Compiled with
Libc summaries

Inherits from
SimProcedure

Figure 3.2: Supporting the Symbolic Reflection API in angr.

Listing 3.6 shows a concrete example of an API primitive implemented on a driver program for angr.

In the example we can see that the primitive summ new sym var is implemented as a sim procedure

extending the SimProcedure class and exposing the methods: run and ret. The run method contains

the implementation of the primitive and receives its arguments as input, while the ret must be used to

return a value from the primitive. In addition, the SimProcedure class also enables the procedure to

manipulate the underlying symbolic state directly, as one of the SimProcedure’s properties (self.state)

is an instance of a SimState. The implementation of summ is symbolic in AVD is also greatly simplified

through the use a standard function in angr ’s architecture, namely the BVS method, which creates a

new symbolic variable of arbitrary size with a unique identifier.

In general, extending angr and AVD with support for our API was almost straightforward as most of

the API primitives have a corresponding mechanism in each of the tools that can effectively trivialize the

primitive’s implementation.

3.3.3 Modelling Symbolic Restrictions in C Code

One technical challenge that arises from implementing symbolic summaries in the target language is

modelling restrictions over symbolic values in C code. Different symbolic execution tools have different

internal representations for symbolic restrictions. Hence, we chose to represent restrictions through

unique number identifiers in the summaries’ code. To this end, the restriction type in C (restr t) is defined

as an unsigned long. By having each restriction associated with a unique identifier, symbolic execution

tools can implement an internal dictionary that translates a number id to the corresponding internal

35

1 from angr import Project, SimProcedure

2 p = Project("binary")

3

4 # API primitive

5 class summ_new_sym_var(SimProcedure):

6 def run(self, length):

7 length = self.state.solver.eval(length)

8 assert length % 8 == 0, "Size is in bits but must be divisible by 8"

9 sym_var = self.state.solver.BVS("sym_var", length)

10 self.ret(sym_var)

11

12 p.hook_symbol('summ_new_sym_var', summ_new_sym_var())

13 state = p.factory.entry_state()

14 sm = p.factory.simulation_manager(state)

15 sm.run()

Listing 3.6: Implementation of the primitive: summ new sym var in angr’s driver program.

restriction object. Figure 3.3 illustrates the pipeline needed for the manipulation of symbolic restrictions

in the C code. As shown in the example, when the execution reaches the primitive solver EQ, the

symbolic execution tool creates a new entry in the restrictions dictionary, associating the corresponding

restriction object with a unique identifier value (1). In this example the id is stored in the variable r, which

is then passed as an argument to the primitive solver is it possible to check the satisfability of the

restriction. To execute this call, the symbolic execution tool obtains the restriction object corresponding

to the id = 1 from the dictionary, and passes it to the SMT solver along with other restrictions in the

current path condition.

int main(){

symbolic a = summ_new_sym_var(32);

...

Target program in C

symbolic b = summ_new_sym_var(32);

restr_t r = _solver_EQ(&a,&b,32);

Symbolic Execution
Tool

int res = _solver_is_it_possible(r);

...

Restrictions dictionary

Is r possible?
(r = 1)

1

Restrictionid

Get restriction with id = 1

Create new restriction
Create new dictionary
entry < 1, >

int main(){

symbolic a = summ_new_sym_var(32);

symbolic b = summ_new_sym_var(32);

int main(){

symbolic a = summ_new_sym_var(32);

symbolic b = summ_new_sym_var(32);

restr_t r = _solver_EQ(&a,&b,32);

Figure 3.3: Modelling symbolic restrictions in C code

36

4
Summary Correctness

Contents

4.1 Summary Properties . 39

4.2 Summary Validation Tool . 48

4.3 Supporting the Validation Tool . 57

37

38

In this chapter we start by introducing our proposed correctness properties for evaluating symbolic

summaries (Section 4.1). Then, we present our summary validation tool and illustrate how it can be

used to systematically validate the correctness of a summary according to the established correctness

properties (Section 4.2). Finally, we describe how we implemented the summary validation tool on top

of AVD’s symbolic execution engine.

4.1 Summary Properties

In this section, we mathematically define the correctness properties required for evaluating our symbolic

summaries, some of which were introduced in Section 2.2.2. We start by introducing some notation. We

use σ and σ̂ to denote concrete and symbolic program states, respectively. Program states are com-

posed of program memories; we use µ and µ̂ to range over concrete memories and symbolic memories,

respectively. In the following, we assume that concrete states exactly coincide with concrete memories,

while symbolic states are composed of a concrete memory and a path condition. Put formally: σ = 〈µ〉

and σ̂ = 〈µ̂, π〉.

We use C and Ĉ to denote a concrete implementation of a function and its corresponding sum-

maries, respectively. In contrast to concrete implementations, which can be executed both concretely

and symbolically, symbolic summaries can only be executed symbolically. In the following, we use:

• C(σ) to denote the concrete execution of C on the concrete state σ;

• C(σ̂) to denote the symbolic execution of C on the symbolic state σ̂;

• Ĉ(σ̂) to denote the symbolic execution of Ĉ on the symbolic state σ̂.

While the concrete execution of a program C on a state σ yields a pair consisting of a concrete state

σ′ and a return value r, the symbolic execution of a program or a summary on a symbolic state σ̂

yields a set of pairs, each consisting of a symbolic state and a symbolic return value. Put formally:

C(σ) = (σ′, r) and Ĉ(σ̂) = {(σ̂1, r̂1), ..., (σ̂n, r̂n)}. To simplify notation, we use: Ĉ(σ̂) (σ̂′, r̂) to mean

that (σ̂′, r̂) ∈ Ĉ(σ̂); informally, this means that the symbolic state σ̂′ and return value r̂ are contained in

the set of outcomes resulting from the symbolic execution of Ĉ on the symbolic state σ̂;

In the following, we use V̂ to denote a set of symbolic values. Furthermore, we use Σ̂ to denote any

set of pairs of symbolic states and symbolic return values.

Finally, we write σ ∈ Jσ̂K to mean that the concrete state σ is in the interpretation of the symbolic state

σ̂. The interpretation of a symbolic state σ̂ is the set of concrete states that can be obtained from σ̂ by

mapping the symbolic variables of σ̂ to concrete values in a way that is consistent with its path condition.

For instance, if σ̂ = 〈µ̂, x̂ 6= 0〉, then the symbolic variable x̂ cannot be replaced by 0 in µ̂. Accordingly,

39

the interpretation function J.K :: SymSt → P(ConcSt) takes as input a symbolic state and returns a set

of concrete states.

We define the interpretation function for symbolic states with the help of an interpretation function for

symbolic memories. In contrast to states, the interpretation function for symbolic memories additionally

requires a valuation function, ε : V̂ ⇀ V, that maps symbolic values to concrete values. We write

Jµ̂Kε = µ to mean that the interpretation of µ̂ under ε yields the concrete memory µ. We assume

that both concrete and symbolic memories are sequences of memory cells containing byte values, with

concrete memories only containing concrete values, and symbolic memories containing both symbolic

and concrete values. Formally, we define a concrete memory µ : N ⇀ V to be a partial function from

the set of natural numbers, N , to the set of concrete values V. Analogously, we define a symbolic

memory µ̂ : N ⇀ V̂ to be a partial function from the set of natural numbers, N , to the set of symbolic

values V̂. For clarity, we assume that the set of symbolic values V̂ contains the set of concrete values

V. We interpret symbolic memories point-wise, applying the valuation function to each memory cell;

put formally: Jµ̂Kε(i) ≡ ε(µ̂(i)). Using memory interpretation, the definition of state interpretation is

straightforward:

Jσ̂K = J〈µ̂, π〉K = { Jµ̂Kε | ε(π) = true} (4.1)

We lift symbolic state interpretation to pairs of symbolic states and return values in the natural way:

J(σ̂, r̂)K = J〈µ̂, π, r̂〉K = { (Jµ̂Kε, ε(r̂)) | ε(π) = true} (4.2)

Symbolic states as boolean formulas In order to reason about the correctness properties of a sum-

mary, we introduce a lifting operator d.e :: P(SymSt) → Formula that transforms a set of symbolic

states paired up with return values into a boolean formula: dΣ̂e = ϕs, where we use ϕ to range over the

set of boolean formulas. The lifting operator for symbolic states is formally defined as follows:

dΣ̂e ≡
∨{

dµ̂em ∧ π ∧ (ret = r̂) | (〈µ̂, π〉, r̂) ∈ Σ̂
}

(4.3)

Essentially, a set of symbolic states is transformed into a disjunction of boolean formulas, each describ-

ing its corresponding symbolic state. The formula created for each state has three components: (1) a

memory component dµ̂em describing the content of the symbolic memory, (2) a path condition compo-

nent π, and (3) a return component ret = r̂ describing the return value of the function in the execution

path that led to the given state. We use a dedicated variable ret to refer to the return value of a function.

Analogously to symbolic state interpretation, the lifting operator for symbolic states is defined with

the help of a lifting operator for symbolic memories. More concretely, to transform a symbolic state 〈µ̂, π〉

into a boolean formula, we also need to transform the symbolic memory µ̂ into a formula. Hence, we

define an additional lifting operator d.em :: SymMem → Formula that takes a symbolic memory µ̂ and

40

returns a boolean formula dµ̂em = ϕm that describes the contents of the symbolic memory µ̂. The lifting

operator for memories is formally defined as follows:

dµ̂em ≡
∧
{ addrα = µ̂(α) | α ∈ dom(µ̂)} (4.4)

Essentially, a symbolic memory is transformed into a conjunction of boolean formulas, each describing

a single memory cell. To this end, we introduce, for each memory cell α, a symbolic variable addrα that

denotes its contents.

Naturally, the proposed method for lifting a symbolic memories into formulas may potentially gener-

ate extremely large formulas that describe the entire contents of the memory regardless of whether or

not those contents are relevant to the behaviour of the function being symbolically executed. Hence, we

redefine the lifting operator for memories in order for it to take into account the concrete function or sym-

bolic summary being executed. The new lifting operator dµ̂efm denotes the boolean formula associated

with the memory µ̂ when symbolically executing the function with identifier f :

dµ̂efm ≡
∧
{ addrα = µ̂(α) | α ∈ domf (µ̂)} (4.5)

where domf (µ̂) denotes the set of addresses in µ̂ that are relevant for the execution of the function with

identifier f .

As seen before, the symbolic execution of either a program or a symbolic summary on a symbolic

state may result in a set of symbolic states paired up with return values, Σ̂, through the application of

the lifting operator for states. This set can be, in turn, transformed into a disjunction of boolean formulas

of the form dµ̂em ∧ π ∧ (ret = r̂). In the following, we will use Φ to range over such disjunctions, writing:

Φ ≡

ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕk

ϕ1 ≡ dµ̂1em ∧ π1 ∧ (ret = r̂1)

ϕ2 ≡ dµ̂2em ∧ π2 ∧ (ret = r̂2)

...

ϕk ≡ dµ̂kem ∧ πk ∧ (ret = r̂k)

to mean that Φ = ϕ1 ∨ ϕ2 ∨ ... ∨ ϕk, where each conjunct ϕi ≡ dµ̂iem ∧ πi ∧ (ret = r̂i) for i = 1, ..., k.

Finally, we write C(σ̂) = Φ to mean that there is a set Σ̂ such that C(σ̂) = Σ̂ and dΣ̂e = Φ. Analogously,

we write Ĉ(σ̂) = Φ̂ to mean that there is a set Σ̂ such that Ĉ(σ̂) = Σ̂ and dΣ̂e = Φ̂. For clarity, we use

Φ and Φ̂ to represent the boolean formulas that result from symbolically executing a concrete function C

and a corresponding summary Ĉ, respectively, in the same symbolic state σ̂.

41

4.1.1 Backward Soundness

A symbolic summary Ĉ is backward sound with respect to a concrete implementation C, if and only if it

holds that:

∀σ̂ . Ĉ(σ̂) (σ̂′, r̂) =⇒ ∀(σ′, r) ∈ J(σ̂′, r̂)K . ∃σ ∈ Jσ̂K . C(σ) = (σ′, r) (4.6)

Start

FinishSymbolic

Concrete

Figure 4.1: Backward
Soundness

As illustrated in Figure 4.1, a backward sound summary guarantees that,

for any symbolic state σ̂, the interpretation of the set of symbolic execution

paths generated by the symbolic execution of Ĉ in σ̂ is contained in the set

of execution paths produced by the concrete execution of C in the inter-

pretation of σ̂. In other words, all concretizations of the symbolic execution

paths generated by the summary must correspond to execution paths gen-

erated by the concrete execution of the original function. Let Φ and Φ̂ be

the boolean formulas that result from symbolically executing C and Ĉ, re-

spectively, in a symbolic state σ̂. For the summary Ĉ to be backward sound,

the implication Φ̂ ⇒ Φ must be true. For instance, if Φ ≡ ϕ1 ∨ ϕ2 ∨ ϕ3 and

Φ̂ ≡ ϕ1, the summary is backward sound.

4.1.2 Forward Soundness

A symbolic summary Ĉ is forward sound with respect to a concrete implementation C, if and only if it

holds that:

∀σ̂. ∀σ ∈ Jσ̂K ∧ C(σ) = (σ′, r) ∧ Ĉ(σ̂) (σ̂′, r̂) =⇒ (σ′, r) ∈ J(σ̂′, r̂)K (4.7)

Start

Finish

Symbolic

Concrete

Figure 4.2: Forward Sound-
ness

As illustrated in Figure 4.2, a forward sound summary guarantees that,

for any symbolic state σ̂, the set of execution paths produced by the concrete

execution of C in the interpretation of σ̂, is contained in the interpretation of

the symbolic execution paths generated by the symbolic execution of Ĉ in σ̂.

In other words, all the execution paths generated by the concrete execution

of the original function correspond to concretizations of the symbolic execu-

tion paths generated by the summary. Let Φ and Φ̂ be the boolean formulas

that result from symbolically executing C and Ĉ, respectively, in a symbolic

state σ̂. For the summary Ĉ to be forward sound, the implication Φ ⇒ Φ̂

must be true. For instance, if Φ ≡ ϕ1 and Φ̂ ≡ ϕ1 ∨ ϕ2 ∨ ϕ3, the summary is

forward sound.

42

4.1.3 Completeness

Start

FinishSymbolic = Concrete

Figure 4.3: Completeness

A symbolic summary Ĉ is complete with respect to a concrete implemen-

tation C, if and only if it satisfies both (4.7) and (4.6). As illustrated in Fig-

ure 4.3, a complete summary guarantees that, for any symbolic state σ̂, the

interpretation of the set of symbolic execution paths generated by the sym-

bolic execution of Ĉ in σ̂ corresponds to the set of execution paths produced

by the concrete execution of C in the interpretation of σ̂. In other words, this

property guarantees that all concretizations of the symbolic execution paths

generated by the summary correspond to all, and only to, execution paths

generated by the concrete execution of the original function. Let Φ and Φ̂

be the boolean formulas that result from symbolically executing C and Ĉ,

respectively, in a symbolic state σ̂. For the summary Ĉ to be complete, the equivalence Φ̂⇔ Φ must be

true.

4.1.4 Generalized Properties

In practice, it is common to have summaries that are neither backward nor forward sound. This can

happen due to the nature of a target function forcing the corresponding symbolic summary to be overly

complex in order to satisfy one of the foregoing soundness properties. In such cases, the benefits

provided by these properties may be overshadowed by other factors, such as poor time performance

and poor maintainability. If this is the case, one can often obtain either soundness or precision if one

assumes that the function input satisfies some additional constraints. For instance, it is much easier to

write a summary for the strcmp function if one assumes that the given strings do not contain the null

character in intermediate indexes. To model this type of assumption, we introduce generalized versions

of the foregoing soundness properties that allow us to account for additional constraints on the function

inputs. In the following, we will assume that the additional constraints on a function’s input are expressed

as a formula ρ and we write σ ∧ ρ to mean 〈µ̂, π ∧ ρ〉.

4.1.4.A Generalized Backward Soundness

A symbolic summary Ĉ is considered generalized backward sound with respect to a concrete imple-

mentation C and a predicate ρ, if and only if it holds:

∀σ̂ . Ĉ(σ̂ ∧ ρ) (σ̂′, r̂) =⇒ ∀(σ′, r) ∈ J(σ̂′, r̂)K , ∃σ ∈ Jσ̂ ∧ ρK . C(σ) = (σ′, r) (4.8)

43

As illustrated in Figure 4.4, a summary satisfies this property if the interpretation of the symbolic ex-

ecution paths generated by the symbolic execution of Ĉ in σ̂ ∧ ρ is contained in the set of execution

paths produced by the concrete execution of C on the interpretation of σ̂ filtered by ρ, meaning that we

only consider the concrete states in the interpretation of σ̂ that satisfy the predicate ρ. In other words,

the concretizations of the symbolic execution paths generated by the summary must correspond to the

execution paths generated by the concrete execution of the original function on states that satisfy the

predicate ρ. Let Φ and Φ̂ be the boolean formulas that result from symbolically executing C and Ĉ, re-

spectively, in a symbolic state σ̂∧ ρ. For the summary Ĉ to be generalized backward sound with respect

to ρ, the implication Φ̂⇒ Φ must be true.

Symbolic

Precondition

Restricted
Concrete

Restricted
SymbolicConcrete

Symbolic
Concrete

Backward Soundness

Figure 4.4: Generalized Backward Soundness

To illustrate this property, we can consider a concrete function C and a corresponding symbolic sum-

mary Ĉ, that when symbolically executed in an unconstrained symbolic state σ̂, produce the following

boolean formulas Φ and Φ̂:

Φ ≡

ϕ1 ∨ ϕ2 ∨ ϕ3

ϕ1 ≡ π1 ∧ (ret = r̂1)

ϕ2 ≡ π2 ∧ (ret = r̂2)

ϕ3 ≡ π3 ∧ (ret = r̂3)

and Φ̂ ≡

ϕ̂1 ∨ ϕ̂2

ϕ̂1 ≡ π1 ∧ (ret = r̂1)

ϕ̂2 ≡ π2

In this example, the symbolic summary Ĉ does not satisfy the standard soundness properties. Not only

there are paths of Φ missing, meaning that Φ ⇒ Φ̂ is false, but additionally the path ϕ̂2 in Φ̂ does not

imply ϕ2 in Φ given that it does not constrain the return value, and so Φ̂⇒ Φ is also false. To address this

particular case, we can consider a predicate ρ ≡ ¬π2. With the initial state restricted by ρ, the symbolic

44

execution of C and Ĉ in σ̂ ∧ ρ produce the following formulas:

Φ ≡

ϕ1 ∨ ϕ3

ϕ1 ≡ (π1 ∧ ¬π2) ∧ (ret = r̂1)

ϕ3 ≡ (π3 ∧ ¬π2) ∧ (ret = r̂3)

and Φ̂ ≡ (π1 ∧ ¬π2) ∧ (ret = r̂1)

As a consequence, all execution paths of Φ̂ are now contained in Φ, making the implication Φ̂ ⇒ Φ be

true.

4.1.4.B Generalized Forward Soundness

A symbolic summary Ĉ is considered generalized forward sound with respect to a concrete implemen-

tation C and a predicate ρ, if and only if it holds:

∀σ̂. ∀σ ∈ Jσ̂ ∧ ρK ∧ C(σ) (σ′, r) ∧ Ĉ(σ̂ ∧ ρ) = (σ̂′, r̂) =⇒ (σ′, r) ∈ J(σ̂′, r̂)K (4.9)

As illustrated in Figure 4.5, a summary satisfies this property if the set of execution paths produced by

the concrete execution of C on the interpretation of σ̂ filtered by ρ, is contained in the interpretation of

the symbolic execution paths generated by the symbolic execution of Ĉ in σ̂ ∧ ρ. In other words, all the

execution paths generated by the concrete execution of the original function on states that satisfy the

predicate ρ correspond to concretizations of the symbolic execution paths generated by the summary.

Let Φ and Φ̂ be the boolean formulas that result from symbolically executing C and Ĉ, respectively, in

a symbolic state σ̂ ∧ ρ. For the summary Ĉ to be generalized backward sound, the implication Φ ⇒ Φ̂

must be true.

Symbolic

Precondition

Concrete Restricted
Symbolic

Restricted
Concrete

Symbolic

Concrete

Forward Soundness

Figure 4.5: Generalized Forward Soundness

To illustrate this property, we can consider a concrete function C and a corresponding symbolic

summary Ĉ, that when symbolically executed in an unconstrained symbolic state σ̂ produce the following

45

boolean formulas Φ and Φ̂:

Φ ≡

ϕ1 ∨ ϕ2 ∨ ϕ3

ϕ1 ≡ π1 ∧ (ret = r̂1)

ϕ2 ≡ π2 ∧ (ret = r̂2)

ϕ3 ≡ π3 ∧ (ret = r̂3)

and Φ̂ ≡

ϕ̂1 ∨ ϕ̂2

ϕ̂1 ≡ π1 ∧ (ret = r̂1)

ϕ̂2 ≡ (ret = r̂2)

In this example the symbolic summary Ĉ does not satisfy any soundness property. Once again there

are paths of Φ missing, meaning that Φ⇒ Φ̂ is false, and the path ϕ̂2 in Φ̂ does not imply ϕ2 in Φ given

that it does not constrain the input, and so Φ̂ ⇒ Φ is also false. To address this particular case, we can

consider a predicate ρ ≡ π1. With the initial state restricted by ρ the symbolic execution of C and Ĉ in

σ̂ ∧ ρ produces the following formulas:

Φ ≡ π1 ∧ (ret = r̂1) and Φ̂ ≡

ϕ̂1 ∨ ϕ̂2

ϕ̂1 ≡ π1 ∧ (ret = r̂1)

ϕ̂2 ≡ π1 ∧ (ret = r̂2)

As a consequence, all execution paths of Φ are contained in Φ̂, making the implication Φ⇒ Φ̂ be true.

4.1.4.C Generalized Completeness

A symbolic summary Ĉ is generalized complete with respect to a concrete implementation C and predi-

cate ρ, if and only if it satisfies both (4.9) and (4.8). As illustrated in Figure 4.6, a summary satisfies this

property if the interpretation of the symbolic execution paths generated by the symbolic execution of Ĉ in

σ̂ ∧ ρ corresponds to the set of execution paths produced by the concrete execution of C in the interpre-

tation of σ̂ filtered by ρ. In other words, this property guarantees that the concretizations of the symbolic

execution paths generated by the summary correspond to all, and only to, execution paths generated by

the concrete execution of the original function on states that satisfy the predicate ρ. Let Φ and Φ̂ be the

boolean formulas that result from symbolically executing C and Ĉ, respectively, in a symbolic state σ̂.

For the summary Ĉ to be generalized complete, the equivalence Φ̂⇔ Φ must be true.

To illustrate this property, we can consider a concrete function C and a corresponding symbolic

summary Ĉ that when symbolically executed in an unconstrained symbolic state σ̂ produce the following

46

Precondition

Concrete SymbolicRestricted
Concrete

Restricted
Symbolic= Symbolic

Figure 4.6: Generalized Completeness

boolean formulas Φ and Φ̂:

Φ ≡

ϕ1 ∨ ϕ2 ∨ ϕ3

ϕ1 ≡ π1 ∧ (ret = r̂1)

ϕ2 ≡ π2 ∧ (ret = r̂2)

ϕ3 ≡ π3 ∧ (ret = r̂3)

and Φ̂ ≡

ϕ̂1 ∨ ϕ̂2 ∨ ϕ̂3

ϕ̂1 ≡ π1 ∧ (ret = r̂1)

ϕ̂2 ≡ π2 ∧ (ret = r̂2)

ϕ̂3 ≡ π3

In this example the symbolic summary Ĉ does not satisfy any soundness property due to the execution

path ϕ̂3. This path does not imply ϕ3 in Φ since it does not constrain the return value, meaning that both

implications Φ ⇒ Φ̂ and Φ̂ ⇒ Φ are false. To address this particular case, we can consider a predicate

ρ ≡ π1 ∨ π2. With the initial state restricted by ρ the symbolic execution of C and Ĉ in σ̂ ∧ ρ produces the

following formulas:

Φ ≡

ϕ1 ∨ ϕ2

ϕ1 ≡ π1 ∧ (ret = r̂1)

ϕ2 ≡ π2 ∧ (ret = r̂2)

and Φ̂ ≡

ϕ̂1 ∨ ϕ̂2

ϕ̂1 ≡ π1 ∧ (ret = r̂1)

ϕ̂2 ≡ π2 ∧ (ret = r̂2)

As a consequence, Φ and Φ̂ denote the same execution paths, making the equivalence Φ̂⇔ Φ be true.

47

4.2 Summary Validation Tool

The purpose of symbolic execution is to allow for the exploration and analysis of all possible execu-

tion paths in a target program. As a result, this technique will often generate many more paths than

what might be expected. For this reason, even for seemingly simple symbolic summaries, the tasks of

summary debugging and correctness verification, quickly become infeasible to be carried out manually.

Given that our symbolic summaries are implemented in the programming language to be analysed (C),

they can themselves be symbolically executed as standard C code. To this end, we implemented an

auxiliary infrastructure, illustrated in Figure 4.7, that works on top of the symbolic execution tool AVD, to

systematically evaluate a summary according to the preceding correctness properties.

This validation tool achieves its goal in two main steps. First, given a binary containing the imple-

mentation code for both a target concrete function and the corresponding symbolic summary, AVD will

compute the boolean formulas Φ and Φ̂ with the selected symbolic input. These formulas are in turn

passed to an SMT solver that verifies the satisfiability of the logical implication corresponding to the

correctness property one is aiming at; to ensure forward soundness one must check that Φ ⇒ Φ̂ and

to ensure backward soundness one must check that Φ̂ ⇒ Φ. However, due to the complex nature of

symbolic execution and summary debugging, it is often the case that simply knowing whether or not a

symbolic summary satisfies a given correctness property is not enough. As a result, the validation tool

is also required to generate counterexamples illustrating why a correctness property could not be satis-

fied. In the case of the forward soundness property, a user can even use the validation tool to generate

examples for all execution paths that do not satisfy that property.

Verification Tool

Concrete
Function

Symbolic
Summary Binary AVD SMT Solver

Result

Output
Result

Verify
implications

counterexample

Compute

Not
satisfiable

Symbolic
Input

Figure 4.7: Summary Validation Tool

48

4.2.1 Examples

In this section we will go over the correctness properties of some the summaries we implemented in

order to demonstrate how they are tested by our summary validation tool.

4.2.1.A Function - strlen

Consider the libc function strlen (size_t strlen(const char *s)), that given a string as argument,

counts the number of characters until a null byte '\0' is found. To test the correctness of our summaries,

first, we must determine the boolean formula Φ that results from the symbolic execution of strlen’s

concrete implementation in an input symbolic state σ̂. In order to test our summaries we have to pick

a maximum length for the strings given as input. For presentation purposes, we pick length 3. Hence,

we choose σ̂ = 〈µ̂, true〉, such that s ⊂ µ̂, where s = ‘sym1|sym2|sym3| \0 ’. In this state, the symbolic

execution of strlen’s concrete function produces the following formula:

Φ ≡

ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4

ϕ1 ≡ (sym1 = \0) ∧ (ret = 0)

ϕ2 ≡ (sym1 6= \0) ∧ (sym2 = \0) ∧ (ret = 1)

ϕ3 ≡ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (sym3 = \0) ∧ (ret = 2)

ϕ4 ≡ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (sym3 6= \0) ∧ (ret = 3)

Backward Soundness - strlen2 Let us recall the summary strlen2 in Listing 3.1. In the same symbolic

state σ̂, the symbolic execution of this summary produces the boolean formula:

Φ̂2 ≡ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (sym3 6= \0) ∧ (ret = 3)

For this summary we can see that the execution path generated is contained in the concrete function’s

execution paths, consequently only the implication Φ̂2 ⇒ Φ is true, and therefore the summary is exclu-

sively backward sound.

Forward Soundness - strlen3 On the other hand, if we recall the summary strlen3 given in Listing 3.2,

the symbolic execution of this summary in σ̂ produces the formula: Φ̂3 ≡ (ret ≥ 0). In contrast to the

previous summary, we can observe that Φ̂3 contains all the execution paths of Φ. The return value of

strlen is always greater than or equal to zero, hence, Φ ⇒ Φ̂3 is true. Despite containing all the correct

execution paths, Φ̂3 also contains incorrect paths such as: (sym1 = \0) ∧ (ret = 1), meaning that the

implication Φ̂3 ⇒ Φ is false, and therefore the summary is exclusively forward sound.

Completeness - strlen4 As an example of a complete summary for strlen, consider the summary

strlen4 given in Listing 4.1. Given a symbolic input string, this summary generates the appropriate

49

execution paths corresponding to all the possible lengths for the given symbolic string. Accordingly, when

symbolically executed in σ̂, this summary produces the same execution paths as the concrete function,

and so the equivalence Φ̂4 ⇔ Φ is true. Although the execution paths covered by the summary exactly

coincide with those of the concrete function, the symbolic summary has the advantage of generating a

single final symbolic state capturing all those path, while the concrete function will generate a separate

symbolic state for each path.

1 int strlen4(char* s){
2 int retval = 0, i = 0;
3 char char_zero = '\0';
4

5 //Initializes conditions
6 restr_t sym_conds = summ_false();
7 restr_t different_conds = summ_true();
8

9 while(1){ //Loop through all chars
10 if(summ_is_symbolic(&s[i],CHAR_SIZE)){ //Symbolic char
11

12 //s[i] == \0 --> add (s[i] == \0) ∧ (different_conds) ∧ (retval = i) to sym_conds
13 if(_solver_is_it_possible(_solver_EQ(&s[i], &char_zero, CHAR_SIZE))){
14 if(!summ_is_symbolic(&retval,INT_SIZE)) {retval = summ_new_sym_var(INT_SIZE);}
15

16 restr_t equal_zero =
_solver_And(_solver_EQ(&s[i],&char_zero,CHAR_SIZE),_solver_EQ(&retval,&i,INT_SIZE));↪→

17 restr_t aux = _solver_And(equal_zero, different_conds);
18 sym_conds = _solver_Or(sym_conds, aux);
19 }
20

21 //s[i] 6= \0 --> add (s[i] 6= \0) to different_conds
22 if(_solver_is_it_possible(_solver_NEQ(&s[i], &char_zero, CHAR_SIZE))){
23 restr_t not_equal_zero = _solver_NEQ(&s[i], &char_zero,CHAR_SIZE);
24 different_conds = _solver_And(different_conds, not_equal_zero);
25 }
26 else{ break; }
27 }
28 else if(s[i] == char_zero){ //Concrete char
29 if(!summ_is_symbolic(&retval,INT_SIZE)) {retval = i;}
30 else{
31 different_conds = _solver_And(different_conds,_solver_EQ(&retval, &i, INT_SIZE))
32 sym_conds = _solver_Or(sym_conds, different_conds);
33 } break;
34 }
35 i++;
36 }
37 if(summ_is_symbolic(&retval,INT_SIZE)) {summ_assume(sym_conds)}; //Add restrictions
38 return retval;
39 }

Listing 4.1: Implementation of summary strlen4

Generalized Completeness - strlen1 Let us consider the summary strlen1 given in Listing 4.2. This

summary simply counts the number of characters (either concrete or symbolic) until a concrete null byte

is found. Its symbolic execution in σ̂ produces the formula: Φ̂1 ≡ (ret = 3). Accordingly, none of the

soundness properties can be verified, as both implications Φ̂1 ⇒ Φ and Φ ⇒ Φ̂1 are false. Hence, for

50

this summary, the validation tool will produce the following counterexamples:

Missing Path: [s = ‘A|A| \0 | \0 ’ ∧ ret = 2]

Wrong Path: [s = ‘A|A| \0 | \0 ’ ∧ ret = 3]

To address the soundness problems of strlen1, one can use a predicate that states that the given string

has no intermediate null characters; in this case, for strings of length 3, the predicate can be formalized

as follows:

ρ ≡ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (sym3 6= \0)

Considering this precondition, we compute a new boolean formula that results from the symbolic execu-

tion of strlen’s concrete function in σ̂ ∧ ρ. Given restrictions on the input, the symbolic execution of the

concrete function on the initial symbolic state will generate the formula:

Φ ≡ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (sym3 6= \0) ∧ (ret = 3)

Analogously, the symbolic execution of the summary strlen1 in the same symbolic state σ̂1 ∧ ρ will

generate the formula:

Φ̂1 ≡ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (sym3 6= \0) ∧ (ret = 3)

We can see that when restricting the initial symbolic state with the predicate ρ, the two final symbolic

states coincide. Hence, we conclude that the symbolic summary is generalized complete with respect

to the predicate ρ as it satisfies both implications: Φ⇒ Φ̂1 and Φ̂1 ⇒ Φ.

1 int strlen1(char* s){

2 int i = 0;

3 while(1){

4 if(!summ_is_symbolic(&s[i], CHAR_SIZE){ //s[i] is not symbolic

5 if (s[i] == '\0') break;

6 }

7 i++;

8 }

9 return i;

10 }

Listing 4.2: Implementation of summary strlen1

51

4.2.1.B Function - strcmp

Consider the libc function strcmp (int strcmp(const char *str1, const char *str2)), that com-

pares two input strings, character by character according to their ASCII value. As specified by the

standard, this function returns the value 0 if the two given strings coincide, a positive integer if the first

string is lexicographically greater than the second one, and a negative integer otherwise. In order to

check if our summaries for strcmp abide by the proposed correctness properties, we first must deter-

mine the boolean formula Φ that results from the symbolic execution of strcmp’s concrete implementa-

tion in an initial symbolic state σ̂. For this function, we consider an initial symbolic state σ̂ = 〈µ̂, true〉

that contains two symbolic input strings with maximum length two; put formally: str1, str2 ⊂ µ̂, where

str1 = ‘sym1|sym2| \0 ’ and str2 = ‘sym3|sym4| \0 ’. The symbolic execution of strcmp’s concrete func-

tion in the symbolic state σ̂ produces the following boolean formula:

Φ ≡

ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 ∨ ϕ5 ∨ ϕ6 ∨ ϕ7

ϕ1 ≡ (sym1 > sym3) ∧ (ret = 1)

ϕ2 ≡ (sym1 < sym3) ∧ (ret = −1)

ϕ3 ≡ (sym1 = sym3) ∧ (sym1 = \0) ∧ (ret = 0)

ϕ4 ≡ (sym1 = sym3) ∧ (sym2 > sym4) ∧ (sym1 6= \0) ∧ (ret = 1)

ϕ5 ≡ (sym1 = sym3) ∧ (sym2 < sym4) ∧ (sym1 6= \0) ∧ (ret = −1)

ϕ6 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 = \0) ∧ (ret = 0)

ϕ7 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = 0)

Let us consider the symbolic summary strcmp2. Listing 4.3 shows a partial implementation of this

summary, focusing on the fragment of the summary responsible for handling input strings of the same

size (the complete implementation can be found in A.2). In this case, the summary iterates over the

characters of the two given strings. At each index, the summary first checks if the two characters at

that index are guaranteed to be different, in which case it simply returns 1. If it cannot prove that the

two characters are different, it constructs a formula, c1 equals c2, representing the conditions that must

hold for the characters at the current index to coincide and conjuncts that formula with the accumulator

formula equals conds restr. At the end of the loop, the accumulator formula equals conds restr holds

the conditions that must be true for the two given strings to coincide. Hence, the summary creates a

new symbolic variable retval, which is used as the return value of the summary, and extends the current

path condition with the the formula:

(equals conds restr ∧ retval = 0) ∨ (¬equals conds restr ∧ retval 6= 0)

52

1 int strcmp2(char* s1, char* s2){

...

28 for(int i = 0; i < size i++){ //Strings can be the same size

29 char c1 = s1[i];

30 char c2 = s2[i];

31

32 //Both chars are concrete and different

33 if(!summ_is_symbolic(&s1[i],CHAR_SIZE) && !summ_is_symbolic(&s2[i],CHAR_SIZE) && c1!=c2){

34 canBeEqual = 0; canBeDifferent = 1;

35 break;

36 }

37 else{

38 restr_t c1_equals_c2 = _solver_EQ(&c1, &c2, CHAR_SIZE); // c1 == c2

39 restr_t c1_not_equals_c2 = _solver_NEQ(&c1, &c2, CHAR_SIZE); // c1 != c2

40

41 //c1 must equal c2?

42 if(!_solver_is_it_possible(c1_equals_c2)){

43 canBeEqual = 0; canBeDifferent = 1;

44 break;

45 }

46 else{

47 //can c1 be different than c2?

48 if(_solver_is_it_possible(c1_not_equals_c2)){

49 canBeDifferent = 1;

50 }

51 canBeEqual = 1;

52 equal_conds_restr = _solver_And(equal_conds_restr, c1_equals_c2);

53 }

54 }

55 }

56

57 if(canBeDifferent && canBeEqual){ //Strings can be both equal and different

58 int zero = 0; symbolic retval = summ_new_sym_var(INT_SIZE);

59 restr_t retval_equals_zero = _solver_EQ(&retval, &zero, INT_SIZE);

60 restr_t retval_diff_zero = _solver_NEQ(&retval, &zero, INT_SIZE);

61

62 diff_conds_restr = _solver_And(_solver_NOT(equal_conds_restr), retval_diff_zero);

63 equal_conds_restr = _solver_And(equal_conds_restr, retval_equals_zero);

64 equal_conds_restr = _solver_And(equal_conds_restr, str_diff_zero(s1)); //s1 has no \0

65

66 final_restr = _solver_Or(equal_conds_restr, diff_conds_restr);

67 summ_assume(final_restr);

68 return retval;

69 }

70

71 else if(canBeEqual){ //Strings can only be equal

72 equal_conds_restr = _solver_And(equal_conds_restr, str_diff_zero(s1));

73 summ_assume(equal_conds_restr);

74 return 0;

75 }

...

Listing 4.3: Summarized implementation of summary strcmp2

In order to assess whether or not this symbolic summary is forward/backward sound, let us consider

53

the symbolic state resulting from the execution of the summary in the state σ̂ introduced above:

Φ̂ ≡

ϕ̂1 ∨ ϕ̂2

ϕ̂1 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = 0)

ϕ̂2 ≡ ((sym1 6= sym3) ∨ (sym2 6= sym4)) ∧ (ret 6= 0)

With the help of the validation tool, we can conclude that the summary does not satisfy any of the

soundness properties, since both implications Φ ⇒ Φ̂ and Φ̂ ⇒ Φ are false. More concretely, for this

summary, our validation tool will produce the following counterexamples:

Missing Path: [str1 = ‘ \0 |A| \0 ’ ∧ str2 = ‘ \0 |B| \0 ’ ∧ ret = 0]

Wrong Path: [str1 = ‘A|A| \0 ’ ∧ str2 = ‘B|B| \0 ’ ∧ ret = 1]

The missing path captures the case in which the two strings have a null character in an intermediate

position and have mismatching characters after the null character. While the concrete implementation

would consider such two strings equal, the summary strcmp2 does not capture this case since it as-

sumes that all intermediate characters are different from \0. The wrong path captures the case in which

the first string is lexicographically smaller than the second one. In this case, the summary strcmp2

simply states that ret 6= 0, allowing the symbolic return value to include positive integers.

To address the soundness problems of strcmp2, we consider two separate predicates over the given

input strings. A predicate ρ1 ≡ (sym1 6= \0) ∧ (sym2 6= \0) stating that none of the strings contains

intermediate null characters and a predicate ρ2 ≡ (sym1 = sym3) ∧ (sym2 = sym4) stating that the

two strings coincide in all characters. In the following, we will demonstrate that the summary strcmp2

is forward sound with respect to ρ1 and backward sound with respect to ρ2, meaning that it is complete

with respect to the conjunction of the two predicates.

Generalized Forward Soundness - strcmp2 Let us first consider the predicate ρ1. The symbolic

execution of the concrete function strcmp in the symbolic state restricted by this predicate, σ̂ ∧ ρ1, will

result in the following formula:

Φρ1 ≡

ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 ∨ ϕ5

ϕ1 ≡ (sym1 > sym3) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret > 0)

ϕ2 ≡ (sym1 < sym3) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret < 0)

ϕ3 ≡ (sym1 = sym3) ∧ (sym2 > sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = 1)

ϕ4 ≡ (sym1 = sym3) ∧ (sym2 < sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = −1)

ϕ5 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = 0)

54

Analogously, the symbolic execution of the summary strcmp2 in the symbolic state σ̂ ∧ ρ1, will result in

the following formula:

Φ̂ρ1 ≡

ϕ̂1 ∨ ϕ̂2 ∨ ϕ̂3

ϕ̂1 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = 0)

ϕ̂2 ≡ (sym1 6= sym3) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret 6= 0)

ϕ̂3 ≡ (sym2 6= sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret 6= 0)

One can easily see that the paths generated by the execution of the concrete function are contained in

those generated by the summary, meaning that the summary is generalized forward sound with respect

to predicate ρ1 (Φρ1 ⇒ Φ̂ρ1).

Generalized Backward Soundness - strcmp2 Let us now consider predicate ρ2. The symbolic exe-

cution of the concrete function strcmp in the symbolic state restricted by this predicate, σ̂ ∧ ρ2, will result

in the following formula:

Φρ2 ≡

ϕ1 ∨ ϕ2 ∨ ϕ3

ϕ1 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 = \0) ∧ (ret = 0)

ϕ2 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 = \0) ∧ (ret = 0)

ϕ3 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = 0)

Analogously, the symbolic execution of the summary strcmp2 in the symbolic state σ̂ ∧ ρ2, will result in

the following formula:

Φ̂ρ2 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= 0) ∧ (sym2 6= 0) ∧ (ret = 0)

In contrast to the executions obtained for predicate ρ1, in this case the paths generated by the symbolic

execution of the summary are contained in those generated by concrete function, meaning that the

summary is generalized backward sound with respect to predicate ρ2 (Φ̂ρ2 ⇒ Φρ2).

Generalized Completeness - strcmp2 Finally, consider the predicate ρ3 ≡ (ρ1∧ρ2). The symbolic ex-

ecution of both the concrete function and the summary in the symbolic state restricted by this predicate,

σ̂ ∧ ρ3, produce the same formula:

Φρ3 ≡ Φ̂ρ3 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = 0)

Hence, the equivalence Φ̂ρ3 ⇔ Φρ3 is true, meaning that the summary strcmp2 is generalized complete

with respect to the predicate ρ3.

55

4.2.1.C Function - memcpy

Consider the libc function memcpy (void* memcpy(void* dst, const void* src, size_t n)). This

function copies n bytes from the memory area pointed to by src to the memory area pointed to by dst,

and returns a pointer to dst. To compute the boolean formula Φ for memcpy ’s concrete implementation,

we consider a symbolic state σ̂ where the input argument n is an unconstrained symbolic variable. In this

symbolic state, the symbolic execution of memcpy ’s concrete implementation will generate the following

simplified formula:

Φ ≡

ϕ0 ∨ ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕmax

ϕ0 ≡ BytesCopied(src, dest, 0) ∧ (n = 0) ∧ (ret = dst)

ϕ1 ≡ BytesCopied(src, dest, 1) ∧ (n = 1) ∧ (ret = dst)

ϕ2 ≡ BytesCopied(src, dest, 2) ∧ (n = 2) ∧ (ret = dst)

...

ϕmax ≡ BytesCopied(src, dest,max) ∧ (n = max) ∧ (ret = dst)

where max corresponds to the maximum unsigned integer (size t) that can be represented by the sym-

bolic variable n and the predicate BytesCopied(src, dest, i) is used to signify that i bytes from the mem-

ory segment pointed to by src were copied to the memory segment pointed to by dst. In practice,

however, it is not feasible to consider all the possible execution paths that can be triggered by a call to

memcpy with an unconstrained symbolic argument n. To counter this issue, when testing our summaries

for memcpy, we make use of a predicate ρ that bounds the value denoted by the parameter n. Here,

to simplify the presentation, we set the maximum value of n to be 3 with the predicate ρ ≡ (n ≤ 3).

Furthermore, we also constrain the size of the memory segments pointed to by src and dst, picking size

3 for both segments, and assume that they are disjoint. Put formally, we consider the initial symbolic

state σ̂ = 〈µ̂, ρ〉, where: src, dst ⊂ µ̂, src = {a, a, a}, and dst = {b, b, b}. The symbolic execution of

memcpy ’s concrete implementation in the state σ̂ generates the boolean formula:

Φρ ≡

ϕ0 ∨ ϕ1 ∨ ϕ2 ∨ ϕ3

ϕ0 ≡ (src0 = a ∧ src1 = a ∧ src2 = a) ∧ (dst0 = b ∧ dst1 = b ∧ dst2 = b) ∧ (n = 0) ∧ (ret = dst)

ϕ1 ≡ (src0 = a ∧ src1 = a ∧ src2 = a) ∧ (dst0 = a ∧ dst1 = b ∧ dst2 = b) ∧ (n = 1) ∧ (ret = dst)

ϕ2 ≡ (src0 = a ∧ src1 = a ∧ src2 = a) ∧ (dst0 = a ∧ dst1 = a ∧ dst2 = b) ∧ (n = 2) ∧ (ret = dst)

ϕ3 ≡ (src0 = a ∧ src1 = a ∧ src2 = a) ∧ (dst0 = a ∧ dst1 = a ∧ dst2 = a) ∧ (n = 3) ∧ (ret = dst)

Backward Soundess - memcpy2 Now let us consider the summary memcpy2 given in Listing 4.4. In

56

the same symbolic state σ̂ρ, this summary generates the boolean formula:

Φ̂ρ ≡ (src0 = a ∧ src1 = a ∧ src2 = a) ∧ (dst0 = a ∧ dst1 = a ∧ dst2 = a) ∧ (n = 3) ∧ (ret = dst)

We can see that memcpy2 generates an execution path that is contained in Φρ. Hence, the implica-

tion Φ̂ρ ⇒ Φρ is true, meaning that that this summary is generalized backward sound with respect to

predicate ρ.

In order to implement a summary that takes into account multiple execution paths of a function

with memory manipulation side effects, a summary can either fork the symbolic engine’s executor to

explore several paths, or employ a mechanism that allows to create memory segments of symbolic

size [59,60]. Considering that AVD does not support such mechanism, in memcpy2 we choose to model

the execution path corresponding to the maximum value that can be denoted by the input argument n.

Hence, we can see that in the symbolic state σ̂ρ memcpy2 generates the execution path where 3 bytes

are copied (n = 3). To this end, using the original unconstrained symbolic state σ̂ the symbolic execution

of memcpy2 would produce the following simplified formula:

Φ̂ ≡ BytesCopied(src, dest,max) ∧ (n = max) ∧ (ret = dst)

We can see that even without the predicate ρ, the implication Φ̂⇒ Φ is true, meaning that the summary

memcpy2 is also backward sound.

4.3 Supporting the Validation Tool

In this section we will go over the implementation details of our summary validation tool, covering its

main features and how it is supported by AVD.

AVD is a tool capable of performing unassisted symbolic execution that we can effortlessly extend

and modify, making it an ideal platform to support the validation tool. In this context, the role of AVD is to

provide a symbolic engine that can compute the symbolic outputs Φ and Φ̂ by performing pure symbolic

execution over a target concrete function and a respective summary. When computing these formulas

it is important to guarantee that the symbolic engine can produce all possible execution paths for Φ and

Φ̂ with a given input. This is a crucial requirement for the validation tool, as only by generating every

feasible execution path can we evaluate the correctness of a summary.

One of our design goals for the validation tool is to provide an infrastructure that can verify the

correctness of a summary in a single joint execution; the user can provide a single binary file containing

the code for both the concrete function C and the symbolic summary Ĉ, along with the respective

symbolic input. To this end, we have extended AVD so that it allows to run the two symbolic executions,

57

1 void* memcpy2(void *dest, void *src, size_t n){

2

3 summ_memory_addr(src, &n, INT_SIZE);

4 summ_memory_addr(dest, &n, INT_SIZE);

5

6 //If length is symbolic maximize and restrict to a concrete length

7 if(summ_is_symbolic(&n,INT_SIZE)){

8

9 int max = summ_maximize(&n, INT_SIZE);

10 restr_t maximize = _solver_EQ(&n, &max, INT_SIZE);

11 summ_assume(maximize);

12 n = max;

13 }

14

15 unsigned char *str_dest = (unsigned char*) dest;

16 unsigned char *str_src = (unsigned char*) src;

17

18 for(int i = 0; i < n; i++){

19 unsigned char c = *(str_src + i);

20 *(str_dest + i) = c;

21

22 }

23 return dest;

24 }

Listing 4.4: Implementation of summary memcpy2

on two independent starting memories, in a single global execution of the symbolic engine. As previously

mentioned, in AVD, memories are the nodes of the symbolic execution tree, hence, by separating the

starting nodes of the two executions, we can effectively separate the generated execution paths, allowing

us to reach the end of the symbolic execution with the boolean formulas Φ and Φ̂ conveniently stored in

two variables.

As illustrated in Figure 4.8, a boolean formula Φ is the logical disjunction of all execution paths cor-

responding to the leaf nodes (memories) that reach the return address of the concrete function. Where

as described in Section 4.1, an execution path ϕ is the conjunction of all the conditional statements over

symbolic input variables (π), along with the return value (ret = r̂), and a boolean formula denoting the

significant memory addresses manipulated (dµ̂efm). The same logic applies to a formula Φ̂, however, as

illustrated in our summaries, it is often the case that symbolic summaries for functions that do not interact

with memory (e.g., strlen) are implemented to prevent the symbolic engine from branching at conditional

statements, consequently, only the initial memory containing all the simulated paths will reach the return

address of the summary. In order to construct an execution’s path formula all its elements are obtained

directly from the corresponding memory node. AVD’s Memory object not only contains the internal

representation of symbolic memory, but also maintains the current path condition.

The formulas Φ and Φ̂ are internally represented as Z3 boolean expressions, consequently, the solver

58

Memory1

Concrete Function
Return Adress

Memory2 Memory3

Memory4 Memory5 Memory6 Memory7

Concrete Function
Call Adress

V= V V

Symbolic execution

Store Input
Arguments

Figure 4.8: Illustration of AVD computing a boolean formula Φ

can prove the satisfiability of the correctness implications without any additional steps. In this manner,

implications are effectively verified using Z3 to prove the satisfiability of the corresponding negated

boolean formulas. For example, the Backward Soundness implication, Φ̂ ⇒ Φ, can be written as the

formula: ¬(Φ̂ ∧ ¬Φ), consequently, if the expression Φ̂ ∧ ¬Φ is unsatisfiable the summary is backward

sound. This also applies to generalized properties. As mentioned in Section 4.2, one of the requirements

for this validation tool is to provide counterexamples that illustrate unsatisfiable correctness properties.

To this end, when the solver proves a correctness implication false, it also automatically generates

a concrete execution path that does not satisfy the given implication. More concretely, given a false

implication A⇒ B, the validation tool will ask Z3 to produce a model that satisfies ¬(A⇒ B).

4.3.1 Model Simplification

One important feature of the validation tool is model simplification. A Z3 generated model is nothing but

an assignment of symbolic variables to concrete values. These models can be hard to interpret in the

context of summary debugging, as they represent concretizations of abstract execution paths. To this

end, we implement a mechanism that improves the interaction with the validation tool, by displaying the

counterexample models prettified according to the arguments and return value of the specific function

being tested. For example, suppose we want to generate a concrete model for the following formula:

ϕ ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= 0) ∧ (sym2 6= 0) ∧ (ret = 0)

where ϕ corresponds to the path condition generated by the symbolic execution of the strcmp function

on two unconstrained symbolic input strings: str1 = ’sym1|sym2| 0 ’ and str2 = ’sym3|sym4| 0 ’. When

59

asked for a concrete model for this formula, Z3 will produce the following model:

[sym1 = 97, sym2 = 97, sym3 = 97, sym4 = 97, sym5 = 0]

This model assigns the symbolic bytes sym1 to sym4 to the ASCII value 97 and the return value sym5

to the integer 0. Or summary validation tool prettifies the obtained model in order to connect it to the

parameters and return value of the summary being tested, which in this case is the function strcmp.

Hence, the obtained model would be presented to the user as:

string1 : ”aa\0”

string2 : ”aa\0”

return : 0

As mentioned before, this mechanism moulds the displayed output to conform to the specification

of each function tested. Hence, different functions can produce vastly different outputs which implies

different code to achieve the desired behaviour. To this end, inside the validation tool, all function

dependent behaviour, such as model simplification, is implemented using plugins. Every function has its

own plugin that contains all the code for functionalities that depend on that function’s specification. This

mechanism allows us to easily extend the validation tool with support for additional functions, besides

the default ones, by simply adding new function plugins.

60

5
Evaluation

Contents

5.1 Evaluation Questions . 63

5.2 EQ1: Time Performance of Tool Independent Summaries 63

5.3 EQ2: Summary Correctness . 68

5.4 EQ3: Bugs in Symbolic Execution tools . 70

61

62

In this chapter we present the results pertaining to the evaluation of our solution.

5.1 Evaluation Questions

This section answers the following three evaluation questions:

EQ1 - What is the overhead of tool independent summaries? We compared the performance of C-

implemented symbolic summaries against that of natively implemented summaries. C-implemented

summaries are slower than their natively-implemented counterparts since their code must be interpreted

by the symbolic execution tool instead of being executed natively.

EQ2 - Is the symbolic reflection API sufficiently expressive to allow for the writing of backward/forward

sound summaries? We used our summary validation tool to guarantee that the developed summaries

satisfy the correctness properties introduced in Section 4.1.

EQ3 - Can our summary validation tool be used to analyse real-world symbolic summaries developed

in the context of other tools? In order to test the applicability and overall scale of our summary validation

tool, we used it to find bugs in external summaries developed as part of the angr and Manticore symbolic

execution tools.

5.2 EQ1: Time Performance of Tool Independent Summaries

In this section we measure the difference in performance of C-implemented symbolic summaries against

that of natively implemented summaries. For our evaluation, we selected a subset of the libc summaries

provided by the AVD tool [16], implemented their corresponding C counterparts, and compared their

respective performances. AVD comes with 36 symbolic summaries for libc functions implemented na-

tively in Python. Out of these 36 summaries, we re-implemented 15 summaries directly in C using the

exact same algorithms as their native Python equivalents. Then, we used AVD to symbolically execute

two data sets using both the natively-implemented and the C-implemented symbolic summaries and

measured their respective performances.

In order to carry out our evaluation we require a symbolic test suite in which to measure the difference

in performance between Python-implemented and C-implemented summaries. To this end, we have

used two distinct symbolic test suites, each with its own benefits. For the first test suite, we used a

subset of the challenge binaries from DARPA’s Cyber Grand Challenge (CGC) [58]. These challenges

were designed for an automated Capture the Flag (CTF) exercise, allowing us to evaluate our summaries

with binaries that simulate real world programs. For the second test suite, we have used a real-world

HashMap library implemented in C and obtained from github [61]. The HashMap library did not come

with symbolic tests, meaning that we had to write our own symbolic test suite. This allowed us to have

63

complete control over the size and complexity of the symbolic tests, enabling us to use pure symbolic

execution as the analysis mode. In contrast, the CGC tests had to be run using an heuristic for trace-

driven execution explained below.

Given a symbolic test suite, our goal is to characterize the overhead incurred by executing AVD with

C-implemented summaries as opposed to natively-implemented summaries. Given a single symbolic

test, the overhead for the test is affected by both the number of calls to symbolic summaries and the

size of the test itself. Hence, in order to effectively characterize the overall overhead of our summaries

considering the test suite as a whole, we cannot simply use an arithmetic average of single-test over-

heads, as the associated variance would be too high. Instead, we characterize the overhead incurred

per executed instruction of C-implemented summaries. To this end, we measure for each symbolic test

the number of executed instructions pertaining to C-implemented summaries and the total overhead.

We then determine the best linear unbiased estimator for the overhead per executed symbolic summary

instruction using a simple linear regression. More concretely, for a given test, the summary overhead O,

can be written as:

O = α . IC (5.1)

where the coefficient α is the overhead per executed instruction of a C summary, and IC is the number

of executed instructions of C-implemented summaries (O = tP − tC with tC and tP being the execution

time spent on the C and Python summaries respectively). To compute the best fitting coefficient α̂ for all

tests, we use a simple linear regression as follows:

α̂ =

∑n
i=1(ICi

− IC)(Oi −O)∑n
i=1(ICi

− IC)2
(5.2)

Additionally, for a better understanding of the actual overhead experienced from employing the C-

implemented summaries in a given data set, we also measure the global overhead percentage, G%, for

a test suit according to the expression:

G(%) =

∑n
i=1 TCi∑n
i=1 TPi

× 100 (5.3)

where TCi
and TPi

correspond to the total execution time of a test, i, using C and Python summaries

respectively.

In order to streamline the evaluation process, we extended AVD with a simple mechanism to switch

between natively-implemented and C-implemented summaries and also instrumented the tool to allow

for measuring the execution time and number of instructions for each test and each executed summary.

64

5.2.1 CGC Data Set

CGC is the world’s first all-machine cyber hacking tournament, where teams consisting of some of the

top security researchers in the world, competed against each other in an automated CTF exercise.

The Challenge Binaries that serve as the test bed for the CTF are tailor-made programs specifically

implemented to contain a wide variety of known software vulnerabilities. These challenges do not use

the standard libc runtime. However, they rely on various auxiliary functions that can be mapped to

standard libc functions without damaging their functionality. For instance the challenge CGC Board

uses the function cgc strlen that can be mapped to the standard libc function strlen.

The experiments for this data set where conducted using AVD’s heuristic for guided symbolic execu-

tion, which drives the symbolic execution engine along a specific precomputed path, instead of branching

on all possible paths. Due to the large size and complexity of most of the challenge binaries, many of

which attempt to simulate real world programs, it would be impractical to conduct this evaluation using

pure symbolic execution. In fact, if we were to use pure symbolic execution on the CGC challenges,

AVD would not be able complete the analysis of any challenges. Despite this, every CGC challenge has

at least one Proof of Vulnerability (PoV), which we use to generate an execution trace that will trigger a

vulnerability. Then, we feed these traces to AVD to perform guided symbolic execution along the path

specified by the PoV.

The CGC dataset includes 246 challenge binaries from which 218 use functions that can be mapped

to libc equivalent ones. These 218 challenges correspond to a total of 358 PoVs (recall that a challenge

may be associated with more than one PoV). We executed AVD on these 358 PoVs using using both

summary implementations with a maximum timeout of 1 hour. Some of these PoVs where excluded from

the analysis: 88 PoVs timed out in both executions and 59 contained features unsupported by AVD, such

as floating point operations, and multiple binaries, causing AVD to throw an error. From the remaining

211 PoVs, we obtained 100 valid executions, since 111 PoVs could not be analysed as they fall into a

current limitation of AVD’s trace-driven heuristic for symbolic execution. Out of the remaining 100 valid

PoVs, 10 where excluded as they did not call any summaries, and 3 were excluded for causing the

symbolic execution to time out, leaving us with 87 selected POVs. We plotted the summary overhead,

O, for all the 87 selected PoVs according to the expression (5.1). Results are shown in the scatter

plot of Figure 5.1, where the x axis corresponds to the number of executed instructions pertaining to

C-implemented summaries, IC , and the y axis to the measured overhead, tC − tP . After computing

the linear regression to best fit all data, we obtain a coefficient α̂ of 0.0005, which translates to an

approximate overhead of 0.5 ms or half a millisecond per executed instruction of a C summary. As for

the global overhead percentage for this data set, we obtain a G% of 194%.

65

101 102 103 104 105 106 107

10−2

10−1

100

101

102

103

104

Instructions: IC

O
ve

rh
ea

d:
O

=
t C
−
t P

(s
)

Data
Linear regression: y = 0.0005x

Figure 5.1: Overhead scatter plot for the GCG dataset.

5.2.2 HashMap Library

To complement the results obtained with the CGC binaries, we created our own data set using a C

implementation of a chained HashMap data structure library. More concretely, we obtained a real-

world HashMap implemented in C from github [61] and wrote a symbolic test suite for that library. This

particular data structure and implementation were chosen to maximize the number of libc functions that

can be replaced by our libc symbolic summaries. Our test suite consists of 10 symbolic tests, which cover

all the functions exposed by the library: hashmap new, hashmap free, hashmap get and hashmap set.

We focused on key-manipulating functions, which were tested using symbolic keys instead of concrete

ones. Listing 5.1 shows one of the created symbolic tests. As the size and complexity of the targeted

library are substantially smaller than those of the CGC benchmarks, our symbolic test suite can be

executed without the guided symbolic execution heuristic of AVD. This allowed us to compare the level

of branching and execution time obtained when using C-implemented symbolic summaries against those

obtained when using the concrete implementations of libc functions.

One potential problem that could arise from using an HashMap as the case study is the symbolic

execution of the hash function. Hash functions are notoriously problematic in the context of symbolic

execution. Not only can they cause the number of paths to explode, but they will likely introduce complex

mathematical computations (e.g., non-linear arithmetic) that an SMT solver cannot process. Considering

that our goal is to evaluate the performance of the C summaries and not the hash function itself, we

circumvent this problem by implementing an additional summary in Python to simulate the hash function.

This summary is implemented using modular arithmetic so that it returns bucket values in a circular

fashion, guaranteeing consistent hash collisions across executions.

To determine the overhead per instruction for this data set, we executed the 10 symbolic tests using

66

1 /*test3-1*/

2 #define HASHMAP_SIZE 5

3 #define STRING_SIZE 5

4 #define MAX_VALUES 5

5

6 int main(){

7 //Create hashmap

8 hashmap_t map = hashmap_new(HASHMAP_SIZE);

9

10 //Insert symbolic key-value pairs

11 for(int i = 0; i< MAX_VALUES; i++){

12 char key[STRING_SIZE];

13 char value[STRING_SIZE];

14

15 fgets(key, STRING_SIZE, 0);

16 fgets(value, STRING_SIZE, 0);

17 hashmap_set(map, key, &value, sizeof(char)*STRING_SIZE);

18 }

19 //Get value with concrete key

20 char* key = "abcd" ;

21 void* ptr = hashmap_get(map, key);

22

23 //Print value

24 char* val = (char *) ptr;

25 if (val != NULL) puts(val);

26

27 //Free hashmap

28 hashmap_free(map);

29

30 return 0;

31 }

Listing 5.1: test3-1 from the HashMap data set.

both summary implementations with a maximum timeout of 30 minutes per test. Again, we plotted the

summary overhead, O, for the 10 test binaries, as none of the executions timed out. The results are

shown in the scatter plot of Figure 5.2. As before, we use a simple linear regression to estimate the

value of the coefficient α̂. Interestingly, the results for the HashMap benchmark are consistent with

those of the CGC benchmark in that we obtain the exact same value for α̂, 0.0005. This result suggests

an overhead of approximately half a millisecond per executed instruction of a C summary that remains

consistent across different data sets and heuristics. Regarding the global overhead percentage for this

test suite, we obtain a G% of 511%. As expected this value is substantially larger compared to the CGC

one, as this data set is composed by much smaller tests denoting use cases of the HashMap library,

consequently spending a much larger portion of the execution time inside summary calls.

For some libc functions we can execute their concrete reference implementations instead of symbolic

summaries. However this approach tends to lead to prohibitive performance. To compare the perfor-

67

103 104 105 106

100

101

102

Instructions: IC

O
ve

rh
ea

d:
O

=
t C
−
t P

(s
)

Data
Linear regression: y = 0.0005x

Figure 5.2: Overhead scatter plot for the HashMap dataset.

mance and branching of symbolic summaries against those of concrete reference implementations, we

executed our symbolic test suite using both our C symbolic summaries and their respective C reference

implementations. Some reference implementations were obtained from their manual page, while others

were developed from scratch following their CGC counterparts. Results are summarized in Table 5.1,

which shows both the total execution time and branching factor per symbolic test. The branching factor

corresponds to the number of generated final symbolic memories. We can see that for all tests, the

number of memories produced by the symbolic execution without summaries is always at least one or-

der of magnitude greater than the corresponding execution employing summaries, and can even go as

high as four orders of magnitude greater in test3-1. Consequently, 6 of the 10 tests executed without

summaries reach the maximum time out of 30 minutes, 3 of which are executed in less than one minute

with C summaries, which serves as a testament to the usefulness of symbolic summaries even when

implemented in C (as opposed to being implemented natively).

5.3 EQ2: Summary Correctness

Our library of summaries models 20 libc functions from 3 different header files (string.h, stdlib.h and

stdio.h) for each of which we implemented several summaries satisfying different correctness properties,

with a total of 57 summaries. Considering two summaries that satisfy the same correctness property, we

say that one summary is more accurate than the other if it is “closer” to satisfy the Completeness prop-

erty. For example, considering two backward sound summaries, the more accurate summary models a

larger number of correct paths of the concrete function. In contrast, for two forward sound summaries,

the more accurate summary models a smaller number of spurious paths. The same logic can be ap-

68

Table 5.1: Summarized results for the HashMap dataset

Python C No Summaries
Time (s) Memories Time (s) Memories Time (s) Memories

test1-1 1.12 7 7.53 7 25.18 165
test1-2 4.10 15 19.21 15 124.41 225
test1-3 5.95 27 53.43 27 338.40 325
test2-1 6.53 63 24.02 63 532.55 6249
test2-2 25.42 485 180.59 485 Timeout 17732
test3-1 1.67 3 5.23 3 Timeout 15626
test3-2 32.08 369 152.89 369 Timeout 19524
test4-1 1.85 7 5.99 7 Timeout 9566
test4-2 67.87 919 304.21 919 Timeout 11710
test5 3.36 17 12.75 17 Timeout 9462

plied to the generalized properties, again considering two symbolic summaries that satisfy the same

generalized property, the more accurate summary requires a weaker precondition ρ to satisfy the given

property. As mentioned in Chapter 3, all summaries are named using a number suffix, which allows to

organize the summaries by correctness property and order of accuracy. For example, considering our

two forward sound summaries for the atoi function: atoi2 and atoi3, the latter produces fewer spurious

paths, as the summaries are ordered in increasing order of accuracy.

The correctness properties of all implemented summaries, except those modelling I/O functions,

are given in Table 5.2, where the N/A column represents the summaries that only satisfy generalized

properties. These are further described in Table 5.3, where we detail their corresponding generalized

properties. For instance, we have two forward sound summaries (atoi2 and atoi3) for atoi and one

generalized forward sound (atoi1).

The summaries modelling I/O functions (getchar, putchar fgets and puts) are not included in the

tables above since we cannot formally verify that they satisfy any correctness property. I/O functions

must interact with their runtime environment through system calls, meaning that they cannot be fully

implemented in C, as they have to step outside of the C semantics to execute the system call (in the

case of getchar, the read system call). This means that in order to symbolically execute these functions

we always have to have a summary to start with. This bootstrapping summary cannot be symbolically

verified. Considering the importance of input functions in the context of symbolic execution, specially

for security analysis, we implement our summaries for the getchar and fgets functions in order to model

a reasonable number of execution paths that can be produced by the corresponding functions. For

example, one of our summaries modelling the fgets function generates an unconstrained symbolic string

with the maximum size allowed by the current path conditions.

69

Table 5.2: Correctness properties of the implemented summaries

N/A
Backward

Soundness
Forward

Soundness
Completeness

atoi 1 - 2, 3 -
memchr 1 2 3 4
memcmp 1, 2, 3 - 4 -
memcpy 1 2 - -
memmove 1 2 - -
memset 1 2 - -
strcat 1 2 - -
strchr 1 2 3, 4 5
strcmp 1, 2, 3 - 4 -
strcpy 1 2 - -
strlen 1 2 3 4
strncat 1, 2 3 - -
strncmp 1, 2, 3 - 4 -
strncpy 1, 2 3 - -
strpbrk 1 3 - 4
strrchr 1 2 3 4

5.4 EQ3: Bugs in Symbolic Execution tools

We use our summary validation tool to find bugs in the symbolic summaries included in tools other than

AVD, more concretely the symbolic execution tools angr and Manticore. In this context, we consider

as a “bug” a summary that does not satisfy any of the standard soundness properties (backward or

forward soundness), and for which there is no additional information about the expected behaviour of

the summary regarding missing/incorrect paths. To this end, we implemented a total of 14 summaries

from both tools directly in C, using our reflection API and following their original Python code. We then

used our validation tool to evaluate these summaries by comparing them against their corresponding

concrete implementations. Out of the analysed 14 summaries, we found two buggy summaries, one in

angr and one in Manticore. Both summaries include spurious paths and exclude correct paths, meaning

that they are neither backward nor forward sound. Importantly, the code of these summaries is not

annotated with any comments clarifying the preconditions that must hold for the summary to be applied;

hence, we cannot say whether or not the authors were aiming at a specific generalized property.

5.4.1 Bug in angr

The first detected bug occurs in angr ’s summary for libc’s strncmp function. The strncmp function is a

variation of the standard strcmp, whose specification we described in Section 4.2.1.B, which receives an

additional argument n specifying the maximum number of bytes to be compared from the two strings. In

70

Table 5.3: Generalized correctness properties of the implemented summaries

Generalized Backward
Soundness

Generalized Forward
Soundness

Generalized
Completeness

atoi - 1 -
memchr - - 1
memcmp 2, 3 2, 3 1, 2, 3
memcpy - - 1
memmove - - 1
memset - - 1
strcat - - 1
strchr - - 1
strcmp 2, 3 2, 3 1, 2, 3
strcpy - - 1
strlen - - 1
strncat - - 1, 2
strncmp 2, 3 2, 3 1, 2, 3
strncpy - - 1, 2
strpbrk - - 1
strrchr - - 1

angr ’s architecture the strncmp summary also provides the core functionality for other string comparison

summaries, as the implementations for the strcmp, strstr and strcasecmp summaries will call the parent

strncmp summary. For instance, strcmp’s summary is implemented as a particular case of strncmp,

where the argument n is equal to the length of the larger string.

All the possible execution paths for the strncmp function can be divided into two main groups accord-

ing to the returned value: the execution paths where the return value is equal to zero; and in contrast,

the execution paths where the return value is different from zero. angr correctly models all the execution

paths that return the value zero, accounting for the cases where both strings are equal, both strings are

empty, or the argument n is equal to zero. Regarding the execution paths with a return value different

that zero, i.e, the cases where the input strings are different, using our notation, angr will generate the

following execution path formula:

ϕ = [π ∧ (ret = 1)]

where π represents all the possible combinations for two strings to be different. However, by having a

fixed return value of 1, the summary does not satisfy any of the standard soundness properties, as this

formula produces both missing and incorrect executions paths. If we recall strncmp’s specification, this

function should also return a negative value when the first string is lower than the second. Assuming for

example two symbolic input strings of size 3, str1 and str2, our validation tool will produce the following

71

counterexamples:

Missing Path: [str1 = ‘aaa’ ∧ str2 = ‘bbb’ ∧ n = 3 ∧ ret = −1]

Wrong Path: [str1 = ‘aaa’ ∧ str2 = ‘bbb’ ∧ n = 3 ∧ ret = 1]

5.4.2 Bug in Manticore

The second bug was found in Manticore’s summary for libc’s strcmp function. In this tool’s architecture

strcmp is modelled using an if-then-else formula. The summary iterates over the two strings to build a

recursive if-then-else formula over pairs of symbolic bytes. This formula expresses that if two symbolic

bytes are different then the summary must return the difference of those bytes, else, if they are equal,

the summary must return the value 0 when they are the last two bytes of the string or continue iterating

otherwise. For instance, considering two symbolic input strings: str1 = ‘sym1|sym2| \0 ’ and str2 =

‘sym3|sym4| \0 ’, this summary will create an if-then-else tree as illustrated in Figure 5.3.

False

True

True

False

Figure 5.3: Illustration of an if-then-else tree produced by Manticore’s strcmp summary.

Considering a symbolic state σ̂ = 〈µ̂, true〉 that contains the two symbolic input strings, such that

str1, str2 ⊂ µ̂. The symbolic execution of this summary in σ̂ produces the following boolean formula:

72

Φ̂ ≡

ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 ∨ ϕ5

ϕ1 ≡ (sym1 > sym3) ∧ (ret = 1)

ϕ2 ≡ (sym1 < sym3) ∧ (ret = −1)

ϕ3 ≡ (sym1 = sym3) ∧ (sym2 > sym4) ∧ (ret = 1)

ϕ4 ≡ (sym1 = sym3) ∧ (sym2 < sym4) ∧ (ret = −1)

ϕ5 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (ret = 0)

However, if we recall strcmp’s specification, the symbolic execution of a concrete function in the same

symbolic state σ̂ produces the formula:

Φ ≡

ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 ∨ ϕ5 ∨ ϕ6 ∨ ϕ7

ϕ1 ≡ (sym1 > sym3) ∧ (ret = 1)

ϕ2 ≡ (sym1 < sym3) ∧ (ret = −1)

ϕ3 ≡ (sym1 = sym3) ∧ (sym1 = \0) ∧ (ret = 0)

ϕ4 ≡ (sym1 = sym3) ∧ (sym2 > sym4) ∧ (sym1 6= \0) ∧ (ret = 1)

ϕ5 ≡ (sym1 = sym3) ∧ (sym2 < sym4) ∧ (sym1 6= \0) ∧ (ret = −1)

ϕ6 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 = \0) ∧ (ret = 0)

ϕ7 ≡ (sym1 = sym3) ∧ (sym2 = sym4) ∧ (sym1 6= \0) ∧ (sym2 6= \0) ∧ (ret = 0)

With the two formulas side by side, we can see that Manticore’s summary does not take into account that

the intermediate symbolic bytes can also be null characters. Consequently, it does not satisfy any of the

standard soundness properties, as Φ̂ leads to both missing and incorrect executions paths. Considering

the same symbolic state σ̂, our validation tool will produce the following counterexamples:

Missing Path: [str1 = ‘ \0 |A| \0 ’ ∧ str2 = ‘ \0 |B| \0 ’ ∧ ret = 0]

Wrong Path: [str1 = ‘ \0 |B| \0 ’ ∧ str2 = ‘ \0 |A| \0 ’ ∧ ret = 1]

73

74

6
Conclusion

Contents

6.1 Conclusions . 77

6.2 Future Work . 77

75

76

6.1 Conclusions

Symbolic summaries are a key element of modern symbolic execution engines. They are an essential

tool for both containing the path explosion problem and modelling interactions with the runtime environ-

ment. Even though the implementation of symbolic summaries is time-consuming and error-prone, there

is still a clear lack of mechanisms and methodologies for sharing symbolic summaries across different

tools and for their uniform validation.

This thesis proposes a new methodology for developing tool-independent summaries and semi-

automatically validating them, which has at its core a new symbolic reflection API for explicit manipulation

of C symbolic states in a tool-independent way. Using the proposed API, symbolic summaries can be di-

rectly implemented in C and shared across different symbolic execution tools, provided that these tools

implement the API. To demonstrate the expressiveness of our API, we extended the symbolic execu-

tion tools angr and AVD in order to support it and developed tool-independent symbolic summaries for

20 different libc functions, comprising string manipulation functions, number-parsing functions, and in-

put/output functions. Furthermore, we develop an infrastructure for the semi-automatic validation of the

summaries written with our API and apply this infrastructure to the validation of 57 libc summaries writ-

ten by us and 14 summaries obtained from state-of-the-art symbolic execution tools. Our validation tool

flagged two of the third-party analysed summaries as being incorrect in that they both exclude correct

execution paths and include spurious ones.

6.2 Future Work

This work streamlines the implementation and evaluation of summaries that can be employed by different

symbolic execution tools. Despite this, there is still work to be done before our solution can be used to

develop summaries for all types of C functions. Currently, our symbolic reflection API does not support

the implementation of summaries for some system calls such as heap manipulation functions (e.g.,

malloc). To this end, we would like to extend our API with primitives that allow to interact with the

execution environment of program, starting with a tool’s internal representation of the heap. This is

not a trivial task as symbolic execution tools can have vastly different mechanisms to model the C

heap. Consequently, it is a significant challenge to design refined primitives that allow for the creation of

expressive summaries for interaction with the heap

Still on the subject of system calls, we also would like to introduce new correctness properties for

evaluating symbolic summaries that model system calls. All of our correctness properties evaluate

summary models according to the results produced from the symbolic execution of concrete functions.

Hence, these properties cannot be used to evaluate system calls as they represent code that can not

be symbolically executed. Designing these new properties is also a considerable challenge, as it would

77

require defining the behaviour of system call functions in the context of symbolic execution; functions

whose code is outside the scope of the programming language.

Finally, we also believe that the interaction with the validation tool can be improved. Currently, this

tool must be run with one symbolic input at a time. In the future, we plan to extend the tool for it to accept

a range of symbolic inputs on which to evaluate the given summary.

78

Bibliography

[1] M. Carvalho, J. Demott, R. Ford, and D. Wheeler, “Heartbleed 101,” Security & Privacy, IEEE,

vol. 12, pp. 63–67, 07 2014.

[2] Z. Durumeric, M. Payer, V. Paxson, J. Kasten, D. Adrian, J. Halderman, M. Bailey, F. Li, N. Weaver,

J. Amann, and J. Beekman, “The matter of heartbleed,” in Proceedings of the 2014 Conference on

Internet Measurement Conference, 11 2014, pp. 475–488.

[3] R. S. Boyer, B. Elspas, and K. N. Levitt, “Select—a formal system for testing and debugging

programs by symbolic execution,” in Proceedings of the International Conference on Reliable

Software. New York, NY, USA: Association for Computing Machinery, 1975, p. 234–245. [Online].

Available: https://doi.org/10.1145/800027.808445

[4] J. C. King, “A new approach to program testing,” in Proceedings of the International Conference on

Reliable Software. New York, NY, USA: Association for Computing Machinery, 1975, p. 228–233.

[Online]. Available: https://doi.org/10.1145/800027.808444

[5] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of high-coverage

tests for complex systems programs,” in Proceedings of the 8th USENIX Conference on Operating

Systems Design and Implementation, ser. OSDI’08. USA: USENIX Association, 2008, p. 209–224.

[6] N. Wells, “Busybox: A swiss army knife for linux,” Linux Journal, vol. 2000, p. 10, 01 2000.

[7] A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design and Implementation (3rd Edition).

USA: Prentice-Hall, Inc., 2005.

[8] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,” in Network Dis-

tributed Security Symposium (NDSS). Internet Society, 2008.

[9] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “Slam and static driver verifier: Technology transfer

of formal methods inside microsoft,” in Integrated Formal Methods, E. A. Boiten, J. Derrick, and

G. Smith, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 1–20.

79

https://doi.org/10.1145/800027.808445
https://doi.org/10.1145/800027.808444

[10] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking programs,” Autom. Softw.

Eng., vol. 10, pp. 203–232, 04 2003.

[11] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of symbolic execution

techniques,” ACM Comput. Surv., vol. 51, no. 3, May 2018.

[12] P. O’Hearn, “Incorrectness logic,” Proceedings of the ACM on Programming Languages, vol. 4, pp.

1–32, 12 2019.

[13] K. R. Apt, “Ten years of hoare’s logic: A survey—part i,” ACM Trans. Program. Lang. Syst., vol. 3,

no. 4, p. 431–483, Oct. 1981. [Online]. Available: https://doi.org/10.1145/357146.357150

[14] E. Torlak and R. Bodik, “Growing solver-aided languages with rosette,” in Proceedings of the 2013

ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming &

Software, ser. Onward! 2013. New York, NY, USA: Association for Computing Machinery, 2013,

p. 135–152. [Online]. Available: https://doi.org/10.1145/2509578.2509586

[15] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng,

C. Hauser, C. Kruegel, and G. Vigna, “Sok: (state of) the art of war: Offensive techniques in binary

analysis,” in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 138–157.

[16] N. Sabino, “Automatic vulnerability detection: Using compressed execution traces to guide symbolic

execution,” Master’s thesis, Instituto Superior Técnico, November 2019.

[17] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and

A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for binaries and smart

contracts,” in 2019 34th IEEE/ACM International Conference on Automated Software Engineering

(ASE), 2019, pp. 1186–1189.

[18] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and Algorithms for the Construc-

tion and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2008, pp. 337–340.

[19] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and

C. Tinelli, “CVC4,” in Computer Aided Verification - 23rd International Conference, CAV 2011,

Snowbird, UT, USA, July 14-20, 2011. Proceedings, ser. Lecture Notes in Computer Science,

G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 171–177. [Online].

Available: https://doi.org/10.1007/978-3-642-22110-1 14

[20] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,” in SIGSOFT Software

Engineering Notes, vol. 30, 09 2005, pp. 263–272.

80

https://doi.org/10.1145/357146.357150
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1007/978-3-642-22110-1_14

[21] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in 2008 23rd IEEE/ACM

International Conference on Automated Software Engineering, 2008, pp. 443–446.

[22] T. Avgerinos, S. Cha, B. Hao, and D. Brumley, “Aeg: Automatic exploit generation.” in Communica-

tions of the ACM, vol. 57, 01 2011.

[23] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary code,” in

Proceedings of the 2012 IEEE Symposium on Security and Privacy, ser. SP ’12. USA: IEEE

Computer Society, 2012, p. 380–394. [Online]. Available: https://doi.org/10.1109/SP.2012.31

[24] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo multi-path analysis of

software systems,” Computer Architecture News, vol. 39, 06 2012.

[25] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M. Potet, and J. Marion, “Binsec/se: A dynamic

symbolic execution toolkit for binary-level analysis,” in 2016 IEEE 23rd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), vol. 1, 2016, pp. 653–656.

[26] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice - automatic detection

of authentication bypass vulnerabilities in binary firmware,” in 22nd Annual Network and Distributed

System Security Symposium, 01 2015.

[27] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama, J. Corbetta, F. Disperati, A. Dutcher, J. Grosen,

P. Grosen, A. Machiry, C. Salls, N. Stephens, R. Wang, and G. Vigna, “Mechanical phish: Resilient

autonomous hacking,” IEEE Security Privacy, vol. 16, no. 2, pp. 12–22, 2018.

[28] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary analysis platform,” in Com-

puter Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 463–469.

[29] N. M. Hai, M. Ogawa, and Q. T. Tho, “Obfuscation code localization based on CFG generation

of malware,” in Foundations and Practice of Security - 8th International Symposium, FPS 2015,

Clermont-Ferrand, France, October 26-28, 2015, Revised Selected Papers, ser. Lecture Notes in

Computer Science, J. Garcı́a-Alfaro, E. Kranakis, and G. Bonfante, Eds., vol. 9482. Springer,

2015, pp. 229–247. [Online]. Available: https://doi.org/10.1007/978-3-319-30303-1 14

[30] F. Song and T. Touili, “Pushdown model checking for malware detection,” in International Journal

on Software Tools for Technology Transfer, vol. 16, 03 2012, pp. 110–125.

[31] N. Minh Hai, B. Nguyen, T. Quan, and M. Ogawa, “A hybrid approach for control flow graph construc-

tion from binary code,” in Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 12

2013, pp. 159–164.

81

https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1007/978-3-319-30303-1_14

[32] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent, “The bincoa framework for

binary code analysis,” in Proceedings of the 23rd International Conference on Computer Aided

Verification, ser. CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011, p. 165–170.

[33] M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, and M. Lemerre, “Binary-level directed fuzzing for

use-after-free vulnerabilities,” ArXiv, vol. abs/2002.10751, 2020.

[34] L. Daniel, S. Bardin, and T. Rezk, “Binsec/rel: Efficient relational symbolic execution for

constant-time at binary-level,” in 2020 IEEE Symposium on Security and Privacy (SP). Los

Alamitos, CA, USA: IEEE Computer Society, may 2020, pp. 1021–1038. [Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00074

[35] C. G. D. Val, “Conflict-driven symbolic execution : how to learn to get better,” Master’s thesis,

University of British Columbia, 2014.

[36] Trail of Bits. (2015) How We Fared in the Cyber Grand Challenge. Ac-

cessed: November 30, 2021. [Online]. Available: https://blog.trailofbits.com/2015/07/15/

how-we-fared-in-the-cyber-grand-challenge

[37] Common Vulnerabilities and Exposures. (2020) CVE-2020-7982. [Online]. Available: https:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7982

[38] ——. (2020) CVE-2020-11104. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-11104

[39] ——. (2020) CVE-2020-11105. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-11105

[40] ——. (2020) CVE-2020-15359. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-15359

[41] ——. (2020) CVE-2020-10029. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-10029

[42] E. Reisner, C. Song, K. Ma, J. S. Foster, and A. Porter, “Using symbolic evaluation to understand

behavior in configurable software systems,” in 2010 ACM/IEEE 32nd International Conference on

Software Engineering, vol. 1, 2010, pp. 445–454.

[43] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks, “Directed symbolic execution,” in Static Analysis,

E. Yahav, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 95–111.

[44] F. A. Manzano. Pysymemu. Accessed: November 30, 2021. [Online]. Available: https:

//github.com/feliam/pysymemu

82

https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00074
https://blog.trailofbits.com/2015/07/15/how-we-fared-in-the-cyber-grand-challenge
https://blog.trailofbits.com/2015/07/15/how-we-fared-in-the-cyber-grand-challenge
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7982
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7982
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11104
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11104
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11105
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11105
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15359
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15359
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10029
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10029
https://github.com/feliam/pysymemu
https://github.com/feliam/pysymemu

[45] Capstone: The ultimate disassembler. Accessed: November 30, 2021. [Online]. Available:

https://uclibc.org/

[46] pyelftools: Pure-python library for parsing elf and dwarf. Accessed: November 30, 2021. [Online].

Available: https://github.com/eliben/pyelftools

[47] V. Chipounov, V. Kuznetsov, and G. Candea, “The s2e platform: Design, implementation, and

applications,” ACM Transactions on Computer Systems - TOCS, vol. 30, pp. 1–49, 02 2012.

[48] Common Vulnerabilities and Exposures. (2015) CVE-2015-1536. [Online]. Available: https:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1536

[49] ——. (2015) CVE-2015-6098. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-6098

[50] ——. (2016) CVE-2016-0040. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2016-0040

[51] ——. (2016) CVE-2016-5400. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2016-5400

[52] ——. (2017) CVE-2016-7219. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2016-7219

[53] ——. (2017) CVE-2017-15102. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2017-15102

[54] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution framework,” in Symposium sur la

sécurité des technologies de l’information et des communications, SSTIC, France, Rennes, June

3-5 2015. SSTIC, 2015, pp. 31–54.

[55] Quarkslab. Accessed: November 30, 2021. [Online]. Available: https://quarkslab.com/

[56] uclibc. Accessed: November 30, 2021. [Online]. Available: https://uclibc.org/

[57] The GNU C library. Accessed: November 30, 2021. [Online]. Available: https://www.gnu.org/

software/libc/

[58] DARPA. (2015) The Cyber Grand Challenge. Accessed: November 30, 2021. [Online]. Available:

https://www.darpa.mil/program/cyber-grand-challenge

[59] J. Fragoso Santos, P. Maksimović, S.-E. Ayoun, and P. Gardner, “Gillian, part i: A

multi-language platform for symbolic execution,” in Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation, ser. PLDI 2020. New

83

https://uclibc.org/
https://github.com/eliben/pyelftools
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1536
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1536
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6098
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6098
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0040
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0040
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5400
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5400
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7219
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7219
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15102
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15102
https://quarkslab.com/
https://uclibc.org/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.darpa.mil/program/cyber-grand-challenge

York, NY, USA: Association for Computing Machinery, 2020, p. 927–942. [Online]. Available:

https://doi.org/10.1145/3385412.3386014

[60] L. Borzacchiello, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Memory models in symbolic execu-

tion: key ideas and new thoughts,” Software Testing, Verification and Reliability, vol. 29, 12 2019.

[61] R. Wiedenhöft. (2014) C Hash map. Accessed: November 30, 2021. [Online]. Available:

https://gist.github.com/Richard-W/9568649

84

https://doi.org/10.1145/3385412.3386014
https://gist.github.com/Richard-W/9568649

A
AppendixA

Listing A.1: Complete implementation of summary atoi2

1 int atoi2(char *str){

2 int i = 0, sign = 1, res = 0;

3 while(1){

4 // Concrete char

5 if(!summ_is_symbolic(&str[i],CHAR_SIZE)){

6 if(is_numeric(str[i])){

7 res = res * 10 + str[i] - '0';

8 i++;

9 }

10 else if(str[i] == '-' && i == 0){

11 sign = -1;

12 i++;

13 }

14 else if(str[i] == '\0') break;

15 else return 0;

16 }

17 //Symbolic char

18 else{

85

19 symbolic val = summ_new_sym_var(INT_SIZE);

20 int size = strlen1(str);

21 //Determine bounds

22 int lower_bound = pow(10,size-1) * -1;

23 int upper_bound = pow(10,size);

24

25 //Build interval with restrictions

26 restr_t val_GT_lower = _solver_SGT(&val, &lower_bound, INT_SIZE);

27 restr_t val_LT_upper = _solver_SLT(&val, &upper_bound, INT_SIZE);

28 restr_t bounds_restr = _solver_And(val_GT_lower,val_LT_upper);

29 summ_assume(bounds_restr);

30 return retval;

31 }

32 }

33 return res * sign;

34 }

Listing A.2: Complete implementation of summary strcmp2

1 int strcmp2(char* s1, char* s2){

2

3 int canBeDifferent = 0;

4 int canBeEqual = 1;

5

6 //Initializes condition with true

7 restr_t equal_conds_restr = summ_true();

8

9 char char_zero = '\0';

10 int size1 = strlen1(s1);

11 int size2 = strlen1(s2);

12

13 //Strings must have different sizes

14 if(size1 < size2 && (!summ_is_symbolic(&s2[size1],CHAR_SIZE) ||

15 !_solver_is_it_possible(_solver_EQ(&s2[size1], &char_zero, CHAR_SIZE)))){

16 canBeDifferent = 1;

17 canBeEqual = 0;

18 }

19 else if(size1 > size2 && (!summ_is_symbolic(&s1[size2],CHAR_SIZE) ||

20 !_solver_is_it_possible(_solver_EQ(&s1[size2], &char_zero, CHAR_SIZE)))){

21 canBeDifferent = 1;

22 canBeEqual = 0;

23 }

24

25 //Strings can be the same size

26 else{

27 int size = MIN(size1,size2);

86

28 for(int i = 0; i < size i++){

29 char c1 = s1[i];

30 char c2 = s2[i];

31

32 //Both chars are concrete and different

33 if(!summ_is_symbolic(&s1[i],CHAR_SIZE) && !summ_is_symbolic(&s2[i],CHAR_SIZE) &&

c1!=c2){↪→

34 canBeEqual = 0; canBeDifferent = 1;

35 break;

36 }

37 else{

38 restr_t c1_equals_c2 = _solver_EQ(&c1, &c2, CHAR_SIZE); // c1 == c2

39 restr_t c1_not_equals_c2 = _solver_NEQ(&c1, &c2, CHAR_SIZE); // c1 != c2

40

41 //c1 must equal c2?

42 if(!_solver_is_it_possible(c1_equals_c2)){

43 canBeEqual = 0; canBeDifferent = 1;

44 break;

45 }

46 else{

47 //can c1 be different than c2?

48 if(_solver_is_it_possible(c1_not_equals_c2)){

49 canBeDifferent = 1;

50 }

51 canBeEqual = 1;

52 equal_conds_restr = _solver_And(equal_conds_restr, c1_equals_c2);

53 }

54 }

55 }

56 }

57 //Strings can be both equal and different

58 if(canBeDifferent && canBeEqual){

59 int zero = 0; symbolic retval = summ_new_sym_var(INT_SIZE);

60 restr_t retval_equals_zero = _solver_EQ(&retval, &zero, INT_SIZE);

61 restr_t retval_diff_zero = _solver_NEQ(&retval, &zero, INT_SIZE);

62

63 diff_conds_restr = _solver_And(_solver_NOT(equal_conds_restr), retval_diff_zero);

64 equal_conds_restr = _solver_And(equal_conds_restr, retval_equals_zero);

65 equal_conds_restr = _solver_And(equal_conds_restr, str_diff_zero(s1)); //s1 has no \0

66

67 final_restr = _solver_Or(equal_conds_restr, diff_conds_restr);

68 summ_assume(final_restr);

69 return retval;

70 }

71

72 //Strings can only be equal

73 else if(canBeEqual){

74 equal_conds_restr = _solver_And(equal_conds_restr, str_diff_zero(s1));

87

75 summ_assume(equal_conds_restr);

76 return 0;

77 }

78

79 //Strings can only be different

80 else{

81 return 1;

82 }

83 }

88

89

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Goals
	1.4 Evaluation
	1.5 Contributions
	1.6 Thesis Outline

	2 Related Work
	2.1 Symbolic Execution
	2.1.1 Classic Symbolic Execution - Example
	2.1.2 Limitations
	2.1.3 Advanced Symbolic Execution

	2.2 Function Summaries
	2.2.1 Symbolic Reflection
	2.2.2 Properties of Summaries

	2.3 libc support on Symbolic Execution Tools

	3 Symbolic Reflection API
	3.1 Symbolic Reflection API
	3.2 Summary Families
	3.2.1 String Manipulation
	3.2.2 Parsing of Numbers
	3.2.3 Input/Output

	3.3 Supporting the Symbolic Reflection API
	3.3.1 Extending AVD
	3.3.2 Extending angr
	3.3.3 Modelling Symbolic Restrictions in C Code

	4 Summary Correctness
	4.1 Summary Properties
	4.1.1 Backward Soundness
	4.1.2 Forward Soundness
	4.1.3 Completeness
	4.1.4 Generalized Properties
	4.1.4.A Generalized Backward Soundness
	4.1.4.B Generalized Forward Soundness
	4.1.4.C Generalized Completeness

	4.2 Summary Validation Tool
	4.2.1 Examples
	4.2.1.A Function - strlen
	4.2.1.B Function - strcmp
	4.2.1.C Function - memcpy

	4.3 Supporting the Validation Tool
	4.3.1 Model Simplification

	5 Evaluation
	5.1 Evaluation Questions
	5.2 EQ1: Time Performance of Tool Independent Summaries
	5.2.1 CGC Data Set
	5.2.2 HashMap Library

	5.3 EQ2: Summary Correctness
	5.4 EQ3: Bugs in Symbolic Execution tools
	5.4.1 Bug in angr
	5.4.2 Bug in Manticore

	6 Conclusion
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	A AppendixA

