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Abstract

Cloud computer systems have several challenges in the domains of resource sharing, allocation and
administration.

With the advent of very large data centers and virtualization, operations such as creation and
deletion of virtual resources have been subject of special attention concerning performance and efficiency.
Automation of administrative tasks and dynamic configuration are primary goals in an effort to provide
fast integration, testing and deployment of software and infrastructure.

The increase in complexity and scale of large systems has made clear that more help is needed for
optimal configuration and management. This support can come from leveraging behavioral indicators
from running systems with the application of optimization methods and machine learning algorithms.

This thesis introduces an architecture for integration of several systems for the collection and
processing of data to facilitate the automated management of cloud infrastructures and describes the
adopted strategy for implementation and test of the proposed model.

Keywords: Cloud Computing, Infrastructure, Adaptive Systems, Logs, Metrics, Events

1. Introduction

Since the beginning of computer science, resource
sharing and allocation of hardware infrastructures
have been a field of interest, research, and develop-
ment. It had an impact in a wide range of com-
puter science areas from the development of hard-
ware and software all the way to Management prac-
tices and Governance policies in Information Tech-
nology (IT).

There are a variety of approaches and practices
for architecture, management, and administration
of shared infrastructure. Implementation choices
are not solely based on capabilities. Sometimes
cost, ease of integration, and versatility have a
higher than expected weight in the selection of tech-
nologies. This requires management systems com-
posed of large and diversified layers and modules.

The tasks of configuration and management of re-
sources in large datacenters, is a complex one. Some
of the primary goals are to minimize failures or max-
imize performance with the least possible amount
of risk. This is especially difficult when there are
a large number of systems composed of many mod-
ules.

The behavior of the system is key for the collec-
tion of relevant insight. Metrics, events, and logs
are generated in large quantities. Exploration of
this data may help in making administration deci-

sions.
The goal of this thesis is to contribute to the dy-

namic management and automatic configuration ef-
forts in a datacenter environment. It is proposed an
architecture for automated infrastructure manage-
ment. The suggested design includes a platform for
applying optimizations techniques, a way of inte-
grating multiple sources of data, and the possibility
of making changes to existing infrastructure. There
is also presented a working proof-of-concept of such
platform, where a service is changed and modified
in an automated manner.

2. Background
2.1. Virtualization
The application of the virtualization concept in
computer systems has been extensive.

Virtual machines (VMs) make possible for sev-
eral operating systems to run simultaneously on the
same hardware. An hypervisor is a piece of software
that manages the sharing of hardware resources and
creates an isolated environment for each VM [1].

Network Virtualization helps in scaling, manage-
ment and coexistence of several networks in the
same infrastructure. Examples can go from sim-
ple Virtual Local Area Networks (VLANs) [2] to
more complex Software-defined Networks (SDNs)
[3] which facilitate management and simplify net-
work creation and deletion.

1



Storage resource can also be separated from nor-
mal computing servers and made available as ded-
icated service over the network. They can then be
shared among a large number of computers increas-
ing availability and capacity. Software-defined Stor-
age (SDS) aims to ease data configuration manage-
ment by breaking the vertical alignment of conven-
tional storage design [4]. It opens the possibility of
security and priority rules in an end-to-end mecha-
nism [5]. Nowadays there are several implementa-
tions of Software-Defined Storage and the concept
has been a key component in large datacenters.

2.2. Cloud Model

Datacenters have evolved a lot since the times of
the large computer rooms that housed the main-
frame computers. In the last decades development
has been made from the building construction and
design to the practices and policies applied to man-
age such complex systems. Factors such as manage-
ment constraints, time, and location, can lead to an
unused surplus of capabilities. Cloud computing is
model that promotes datacenter efficiency and allow
easy resource sharing. Essential characteristics of
cloud computing are On-demand self-service, Broad
network access, Resource pooling, Rapid elasticity,
Measured Service [6]. Virtualization of resources
plays a key role in making those characteristics pos-
sible and functional.

2.3. Cloud Platforms

There are public and private clouds. Public clouds
are offered commercially and are available for a
large number of customers. Amazon Web Services,
Microsoft Azure, and Google Cloud Platform are
the major players [7] Private clouds are owned and
operated by private entities, even though they can
host several tenants. Large operators often have
proprietary management platforms. However, there
are some open source alternatives that help the
management, control, and provision of the available
infrastructure in accordance to the cloud model.
Two of the most popular are OpenStack, Cloud-
Stack, and OpenNebula [8, 9].

2.4. DevOps

DevOps is a set of methodologies and practices
that bring software development and IT operations
closer together. It is facilitated by the softwariza-
tion of infrastructures.

Classical administration tasks, such as setting up
virtual computing resources, traditionally involved
a lot of manual work. With the increase of the
number of machines to manage, automation of a
large set of operations is a basic scalability require-
ment. Infrastructure as Code (IaC) is a method
for specifying and provisioning infrastructure re-
sources. Some principles of Iac are: Systems can be

easily reproduced, Systems are disposable, Systems
are consistent, Processes are repeatable, Design is
Always changing [10]. Terraform is a tool that im-
plements this concept [11].

Software tools ease the implementation of tech-
niques and procedures in all components of DevOps.

Git [12] is a distributed version control software
that tracks changes in files. It is useful for large
teams working on the same code base. GitHub [13]
and GitLab [14] are platforms that implement re-
mote repositories along with features such as web
hosting, project management, code testing and de-
ployment. This makes them overall DevOps en-
abling platforms. Continuous integration and de-
ployment, another concept and goal of DevOps, can
be implemented using Gitlab CI/CD [15].

Configuration and management of VMs involves
tasks such as installation of software or specific
configurations. Chef is a tool for this. It uses a
client/server configuration. This means an agent
must be installed on the target system. Configura-
tion is made in files called cookbooks written in the
Ruby programming language.

2.5. Software Architectures
The advancements explored in the previous sections
create excellent environments for complex applica-
tions to operate. There are some software archi-
tectural patterns that can provide some interest-
ing improvements in development and deployment.
Service-Oriented Architecture (SOA) is an archi-
tectural style where functionalities of a system are
separated into services as opposed to being part of
a monolithic application. Services usually expose
an interface, and can communicate with a defined
strict contract or defined protocol [16].

Microservices might be considered a modern take
on SOA where services are more fine-grained. A
microservice is a small program or functional el-
ement with a single responsibility. This fact im-
proves maintainability and testing practices, which
makes overall development easier. Microservices
facilitate scalability and high availability, because
more instances of the same functional element can
be easily deployed. They can be developed more in-
dependently and in turn enable a higher frequency
of releases and fixes while maintaining high reliabil-
ity of the complex systems they form.

In the end these approaches might not be con-
sidered strict architectures but a style or paradigm
that is used to implement a specific architecture.

2.6. Self-adaptive Systems
A self-adaptive system is a system that makes
changes to itself and its behavior autonomously at
run-time in response to changes in the environment.
Implementation of these types of systems often in-
volves using variations of the MAPE-K model pro-
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posed by [17]. A representation of this model is
presented in figure 1

Figure 1: MAPE-K Model [17]

For an autonomic manager the capacity to mon-
itor and execute present interesting challenges. Ex-
amples are collecting large volumes of data from
different sources or integrating the executor with
effectors. Administration of complexity IT systems
is one example where this scenario exists.

Artificial Intelligence for IT Operations or AIOps
offers an approach where artificial intelligence
methods are used to help build and operate ser-
vices more efficiently [18]. Implementations of this
concept can be applied to anomaly detection, fault
source identification or event correlation. Also they
can offer optimizations, or improve performance by
predicting resource utilization.

3. Related Work

There are some recent publications that show ap-
plications of the concepts of adaptive or intelligent
systems, and datacenter automation. Each one im-
plements, in a way, some goals of AIOps.

Sankie [19] is a project developed by Microsoft,
in the Azure cloud environment. It is presented as
a service to help developers increase velocity and
throughput of changes and bug fixes. With a set
of changes made by a developer the services can
automatically recommend a reviewer for different
areas of the source code. It can also identify a com-
mon subset of changes in files, functions, or modules
and associate them to the most number of anoma-
lies. The data was collected from sources in various
stages of the development cycle. Some examples of
sources are a git repository, alert logs, services logs,
and performance indicators. Sankie uses the envi-
ronment available in the Azure cloud for storage
and computing.

In [20] the authors proposed an anomaly de-

tection service. Their approach consisted in an
pipeline with ingestion of data, model creation and
alert systems. The techniques that yielded the best
results were Spectral Residual outlier detector com-
bined with convolutional neural networks (CNN).

In [21] the authors created a framework to detect
impactful service system problems. Before applying
data analysis they used a parser. It removed ex-
tra information like file IP addresses or file names.
They created log sequences from logs with the same
ID and removed duplicate events. After the log data
exploration involved clustering techniques and cor-
relation analysis.

To predict node failure in ultra-large-scale cloud
computing platform (Amazon AWS) the authors of
[22] used previous alert data of failures in combi-
nation with data about the location of nodes. The
machine learning technique that got the best per-
formance was random forests combined with over-
sampling of data from previous failed nodes.

In [23] is implemented an auto scaling platform
based on deadlines and budget constraints. Their
architecture consists on a decider that collects his-
torical data from a repository, and upon analysis
sends a plan to a module they call VM manager.
This manager interacts with the Azure Cloud ser-
vices to scale out servers.

An autoscaling service that enables scaling of ap-
plications in a cloud environment is presented in
[24]. Applications can be scaled based on defined
metrics such as cpu or memory consumption. The
architecture is based on microservices. This way
scaling monitoring and controller are separated and
communicate with API calls. A test implementa-
tion is shown working for the cloud platform IBM
Bluemix, now called IBM Cloud.

4. Solution Architecture

The proposed solution consists of a platform where
data is collected, analyzed, and leveraged to im-
plement adjustments on certain systems. It is an
application of the MAPE-K control loop, where the
analysis, planning, and execution functions exist in-
side a platform. The name chosen for this new plat-
form is OpsManager. It will help in configuring and
manage systems that from now on will be refereed
as target service or target system.

Figure 2 shows how the platform fits into a dat-
acenter environment. The Infrastructure Platforms
element represents the collection of systems that
support infrastructure creation, management, as
well as development. Some examples are cloud plat-
forms or repositories where infrastructure as code is
stored and deployed. They support the lifecycle of
a target system. Data platforms are services that
store event and log data generated by the target
system. OpsManager integrates with these existing
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systems by consuming data and generating config-
uration changes, thus closing the cycle of adaptive
infrastructure.

Figure 2: Proposed Solution Architecture

The OpsManager internal architecture is highly
modular. This approach meant decoupling func-
tions and services. Components can be developed
to fit the implementation environment. They can
also be cloned to provide resilience or for scaling
purposes. This design choice is based on concepts
taken from SOA and microservices.

In figure 3 the architecture of the platform can
be observed.

Figure 3: OpsManager Architecture

The components include the OpsManager Core
for execution of changes, a message bus for module
communication, data collectors, the intelligent con-
trol group modules for analysis and decision mak-
ing, and a dashboard that provides a user interface.

Collector functions can be programmed indepen-
dently for each source of data. Collected data may
be needed by other concurrent microservices at the
same time. If the data increases in volume and
requires parallel processing the message bus facil-
itates partitioning and horizontal scaling. The pos-
sibility of adding new target services, with different
data structures and sources reinforces these design
choices. The other dotted box below with the cap-

tion Intelligent Controllers encompasses more mi-
croservices. An analyzer may implement an algo-
rithm to extract insight from data and a decider
might suggest or trigger an infrastructure change.
Long term storage may store historical data that
will help in forecasting. The dashboard might also
receive streaming data and information from the
microservices and for example display it in a graph.
The microservices should also be able to interact
with OpsManager Core via an API.

OpsManager core was created out of the neces-
sity of having a way of selecting which configuration
changes to apply and providing a backend for a user
interface. It has plugins to interact with infrastruc-
ture platforms. A decider microservice invokes an
endpoint sending infrastructure modifications sug-
gested by its algorithm. OpsManager core then is
programmed to wait for user confirmation or ap-
ply this automatically. This helps in keeping those
microservices fairly simple.

Data visualisation is helpful in conveying the sta-
tus of a certain system. This is one of the main
goals of having a dashboard. The other is enabling
a human administrator to have control over certain
aspects of infrastructure management. The admin-
istrator might be presented with several suggestions
of modifications and only apply one, or set a cer-
tain decider as automatic and authoritative over a
target system.

5. Implementation
A proof-of-concept implementation was made in the
datacenters of Direcção dos Serviços de Informática
(DSI) at Instituto Superior Técnico. For the pur-
pose of this thesis it was provided a specific envi-
ronment. The technologies present were required to
be used and integrated in this proof-of-concept.

5.1. Environment
Openstack [25] is the provider where a target sys-
tem must be instantiated. Terraform [26] is used to
define the infrastructure as code. Besides describing
virtual machines, networks, and storage, it can also
be utilized for other things such as key generation
for each deployment. A centralized secret or token
storage platform is available and implemented with
the software Vault [27].

Once a VM is created it must be provisioned with
Chef. There is a Chef server where configuration
guides called recipes can be stored and fetched. All
files from Chef and Terraform are version controlled
in GitLab. A Group in GitLab may include repos-
itories for the infrastructure code, the provisioning
code, the software of a target service, and the de-
ployment definitions with pipelines that create or
destroy infrastructure in test and production envi-
ronments. The is how Gitlab enables Continuous
Integration and Continuous Delivery.
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Once a target system is deployed it may be neces-
sary to advertise its existence in a central registry.
This service is supported by Consul [28].

The target service might expose a port for in-
coming external connections. For example a web
service listening on an HTTP or HTTPs port. An
Nginx [29] server exists in this environment and
acts as a reverse proxy. This reverse proxy pro-
vides statistics about each backend server such as
total requests and response times. There is also an
instance of Graylog [30] for the collection of text
logs from servers.

5.2. Target Service

The target service to be modified consists of a
web application with a variable number of backend
servers.

For the purpose of this thesis DSI provided a
base template of a target service that included Ter-
raform infrastructure and Chef recipes to instanti-
ate and provision nodes in two datacenters. A Git-
Lab group also existed with deployment pipelines.
Each pipeline had ”spin-up” and ”destroy”. Infras-
tructure was modified so that consecutive pipelines
could be triggered where ”spin-up” only made
changes and destroy was not needed to be executed
before the next pipeline.

Terraform is configured to store its state in a
backend location accessible to all jobs. Any exe-
cution will take the last state and work the changes
from there.

Part of the provisioning of a server included the
generation of a policy file for each unique server con-
figuration. The policy file includes all recipes and
their versions to be applied. This file is uploaded
to the common chef server. The pipeline was mod-
ified to include verification of existing policies for
the same deployment and to not override previous
ones.

SSH keys for the servers are generated by Ter-
raform inside the job “Spin Up”. If a new pipeline
instantiates a new server, it must have the same
keys as the old ones. Since a central secret storage
using Vault was available, it was used to keep these
keys accessible through infrastructure iterations.

Horizontal scaling happens when more nodes are
added or subtracted. This was the modification
goal. Environment variables were set to indicate
the number of backend nodes desired. This makes
it possible to scale an infrastructure without having
to hardcode changes to Terraform files. There was
only the need to create triggers in GitLab to initiate
the pipelines.

A web service to be deployed to the nodes was
programmed so that each request generates a spe-
cific predetermined computational load. Concur-
rent requests will slow down the average response

time.

5.3. OpsManager

Figure 4 shows the architecture implemented along
with the environment integration.

Figure 4: OpsManager Implementation

On top several data sources are given as an ex-
ample of different types of information that can be
collected. These can be simple metrics (NingX Sta-
tus) or text logs and events (Graylog).

On the right side infrastructure platforms that
OpsManager may interact with directly. The exam-
ple given shows the situation previously described
where GitLab contains code, infrastructure defini-
tions and provision files as well as CI/CD pipelines
that create deployments in OpenStack. The ar-
rows demonstrate a flow where information about a
service is collected, analyzed and how it generates
changes applied to the infrastructure.

NingX Status was used as a data source to create
the adaptive cycle. It was created a collector that
filters and transforms the data as needed.

The NingX Status module contains virtual host
status information. The data available is extensive.
In an environment with about 50 servers divided
into zones, the data can easily reach 200 kB with
an average of 4 kB per server.

The collector pulls a json format response. The
data is broken down into messages and sent to the
message bus. For this specific target service the
information needed is the server response times, re-
quest counter and error codes. After filtering the
needed data the collector adds a current timestamp
and sends the final message the queue in the mes-
sage bus.

Apache Kafka was used for the message bus [31].
It provides messaging queuing, storage, redundancy
and partitioning of data. It is mostly used for real-
time streaming data pipelines for its high through-
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put and scalability.

A decider microservice consumes already pre-
pared data and uses it to make decisions about in-
frastructure. A simple moving average algorithm
was chosen. This is an average of the response times
of a defined time window, for example the last 10
minutes calculated every minute. It is applied to
response times of all servers in an upstreamZone.
Since the service is a simple web service with a pre-
determined fixed computational cost, multiple con-
current requests on the same server will increase the
average response time.

Infrastructure changes are separated with a de-
fined interval, so that the system has time to sta-
bilize. If the moving average of response times is
above a certain threshold a scale up operation is
suggested. The simplified evaluation expression is
(average response time ≥ up threshold). When
more node are added to the service the response
time is expected to decrease, if not more nodes will
be added after the aforementioned defined interval.

When a scale up happens, the request counter
average is stored. This value is important as the
scale down operation cannot be triggered by the
decrease in average of response time, after all it is
the goal of the scale up. So the algorithm compares
the current number of requests with the number of
requests that indirectly triggered the last scale up.
If the current level is below this number multiplied
by an adjusted α parameter it means that the
excessive load is no longer present so a new scale
down operation is suggested. The simplifeid eval-
uation expressin is (current average requests ≤
last up average requests.peek() × α), where
last up average requests is the stack like data
structure that stores request counter average at
scale up times. In the end scale ups have a fixed
threshold but scale downs are defined at runtime.

The internal structure of OpsManager Core al-
lows and expects the use of plugins to interact with
infrastructure or code platforms such as GitLab.
This means that if there is a migration from GitLab
to another platform say GitHub, there is only the
need to create another plugin. It was created the
necessary code to trigger GitLab pipelines upon a
simple endpoint invocation.

6. Results

The scenario for tests is composed of the target ser-
vice described in 5.2, that running with one back-
end server. Several request are made to this ser-
vice with the objective of increasing the average re-
sponse time. The idea was to simulate a usage in
working hours with levels of low, medium, and high
intensity throughout the day.

Figure 5 shows the response of the system. The
time window chosen is 10 minutes.

Figure 5: Target Service Scaling

The top plot axis shows total requests made in
each interval. The second the average response
time, which is used to decide scale ups. This thresh-
old is identified by the red horizontal line at 35
ms. The third axis shows the 10 point average of
the number of requests. This average decides the
scale downs. Since scale downs are computed from
the request numbers at scale up they have different
thresholds identified by the green horizontal lines.
The red upward and green downward triangles show
the scale up and scale down moments respectively.
The number of active servers at each time can be
confirmed in the last axis. The reaction and result
of the system can be observed when the load in-
creases. Average response time surpasses the red
threshold and another server node is added. In the
few next points the average response decreases ac-
cordingly.

With these results we can infer that that internal
and external integration of OpsManager works as
expected.

7. Achievements
The possibilities offered by the cloud computing
model have and will continue to shape the way in-
formation systems are implemented and operated.

Developments in artificial intelligence and ma-
chine learning will have more and more influence on
the way large and complex systems are managed. It
is therefore important to have the means to easily
implement and test new algorithms and techniques.

One of the goals of this thesis was to provide the
first steps towards a management platform archi-
tecture to develop an event driven adaptive infras-
tructure. The developed work accomplished this by
designing and proposing a solution that easily in-
terconnects multiple systems and platforms. The
results show capabilities for data collection, deci-
sion making and infrastructure modification.

8. Future Work
The OpsManager platform developed, provides the
basis of an adaptive, event driven infrastructure.

Although the proof-of-concept presented here
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provides a model for the overall system, there are
several improvements that are advisable to reach an
operational state.

The continuation of the development of the dash-
board is certainly an important goal. With it comes
multi-user capabilities and secure access. Microser-
vices platforms could be used to facilitate their de-
ployment.

For target services a preloaded node image with
all the required software might be one approach.
Caching of software used in the nodes is an-
other possibility. The use of unikernels or other
lightweight virtualization methods instead of whole
virtual machines, may provide improvements.

In the end the use of the platform should now
make possible to start exploring more complex op-
timizations algorithms and machine learning mod-
els.
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