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Abstract
Mobility is a key part of modern civilization. The COVID-19
pandemic made apparent the necessity to adapt our public
transport systems to the ever-changing users’ needs. In this
work we propose a solution to improve the bus network in
the city of Lisbon, Portugal. The system takes individual
trip data given by smartcard validations at CARRIS buses
and METRO stations and uses them to estimate the origin-
destination demand in the city and then design a network
that better fits that demand. Route scheduling is optimized
separately from the route topology. To these ends, Genetic
Algorithms are used considering both single and multi ob-
jective approaches. The single objective formulation is based
on the human rating of the networks in the approximated
Pareto Front. A linear regression is used to infer the weights
for a weighted sum of the different objectives. The single
objective optimization processes proved to improve on the
multi objective optimization results with reductions in objec-
tive functions up to 28.3%. The systemmanages to reduce the
number of routes in the network from 309 to 200 which then
corresponds to a reduction in 59.8% of distance covered by
buses daily when frequencies are optimized. All the passen-
ger related objectives, including travel time and transfers per
trip are improved with only the unsatisfied demand lightly
increasing from 0.7% to 1.3%.

CCSConcepts: •Applied computing→Transportation;
• Theory of computation→ Evolutionary algorithms.

Keywords: Public Transport Network; Optimization; Route
Planning; Multimodality; Multi Objective Optimization

1 Introduction
Mobility is a central aspect in modern societies, allowing
people to take part in a multitude of activities that are the
identity of our days. With the worldwide population increas-
ing, and more people using the roads, problems such as con-
gestion and air pollution arise. One way to address these, is
to provide the community with an efficient public transport
network.

The COVID-19 pandemic radically changed people’s habits
and even during periods of normal activity, over time, de-
mand will change and efforts should be made to make sure
the Public Transport Networks meet individuals’ needs.

The goal of this work is to propose an improved design to
CARRIS bus network, one that uses the available buses in a
more efficient way and serves the clients as best as possible
with the available resources, while trying to reduce the envi-
ronmental impact of the network. Here, serving the client
well means i) providing a service with good city coverage,
ii) low travel times, iii) low transfer rates, iv) low waiting
times and, v) satisfying safety guidelines such as maximum
occupancy and recommended individual distances.
This work also approaches the Network Design Problem

from the Multi Objective Optimization perspective. Previous
works, when faced with multiple objectives, used a weighted
sum of all the objectives as an objective to a Single Objective
Optimization process. In this work, weights are inferred
from a human rating of the networks in the Pareto Front
approximation. By approaching the problem in this way,
we hope to provide decision makers with better options
and tools to better decide changes to be made in the public
transport systems.

2 Optimization and Genetic Algorithms
Finding the best elements, x∗, from a set of alternatives, X,
according to a set of criteria, 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑚} is the essence
of optimization. x = {𝑥1, 𝑥2, ..., 𝑥𝑛} is a set of what is called
design or decision variables. 𝑓𝑖 : X ↦→ 𝑌, (𝑖 = 1, 2, ...𝑚),
with 𝑌 ⊆ R, are the criteria or objective functions. These
problems can have constraints that limit the values that the
design variables can take. We can formalize optimization
problems as follows:

minimize
x∈X

𝑓𝑖 (x), (𝑖 = 1, 2, ...,𝑚)

subject to ℎ 𝑗 (x) = 0, ( 𝑗 = 1, 2, ..., 𝑜)
𝑔𝑘 (x) ≤ 0, (𝑘 = 1, 2, ..., 𝑝) .

(1)

In Single Objective Problems (𝑚 = 1), it is easier to distin-
guish the quality of solutions since we have only one criteria,
so the lower the value of that objective, the better the solu-
tion. However, it becomes harder to make this distinction
when we have more than one objective. For example, if we
have two solutions for a bi-objective problem, x1 and x2,
with 𝑓1 (x1) < 𝑓1 (x2) and 𝑓2 (x1) > 𝑓2 (x2), we cannot say
with absolute certainty which solution is best. We can con-
vert a multi objective problem into a single objective one by
creating a new objective function defined as:
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𝑓 ′(x) =
𝑚∑
𝑖=1

𝑤𝑖 𝑓𝑖 (x) , (2)

and then increase the objective value when constraints are
violated. This formulation will, however, limit the variety of
solutions we can find since they do not reveal to the user
where are the compromises between objectives. Pareto op-
timality becomes a relevant definition when dealing with
multi objective problems as it provides us with a definition
of optimality that considers multiple objectives. A solution is
Pareto optimal if we cannot improve one objective without
damaging the quality of the remaining objectives. A Pareto
optimal solution compromises the different objectives in an
optimal way. Different Pareto optimal solutions represent dif-
ferent balances between the objectives. The set of all Pareto
optimal solutions is called the Pareto Frontier. Pareto opti-
mality is tightly coupled to the definition of domination. A
solution x1 dominates another solution x2, in which case, we
write x1 ≺ x2 if, and only if:

∀𝑖 ∈ {0, ...,𝑚} : 𝑓𝑖 (x1) ≤ 𝑓𝑖 (x2) ∧
∃ 𝑗 ∈ {0, ...,𝑚} : 𝑓𝑗 (x1) < 𝑓𝑗 (x2) .

(3)

We can define the Pareto Frontier, X∗ as the set of points
that are not dominated by any other solution. In other words:

x∗ ∈ X∗ ⇔ �x ∈ X : x ≺ x∗ . (4)
Single Objective Algorithms try to find the best solution

according to a single criteria while Multi Objective Algo-
rithms try to give us an approximation of the Pareto Front.
Having the Pareto Front allows us to look at different com-
promises and assess their quality.
Genetic Algorithms (GA) are population-based optimiza-

tion algorithms that try to mimic nature’s evolutionary pro-
cess. Solutions are individuals in a population represented as
a string of symbols that encode a solution for the problemwe
are trying to solve. Individuals reproduce and mutate to give
place to new individuals. Reproducing means combining the
genetic code of two individuals to make new solutions that
are based on their parents and mutation means randomly
changing the genetic code of an individual to introduce va-
riety and try to escape local minimums. The quality of the
populations increases as the algorithms finishes more and
more iterations.

The Classic Genetic Algorithm was one of the first to use
these ideas in optimization and was introduced by John H.
Holland [8] in 1976. It is a single objective optimization al-
gorithm and since then, many ideas have been proposed to
build on the original idea. The Non-dominated Sorting Ge-
netic Algorithm II is a multi objective optimization algorithm
proposed by Deb et al. [5]. These are the algorithms used in
the present work.

3 Related Work
In this line of work, some works try to change the configu-
ration of routes in a bus network. That is called the Transit
Network Design Problem (TNDP). Others try to optimize
both the route configuration and their respective working
frequencies. This is called the Transit Network Design and
Frequencies Setting Problem (TNDFSP). If we are trying to
attribute frequencies to an already existing route set, we are
solving the Transit Network Frequencies Setting Problem
(TNFSP).

Newell [10] points out the non-convexity of TNDP which
is illustrated by the fact that increasing the frequency of
buses in some routes, i.e. increasing operation costs may
lead to an increase in user costs. Baaj and Mahamassi [2]
also point out the combinatorial explosion of the problem
caused by its discrete nature. Additionally, the problem is
usually formulated with multiple objectives and, while bus
frequencies are usually depicted as decision variables in prob-
lem formulations, the network itself, in terms of routes and
the stops in each route, is not depicted in problem formula-
tions at all. This makes Mixed Integer formulations like the
one proposed by Wan and Hong [14] rather cumbersome
and ineffective to solve TNDP. In Wan and Hong’s formula-
tion, the presence of each node in each route is modeled as a
binary variable. This makes it so that a small network with
10 nodes and 19 links, ends up having 363 binary decision
variables, 30 integer decision variables and 303 continuous
decision variables, when we try to solve TNDP for it. Since
the network under study is much larger than the one in
Wan and Hong, we will only analyze review works that use
metaheuristics.
Many works have taken different approaches to solve

these problems. The common denominator between them
all is that, when confronted with multiple objectives, all the
works reduce the problem to a single objective one as we did
with Equation 2 and then solve the single objective variant
[7], reducing the variety of solutions found by these works.

Jia et al. [9] tackles TNDP for the bus network in Xi’an, a
city in Northwest China. This study tries to improve network
sustainability and robustness by using Complex Network
Theory. No efforts are put forth to make optimizations in the
perspective of the users nor in the perspective of the service
provider. They do not use any conventional optimization
algorithm, instead they develop their own method which
takes as input the current network topology. The method
did improve Xi’an’s network sustainability and cut down
its average path length. The main takeaway is that we can
use some concepts of Network Theory to evaluate how ro-
bust and sustainable our network is without looking at OD
demand.

Yu et al. [15] used Ant Colony Optimization to solve TNDP.
Their goal was to maximize passenger flow per unit length
and minimize transfers. In their model, OD pairs work as



A Multi-objective Approach to the Transit Network Design Problem

the nest and the food source for several sub-colonies and the
pheromone trail is based on passenger density. They tested
their work on an existing network in the city of Dalian with
3,200 links and 2,300 nodes with 89 lines. The algorithm was
able to reduce the number of lines to 61 and did so without
compromising satisfied demand. Additionally, the optimized
bus lines are shorter than the existing ones and the amount
of demand satisfied with no transfers went from 41% to 51%.
Pattnaik et al. [11] used GA to solve TNDFSP. The work

focus on minimizing traveling times and minimizing operat-
ing time of buses, given some feasibility constraints. Their
approach worked in two phases, first a Candidate Route
Set Generation Algorithm (CRGA) generates a set of routes.
Then a GA computes the optimal set of routes and their
frequencies. The GA is used in two different ways. In Fixed
String Length Configuration (FSLC), every network in the
population has the same number of routes. In Variable String
Length Configuration (VSLC), networks have a variable num-
ber of routes. VSLC benefits from insertion and deletion
operators. In this work the method developed by Baaj and
Mahamassi [1] is used to evaluate the networks. The meth-
ods are tested in a subset of a network in Madras, South
India, but there is no comparison to the network operating
there. The objective was to compare FSLC and VSLC. FSLC
produced significantly better results leaving no demand un-
met, but it needed more computing time as the GA has to
run for different network sizes.
Chien et al. [4] also used GA in the context of TNDFSP

but in a different way. Their goal was to determine optimal
feeder bus routes, not an optimal network. Feeder routes
bring people from (to) several points to (from) a central hub.
Their objective function also minimizes user and operator
costs. The supplier cost is a function of the round trip time of
the buses and the headway. The user cost involves user access
cost, user wait cost and user in-vehicle cost. They tested
their approach in small networks and found that, when the
parameters are properly tuned, the GA can find the optimal
route.

Bielli et al. [3] used GA to solve TNDFSP. Their GA mod-
eling is quite different from that of [11]. Bielli et al. use a
fixed length representation in which each chromosome is a
network and each gene represents a pre-generated line with
a frequency and an on/off switch that indicates whether the
route is active in the network or not. This means that every
pre-generated route will exist in every network but with
different frequencies and it can be active or not. Their ff is
a weighted sum of efficacy, efficiency and quality of service
metrics. The work was tested on a city in middle-north Italy
called Parma and the best result provides an improvement
of 90%. This result was obtained after 66 iterations with a
mutation probability of 0.1 and a crossover probability of
0.8. The routes used are taken from previous projects on the
matter and make a total of 80 candidate routes.

Fan and Machemehl [6] also used GA to solve TNDFSP.
Their objective function considers, user costs, operator costs
and unsatisfied total demand costs. The relative importance
of the costs can be tweaked. The constraints considered focus
on controlling the load factor on any given route. Similarly
to Pattnaik et al., their approach starts with a CRGA which
uses Dijkstra’s Algorithm and Yen’s k-shortest paths algo-
rithm to generate routes between OD pairs. Then, a GA is
used, modeling the problem in similar ways to Pattnaik et
al. and Chien et al.. The network analysis algorithm assigns
demand to routes and sets the frequency for each route. The
algorithm was tested on an example network and no com-
parison with existing networks was done. They did compare,
however, different methods on the same network and found
that the GA outperforms other population based methods.
They found the optimal crossover probability to be 0.8 and
the optimal mutation probability to be 0.1, just like Bielli et
al. [3]. The optimal population size was 60.

4 Solution and Problem Formulation
4.1 Preprocessing
To run an optimization process on a bus network that oper-
ates on top of a road network, we first have to incorporate
the available bus stops, as nodes, on the road network. That
way, we can then define a bus route as a sequence of stops
and assume that the buses travel between the stops through
the optimal time path. The road network was retrieved from
the Open Street Map (OSM) database through the OSMnx
python package which gives us the network as a NetworkX
graph. The stop locations were taken from the CARRIS Gen-
eral Transit Feed Specification (GTFS). Since the stops and
networks are built on inaccurate GPS readings, fixing the
stops on the network is a complex task. For that end, we
used the work of Vuurstaek et al. [13].
There are stops that exist in close proximity to others

and whose only purpose is to provide people with multiple
boarding points so that stops do not become overcrowded.
These usually serve different routes, but from an optimiza-
tion point of view, they are equivalent because they provide
entry and alight points in the same general areas. Because
we have routes that are generated randomly, we want to
have all these stops clustered under the same stop so we do
not generate redundant routes. To that end, two stops, 𝑢 and
𝑣 are clustered into one if the edge (𝑢, 𝑣) exists in the road
network and has a cost of less than 100𝑚 and if 𝑑𝑒𝑔𝑖𝑛 (𝑣) = 1.
We force the edge (𝑢, 𝑣) to exist because, if a road node exists
between the two stops, then that means that a route can
go from 𝑢 to one other stop, 𝑤 , without necessarily going
through 𝑣 , making it so that, if stops 𝑢 and 𝑣 are clustered
under the location of 𝑣 , that route would be way longer than
it should as it would go from 𝑣 to𝑤 . We force 𝑑𝑒𝑔𝑖𝑛 (𝑣) = 1
because if there is a route that goes from a third stop 𝑤 to
𝑣 and we cluster 𝑣 and 𝑢 under the location of 𝑢 then that
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route would have to go from 𝑤 to 𝑢, potentially making it
much longer than what it, in fact, is. The 100𝑚 requirement
is completely adjustable and it is there only so we do not
cluster stops on different ends of the same avenue. If stops 𝑢
and 𝑣 can be joined and stop 𝑣 can be joined with a third stop
𝑤 , then all the stops can be joined under the same cluster. We
started with 2193 stops and managed to reduce this number
to 1786 using this criteria to join stops.

The origin-destination estimation is also an essential step
since buses require smartcard validation only upon entering.
In this work, the estimators of Cerqueira et al. [12] were
applied to produce OD matrices which then serve as input
to our optimization processes.

4.2 Relevant Networks and Interactions
In this work, we use several different graphs to represent
everything we need from the domain. It is then important
to understand the different types of graphs, what is their
purpose, and how they interact.
The road network, 𝐺𝑟 , has edges representing road seg-

ments and nodes representing road junctions, road ends or
bus stops.
The bus network, 𝐺𝑏 , is the only one with several in-

stances. This is the object of optimization and, as such, a
genetic algorithm population is filled with networks of this
type, i.e. at each time step 𝑡 , we will have a population
𝑃𝑡 = {𝐺1

𝑏
,𝐺2

𝑏
, ...,𝐺𝑛

𝑏
}. These networks are built from a set

of routes. A route is just a sequence of stops. All the tram
routes are included in the bus networks but they are never
interfered with during the optimization process. The edges
in this network are identified by an origin stop, a destiny
stop and a route making the connection.
The metro network, 𝐺𝑚 , also has edges identified by an

origin station, a destiny station and a line color connecting
the two. We want to assess what the use of the whole trans-
portation network would be like with the bus network under
evaluation, so the metro network must be present. It will not
be changed and it is a singleton network. The metro trains
are assumed to travel at 60𝐾𝑚/ℎ.
Finally, the walking network, 𝐺𝑤 , connects the bus net-

work with the metro network and close bus stops. It is as-
sumed that people are willing to walk up to 300𝑚 to transfer.
The nodes are bus stops or metro stations and the edges rep-
resent possible walks between them. The walks are assumed
to be a straight line from the origin to the destiny. People are
assumed to walk at 5𝐾𝑚/ℎ. This network is never changed.
During optimization, we integrate the current bus net-

work, under evaluation, with the walking network already
connected to the metro network, creating a complete multi-
modal network, 𝐺𝑐 , in which trips that involve walking, bus
and metro can be planned.

4.3 Network Evaluation
In order to assess transfer needs, travel times, waiting times
and all the other objectives we are striving to improve, we
need to know how the public would use the transporta-
tion network under evaluation. In this work, passengers
are grouped according to their origin-destination (OD) pair.
To reduce computational complexity, OD units are not indi-
vidual bus stops or metro stations, instead Lisbon is divided
into a 30 × 30 grid and the squares are the OD units. Every-
one moving between the same pair of squares is assumed
to do so through the same trip. The trips are a result of a
computation of time optimal paths in the complete network,
𝐺𝑐 , between all OD pairs. When a bus network is able to
connect an origin and a destination, it does so through a
trip, which is a path in the complete network,𝐺𝑐 . For further
analysis of the trips, we can divide the trip into stages. There
are three different kinds of stages, a bus stage, a walking
stage and a metro stage. Practically speaking, a bus stage
is a path, along a single route, in the bus network, a metro
stage is a path, along a single line, in the metro network and
a walking stage is a single edge path that connects two bus
stages or a metro stage and a bus stage. This distinction is
important because, every time there is a stage change, we
apply a transfer penalty and the path cost increases. This
penalty intends to simulate user’s preference for trips with
less transfers if that doesn’t incur a big increase in the overall
trip time.
Now, we establish the following notation regarding trips

and bus networks:

• 𝑊𝑂 - the origin set of geographies;
• 𝑊 𝐷 - the destiny set of geographies;
• 𝑊 - the set of all origin-destination pairs;
• 𝑞(𝑠, 𝑡) - the amount of passengers traveling between 𝑠
and 𝑡 ;

• 𝑅 - the set of all routes in a bus network;
• T - the set of all trips between all OD pairs. T ={

𝑇 (𝑠, 𝑡) | 𝑠 ∈𝑊𝑂 , 𝑡 ∈𝑊 𝐷
}
;

• 𝑇 (𝑠, 𝑡) - trip from 𝑠 to 𝑡 , a sequence of stages 𝑇 (𝑠, 𝑡) =
(𝑇 0 (𝑠, 𝑡), . . . ,𝑇𝑛 (𝑠, 𝑡)), where 𝑛 ∈ N+

0 ;
• 𝑇𝑘 (𝑠, 𝑡) - the 𝑘𝑡ℎ stage on the trip from 𝑠 to 𝑡 . It is
defined as sequence of triplets of the form (𝑢, 𝑣, 𝑟 )
where 𝑢 and 𝑣 are adjacent stops or stations and 𝑟 is
the route/line connecting them or a special marker
indicating that the path from 𝑢 to 𝑣 was made by foot;

• 𝑇𝑏𝑢𝑠 (𝑠, 𝑡) - bus stages in the trip from 𝑠 to 𝑡 ;
• 𝑇𝑚𝑒𝑡𝑟𝑜 (𝑠, 𝑡) - metro stages in the trip from 𝑠 to 𝑡 ;
• 𝑇𝑤𝑎𝑙𝑘 (𝑠, 𝑡) - walking stages in the trip from 𝑠 to 𝑡 ;
• 𝑡 (𝑠, 𝑡) - travel time between nodes 𝑠 and 𝑡 , i.e. 𝑡 (𝑠, 𝑡) =
𝑡𝑖𝑛𝑣 (𝑠, 𝑡) + 𝑡𝑤𝑎𝑖 (𝑠, 𝑡) + 𝑡𝑤𝑎𝑙 (𝑠, 𝑡);

• 𝑡𝑖𝑛𝑣 (𝑠, 𝑡) - in-vehicle time between nodes 𝑠 and 𝑡 ;
• 𝑡𝑤𝑎𝑖 (𝑠, 𝑡) - waiting time between nodes 𝑠 and 𝑡 ;
• 𝑡𝑤𝑎𝑙 (𝑠, 𝑡) - walking time between nodes 𝑠 and 𝑡 ;
• 𝑓𝑟 - frequency of service in route 𝑟 (in buses/hour);
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• 𝑡𝑟 - time it takes for a bus to go from the starting station
to the terminal station in a given route;

• 𝑙𝑟 - length of route 𝑟 ;
• ℎ - the number of hours the network is active per day.

Now we can define some quality metrics regarding a bus
network. The total length, TL, of a bus network is computed
as:

𝑇𝐿(𝐺𝑏) =
∑
𝑟 ∈𝑅

𝑙𝑟 . (5)

The Unsatisfied Demand, UD, of a bus network is com-
puted as follows:

𝑈𝐷 (𝐺𝑏) = 1 −
∑

(𝑠,𝑡 ) ∈𝑊 𝑞(𝑠, 𝑡)𝐶𝑂 (𝐺𝑏, 𝑠, 𝑡)∑
(𝑠,𝑡 ) ∈𝑊 𝑞(𝑠, 𝑡) , (6)

where 𝐶𝑂 (𝐺𝑏, 𝑠, 𝑡), the cover function, is one if the bus net-
work 𝐺𝑏 provides, along with the rest of the transportation
network, a connection between the origin 𝑠 and destiny 𝑡
within a number of transfers bellow the maximum allowed
and zero otherwise.

The Required Fleet, which is the number of buses required
to be in simultaneous circulation to assure the normal func-
tioning of the network is given by:

𝑅𝐹 (𝐺𝑏) =
∑
𝑟 ∈𝑅

𝑡𝑟 𝑓𝑟 . (7)

We use the distance that will be covered by all the buses
in operating hours as a proxy for what will be spent to keep
the network working. The Operator Costs, OC, are given by:

𝑂𝐶 (𝐺𝑏) =
∑
𝑟 ∈𝑅

𝑓𝑟 𝑙𝑟ℎ . (8)

In vehicle time (IVT) is computed as follows:

𝐼𝑉𝑇 (𝐺𝑏) =
∑

(𝑠,𝑡 ) ∈𝑊
𝑡𝑖𝑛𝑣 (𝑠, 𝑡) · 𝑞(𝑠, 𝑡) . (9)

The Average Number of Transfers per passenger, ANT, is
computed as follows:

𝐴𝑁𝑇 (𝐺𝑏) =

∑
(𝑠,𝑡 ) ∈𝑊

(
|𝑇 (𝑠, 𝑡) | − |𝑇𝑤𝑎𝑙𝑘 (𝑠, 𝑡) | − 1

)
𝑞(𝑠, 𝑡)∑

(𝑠,𝑡 ) ∈𝑊 𝑞(𝑠, 𝑡) .

(10)
The load factor is computed for connections between two

adjacent bus stops for each route in which the stops are
connected. This happens because different routes are served
by different buses, therefore, the load is independent. We
cannot compute the load factor by stages because there can
exist several trips that use the same connection within the
same route but the stage does not necessarily coincide in its
entirety. The Load Factor, LF, between stop 𝑢 and 𝑣 , serving
route 𝑟 then becomes:

𝐿𝐹 (𝐺𝑏, 𝑢, 𝑣, 𝑟 ) =
𝑝𝑎𝑠𝑠 (𝑢, 𝑣, 𝑟 )

𝑓𝑟 · ℎ · 𝐵𝑈𝑆_𝐶𝐴𝑃 , (11)

where 𝐵𝑈𝑆_𝐶𝐴𝑃 is the capacity of each bus and 𝑝𝑎𝑠𝑠 (𝑢, 𝑣, 𝑟 )
is the number of passengers who traveled between stops
𝑢 and 𝑣 through route 𝑟 during the operation hours. This
load factor calculation is assuming a uniform fleet and a uni-
form distribution of passenger flow over time. To formalize,
𝑝𝑎𝑠𝑠 (𝑢, 𝑣, 𝑟 ) can be defined as:

𝑝𝑎𝑠𝑠 (𝑢, 𝑣, 𝑟 ) =
∑

(𝑠,𝑡 ) ∈𝑊
𝑞(𝑠, 𝑡) · 𝑆𝐼𝑇 (𝑠, 𝑡, 𝑢, 𝑣, 𝑟 ), (12)

where 𝑆𝐼𝑇 (𝑠, 𝑡, 𝑢, 𝑣, 𝑟 ) is the Segment in Trip function which
is one if ∃𝑘 : (𝑢, 𝑣, 𝑟 ) ∈ 𝑇𝑘 (𝑠, 𝑡) and zero otherwise.

4.4 Problem Formulation and Modeling
Now, we can define the optimization problems to solve. The
topology optimization or the Transit Network Design Prob-
lem (TNDP) is modeled as:

minimize
𝐺𝑏

𝑇𝐿(𝐺𝑏), 𝑈𝐷 (𝐺𝑏), 𝐼𝑉𝑇 (𝐺𝑏), 𝐴𝑁𝑇 (𝐺𝑏),

subject to 𝑙𝑟 ≤ 𝑀𝐴𝑋_𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁 ∀𝑟 ∈ 𝑅,
𝑙𝑟 ≥ 𝑀𝐼𝑁_𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁 ∀𝑟 ∈ 𝑅,
|𝑅 | ≤ 𝑀𝐴𝑋_𝑁𝑈𝑀𝐵𝐸𝑅_𝑅𝑂𝑈𝑇𝐸𝑆,
|𝑅 | ≥ 𝑀𝐼𝑁_𝑁𝑈𝑀𝐵𝐸𝑅_𝑅𝑂𝑈𝑇𝐸𝑆.

(13)

In terms of genetic modeling, our proposal uses principles
similar to the ones proposed by Pattnaik et al. [11] VSLC. We
have a route pool which has the original routes found in the
CARRIS network and a set of generated routes. Every net-
work has all the tram routes that are in the original CARRIS
network. Apart from that, the initial population is an array
of randomly sized networks with routes randomly selected
from the route pool. We never commit to a predefined size.
Route insertion and deletion operators are introduced in the
mutation process. Mutating consists of swapping a random
route in the network with a random route in the route pool.
We have two types of generated routes, hub connectors

and traversal routes. Hub connectors are routes connecting
the busiest stops through the shortest paths and traversal
routes are longer routes whose purpose is to enable easier
connections between opposite sides of the city.
The Transit Network Frequencies Setting Problem (TN-

FSP) is modeled as:

minimize
𝐺𝑏

𝑊𝑇 (𝐺𝑏), 𝑂𝐶 (𝐺𝑏)

subject to 𝑅𝐹 (𝐺𝑏) ≤ 𝐴𝑉𝐴𝐼𝐿𝐴𝐵𝐿𝐸_𝐹𝐿𝐸𝐸𝑇,
𝐿𝐹 (𝑢, 𝑣, 𝑟 ) ≤ 𝑀𝐴𝑋_𝐿𝐹 ∀(𝑢, 𝑣, 𝑟 ) ∈ 𝐸𝐺𝑏

,

𝑓𝑟 ≤ 𝑀𝐴𝑋_𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌 ∀𝑟 ∈ 𝑅,
𝑓𝑟 ≥ 𝑀𝐼𝑁_𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌 ∀𝑟 ∈ 𝑅.

(14)
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This optimization process is more conventional in the
sense that it can easily be represented by a set of variables.
We have a variable per route in the network whose frequen-
cies we want to optimize. In this case, we also attempt to
optimize the frequencies of all the tram routes. Mutating a
frequency set is just choosing a random route and give it a
random frequency.

4.5 Single Objective Formulations
After we assess the quality of the solutions that are given
by the multi objective formulations, we can have a sense of
what we are looking for in a network. After we know that,
we can try to get as close as possible to a global optimum that
represents the compromise we are looking for in a network.
To this end, wewill be rating networks generated by NSGA-II.
The rating will then serve as reference for a linear regression
that will allow us to infer the weights for a weighted single
objective formulation (Equation 2) that stand for what we
are looking for. We are trying to estimate:

w = (𝑤0,𝑤1,𝑤2, . . . ,𝑤𝑚)𝑇 , (15)

so that we can have a finely tuned objective function, aligned
with the perceived needs,

𝑓 (𝐺𝑏) = 𝑤0 +
𝑚∑
𝑖=1

𝑤𝑖 𝑓𝑖 (𝐺𝑏) . (16)

To this end, we find the best weight vector w such that a
given error function, 𝐸 (w), is minimized. The error functions
measure the difference between the target value in the rated
records and the estimates:

𝑦 (x) = w𝑇 · x . (17)

Minimizing the error is also an optimization problem, but
in this case, we need only solve ∇𝐸 (w) = 0. For the Squared
Error function, the optimal weights are given by:

w = (𝑋𝑇 · 𝑋 )−1 · 𝑋𝑇 · t, (18)

where 𝑋 is called the design matrix, defined as:

𝑋 =


1 𝑥11 𝑥12 · · · 𝑥1𝑝
1 𝑥21 𝑥22 · · · 𝑥2𝑝
...

...
...

. . .
...

1 𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛𝑝


. (19)

Assuming that we have 𝑛 bus networks from the NSGA-II
algorithm, we have, for our particular TNDP problem:

Figure 1. CARRIS network (blue) in October 2019 over the road
network and Lisbon METRO network (orange).
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,

(20)
and,

t =
(
𝑀𝐴𝑋 −𝑟

(
𝐺

(1)
𝑏

)
, 𝑀𝐴𝑋 −𝑟

(
𝐺

(2)
𝑏

)
, . . . , 𝑀𝐴𝑋 −𝑟

(
𝐺

(𝑛)
𝑏

))𝑇
,

(21)
where 𝑟

(
𝐺

(𝑖)
𝑏

)
is the average rating given to the 𝑖𝑡ℎ network

and𝑀𝐴𝑋 is themaximum rating a network can be given. The
target for each network is𝑀𝐴𝑋 minus its rating because we
want the objective function to beminimized and so, the better
the rating, the lower the objective function value should be.

5 Results
In this work, we use traffic data from October 2019. The
CARRIS bus network deployed at that time can be seen in
Figure 1. The network has 309 routes and 2,193 stops. Each
route has, on average, 26.2 stops and each station, on average
serves 3.7 routes. For the month of October 2019, we have 6.2
million smartcard validations at the bus entrances, spanning
4 days. These validations, as well as validations on the Metro
network, are used as the input for the work of Cerqueira et
al. [12] for inferring the OD demand.
The results presented in this section were obtained with

genetic algorithm experiments ran during 300 iterations,
with a population size of 200, a mutation probability of 0.1
and, when applicable, a crossover probability of 0.8. These
parameters were decided by doing sensibility analysis on a
smaller data sample.
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5.1 TNDP
The networks that we discuss in this section where obtained
with the NSGA-II algorithm. The maximum allowable num-
ber of routes is 400 and the minimum is 200. A sample of
9 networks was chosen for a careful examination and their
objective function values can be seen side by side in Figure
2. These were subjected to a rating on a scale of 1 to 10 so
that we can infer the weights for a single objective optimiza-
tion process. The networks are identified by their order in
the crowd distance sorting. The number of routes in each
network can be seen in Table 1.

network lisbon 𝑛0 𝑛24 𝑛49 𝑛74
route count 309 201 200 200 209

network 𝑛99 𝑛124 𝑛149 𝑛174 𝑛199
route count 200 207 232 200 200

Table 1. Number of routes of each network obtained with the
NSGA-II algorithm.

The big majority of the networks has a number of routes
very close to the minimum allowable number of routes. The
network with the maximum number of routes is composed of
256 routes.Wewere expecting amore diverse set of networks
when it comes to the number of routes, however the number
of routes is not an objective, instead we opted to use the total
length of the network as a measure of route efficiency so the
diversity lies in the average length of the routes and not in
the number of routes. The average route length varies from
9.5𝐾𝑚 to 13.3𝐾𝑚 and presents a bimodal distribution with
peaks around the 10.5𝐾𝑚 and 12.5𝐾𝑚 marks.

All the networks present a total length bellow the original
network but no network is capable of satisfying demand
better. In terms of in-vehicle time and average transfers,
there are networks in the Pareto Front capable of more direct
and shorter trips but there are also networks that demand
longer trips and a higher transfer rate.
Four people were asked to rate the networks selected

from 1 to 10, yielding the following average rating for each
network:

network 𝑛0 𝑛24 𝑛49 𝑛74 𝑛99
rating 7.5 3.5 5 5.75 3.25

network 𝑛124 𝑛149 𝑛174 𝑛199
rating 6 7.5 5.5 4.5

Table 2. Average rating of each network obtained with the NSGA-
II algorithm.

After the linear regression we get the following weights:

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4
−15.85 1.04 × 10−06 53.13 7.75 × 10−09 72.38

Table 3. Objective function weights after Linear Regression.
We ran a Classic GA with the weights in Table 3. We

ran the Classic GA again, but with the individual objectives

Figure 2. Comparing individual objectives of networks fromMulti
Objective Optimization and Single Objective Optimization. "lisbon"
is the original bus network. "wei" was obtained in a single objective
optimization considering the weighted function. "uni" was obtained
in a single objective optimization considering the uniform function.
The remaining networks resulted from NSGA-II.
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Figure 3. Average objective value along the iterations for the
Single Objective GA considering Weighted function in blue and the
Uniform function in orange.

summed and normalized with a min-max normalization so
we could see the differences between the quality of the so-
lutions when we emphasize different objectives against uni-
form weights. The objective function in this case becomes:

𝑓 (𝐺𝑏) =
𝑚∑
𝑖=1

𝑓𝑖 (𝐺𝑏) −min (𝑓𝑖 )
max (𝑓𝑖 ) −min (𝑓𝑖 )

(22)

The average weighted objective function value over the
algorithm iterations can be seen in Figure 3 for both experi-
ments ran. According to the criteria we set when rating the
networks, when we use the weighted objective function, a
Single Objective GA is able to produce networks that are
better than the best network we got from the Multi Objec-
tive Optimization after about 60 iterations. When we use a
uniform weight distribution with normalized objectives we
can reach a level of quality superior to the Multi Objective
Optimization, yet only after about 200 iterations.
In Figure 2 we can see the individual objectives of the

networks obtained through Single Objective Optimization
side by side with the ones selected from the Multi Objec-
tive Optimization and the original CARRIS network. Both
networks obtained with Single Objective Optimization have
200 routes. The highest rated network was network 0 and,
as we can see, the network obtained with the weights from
the linear regression trumps that network in every objective.
The network obtained with uniform weights and normalized
objectives does not achieve the same success in the number
of transfers but it manages to have smaller total length than
the network obtained with a weighted function.

The best network obtained through optimization has 200
routes, 109 less than the original network which translates
in a difference of around 1300𝐾𝑚 that no longer have to be
traveled by the buses. In Figure 5 we can see the differences

Figure 4. Weighted Objective Function Value for the original
network and the networks obtained through optimization.

Figure 5. Differences in travel time from the original network to
the best network.
in travel times imposed by the new network. Most of the
passengers has their traveling time unaffected (differences
of up to 2.5 are not considered) but the majority of trips in
which there are significant changes were positively affected.
The network also enabled more direct trips as seen in Figure
6. No passenger had their trips increased in more than one
stage and the passengers that had stages cut off their trips
are more than double of the ones that have to transfer one
additional time now. Some even cut two transfers off their
trips. In these histograms, the central bar is omitted because
the total amount of passengers is 566𝐾 , which would make
the differences between the smaller bars imperceptible. For
the big majority of passengers, travel times and transfers
remained the same. This is due to the big majority of traffic
happening in the center of Lisbon in which most trips are
already direct with the existing network. The new network
is not able to satisfy as many trips as the original network
but the difference is marginal. In general, the new network
is able to provide a similar service to the one provided in the
original network, but does so in a much more efficient way,
using less routes.

5.2 TNFSP
When it comes to frequency setting, we want to do the same
transition from multi objective optimization to single objec-
tive optimization and assess the existence of any improve-
ments.
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Figure 6. Differences in transfers from the original network to
the best network.

We start by doing a multi objective experiment with the
original CARRIS network because it provides us with a base-
line to compare our results. The problem formulation is the
one presented in Section 4.3. We assume a uniform fleet of
750 buses with capacity for 80 people, with a maximum load
factor of 1.0, a maximum frequency of 20 buses per hour and
a minimum frequency of 1 bus per hour. It would be more
accurate to have a non uniform fleet with different buses
that can be attributed to different routes. That falls in the
Transit Network Scheduling problem which is outside the
scope of this work. The results for the experiment can be
seen in Figure 7, once again, with the values of the CARRIS
network presented for comparison. In general, all frequency
sets performed better than the original, with some presenting
an improvement of about 30 seconds in the average waiting
time and all reducing the total distance traveled by the buses
during working hours in almost half.
When it comes to frequency setting, we were not able to

get as many people to rate the frequency sets as we previ-
ously did with the networks. However, we still want to try to
get the best network with set frequencies for a given quality
criteria. To that end, we will use a single objective function
that is the sum of both objectives normalized, similar to what
is presented in Equation 5.1 but with frequency sets as the
object of optimization.

To see how much improvement in terms of the TNFSP ob-
jectives a refined topology can enable, Figure 8 presents the
original network and original frequencies, the original net-
work with optimized frequencies and our optimized topology
from solving TNDP with optimized frequencies. In terms of
waiting time, the differences from the first case to the second
is of 20 seconds and from the second to the third, 20 seconds
again, which is not very significant. However from the first
case to the second, the total distance traveled is reduced in

Figure 7. Frequency sets and respective objectives on the CARRIS
original route plan, resulting from 300 iterations of NSGA-II with a
population size of 200 and a mutation probability of 0.1.

Figure 8. TNFSP objectives for the original CARRIS topology
and frequencies (original lisbon), original CARRIS topology and
improved frequencies (improve lisbon) and our best topology with
optimized frequencies (our best).

half and from the second to the third cases the distance is
reduced in 50 000 Km.

6 Conclusion
In this work, we propose a system to redesign a bus network
given the OD demand in the city Of Lisbon, Portugal. Two
sub-problems are tackled, first the TNDP and then the TNFSP.
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In the first problem, the system decides the set of routes that
will define the bus network. In the second, bus frequencies
are decided for each route in the route set. Both problems
were modeled as an evolutionary problem and, firstly solved
with a multi objective algorithm. The results were then rated
and weights for a single objective approach were inferred via
a linear regression. Finally the problems were solved once
more using a Classic Single Objective Genetic Algorithm.
Overall, both problems managed to moderately improve the
passenger related objectives while massively reducing oper-
ator related objectives.
In the TNDP, the four targeted objectives were the total

length of the network, the unsatisfied demand, the in-vehicle
time and the average transfers. According to our criteria, the
best network in the Pareto Front approximation reduces the
original network objective function in 23.1% and the network
built through single objective optimization provides a 44.0%
reduction relative to the original network. This last reduc-
tion translates to a 34.6% reduction in total network length
(from 309 routes 200), a 5.1% reduction in average transfers,
a slight reduction of in-vehicle time and an increase of unsat-
isfied demand from 0.7% to 1.3%. The transition from Multi
Objective to Single Objective optimization proved effective.
With a Single Objective optimization considering theweights
inferred through our rating process being able to produce
better networks than the best one in the Pareto Front after
60 iterations, while a Single Objective optimization consid-
ering a uniform weighted sum of all objectives normalized
achieved the same only after 200 iterations.

In the TNFSP, the two targeted objectives were the average
waiting times and the total distance covered by buses during
a whole day as a proxy for operator costs with constraints on
the number of buses that can be in simultaneous circulation
(fleet), the load factor of the buses and the frequencies. In the
multi objective optimization, when trying to optimize fre-
quencies for the original CARRIS topology, all the frequency
sets improved on both objectives but once again, passenger
costs were mildly reduced while operator costs were greatly
reduced. In single objective optimization, we tried optimiz-
ing frequencies for the original CARRIS topology and for
the best topology from the TNDP. The frequencies in the
original topology provide an average decrease of 20 seconds
in waiting time and a decrease of 55.4% in total distance trav-
eled while optimized frequencies in the optimized topology
provide an average decrease of 40 seconds in waiting time
and a decrease of 59.8% in total distance traveled.

6.1 Future Work
The optimization of frequencies can be separated for parts of
the day in which passenger flow differ significantly. It would
also be relevant to test the use of exclusive routes in certain
parts of the day to try to enable shorter trips.
It would be interesting to include more transportation

systems, thus allowing us to widen the area under study and

highlight the need to add some routes outside the current
area of actuation.

Running experiments with discrepant weights or particu-
lar constraints could help us study particular network fea-
tures that help improve certain aspects of the network which
could provide useful input for network design.
Finally, there should be reliable ways to go from these

idealized models to the real world. Research on how to apply
changes on existing networks from the knowledge attained
from works similar to the present would be a step in the
right direction.
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