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Abstract

Service robots provide services to humans such as helping in domestic chores or serve as companion

to elderly people. To accomplish a good social behaviour, the robot should be able to recognize and

differentiate people in the scene, since this skill enables personalized human-robot interaction. People

re-identification in service robots is key for their acceptance in people’s homes, as well as for performing

a wide variety of tasks. People re-identification and tracking are two closely related tasks. Existing Re-

ID based tracking methods designed for mobile robots have some limitations since they either assume

constrained conditions on the environment and the movement of people or they are not robust enough

in challenging conditions such as the presence of obstacles or similar targets. This thesis proposes

a Re-ID based multi-people tracker suitable for mobile robots. It combines existing methods such as:

a people detector, a people localizer, a Re-ID feature extractor and a Kalman filter framework with

simple data association and track management approaches. A novel RGB-D Re-ID multi-people 3D

tracking dataset recorded with a moving camera in an environment with obstacles and target’s occlusions

and appearance changes is presented. Experimental evaluation shows that the method achieves very

good tracking and re-identification performance on the proposed dataset, at a high frame-rate, and that

it outperforms another state-of-the-art method on an open-space dataset. The proposed system is

lightweight, robust and suitable for real-world applications, allowing for an improvement of human-robot

interaction.
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Resumo

Os robôs de serviço providenciam serviços tais como ajuda nas tarefas domésticas ou companhia

para idosos. O robô deve ser capaz de diferenciar as pessoas que o rodeiam e ter uma interação

humano-robô personalizada. A re-identificação de pessoas é crucial para a sua aceitação em am-

bientes domésticos. A re-identificação e o tracking de pessoas são duas tarefas que se relacionam

intimamente. Os métodos de re-identificação e tracking existentes desenvolvidos para robôs móveis

têm limitações já que, ou assumem condições restritivas do espaço e do movimento das pessoas, ou

não são robustos relativamente a situações complexas, tais como a presença de obstáculos ou pes-

soas com aparência semelhante. Esta tese propõe um tracker 3D de múltiplas pessoas baseado em

re-identificação, adequado para robôs móveis. O sistema combina métodos existentes tais como um

detetor e um localizador de pessoas, um extrator de caraterı́sticas de re-identificação e uma estrutura

de Kalman Filters com estratégias simples de associação de dados e gestão de trajetórias. É apresen-

tado um conjunto de dados RGB-D de re-identificação e tracking de múltiplas pessoas, gravado com

uma câmara móvel num ambiente com obstáculos, oclusões e mudança de aparência nas pessoas pre-

sentes. A avaliação experimental mostra que o método tem um bom desempenho de re-identicação e

tracking, a um frame-rate alto, no dataset proposto e que tem melhor performance que outro método do

estado da arte, num conjunto de dados em espaço aberto. O método proposto é computacionalmente

leve, robusto e aplicável em situações reais, proporcionando uma melhoria da interação humano-robô.

Palavras Chave

Interação humano-robô; Re-identificação de pessoas; Tracking de pessoas; Múltiplos Kalman-filter ;

Conjunto de dados RGB-D.
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1.1 Motivation

Service robots have received increased attention in recent years, covering a great variety of applications

and system designs. Service robots are robots that are fully or partially autonomous, that provide

services to humans or equipment [3]. They differ from industrial robots in their applications and are

usually mobile or manipulative robots. The range of services they can provide are vast: refuelling,

cleaning, maintenance, surveillance, office automation, firefighting, serve as a restaurant waiter or an

hotel receptionist, entertainment and much more. These robots can be extremely helpful since they can

replace humans in hazardous situations, allow humans to save time for other activities, help physically

handicapped people and serve as a companion to elderly people or children.

To provide these services, the robot needs to perform complex tasks such as navigation, sensor-

fusion, manipulation and perception of the environment. Besides that, some of these robots are in

constant interaction with humans, which requires additional skills and functionalities to provide a nat-

ural and efficient human-robot interaction, including speech recognition, people identification, ability to

reproduce emotions and communication. Their ability to interact naturally with humans and be social,

while requiring minimal intervention from the user, is critical for their usefulness [4].

A sub-group of service robots are the domestic robots. These are robots designed to help humans

at home in their daily domestic chores. Their tasks can range from simple ones such as vacuuming or

cleaning to more challenging ones such as providing care for elderly at home. For these specific type

of robots, human-robot interaction is very important and is determinant for their acceptance in people’s

homes. They should be able to communicate and understand humans. Besides that, their appearance,

movements and interface influences how people perceive and react to them [5].

The MOnarCH robot (MBOT) is a service robot originally designed to interact with children in hos-

pitals. The MOnarCH Robot (MBOT) was adapted for robotic competitions in domestic scenarios by

SocRob@Home [6] and is capable of navigating autonomously, understand spoken commands, detect-

ing and manipulating objects, tracking and following people. Considering its application in domestic

environments, the human-robot interaction is also a very important aspect to consider in the system’s

design.

In order to accomplish a good social behaviour, the robot should be able to recognize and identify

humans. Besides that, the robot should be able to re-identify individuals, that is, determine if a certain

person is present in a set of candidates and recall that person’s identity through time. The ability to

differentiate different people and re-identify a certain person in different points in time is also very useful

for a better interaction between the robot and humans. This skill enables personalized interaction be-

tween the robot and the people in his surroundings. For instance, the robot can address people by their

personal names and recall personal preferences and details, as well as communication patterns that

allow for further improvement of the human-robot interaction. All of these build up the robot’s personality

2



and adaptability, which are key factors for increasing trust in the robot [7].

Re-Identification (Re-ID) of people also improves people tracking and following, in cases where there

are occlusions or where the target is lost. This improves the perception that the robot has of the people

in the scene, allowing for the execution of more personalized tasks such as delivering objects requested

by a specific person, count the number of different people present, keep track of the movements and

behaviours of a specific person and much more.

Although people re-identification is a critical skill for improving human-robot interaction and people

perception and thus increasing people’s acceptance and trust in service robots, it has not been deeply

investigated in this context and there is still need for a robust and practical approach.

1.2 Research Goals

The main goal of this thesis is the development of a Re-identification based system to be deployed in

a mobile robot that robustly recognizes, identifies and tracks the different people present in the robot’s

surroundings, assigning to each one of them a unique ID, while guaranteeing a real-time performance.

Since practical applicability is one of the main goals, the evaluation of the method in real-case scenarios

is key. Considering this, the following research goals can be identified:

• 3D position tracking of multiple people in an environment with obstacles and occlusions caused by

other people

• Recognition and identification of the different people seen by the robot during the system’s execu-

tion

• Re-identification of a target that was previously seen, by assigning it the same ID as before

• Real-time performance and practical applicability of the method in a mobile robot

1.3 Contributions

The scientific contributions of this thesis are three-fold:

• Integration of existing modules and methods (people detector, people localizer, Re-ID feature ex-

tractor and Kalman filter) in the development of a novel Re-ID 3D multi-people tracker

• Construction of a RGB-D Multi-people tracking and Re-Identification dataset recorded using a

moving camera, including people 3D position ground-truth in an indoor and occluded scenario,

representative of a domestic environment

• An experimental evaluation of the method proposed in a real-word dataset
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1.4 Dissertation Outline

The remaining of this document is organized as follows:

• Chapter 2 provides an overview of the background on people Re-ID and its application on ser-

vice robots. First, the main concepts and components of a person re-identification system are

presented, with several examples of state-of-the-art methods, as well as benchmark datasets.

Secondly, the main components of person re-identification systems applied to service robots and

existing methods are presented.

• Chapter 3 presents the proposed Re-id based multi-people tracker. It gives an overview of the

system architecture and the coordinate frames that are considered in this work. The different

modules that compose the system are then detailed. It also presents the methodology of the multi-

people tracker, explaining the main stages: track and state estimation, data association and track

management.

• Chapter 4 first presents the state-of-the-art on Multi-object tracking datasets and then presents the

newly created Re-ID Multi-people tracking dataset.

• Chapter 5 details the experiments that were conducted and then shows the evaluation results of

the proposed system on the proposed dataset and on other multi-target tracking benchmarks.

• Chapter 6 presents the conclusions that can be drawn from this work and discusses further im-

provements and future research topics.
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2.1 Computer Vision Person Re-Identification

In the context of Computer Vision (CV) and pattern recognition, people re-identification is the task of

retrieving the occurrences of a certain person (probe) from a set of person candidates (gallery) [8]. This

task is mostly useful for surveillance systems and is very challenging because a person’s appearance

varies a lot with illumination, pose and viewpoint changes, obstructions and resolution. This factors can

lead to cases where the difference between the same person’s appearance in two images is larger than

the difference between the appearance of two different people.

The gallery and probe are represented by bounding boxes that enclose the person. The appearance

information of the probe and the gallery candidates is extracted from the bounding boxes and is repre-

sented by a feature descriptor. Feature descriptors are then compared using a similarity function, which

measures how similar two instances are.

Re-ID can be classified into closed-world and open-world. In this context, the world is the environ-

ment in which the system is operating in, including all the people seen by the camera. Closed-world

Re-ID is based on the assumption that the probe is present in the gallery and consists in a matching

task. The goal is to find the pair of images for which the appearance of the probe and the gallery can-

didate is more similar. Open-world Re-ID is a more general case, where there is no guarantee that the

probe is present in the gallery. This case is more representative of real-life and is usually the context of

practical applications. In the open-world scenario, Re-ID implies a verification task.

2.1.1 Re-ID methods

Hand-crafted Features

Some Person Re-ID methods make use of different histograms and segmentation techniques to con-

struct the appearance descriptor for each person. That descriptor is then compared using a distance

metric to identify the same person across different frames or images. These methods are usually com-

bined with metric learning algorithms, which will be covered in the next section.

One way of constructing a feature descriptor is using Ensemble of Localized Features (ELF) [9]. This

approach allows for simple color and texture features to be combined into a single similarity function.

Another approach consists in extracting Symmetry-Driven Accumulation of Local Features (SDALF)

[10]. These features represent three distinct aspects of the human appearance and are extracted by

computing Hue Saturation Value (HSV) histograms, Maximally Stable Colour Regions and Recurrent

Highly Structured Patches. This method achieves robustness against very low resolution, occlusions

and pose, viewpoint and illumination changes.

Yang et al. presented a feature representation based on Salient Color Names Based Color Descriptor

(SCNCD) [11] which allowed for feature computation to be done very fast, if SCNCD of each color was
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computed in advance. There is also another feature representation called Local Maximal Occurrence

(LOMO) [12] that describes the horizontal occurrence of local features, which is stable against viewpoint

changes.

Another approach is to use Local Binary Pattern (LBP) [13], which is a simple texture operator that

assigns each pixel of an image a binary number, which is the result of thresholding the neighbourhood

of that pixel. A feature descriptor composed of LBP is computationally very cheap and is very efficient.

Matsukawa et al. presented a descriptor based on an hierarchical distribution of pixel features [14].

A local region of an image is described using an hierarchical Gaussian distribution which includes mean

and covariance. Each region is then described by a set of gaussian distributions that represent the

appearance of a local patch, including color and texture information. The parameters of the Gaussian

distributions are also described by a Gaussian distribution.

Hand-crafted features are a fast and simple way of computing person feature descriptors, although

their discriminative power can be limited, which makes the performance of the methods very dependent

on the robustness of matching techniques. Matching images based on this type of features using stan-

dard metrics such as the Euclidean distance leads to poor performance due to large variations in pose

and illumination.

Metric Learning

Metric Learning is a field of Machine Learning with the objective of learning distances from the data,

improving similarity-based methods [15]. In Person Re-ID methods, metric learning can be used to

learn an appropriate distance metric to compare feature descriptors such as the ones presented in the

previous section. Metric learning can improve the matching performance, by grouping data points that

belong to the same person together, while pushing away data points belonging to different people.

One of the earliest works that applied distance learning to the task of person Re-ID was the Prob-

abilistic Relative Distance Comparison model [16], that aimed at maximizing the matching accuracy

regardless of the feature representation method. The main novelty presented was that the goal is to

maximize the probability of a pair of a true match having a smaller distance than that of a wrong match,

instead of trying to minimize intra-class variation while trying to maximize inter-class variation.

To tackle the issue of having images from different cameras and how the transition of one camera

to another can impact the distance metric learning, a relaxed pair-wise learned metric was proposed

by Hirzer et al. [17] that learns a metric from pairs of samples from different cameras, allowing less-

sophisticated features to be used while maintaining matching performance.

Another popular approach is kernel-based metric learning, which allows for a dimensionality reduc-

tion of the data being compared. This approach has been applied to person Re-ID and several variations

have been implemented and evaluated such as regularized Pairwise Constrained Component Analysis,

kernel Fisher Discriminant Analysis (FDA), Marginal Fisher Analysis and a ranking ensemble voting
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scheme, which have shown improvements in performance [18].

Along with the presentation of LOMO features, a subspace and metric learning approach called

Cross-view Quadratic Discriminant Analysis (XQDA) was proposed [12]. A discriminating metric is

learned by learning a discriminant low dimensional subspace by cross-view quadratic discriminant anal-

ysis.

Metric learning assumes great importance in Re-ID methods, especially when using hand-crafted

features, since it improves significantly the re-identification performance, allowing for the use of simple

feature representations that are computationally lightweight.

Deep Networks and Attention Networks

With the development of deep learning in the recent years, several deep Re-ID methods have been

gaining relevance and achieving the best performance on the most challenging datasets [19]. These

methods consist in deep-network architectures that focus on feature representation and metric learning

together. Each architecture differs in the way features are computed, the distance metric learned and

the way both are combined.

The first deep network approaches for the Re-ID task introduced a new concept of jointly learning

the color feature, texture feature and metric, all in the same framework [20] and a better handling of

misalignment, photometric and geometric transforms, occlusions and background clutter.

Deep networks contributed to overcome several difficulties and obstacles in Re-ID. One of those

problems is that hand-crafted features are usually not discriminative or robust enough. To tackle that,

Wu et al. proposed an hybrid deep architecture with Fisher vectors and multiple supervised layers [21].

The network was trained with an Linear Discriminative Analysis (LDA) criterion that approximates inter

and intra-class variations such that the deeply non-linear features become linearly separable. Patches

from a person image are extracted and described by Principal Component Analysis (PCA)-projected

Scale Invariant Feature Transform (SIFT) descriptors.

While feature extraction is critical, a lot of methods don’t focus enough in the similarity learning task,

applying simply a cosine or an Euclidean distance to the feature vectors which is not very discriminative

and leads to overfitting, causing the need for larger datasets, as the networks get deeper. A solution was

proposed with the deep hybrid similarity learning method [22], it consists of a metric learning module,

which includes a hybrid similarity function to measure person similarity, and a feature learning module

which is a light convolutional network with three convolutional layers to extract features. The hybrid simi-

larity function is realized by learning a group of weight coefficients to project the element-wise difference

and multiplication of a Convolutional Neural Network (CNN) learning feature pair into a similarity score.

It is much more discriminative and requires less parameters than the Mahalanobis distance.

Many of the deep network for the Re-ID task are built by fine-tuning already existing architectures,

successfull on other tasks. This paradigm originates global representations that are efficient for Re-ID,
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but can suffer from the misalignment inherent to human pose variations and person detection errors.

While some methods overcome that problem by adding attention models, extra annotations or explicit

alignment of body parts, good results can also be obtained using a simple deep architecture where

the critical design choices are thoroughly examinated and an appropriate training strategy is selected

[23]. For example, using triplet-loss and its variations for Re-ID shows very good results [24], either for

models trained from scratch or for pre-trained ones. In his work, Hermans et al. proposed two network

architectures, TriNet and LuNet, that were used to perform end-to-end deep metric learning.

To improve perfomance in the case of person detection errors, Han et al. joined person detection

and person Re-ID in an end-to-end framework [25]. The detection is optimized under the supervision of

the Re-ID loss, in order to produce more reliable bounding boxes.

Attention-networks have also been widely implemented recently, with many deep-network architec-

tures including attention modules where attention cues are deduced to construct more discriminative

feature representations. One of these architectures is the Harmonious Attention Convolutional Neu-

ral Network (HA-CNN) that aims to simultaneously learn hard region-level and soft pixel-level attention

within arbitrary person bounding boxes along with re-id feature representations [26]. Another similar ap-

proach is an Hybrid-attention guided network that fuses high-level features with low-level features, which

aims to enhance the representation capacity of the CNN models to discriminately learn the features [27].

Attention-networks have achieved state-of-the-art performance on the most challenging datasets, specif-

ically the Multi-level-attention Embedding and Multi-layer-feature Fusion Model which is currently one of

the best performing models for Re-ID [28]. It uses ResNet-50 pre-trained on ImageNet as a baseline.

Multi-level-attention embedding (spatial-level and channel-level attention blocks) and mulit-layer-feature

fusion model were developed to obtain richer and more representative features.

Unsupervised Re-ID methods have been showing promising results [29, 30] but they still require

labeled data, their performance is limited by the scale of the dataset and they ignore relations between

the source and the target dataset, since they are based in unsupervised domain adaptation. Recently, a

framework for unsupervised Re-ID was proposed consisting of a multi-scale network (MN), a multi-label

learning module (ML) and a self-paced clustering module (SC), using ResNet as a backbone [31]. The

MN module extracts global and local multi-scale features. The ML module generates a multi-label vector

for each image. The SC removes noisy samples by density-based clustering algorithm and assigns

pseudo-labels for multi-class training.

Deep Re-ID models can achieve very high performance but their real-world application is still a

challenging task, considering that they require large amounts of training data and that they are usually

computationally expensive.

9



2.1.2 Types of data used for Re-ID

Most of Re-ID methods are based on RGB data since RGB images are the most frequently available

data in Re-ID tasks. Nonetheless, there are other types of data that can also be used for Re-ID and that

have advantages relative to using only RGB.

In comparison with RGB images, depth images vary less in cases of low illumination or poor color

information. They can also be used to obtain information about the body structure of a person, which

can be very helpful to re-identify a person that has changed clothes, for example.

One way of making use of those advantages is to re-identify people based on biometric features

such as the body volume [32]. In this method, body segmentation is applied for feature extraction, by

computing several geometric body distances like the height of the person, distance between shoulder

points, face’s length, head, upper torso and lower torso volume. The matching and classification phase

is done using an State Vector Machine (SVM). Another method uses the full body point cloud for the re-

identification task [33]. The point clouds are warped to a standard pose and a similarity score between

them is computed for the matching.

Depth information can also serve as input for neural networks, allowing models to learn discriminative

features of the body shape or motion dynamics of a person. Haque et al. presented an attention-based

model effective in identifying people in the absence of RGB information [34]. A combination of recurrent

and convolutional neural networks allow to identify small and discriminative regions indicative of a person

identity.

While using depth information has shown interesting results, specially in cases of low lighting or in

clothes-changing scenarios, its practical application to the Re-ID task still faces some challenges [8]:

first, depth cameras are not suitable for outdoor environments because depth information decreases

rapidly with an increase in the distance between the camera and the target; secondly, body structure

information obtained with depth cameras can be indistinguishable or not discriminative enough, specially

as the viewpoint varies. Using depth information only for Re-ID may not be optimal in most cases, but

it can be very useful in combination with other data, such as in multi-modal matching, which will be

covered in the following section.

There are other types of data that can be useful for the Re-ID task, if available. One of them is skeletal

data, which is a representation of the human body as an articulated system composed of rigid sections

and joints [35]. It can be obtained by using a 3D skeletal tracker [36], an RGB-Depth camera or other

methods that extract body joints explicitly. This representation is robust to view-point and scale variations

and it is relatively easy to generate. Hence, there are some Re-ID methods that use skeletal data in their

approach, mainly for person segmentation, which allows the computation of local feature descriptors

in each joint through hand-crafted techniques or deep models, followed by feature matching. These

methods are more robust to illumination, viewpoint and pose changes. Examples of these methods are
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the ones presented in [37] and [38].

There are other methods that use thermal data, which allows for the identification of people under

low lighting conditions [39–41]. The biggest challenge for thermal Re-ID is the cross-modality person

matching using both color images and thermal images. It is also common in video investigation appli-

cations to have access to eye witnesses natural speech or text statements about the targeted person.

Text-to-image Re-ID is a field of investigation with the goal of matching text descriptions of a person to

their corresponding images [42]. Considering the hardware present in the MBOT, these methods were

not investigated further since thermal images are not available and text-to-image is out of context.

All the different types of information that can be used for person Re-ID can be combined, making

the most of their different advantages. This is done through multi-modal matching. This approach

requires fusing different features that represent different information. This fusion can be done at feature-

level [43,44], where feature vectors are concatenated and a distance metric is learned for that combined

vector; at score-level [45, 46], where the feature vectors are scored independently and their matching

scores are then fused.

2.1.3 Re-identification datasets

There are several datasets that are currently used for benchmarking in people Re-ID. These datasets

are extremely useful to evaluate the performance of the different methods. Besides that, they are used

to train some of the deep learning models described before.

They can be divided into image-based and video-based datasets, based on the type of the data. Im-

age datasets are more common and are usually bigger, while video datasets can be used for methods

that make use of other data besides RGB such as temporal attributes. Most of these datasets include

challenging cases like viewpoint variations, illumination variations, detection errors, occlusions, back-

ground clutter and low-resolution images [47]. Some of the most popular image datasets are VIPer [9],

GRID [48], CUHK01-03 [49], Market-1501 [50], DukeMTMC [51], Airport [47] and MSMT17 [52] and

some of the most popular video datasets are PRID-2011 [53], MARS [54], Duke-Video [55], Duke-

Tracklet [56], LPW [57]and LS-VID [58]. A comparison between image and video datasets is presented

in Table 2.1 and Table 2.2, respectively. The datasets vary in number of different people (unique ID’s),

the number of bounding boxes of targets, the number of cameras and the way the labels were annotated,

either manually or automatically using a person detector. We can see that image and video datasets

have become larger as time passes, which is related to the growing need of bigger datasets for the

deployment of deep learning methods. We can also see that recently the datasets have been including

automatically generated bounding boxes, considering that the increasing size of the datasets makes it

very time-consuming to annotate all of the images. Automatically-generated labels are also useful to get

a better indication of how a method performs in a practical application since it usually receives as input
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a detection from a person detector and these bounding boxes are not as perfectly aligned as manually

anotated ones.

Table 2.1: Image Re-ID datasets

Dataset Year #ID #BBs #Cameras Label
VIPer 2007 632 1264 2 hand
GRID 2009 250 1275 8 hand

CUHK01 2012 971 3884 2 hand
CUHK02 2013 1816 7264 10 hand
CUHK03 2014 1467 13164 2 auto/hand

Market-1501 2015 1501 32668 6 auto/hand
DukeMTMC 2017 1404 36411 8 auto/hand

Airport 2017 9651 39902 6 auto
MSMT17 2018 4101 126441 15 auto

Table 2.2: Video Re-ID datasets
Dataset Year #ID #Tracks #Cameras Label

PRID-2011 2011 200 400 2 hand
MARS 2016 1261 20715 6 auto

Duke-Video 2018 1812 4832 8 auto
Duke-Tracklet 2018 1788 12647 8 auto

LPW 2018 2731 7694 4 auto
LS-VID 2019 3772 14943 15 auto

2.2 Person Re-Identification and Tracking on Service Robots

On the context of mobile robotics, people Re-ID can be extremely helpful. One of the most common

tasks in mobile robotics is the tracking of multiple targets [59]. Besides tracking their positions, knowing

their identities and being able to differentiate between different individuals is very valuable, as it allows

for a personalized interaction between the robot and the people in its surroundings. Hence, people

Re-ID methods are used to assign unique ID’s to the targets being tracked.

Applying Re-ID in robotics differs from the computer vision approach described earlier, because its

goal is to identify the same people in different points in time, while in CV the task is to identify the

same people across cameras, usually with short differences in time. Therefore, the use of people Re-ID

methods in mobile robotics is usually integrated in a pipeline that contains three modules: a person

detector, a person Re-ID module and a tracker [60]. As described before, person Re-ID is applied in

regions of an image or video that represent a person, eg. a bounding box that enclosures the target.

Hence, a person detector is required to generate the bounding boxes that will be the input for the Re-ID

method. Additionally, a people tracker is commonly used to keep track of the position of the targets,

while exchanging information with the Re-ID module. The fusion between the tracker and the person

re-identifier is key for achieving good performance and is one of the main differences between different

approaches.

When applying Person Re-ID methods to mobile robotics, it is also crucial to consider the limitations
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of hardware and computational power of the system. A trade-off between performance and computa-

tional efficiency is often required.

2.2.1 Person Detection

Person detection consists in locating people in a frame or in an image, without the need for identifying

their identity. The detected people are represented by a bounding box, which is a rectangle that provides

the person position and size on the image.

There are several methods to detect people. One way is by using an Histogram of Oriented Gradients

(HOG) [61], an adaptation of the SIFT approach [62]. This approach consists in computing normalized

local histograms of gradient orientations in a dense grid, which represent well local object appearance

and shape. These HOG features are then evaluated using an SVM. Variations of this approach have

been implemented, such as the Multi-class HOG [63].

Another popular approach are Deformable Part Models (DPM) [64]. These methods create a model

of an object based on a global root filter and several part models, which are computed using HOG

features. It is able to represent the high discriminability of the full body, while being robust to occlusions

[65,66].

Bourdev et al. proposed a new definition of a body part called poselet, which is based in 2D human

annotations and 3D human pose annotations [67]. This method allows the identification of torsos and

body keypoints such as the left shoulder, nose and others.

Currently, one of the most popular approaches is training a CNN to detect people, considering their

high performance on image-based tasks. These models are trained using large-scale person datasets

such as PASCAL-VOC [68] or MS-COCO [69] and have shown very high reliability. Several models and

their variations have been implemented such as RCNN [70], R-FCN [71], SSD [72] and YOLO [1]. There

are also deep learning-based 2D human poses detectors such as OpenPose [73] and DensePose [74],

that can be used for the task of people detection.

Laser sensors can also be used to detect people, by detecting legs [75], or the upper-body [76]. This

method is robust to illumination changes and allow the detection of people without RGB data.

2.2.2 Tracking

Tracking is the task of keeping track of the position of a target through time. This task is challenging due

to illumination changes, occlusion, clutter, camera motion, low contrast, specularities and more [77]. This

task increases in complexity if we consider Muliple Object Tracking (MOT), which aims at tracking the

positions of multiple objects at the same time. These objects can be of all types, but I will focus mainly

on people tracking, considering the context of this work. The tracking task implies a data association
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step, which determines how to associate new detections to existing tracks.

One of the common approaches is the use of a Bayesian estimator such as the Kalman Filter [78]

or the Particle Filter [79]. These methods estimate the position of the targets, represented by a state.

The state is predicted using a motion model and updated using the incoming measurements. There are

two relevant variations of the Kalman Filter developed to work with non-linear systems: the Extended

Kalman Filter (EKF) [80], which aims at solving the problem of non-Gaussian distributions of the mea-

surements and prediction models by linearizing them using Taylor series expansions; the Unscented

Kalman Filter (UKF) [81], which uses sigma points to give a better aproximation of the behaviour of the

system. The particle filter is a sequential Monte Carlo algorithm, that uses particles to represent the

posterior distribution of the states given state observations and can deal with nonlinearities [82].

Volkhardt et al. presented a real-time people tracking method based on multi-modal measurements,

such as an HOG detector, a face detector, a leg detector and a motion detector, that are fed to a Kalman

Filter [83]. Another method also uses an HOG detector to extract person features and estimates their

position using a Kalman Filter, while improving detection by using the tracking estimation to narrow

the scale of detection [84]. Kalman Filters can also be used to track people skeleton data, providing

information about the correlation in time and between body parts [85]. Similar systems have been

proposed using the particle filter, for example using histograms of color and edge orientation as person

features [86]. In [87, 88], a particle filter models the probability distribution of the position of the target,

which is updated using information given by a Radio Frequency Identification (RFID) tag. A Correlation

Particle Filter was proposed, consisting in the combination of a correlation filter and a particle filter

that, through search region padding and particle refinement, effectively reduces the number of particles

needed for accurate tracking [89].

Bazzani et al. compared the Multi-Hypothesis Kalman filter and the particle filter, with results showing

that the latter is more robust to occlusions [90]. Other works compared the UKF, the EKF and the

particle filter and showed that the UKF can work as well as a particle filter in terms of accuracy and

robustness [91]. Therefore, the UKF can be a better option in case the computational resources are

limited, which is common in mobile robots.

One example of a particle-filter based tracker is presented in [92], which uses person features ob-

tained by LBP-AdaBoost and HOG-SVM and a greedy data association algorithm.

A multi-target and multi-people detector for mobile robots was presented by the Beta Robots at the

RoboCup@home challenge [93], which is based on a particle filter that fuses several sensors such

as a laser leg detector, a body detector based on a SVM with HOG, a face detector and a skeleton

detector. The data association step is done using a probabilistic tree for each detector. Another approach

designed for mobile robots is the Selected Online Ada-Boosting [94], which combines a Online Ada-

Boost tracking algorithm with depth images, to increase robustness to occlusions and light or pose
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sudden changes.

Neural networks can also be used for tracking, for instance the bilinear Long Short-Term Memory

(LSTM) [95], which improves long-term apperance models by using a recurrent network.

In [96] many other trackers are compared and evaluated against common benchmarks. One of the

most relevant conclusions drawn is that the common attribute of top performing models is a strong affinity

model and that deeply learned models are currently showing the best performance.

Some works have shown the benefits of combining Re-ID with tracking, since both tasks can com-

plement each other. Chen et al. proposed a multi-people tracking system with deeply learned candidate

selection and person Re-ID [97]. The person candidates are generated both from detections and track-

ing, the tracking is done with a Kalman filter and tracklet confidence and data association is done by

extracting features using a Region-based Fully Convolutional Network (R-FCN). While Re-ID allows for

a better association between candidates and tracks, tracking gives robustness when handling missing

detections in crowded scenarios.

A step was made towards end-to-end tracking, in the context of multi-camera Re-ID and tracking

using optimal bayes filters [98]. The data association step is avoided, by using LuNet to generate ID-

specific measurements and the need of bounding boxes is eliminated by keeping full probability maps,

without any assumption about their underlying distribution.

Another method used Re-ID to improve the performance on long-term associations, taking into ac-

count appearance changes [99]. A person feature descriptor is computed using LOMO features followed

by PCA and motion prediction of the targets is done using a Kalman Filter. This work showed that, when

the appearance does not change significantly, it is possible to re-identify a target in a distant position

after a long time without seeing it.

Chen et al. investigated the fusion of appearance and spatio-temporal models for Re-ID and tracking

[100], combining results from both using linear weighting influenced by a decay function and a rule-

based system. For the Re-ID module, appearance is described using color histograms (HSV and LBP),

followed by PCA, and classification is done using sequential k-means. The tracking module consists in

a Kalman filter, where the measurement model checks the closest previous position of the target.

These methods show the advantages of combining tracking and Re-ID, specially in the data asso-

ciation step, increasing robustness in cases where targets walk out of the scene, i.e. the camera view,

and re-enter it, crowded environments and noise. On the other hand, tracking can handle better cases

where the target’s appearance changes.

2.2.3 Related Work

There are existing methods that implement tracking and Re-ID in the context of mobile robotics. They

vary in terms of the type of features they compute and the tracking algorithms used.
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Most of the methods are based on hand-crafted features. One method uses color, height and gait

features to identify a specific person using a people-following robot [101]. Tracking is based on a Laser

Range Finder (LRF), the position of a person is obtained by the LRF and then the upper-body is detected

using a cascade HOG classifier. Online boosting tracking is implemented, using three weak classifiers

that use one of the three features: color, represented by a Hue-Saturation histogram; height, by de-

termining the sinciput of the head region and then calculating the height based on camera geometry;

gait, using the LRF data. This method showed good performance in indoor and outdoor environments,

being able to re-identify robustly the target that is being followed. However, the system does not have a

predictor of the target’s position and it is designed specifically for the task of following a person.

Another method tracks not only the 3D position of the targets but also their upper-body orientation

[102]. Person detection is done using a leg detector and HOG upper-body detector and the tracking is

done using a multi-hyphotheses Kalman filter. This method evaluates edges and color and also learns

the texture of the upper-body of each person, which is used for re-identification. Since it relies on the

motion of the targets, it is generally suitable to track the positions of walking persons, while cases where

targets are static are not thoroughly evaluated.

As stated before, the relation between tracking and the Re-ID approach is key for the success of

the method, and that is the main focus of the work presented by Wengefeld et al. [103]. Several per-

son detectors are evaluated and Part-HOG is chosen as the best performing one. A 7D Kalman-filter

based tracker, along with a template-based visual tracker keep track of people’s position and upper-body

orientation. People re-identification is done through an appearance-based approach, that computes per-

son descriptors using weighted color histograms and Maximum Stable Color Regions, from the SDALF

approach. The distance metric learning method used is kernel Local FDA and features are fused at

score-level using the PROPER approach [104]. The final decision is then made using probabilistic vot-

ing. The Re-ID module improves on wrong ID switches by proximity and the tracking module improves

on Re-ID problems due to illumination changes. This work shows once more the importance of fusing

Re-ID and tracking, although the actual performance of the method could be better, since the spatio-

temporal model is not robust enough to noise and the appearance Re-ID method, which is composed of

hand-crafted features, does not perform well when two targets have similar appearances.

As mentioned before, with the development of deep learning, Re-ID methods based on these types

of models have been implemented recently, which improve performance comparing to methods that

are based on hand-crafted features. One of the main limitations of using these methods in mobile

robots is their computational requirements. However, there are some methods that have used deep

learning Re-ID models for mobile robots and shown promising results. One of them uses online transfer

learning [105]. This method suggests using three CNN’s: one for person detection, one for person

feature extraction and one for person re-identification. The person detection CNN is the Yolov2 model
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trained in the COCO dataset [106]. 512-feature vectors of the detected targets are extracted using

another CNN with a triplet-loss function. Finally, the Re-ID CNN receives the feature vectors as input

and ouputs a person ID. It incorporates transfer learning since the lower layers are equal to the person

feature extraction layer and only the upper layers parameters are updated. A human-in-the-loop online

learning approach is also proposed. This method has some limitations: it requires a large dataset

for training the neural networks and its performance relies heavily on the quality and similarity of this

dataset with the environment where the method will be applied; it was developed assuming a perfect

target gallery, where the target is always present in the scene.

Carslen also proposed two new CNN’s called LuNet Light and LuNet Lightest with the purpose of

implementing Re-ID in mobile robots [107]. The networks use LuNet as a baseline and are trained

in the MARS datase [54], using batch hard triplet loss. The features are matched using mean-feature

matching between frames using the Euclidean distance as the distance metric. The resulting models

achieve close to state-of-the-art performance, while being much lighter, making them suitable for robotic

applications, although a deployment on a real robot and an integration with a complete pipeline including

a person detector and a tracker was not experimented.

Recently, a novel T-D-R framework for quadruped robots was proposed, including a visual tracker

based on a correlation filter, a person detector based on deep learning and a Re-ID module also based

on a deep learning model [108]. This system is designed for a real-time tracking and following of a

leader in long-term. For this purpose, the result of the tracker and the detector are compared to improve

tracking performance, while the Re-ID module handles distractions and occlusions caused by other

people. The correlation filter discriminates the leader from the rest of the people present by recording

the appearance in long-term. This method is robust in handling occlusions, appearance changes and

illumination variations. Although this method shows a very good tracking performance, it is designed for

tracking and following a single-target.

The methods presented so far use mainly RGB data and some use laser data for the people detection

task. However, depth data is frequently available in mobile robots. Hence, there are some methods that

use this type of information. Liu et al. proposed a method for people detection and tracking using Red-

Green-Blue-Depth (RGB-D) cameras for mobile robots, that also re-identifies targets through association

[109]. A point cloud is divided into subsclusters using meanshift clustering with an Epanechnikov kernel.

After that, human candidates are detected in each subcluster, by using plan view maps to describe

a spatial region of interest. A human candidate is described by a depth-weighted histogram and is

tracked using a particle filter, using Global Nearest Neighbour for data association. Although this method

provided good insight into the use of RGB-D data for this task, it does not perform well when the targets

are highly occluded by obstacles or other people.

One of the main considerations one must have when developing systems for mobile robots is the

17



computational efficiency and the system’s running frame rate. In [2], a very fast RGB-D people tracking

method for service robots is proposed, that can run in real-time at a very high frame-rate even without

using Graphics Processing Unit (GPU). It features a novel depth-based sub-clustering method that

allows to detect people within groups and standing next to walls. To reduce identity switches, an online

appearance classifier is used featuring a three-term joint likelihood. This method achieved state-of-the-

art performance in several RGB-D datasets, while being very fast, although it has some limitations such

as high ratio of misses when people are gathered in groups and difficulty to track trajectories that do not

follow a constant velocity motion model.

2.2.4 Critical discussion

The methods described so far provide meaningful insights and show progresses in developing a multi-

target tracker based on a Re-ID module to be deployed in a mobile robot. They show that the integration

of person re-identification with tracking benefits performance and that there are lightweight methods for

feature extraction that are discriminative and allow for robust person re-identification in a mobile robot.

However, they have some limitations since they either rely on constrained conditions on the environment,

such as open-spaces without occlusions, and the movement of people, such as standard poses or

walking motion, or their tracking and re-identification is not robust enough in challenging conditions such

as the presence of obstacles or similar targets. It is also important to note that there are not many

existing methods designed for multi-people tracking using Re-ID features on mobile robots. Hence,

there is need for a development of a Re-ID based multi-people tracker designed to be deployed in a

mobile robot working in an environment with obstacles and occlusions.

18



3
Methodology

Contents

3.1 Coordinate frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 System architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Tracks and state estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Data association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Track management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

19



The system proposed in this thesis is a multi-people tracker based on a Re-ID module for deployment

in a service mobile robot. This chapter presents the system architecture and the details of its several

components, followed by a description of the track’s state estimation, data association and track man-

agement procedures. The chapter is organized as follows: Section 3.1 gives a brief introduction to the

relevant coordinate frames, Section 3.2 gives an overview of the system architecture and its main com-

ponents, Section 3.3 presents the tracks and state estimation, Section 3.4 details the data association

step and finally Section 3.5 presents the track management approach.

3.1 Coordinate frames

Before presenting the overall system architecture, it is important to define the relevant coordinate frames

of our problem.
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Figure 3.1: Coordinate frames

Figure 3.1 contains a schematic showing the relevant coordinate frames. If we consider the robot,

four relevant frames can be identified: the 3D frame centered in the base of the robot, base link, the 3D

world frame of the odometry of the robot, odom, the 3D frame centered in the camera of the robot which

moves along with the camera, camera frame, and the 2D frame that represents pixels on the camera

image, image frame. We also have the map coordinate frame which is fixed and represents the world

and the environmnet where the robot is moving. The transformations between odom and base link and

between odom and map change based on the odometry errors. Corrections are calculated based on the

localization of the robot and are introduced in the transformation between odom and map, in a way that

the transformation between odom and base link represents the odometry of the robot and at the same

time the transformation between base link and map represents the localization of the robot.
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People tracking can be done in 2D, if each target is tracked in the image plane, or in 3D, if the target is

tracked in a world coordinate frame. Considering our goal is to track people in the world so that the robot

knows their location and can interact with them, the tracking in this work is done in the map frame, i.e.

in the world frame, hence a person’s position is given by 3 coordinates, (X,Y, Z). The other coordinate

frames presented will be used by several modules of the system.

3.2 System architecture overview

The proposed system aims at tracking multiple people in the scene while assigning an unique ID to each

one of them. The system is going to be deployed in a mobile robot, which requires a computationally

lightweight solution.

People detector
(Yolov3) 

Re-ID feature generator 
(TriNet) 

People localizer

Multi-people tracker
(Multi-Kalman-filter) 

RGB image

Depth image

ID-assigned
tracks

3D positions of the
detections 

Appearance descriptors of the
detections  

Figure 3.2: System architecture overview

An overview of the system architecture is presented in Figure 3.2 and is summarized here:

Input: The input of the system consists in a RGB image and a depth image, captured by the robot

with a RGB-D camera positioned on the head. The RGB image is fed to the people detector and the

depth image serves as input for the people localizer module.

People detector: The people detector module receives as input the RGB image and outputs the

detected people in the image, in the form of bounding boxes in image coordinates. People detection

is done using Yolov3 [110], which is an object detection convolutional neural network.

People localizer: This module takes as input the depth image and the bounding boxes from the

people detector and outputs the 3D position of the detected people in the map coordinate frame.

Re-ID feature generator: The Re-ID feature generator is responsible for generating appearance

feature descriptors of the detected people. It takes as input the bounding boxes from the detections

and outputs a 128-feature descriptor of each target. This module uses the deep neural network

TriNet [24].

Multi-people tracker: The multi-people tracker is composed of multiple Kalman-filters, one for each

track. It receives as input the positions in the map frame and the appearance descriptors of each
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target and outputs ID-assigned tracks, that correspond to the people being tracked in the scene.

3.2.1 People detector

The people detector module is responsible for detecting the people present in the scene. It takes as

input the RGB image taken by the robot’s camera and outputs bounding boxes in the image frame,

that represent the detected people. Bounding boxes are rectangles in the image plane that enclosure a

detection and are represented by (u, v, h, w), where (u, v) is the bounding box center position and (h,w)

are the height and width of the bounding box, respectively.

For this task, a trained model of Yolov3 is used, which is an improvement of the object detection

convolutional network Yolo [1]. This network was chosen because it is very fast and robust, making it

a very reliable and suitable solution for person detection in a robotic context. An example of detections

generated by Yolo can be seen in Figure 3.3.

Figure 3.3: Example of Yolo detections, taken from [1]

The network architecture consists on 24 convolutional layers followed by 2 fully connected layers.

The convolutional layers extract features from the image and the fully connected layers predict the out-

put probabilities and coordinates. The network is trained in the large-scale object detection dataset

COCO [106]. Yolo and Yolov3 can be used to detect a great variety of objects but in this work only the

detections belonging to the class ’person’ are considered, since we are only focused on people tracking.

An example of a bounding box generated by the people detector module of the proposed system, can

be seen in Figure 3.4

3.2.2 People localizer

The people localizer module converts detections in the image plane to 3D positions in the world frame.

For that, it takes as input the bounding boxes from the people detector and the depth image taken

by the robot’s camera. First, it takes the center of the bounding box and, using the image geometry
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Figure 3.4: Example of a person detection

Robot Operating System (ROS) package 1, it calculates the unit vector in the camera frame that passes

through the pixel corresponding to the center of the bounding box in the image plane. By default, the unit

vector (x, y, z) has z equal to 1. The unit vector is multiplied by a depth value to obtain the position of

the target in the map frame. The depth value is determined by finding the region in the depth image that

corresponds to the bounding box and getting the 25th percentile of the depth values from that region.

This is a good estimate of the depth of the person relative to the camera frame because the region in

the depth image enclosing the person will have some high depth values originated by the background,

as can be seen in Figure 3.5, that should not be taking into consideration. Therefore, taking the 25th

percentile of the depth values of that region will give a good estimation of the lower values which are

more representative.

In this work people tracking is done in the world coordinate frame, therefore the positions obtained by

the people localizer, which are in the camera frame, are then converted to the map frame. To do that,

they are first tranformed to the odom frame and then transformed to the map frame. The transformation

between odom and map depends on the localization of the robot, which is running in parallel. After the

conversion, we get the 3D position in the world frame of every target present in the scene. Regarding

the z position, since the point obtained by the people localizer refers to the center of the bounding

box of the detection, it will represent approximately the height of the center of the body of the person.

This information can be useful to determine if a person is sitting or laying down, but cannot be used to

compare people’s heights, for instance.

1http://wiki.ros.org/image_geometry
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Figure 3.5: Depth image showing two people. In this image, a brighter colour represents points that are further
away from the camera. Totally black represents a NaN point where the depth could not be obtained.
We can see here that a person is surrounded by background points that have bigger depth.

3.2.3 Re-ID feature generator

To be able to differentiate people in the environment and re-identify them when they exit the scene

and reappear, a Re-ID module is required. This module computes feature descriptors that represent a

target’s appearance. These feature descriptors are then compared to decide if a person has been seen

or not and who that person is. As mentioned before, the goal is to assign an unique ID to a person

and keep that same ID troughout the execution of the system, even if the person exits and re-enter the

scene.

As presented in the previous chapter, there are several methods that can be used to generate fea-

ture descriptors and each of them has their own advantages and disadvantages. In this work, the neural

network TriNet [24] is used, due to its robustness and light computational effort, which is key for the

deployment of the method in a mobile robot. Comparing to hand-crafted techniques, neural networks

achieve much better re-identification performance and considering our tracking environment has sev-

eral challenges such as illumination, viewpoint and pose changes and occlusions, robustness is a very

important requirement. Hermans et. al [24] was also one of the few works that made pre-trained mod-

els available to deploy out-of-the-box as feature extractors. Besides that, variations of this model had

already been used in other works with good results [98,107].

TriNet uses ResNet-50 pre-trained on the ImageNet dataset as a baseline. The two last layers of

ResNet-50 are discarded and two fully connected layers are added. The first has 1024 units, followed by

batch normalization and ReLu. The second has 128 units and it’s the output layer of the network. TriNet

is trained with batch hard triplet loss and the model used in this work was trained in the MARS dataset.
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This already trained model was chosen over a model trained on the Market-1501 dataset because MARS

is a video dataset and the tracking will be made on video.

Re-ID feature
generator 
(TriNet) 

Re-ID feature
generator 
(TriNet) 

[0.161, -0.564, 3.163 ... 1.294, -0.222, -0.778]

[0.776, 0.138, 2.839 ... 2.498, 0.626, 2.751]

128-feature vector

128-feature vector

Figure 3.6: Example of Re-ID feature extraction using the Re-ID feature generator.

The Re-ID feature extractor takes as input the people detections from the people detector, feeds

them to TriNet and outputs a 128-dimensional feature vector, which is the appearance descriptor, for

each detection. An example is shown in Figure 3.6. Each feature vector contains 128 float values that

describe the characteristics of the input image and that can be compared to match similar people. In

each layer of the network, different features are computed. For instance, the lower convolutional layers

compute low-level features such as color, texture and edges. The layers deeper in the network gradually

compute higher-level features such as the separation between upper-body and lower-body, the shape of

the body and other features that are useful for re-identification.

The set of appearance descriptors belonging to each target will then be used in the Multi-people

tracker, to assign ID’s to the tracks and manage them.

3.2.4 Multi-people tracker

The Multi-people tracker implemented in this thesis is composed of multiple single-hypothesis Kalman

filters and frame-by-frame data association using appearance descriptors and was inspired by Deep

SORT [111]. A Kalman filter approach was chosen because it is lightweight while achieving good tracking

performance and, when combined with an appearance metric, it allows for fast and robust tracking of

multiple targets.

The tracker is composed by a set of Kalman filters, one for each track. The several Kalman filters do

not relate to each other, each one of them represents one and only one track. Each person is tracked

using a simple Kalman filter, that predicts and updates the person’s position in themap coordinate frame.

The appearance descriptor generated by the Re-ID feature extractor is used to associate detections

to tracks and to manage the creation and elimination of tracks. At each frame, the tracker decides

which tracks to keep, delete or create, along with the Kalman filters associated with them. The track

management and data association methodology are described in the next chapter. The multi-tracker
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execution loop is ilustrated in Figure 3.7.

Kalman filter's prediction and
update steps 

Associates detections to
existing tracks 

Data association

3D position
Appearance descriptor 

Detections

Deletes and creates
tracks 

Track management

Next frame 

Figure 3.7: Multi-tracker execution loop. At each frame, the tracker receives as input people detections, including
their 3D position and their appearance descriptor. Next, the data association step associates detections
to existing tracks, followed by a track management step that deletes and creates tracks when needed.
Finally, each Kalman filter associated with existing tracks executes a prediction and an update step. In
the figure, each colored circle ilustrates a single Kalman filter, corresponding to an existing track. This
loop repeats every frame during the execution of the system.

A general overview of the Kalman filter algorithm that is applied for each track is presented in Fig-

ure 3.8. When a track is initialized, a new Kalman filter is initialized with an initial state and covariance.

At each timestep, which in this case corresponds to a frame, the state is then predicted using a motion

model that models the person’s movement from one frame to another. The state is then updated using

a measurement of the position of that person, if available. The measurement is a vector containing the

3D position of the target in the map frame, given by the people localizer module. At each timestep, the

Kalman filter outputs the estimated track state. The motion and estimation models, the state composition

and the relevant covariance matrices are presented and explained in the next chapter.

s0
P0

Based on a motion
model

Initial state Prediction step

Using incoming
measurements

Update step

3D position from the
people localizer

Measurement

st-1|t-1
Pt-1|t-1

st|t-1
Pt|t-1

st|t
Pt|t

t          t+1

s
P

Current estimate of the state

Figure 3.8: Kalman filter algorithm, where s, P and t are the state, the covariance matrix and the timestep, respec-
tively
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3.3 Tracks and state estimation

In order to track a target’s position through time, a Kalman filter is initialized for each new track. The

Kalman filter will predict and update the target’s position in the world at each frame. Each track’s state

is modelled as

x̂ = (x, y, z, vx, vy, vz), (3.1)

where x, y and z are the positions in the X, Y and Z axis of the world frame, respectively, and vx,

vy, vz are their corresponding velocities. A new track is initialized with the position of the target, initial

velocities are considered zero and an uncertainty is also assigned to the state, represented by the

following covariance matrix:

P0 =


σx

2 0 0 0 0 0
0 σy

2 0 0 0 0
0 0 σz

2 0 0 0
0 0 0 σvx

2 0 0
0 0 0 0 σvy

2 0
0 0 0 0 0 σvz

2

 (3.2)

where σ is the standard deviation of each of the state variables, with the following values, that were

previously determined experimentally:

σ =


σx
σy
σz
σvx
σvy
σvz

 =


0.2
0.2
0.2
1
1
1

 (3.3)

At each frame, the states are predicted using a constant velocity model for the x and y positions and

a zero velocity model for the z position, described by matrix A. The prediction step is described by:

x̂k|k−1 = Akx̂k−1|k−1 (3.4)

x̂k|k−1 =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 x̂k−1|k−1 (3.5)

Using the constant velocity model for the x and y positions is a common approach taken in 3D

people tracking, since from frame to frame we can assume that people keep their velocity constant in

those directions. Regarding the z position, which in this work represents approximately the height of
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the center of the body of the target, it is reasonable to assume that this position won’t change from one

frame to another. Significant changes in z occur if a person changes its pose by standing, sitting down

or bending, which are cases that cannot be predicted to occur from one frame to another. This cases

will impact the value of the z measurement and will affect the state in the update step.

Uncertainty about the state increases in the prediction step, so the covariance is recalculated. The

process noise covariance matrix Q is the same as the initial covariance matrix P0 and it is used to update

the covariance matrix, P in the prediction step:

Pk|k−1 = AkPk−1|k−1Ak
T +Qk (3.6)

At each frame, a measurement of the target’s position can be received. This measurement Z is

given by the people localizer module and gives information on the 3D position of the target, (x, y, z),

in the world frame. The update step is performed using a linear observation model where the target’s

position Z, is taken as a direct observation of the target’s state, using the following measurement matrix:

Hk =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (3.7)

Using the measurement of the targets position Z, the current state vector s, and the measurement

matrix H, an innovation factor y is obtained:

yk = Zk − (Hkx̂k|k−1) (3.8)

The uncertainty associated with the measurement is also calculated. The measurement uncertainty

is the following:

Rk =

σx2 0 0
0 σy

2 0
0 0 σz

2

 (3.9)

The measurement uncertainty matrix indicates how reliable the values of the measurements are.

Using the above measurement uncertainty matrix, the innovation covariance associated with the mea-

surement step S is calculated:

Sk = HkPk|k−1Hk
T +Rk (3.10)

Using the above calculations, the Kalman gain K is computed. The Kalman gain is the weight given

to the measurements and the state estimation, stating which one should be trusted more. It is given by:

Kk = Pk|k−1Hk
TSk

−1 (3.11)
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The elements of K will be larger if the measured values do not match the predicted state and will

decrease otherwise. The state and the state covariance are then updated:

x̂k|k = x̂k|k−1 + (Kkyk) (3.12)

Pk|k = (I −KkHk)Pk|k−1, (3.13)

where I is the identity matrix.

The track’s states are predicted and update with incoming measurements at each frame, however,

deciding which measurement is associated to which track is key to maintaining a track’s correct ID and

to perform a good state estimation. This task is handled by a data association method, that will be

described in the next section.

3.4 Data association

The data association task is handled as an assignment problem where we have a set of detections that

have to be assigned to a set of existing tracks and a detection can be associated to one and only one

track and vice-versa. Each detection has its own position, (x, y, z), and an appearance descriptor. Each

existing track has also a 3D position given by its state and an appearance gallery associated with it.

In this problem, two metrics are used: a spatial distance metric and an appearance metric. The

reasoning behind using these two metrics is that they both provide different information about how likely

a detection is to be related to a track. A detection can be spatially very close to a track but if their

appearances are very different, then they probably are not the same person. On the other hand, a

detection can appear very similar to a track’s known appearance, but be spatially very distant from it,

which is an indication that it might not belong to the same target.

The spatial distance metric between a detection d, and a track t, is computed by calculating the

squared Mahalanobis distance D, following this expression:

s(d, t) = D(d, t)2 = (xd −mt)
T · Pt

−1 · (xd −mt), (3.14)

where xd is the vector containing the x and y position of the detection, mt is the vector containing the x

and y position of the track and Pt is the covariance matrix associated to the track. Using the Mahalanobis

distance gives a better indication of how close a measurement is to the position of the track, since it also

takes into account the uncertainty associated with it. The z position is not taken into account in this

metric because, as stated before, it represents approximately the height of the center of the body of a

person and that is not a variable that allows to match detections to tracks. Although the z position of a

detection and a track that belong to the same person should be similar, a person can change its pose
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dramatically from one frame to another, which will affect the z position and would erroneously affect the

spatial distance metric. The x and y position will remain close from one frame to another, and that is

why they are the variables used to account for spatial proximity.

The appearance metric is calculated by computing the smallest Euclidean distance between the 128-

dimensional appearance descriptor of the detection, and the appearance descriptors present in the track

appearance gallery. This gallery is composed of all the appearance descriptors associated to the track

since its initialization. The appearance metric computation between a detection and a track is given by:

c(d, t) = min(d(ld, li)|liεLt) (3.15)

where

d(v, u) =
√

(v1 − u1)2 + (v2 − u2)2 + ...+ (v127 − u127)2 + (v128 − u128)2, (3.16)

ld is the detection appearance descriptor, li is the i-th appearance descriptor of the track and Lt is the

track gallery containing all the appearance descriptors associated with the track.

By storing all the previous appearances of a target in the gallery and finding the minimum appearance

distance to one of its elements of the gallery, this metric evaluates how similar a detection is to a target,

based on all the history of appearances of that target. This approach was chosen over an average of

all the appearances because a target’s appearance can change greatly with time, due to illumination

or viewpoint changes, and averaging the appearance descriptors would result in a less informative and

discriminative representation of a person’s appearance. Using this approach, if a person’s apperance

changes significantly because of a sudden illumination change, for instance, the appearance descriptor

associated with that frame will be saved and if in a later point in time that person suffers the same

appearance change, this metric will find a very small distance between that current appearance and the

previously saved appearance.

Algorithm 3.1 describes the data association algorithm. The algorithm receives as input the set of

detections and existing tracks in the current frame. Empty sets are initialized for associations, unmatched

detections and unmatched tracks. The assignment problem is represented by a cost matrix and the cost

between a detection and a track is the appearance distance, as can be seen in line 5. A distance

matrix is also computed, with the spatial distances between detections and tracks, in line 6. Then, all

possible associations are assessed considering both metrics, from line 7 to 12. The goal of this step is

to assign an ”infinite” cost, which in our case is a very large number (10e5), to associations which are not

admissible considering their combination of appearance and distance metrics. A range of values of the

appearance metric between two thresholds, Tlower and Tupper, is considered, where the spatial distance

determines if the association is admissible or not. If the appearance distance is in that range and the
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Algorithm 3.1: Data association

1 Input: Tracks T , Detections D
2 A←− ∅ // Initialize set of associations

3 Ud ←− ∅ // Initialize set of unmatched detections

4 Ut ←− ∅ // Initialize set of unmatched tracks

5 C =
[
cd,t

]
// Compute cost matrix

6 S =
[
sd,t

]
// Compute distance matrix

7 for each detection d do
8 for each track t do
9 if Tlower < C[d, t] < Tupper ∧ S[d, t] > Smax then

10 C[d, t] = INFINITE COST

11 else if C[d, t] ≥ Tupper then
12 C[d, t] = INFINITE COST

13 A,Ud, Ut ←− hungarian algorithm(C, T,D)

14 for each association (d, t) in A do
15 if C[d, t] = INFINITE COST then
16 A←− A \ (d, t)

17 Ud ←− Ud ∪ d
18 Ut ←− Ut ∪ t

spatial distance is above Smax, the association is given an infinite cost. This step is important because

it discards associations where a detection is not similar in appearance to a track. At the same time,

it keeps associations where, although the appearance is not that similar, the spatial distance between

them is very close, which strongly indicates that they belong to the same target. An example where

this procedure proves useful is when a target’s appearance changes suddenly from one frame to the

next and thus the appearance metric is heavily affected, but if the target did not move unexpectedly, the

spatial distance remains very small and the association is considered admissible. The upper limit of the

appearance range is used to discard completely an association where the detection and the track are not

similar at all and, even if they are spatially very close, they cannot belong to the same target. This can

occur if a person is occluding the other or if they are standing very close. The spatial and appearance

thresholds were determined experimentally, through several tests, and the values used are:

Tlower = 300, Tupper = 700, Smax = 0.05m (3.17)

After checking both metrics, the assignment problem is solved using the Hungarian algorithm [112], in

line 13. This algorithm solves the association between detections and tracks with the minimum possible

cost. Given that one detection can be assigned to one track only and vice-versa, if the amount of
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detections and tracks is not the same, unmatched detections and tracks will be identified. From the

algorithm’s output, the association set is filled. Finally, the association set is iterated and the cost of

each association is checked. If it is the infinite cost, it means that this association was considered not

admissible in the previous steps and it is discarded, with the respective detection and track being added

to their respective sets.

3.5 Track management

Following the data association stage, we get a set of associated detections and tracks and a group of

detections and tracks that were not associated. Unmatched detections are used to create new tracks

and unmatched tracks are used to delete existing tracks, which is done in a track management step.

Each track has an associated state indicator, which can be Confirmed, Tentative or Deleted. When

a track is initialized it is assigned the Tentative state. A Tentative track changes to Confirmed if

there is an association with a detection for three consecutive frames. A Confirmed track is considered

Tentative if there is no association at the current frame. A Tentative track changes to Deleted if there is

no association for five consecutive frames. When a track isDeleted, the corresponding track appearance

gallery, Lt, containing all the appearance feature descriptors previously associated with that track, is

saved to memory. The three state indicators and the conditions that determine when to change states

are represented in Figure 3.9 by a state-machine.

Figure 3.9: Track state indicators

At each frame, both Confirmed and Tentative tracks serve as input to the data association algo-

rithm. Based on the data association result, the state indicator of each track can change and finally only

Confirmed tracks are the output of the overall system. They identify the different people in the scene

that the tracker is tracking with confidence. Tentative tracks serve two purposes: one is to prevent

keeping tracks that were created based on an erroneous detection, eg. a false positive, and that’s why

when a track is initialized it remains as Tentative for three frames until it can be considered Confirmed;

the other purpose is to keep tracks of targets that are occluded only for a short time, and should continue

to be tracked after they reappear in the scene, and that’s why a Confirmed track switches to Tentative

for five frames before being deleted.
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The initialization of new tracks is done based on the unmatched detections at each frame. For each

unmatched detection, a new track is initialized. Assigning an ID to a new track is a very important step.

If the new track corresponds to a person that was seen before, the ID that was previoulsy assigned

to that person should be assigned to the new track. At the same time, we have to be careful to not

assign a previously used ID to a track that does not belong to the same person. To accomplish that, the

appearances of all previously seen people are saved in memory in a dictionary I, which is updated by

appending the track gallery Lt, to a list containing all the appearance descriptors previously associated

with that track’s ID. This track gallery was introduced in the previous section in Equation (4.15). In

this dictionary, all the previous IDs and their corresponding appearance descriptors, combined in track

galleries, are listed. Every frame, this dictionary is updated with the track galleries of the tracks that

were deleted in that frame. When those tracks have an associated ID that is already present in the

dictionary, the track gallery is appended to that ID’s list of galleries. Otherwise, a new entry is added to

the dictionary. An example of the structure and update step of the ID dictionary is shown in figure 3.10.

5

1

Keys (ID's) Values
(List of track galleries containing appearance

descriptors) 

L1(1)
,

L1(2)

L5(1)
Next frame

1

5

2

Keys (ID's)
Values

(List of track galleries containing appearance
descriptors) 

L1(1)
,

L1(2)
,

L1(3)

L2(1)

L5(1)

Figure 3.10: ID dictionary, I example. Each dictionary entry contains a list of track galleries, Lt. Each track gallery
contains several 128-feature vectors. In this example, from one frame to the next, two tracks are
deleted: one with the ID 1 and the other with the ID 2. Hence, the dictionary is updated: a new
L1 is appended to the ID 1 list and a new ID, with the number 2, is added to the dictionary with its
corresponding track gallery being saved.

To determine which ID is assigned to a new track, the algorithm described in Algorithm 3.2 is per-

formed. The appearance distance between the new track and all previously seen people is computed

using the appearance distance metric described before. The exception is that ID’s that are associated

with tracks currently being tracked are not possible ID’s to be recovered and assigned to a new track,

hence, are excluded from this comparison. The appearance of the new track is given by the detection

that initialized it. The appearances of all the previously seen people are available in the ID dictionary.

The appearance distance metric is designed to be computed between a detection and a track, therefore,

in this case, we take the new track as the detection and the track galleries stored in the dictionary as the

tracks, as can be seen in line 5. By finding the minimum distance between the new track and all the track

galleries of a specific ID, we get the minimum distance of the new track to that ID, which is stored in a list

in line 6. That procedure is repeated for every ID in the dictionary, except if the ID is being tracked at the
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current frame, and the minimum distance to an ID is calculated (lines 3 to 7). That distance represents

the best possibility of the new track belonging to a previously seen ID. We check that distance against

an appearance threshold, Trecover, and if it is smaller, that ID is assigned to the new track (lines 7 and

8). If the minimum distance to an ID is above Trecover, the new track is assigned a new ID, in line 11.

The threshold Trecover was determined experimentally and has the following value:

Trecover = 400 (3.18)

This value is higher than the value of Tlower, because in the experiments it was observed that usu-

ally when a person re-enters the scene its current appearance is less similar to the previous than if we

compare them frame to frame, hence this threshold is higher in order to recover more frequently previ-

ously seen people. It was observed that if the threshold is lower, there are some cases where a person

that was seen before gets a new ID because the appearance distance was slightly above the threshold.

At the same time, considering that usually newly seen people are not that similar to previously seen

targets, increasing the threshold did not lead to cases where a new track was assigned a previous ID

erroneously.

Algorithm 3.2: ID assignment to a new track

1 Input: New track t, ID dictionary I, list of active ID’s B, next unused ID, next id
2 Z ←− ∅ // Initialize list of appearance distances

3 for each k in I do
4 if k is not in B then
5 V = [c(t, I[k](i))] // Compute appearance distance vector

6 Z ←− min(V ) // Append minimum of V to list Z

7 min distance = min(Z) // Find minimum of Z

8 min id = argmin(Z) // Find respective ID

9 if min distance < Trecover then
10 Track t’s ID = min id

11 else
12 Track t’s ID = next id
13 next id = next id+ 1
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In this chapter, first a review of the state-of-the-art of 3D Multi-object tracking datasets is presented,

where the current short-comings are pointed out. Next, a novel re-identification multi-people tracking

dataset is presented. The composition of the dataset and examples of the dataset sequences are

provided.

4.1 3D Multi-Object tracking datasets: State-of-the-art review

Regarding multi-object tracking, the most important benchmark is the MOT Challenge [113]. It provides

some of the largest datasets for pedestrian tracking, including ground-truth and detections, recorded with

static and moving cameras. The detections are provided since the quality of the detections heavily im-

pacts the performance of the tracker but usually the tracking module is independent from the detection,

thus, comparing the performance of different trackers is easier if they all use the same detections [114].

Some of the datasets available in the MOT Challenge are MOT15 [115], MOT16 [116], MOT19 [117] and

KITTI [118]. The great majority of these datasets provide ground-truth of the positions of the targets in

image coordinates, i.e. in 2D. MOT15 provides ground-truth of the 3D position of targets but only on 4

of the 22 sequences, where the camera is static, and the 3D positions were obtained using camera ge-

ometry calculations rather than with physical sensors, which introduces error. The datasets provided by

the MOT Challenge include mostly crowded and open-space outdoor areas, featuring with pedestrians

walking, which is not representative of the typical environment of the application considered in this work.

A domestic environment is indoors and it is not an open space, targets will be frequently occluded by

furniture and they can be sitting down or assuming other poses. Besides that, MOT Challenge datasets

do not provide depth images, only RGB, hence they cannot be used to evaluate and test the method

proposed in this thesis, since it requires depth information of the targets.

Table 4.1: RGB-D multi-human tracking datasets

Dataset Year #Sequences #Frames #Camera Track ID’s Environment
ETH 2008 8 5017 Static No Busy pedestrian zones
UHD 2011 3 1130 per sequence Static Yes University Hall

StanfordRGB-D 2012 35 4500 per sequence Static (17) and moving (18) Yes Office, hallways and corridors
KTP 2012 5 8475 Static (1) and moving (4) Yes Office

KingstonRGB-D 2014 6 1000 per sequence Static Yes Laboratory
SD 2015 10 - Static No Indoor shop

There are several RGB-Depth multi-human tracking datasets that have been presented in the past

years. Some of the most popular ones, refered here with the same names as in [119] for clarity, are the

following: the ETH dataset [120], the University Hall Dataset (UHD) [121], the StanfordRGB-D dataset

[122], the Kinect Tracking Precision Dataset (KTP) [2], the KingstonRGB-D dataset [123] and the SD

dataset [124]. A comparison of these datasets is summarized in Table 4.1. The datasets vary in number

of sequences and frames, in the status of the camera (static or moving), the existence of annotated track
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ID’s and the environment in which they were taken. Out of the datasets considered, only two of them

were obtained using moving cameras, which is very important to evaluate a method to be deployed in a

mobile robot, since the camera movement impacts heavily the accuracy of the position estimation and

introduces other errors. The two datasets where the camera is moving were taken in an open-space

environment where targets are not occluded by other objects such as furniture and they do not include

sequences where targets are assuming different poses such as sitting down.

Analyzing the state-of-the-art on 3D Multi-object tracking datasets, we can see that there is an overall

lack of datasets aimed at tracking in 3D and that the ones that exist are very limited in the conditions

in which they were taken. They depict very crowded scenes and most of them were taken using a

static camera. The existing datasets show outdoor areas or open-space indoor areas. There is also a

lack of robust and reliable ground-truth of 3D positions of targets, along with depth information besides

RGB, which is data commonly used by 3D tracking methods. Considering the application of the method

proposed in this thesis, there is a need for a multi-target dataset with track ID’s and target 3D position

ground-truth taken in an apartment-based environment with occlusions caused by obstacles in the scene

and taken by a moving camera. A dataset with these characteristics was not found in the literature,

therefore a novel Re-ID multi-target tracking dataset is proposed, in the next section.

4.2 Re-ID Multi-Tracking Dataset

In this section a new RGB-Depth dataset is proposed, called Re-ID Multi-people tracking dataset, ac-

quired from a mobile robot moving in a domestic environment testbed equipped with a motion capture

system. This dataset was built to test and evaluate 3D position accuracy and people re-identification

performance of multi-target tracking methods based on RGB-D data.

4.2.1 Data and ground truth collection

The data was collected by teleoperating the MBOT in the ISRoboNet@Home Testbed1 (Figure 4.1)

with up to 3 targets moving in the environment. The robot is equipped with a tilt-controlled Orbbec

Astra RGB-D camera positioned on the head that captures RGB and depth images with 640 x 480 pixel

resolution at 30Hz. The testbed is an apartment-like environment designed to benchmark service robots

and is equipped with a motion capture system composed of 12 OptiTrack® ”Prime 13” cameras (1.3 MP,

240 FPS), which provides real-time tracking data of rigid bodies with sub mm precision in 6 dimensions

with low latency (4.2ms).

Although the camera frequency is 30Hz, the recording of the dataset was done at a lower frequency

of approximately 10Hz, resulting in a total of 3144 RGB images, 3437 depth images and 2154 people

1https://welcome.isr.tecnico.ulisboa.pt/isrobonet
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Figure 4.1: ISRoboNet@Home testbed

instances.

The RGB-D images, camera information, a map of the environment on the form of an occupany grid

along with map metadata, odometry of the robot, transforms along reference frames and ground-truth

are made available as ROS bag files2.

People detections originated by the people detector module of the proposed system described earlier

have also been included in the dataset. This information cannot be considered as ground truth because

it is generated by an automatic people detector, but it was included because it can be of great utility

for future works that focus solely on the tracking algorithm and require people detections beforehand.

Besides that, as mentioned before regarding the MOT Challenge, providing public detections is very

useful for comparing the tracking performance of different methods, independently of their detection

performance.

As ground-truth, 3D positions of people in environment were obtained using the motion capture

system, together with ground-truth of the robot’s position. Markers were placed on the targets and on

the robot. Track ID’s were also obtained directly by the motion capture system. 3D ground-truths of

targets that were out of the field of view of the robot or completely occluded were manually deleted.

Besides that, there were frames where the motion capture system failed, due to the positioning of the

cameras and markers that were not visible, and the 3D ground-truth of some of the targets was not

registered. In these cases, ground-truth was not associated with these frames and they should not

be considered when evaluating performance metrics. After this process, ground-truth is associated

with approximately 70% of the frames. This process is important because keeping frames with lack of

ground-truth of some targets would lead to errors when evaluating methods on this dataset, such as the

occurrence of incorrect false positives (cases where the method outputs a track that is not present in the

2https://ulisboa-my.sharepoint.com/:f:/g/personal/ist187134_tecnico_ulisboa_pt/Emz8wKesZThJsO_

TNoR1mTkBWJ6JjriW-0le5CsfWRd3ig?e=KfJtlT
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(a) Still (b) Moving head (c) Moving base (d) Chairs

(e) People following (f) Changing clothes 1 (g) Changing clothes 2

Figure 4.2: Dataset sequences examples. From (a) to (f) we can see an example of a single frame of each se-
quence of the dataset. On (g) three frames of the Chaning clothes 2 sequence are shown, where the
target has different clothes in each one of them.

ground-truth).

4.2.2 Dataset sequences description

The dataset consists of 7 videos with durations ranging from 40s to 1:10s. Each video contains different

characteristics (camera and people movement) and represents different cases, so that the dataset is

representative of several situations that can occur in an environment with multiple people and obstacles.

The 7 sequences (videos) present in the dataset are the following:

• Still: sequence recorded with a static camera. Three targets move around freely in front of the

camera without being occluded by obstacles.

• Moving camera: sequence recorded with the camera rotating while the robot’s base does not

move. Three targets move around freely in front of the camera without being occluded by obsta-

cles.

• Moving base: sequence recorded with the robot moving around the environment. Three targets

are present and are frequently occluded by obstacles. One of the targets also sits down and gets

up again during the sequence.
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• Chairs: sequence recorded with the robot moving around the environment. Three targets are

sitting down in chairs around two tables and during the sequence they get up, walk around and

switch places several times.

• People following: sequence recorded with the robot being teleoperated to follow a specific person

around the environment. During the sequence, three targets are present and there are several

occlusions caused by obstacles and people crossing paths.

• Changing clothes 1: sequence recorded with the robot moving around the environment. Two

targets are present. Both of the targets change their clothing during the sequence while in front of

the camera.

• Changing clothes 2: sequence recorded with the robot moving around the environment. Two

targets are present. One of the targets exits the scene and re-enters with different clothes twice.

These sequences cover most of the common cases that can occur in a domestic environment. There

are several occlusions caused by furniture such as chairs, tables and a sofa or caused by other people

when targets cross paths with each other. A specific case where the robot is following a person was also

recorded, since this is a common task executed by mobile service robots. The last two sequences repre-

sent cases where targets change their clothes during the sequence, which is a challenging scenario for

people re-identification. This dataset also has the particularity that all of the people present are wearing

cirurgical masks, due to the Covid-19 pandemic. An example of RGB-D frames from the sequences

described above is presented in Figure 4.2. Statistics of the sequences and the overall dataset are also

presented in Table 4.2

Table 4.2: Re-ID Multi-tracking dataset statistics

Sequence Duration (s) #RGB images #Depth images #People instances %Frames with ground-truth #ID’s
Still 39.5 398 454 326 90.3 3

Moving head 42.1 374 457 237 74.1 3
Moving base 60 590 574 490 71.7 3

Chairs 52.2 424 544 366 66.5 3
People following 39.0 399 394 174 42.1 3

Changing clothes 1 68.0 621 676 347 67.6 2
Changing clothes 2 56.7 338 338 214 75.4 2

Total 357.5 (5:75s) 3144 3437 2154 70.1 -

Each of the sequences pose different challenges and can be very helpful when developing or eval-

uating a multi-people tracker. The two Changing clothes sequences are aimed at evaluating the re-

identification performance of multi-people trackers or other methods, since the challenging scenario

where a target changes clothes is presented. Since the maximum number of targets present in a single

sequence is 3, the dataset is not suitable to evaluate a tracker’s performance in crowded environments,

but it is representative of a domestic or office environment where usually there are not many people

present in the scene at the same time.
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The proposed Re-ID Multi-Tracking Dataset contains 7 sequences that are very different from each

other and that represent common cases in multi-people tracking in a indoor and occluded environment,

making it a suitable dataset for developing and evaluating 3D multi-target tracking methods that use

RGB-D data.
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In this chapter first the system implementation on the MBOT is described. The evaluation metrics that

were used are described, the experiments that were conducted are detailed and the evaluation results

on two datasets are presented. The results are analyzed and compared with the results of another

state-of-the-art method in a common dataset.

5.1 Implementation

The system was deployed in the MBOT, that features two on-board computers with i7 processors, one

dedicated for navigation and the other for human-robot interaction and a NVIDIA GeForce 1060 6gb

GPU. As stated before, the robot also features a tilt-controlled Orbbec Astra RGB-D camera positioned

on the head.

The system was implemented using ROS and Python and consists in the following ROS nodes:

darknet ros py : It was already implemented in the MBOT and is used as the people detector in the

system. This module source code was written in Python.

mbot object localization : It was already implemented in the MBOT and is used as the people local-

izer module. This module source code was written in C++.

re id tracker : Developed in the context of this thesis, including the Re-ID feature generator and the

multi-people tracker. This module source code was written in Python.

The darknet ros py and mbot object localization nodes publish their outputs in ROS topics which

are subscribed by the re id tracker. One implementation challenge was the synchronization of the

messages that were being received by the re id tracker node, considering that the publishing frequency

of the people detector and the people localizer were not equal. The people localizer module receives as

input the detections generated by the people detector so the people localizer messages always come

with a small delay. To overcome this issue, people detection messages are stored in a queue and when

a people localizer message arrives, both messages are matched by timestamp.

5.2 Evaluation metrics

Before detailing the experiments and evaluation results, it is important to clarify which evaluation metrics

were used and what they consist in. All the experiments that will be detailed below were evaluated using

these metrics and understanding them is key to analyze the performance of the method.

All the experiments conducted in this thesis were evaluated using the CLEAR MOT metrics [125].

These metrics are the most frequently used metrics for evaluating multiple object tracking performance

and are one of the adopted metrics on the multi-object tracking benchmark MOT Challenge [113].
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CLEAR MOT are composed of two separated metrics that tackle different aspects of tracking perfor-

mance: the MOTP and the MOTA.

Before detailing the calculation of these metrics, it is important to refer how the matching between

tracker hypotheses and ground-truth objects is done in the CLEAR MOT framework. The first step to

evaluate a tracker’s performance is to establish a correspondence between the tracker hypotheses and

the real objects present in the scene. In CLEAR MOT, the correspondence is done based on the spatial

distance between them, as long as the distance between a pair of hypothesis-object does not exceed a

threshold. This threshold represents the maximum distance that can be considered an error in position

estimation. Beyond that threshold, we consider that the tracker hypothesis has to belong to someone

else. In the case of this thesis, the value chosen for this threshold is 1 meter. This means that if a

tracker hypothesis is more than 1 meter away from an object, they cannot be associated. Besides this

consideration, consistent association through time is also a concern, hence pairs of hypotheses-objects

that were associated in the previous frame are preferred over other pairs in the current frame, even

if their distance is larger (although it has to be always below the threshold). Taking into account this

considerations, the matching is done using the Hungarian algorithm. These are the most important

aspects of the matching procedure, but a more detailed description can be consulted in [125].

Following the matching of hypotheses and objects, there may be hypotheses and objects that were

not matched. The hypotheses that were not matched are counted as false positives, fp. The objects

that were not matched are counted as misses, m. Besides that, CLEAR MOT also counts the number

of mismatches, mme, or ID switches, that represent the number of times where an ID was wrongly

associated with a person. This can occur in two ways: when a person is being tracked with an ID and

then switches to another ID and when a new person is seen and it is given an ID that was previously

associated with another person. This counts are indicative of these specific types of errors and will be

used for the computation of the MOTA metric.

The MOTP shows the ability of the tracker to estimate the position of the targets, regardless of its

skill in assigning identities and keeping trajectories. It is a metric that represents how big is the error of

the tracker in estimating positions of tracked people. It is given by:

MOTP =
Σi,tdt

i

Σtct
, (5.1)

where dti is the distance between the hypothesis and the object of the ith matched hypothesis-object

pair of frame t and ct is the number of matches made in frame t. MOTP is the total error in estimated

position for matched hypothesis-object pairs averaged by the total number of matches made.

The MOTA takes into account all object identity and track errors, such as false positives, misses

and mismatches. It measures how well a tracker assigns identities to targets, keeps trajectories and

recognizes people in the scene. It is given by:
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(a) Moving base (b) Chairs

Figure 5.1: Examples of the tracker output in the sequences Moving base, figure (a), and Chairs, figure (b). On
the left, the RGB image and the output of the people detector are shown. On the right the map of the
environment is shown, with the ground-truth positions of the targets and the robot and the tracker output
displayed. Only a 2D position (X and Y) is displayed for easier visualization. The red arrow and the
other three arrows represent the ground-truth position of the robot and the ground-truth position of the
three people in the environment, respectively. The output of the tracker is represented by a number.
Each number indicates a track and is located on the estimated position of that person.

MOTA = 1− Σi(mt + fpt +mmet)

Σtgt
(5.2)

where mt, fpt, mme and gt are the misses, false positives, mismatches and objects seen in frame

t, respectively. MOTA is the sum of all object configuration errors averaged over the total number of

objects seen.

These two metrics assess different abilities that a tracker must have and, combined with the other

errors, provide a good evaluation of a tracker’s performance.

5.3 Experiments on the Re-ID Multi-Tracking Dataset

5.3.1 Evaluation results

The method was evaluated on the novel Re-ID Multi-Tracking Dataset using the CLEAR MOT metrics.

Examples of the system’s output for two sequences of this dataset are presented in Figure 5.1. Examples

of the target’s trajectories in every sequence and the tracks generated by the system are presented in

Appendix A.

Results divided by sequence and in total can be seen in Table 5.1. The MOTP in meters and the

MOTA score in percentage are shown in Figure 5.2. The results presented in the table are: the number

of objects seen, i.e. number of ground-truth of people registered, the number of matches between a

tracker hypothesis and a ground-truth object as computed by the CLEAR MOT evaluation procedure

described earlier, the number of misses and the ratio of misses relative to the number of objects, the

number of false positives and the false positives ratio relative to the number of objects, the number of
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Table 5.1: Re-ID Multi-Tracking Dataset experiment results divided by sequence and in total. The ratios of misses,
false positives and ID switches, in percentage, are given relative to the number of objects seen.

Objects Matches Misses Misses (%) False Positives False Positives (%) ID Switches ID Switches (%) Recall errors

Still 330 267 15 4.55 4 1.21 0 0.00 0

Moving head 261 213 10 3.83 3 1.15 0 0.00 0

Moving base 522 296 51 9.77 16 3.07 13 2.49 4

Chairs 429 160 26 6.06 11 2.56 6 1.40 3

People follow 186 72 11 5.91 5 2.69 4 2.12 0

Changing clothes 1 280 172 15 5.36 6 2.14 1 0.36 0

Changing clothes 2 226 173 34 15.04 17 7.52 9 3.98 3

Total 2234 1353 162 7.25 62 2.78 33 1.48 10

ID switches, i.e. mismatches. Besides these results, an additional count is reported, that is not included

in the CLEAR MOT metrics, which is the number of recall errors. The recall errors are the number of

ID switches that occurred by initializing a track with an ID that was previously associated with a different

person. This count is useful to access how the tracker recalls previously seen people and how many

times a person entering the scene is assigned a and ID that belonged to someone else. The number of

recall errors is always a portion of the ID switches and the smallest the better.

Figure 5.2: Re-ID Multi-Tracking Dataset MOTA and MOTP scores achieved by the system, divided by sequence
and in total. The letters in the horizontal axis represent the differente sequences: Still (S), Moving head
(MH), Moving base (MB), Chairs (C), People follow (PF), Changing clothes 1 (CC1), Changing clothes
2 (CC2) and Total (T).

The total MOTP value is 0.215 meters which shows a good target position estimation, since it means

that the average error in people position estimation was only 22cm, approximately. The system was

able to track the target’s positions accurately in every sequence, although we can see greater error in

three sequences, Chairs, Moving base and Moving head, which are the sequences where the targets

and the robot are moving the most. As the robot moves, the error in the robot’s localization increases,

which also impact the error in the transformation calculation between coordinate frames. The error in
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the transformation between frames will increase the error in the position given by the people localizer

module, increasing the error in the tracker’s position estimation.

In the Chairs sequence the MOTP is the highest, with almost 30cm of error, which can be explained

by the fact that in this sequence the people are constantly stopping and sitting down. Since a constant

velocity motion model is used in the Kalman Filter prediction step, when people suddenly stop and keep

their position, the predicted positions will follow a constant velocity trajectory and will have a greater error

until a measurement is made and the position is updated. It is interesting to note that in the People follow

sequence, where the robot and the targets move a lot around the room, the error is below 20cm. This is

due to the fact that, since the robot is following a target, the matches made in this sequence are mostly

belonging to a single person that is being seen by the robot almost all the time. The position estimation

error is low because the target’s position is being constantly updated. Another reason may be that this

sequence has the lowest percentage of frames with ground-truth (see Section 5.2.2) which results in

less ground-truth 3D positions to compare against the system’s output.

The total MOTA score is 88.50% which shows a very good performance in assigning unique ID’s

to targets, keeping trajectories and identifying people in the scene. This result shows that almost 90%

of people instances that were seen were correctly tracked with a unique ID. The highest MOTA was

achieved in the Moving head and Still sequences, where the robot’s base is static. In these sequences

the targets are being seen by the robot almost all of the time and their movements are mostly linear,

which reduces the complexity in estimating their identities and keeping track of their trajectories. The

lowest MOTA is obtained in the challenging Changing clothes 2 sequence, where the maximum number

of misses, false positives and ID switches occur.

The ratio of misses and false positives on the complete dataset is 7.25% and 2.78%, respectively.

These ratios show that the system produces a very low number of false positives and that only less than

10% of people instances were missed. The misses occur because when a new track is initialized, the

system only outputs a track after 3 frames with a correct association, as described in section 4.3. This

approach is important to decrease the number of false positives caused by erroneous people detections,

but inevitably increases the number of misses in those 3 frames before a track is outputed by the system

after the detection of an unseen person or the initialization of a new track due to an ID switch.

As can be seen in the table, the number of misses is directly correlated with the number of ID

switches, since most of ID switches represent cases where a new track is initialized. There are other

cases that can lead to misses, such as when a person is heavily occluded and no detection is given

by the people detector or when a person’s position estimate is too far away from the ground-truth and

no match between a tracker hypothesis and an object is made. The latter situation is rare, but when

it occurs, it also produces the false positives that are reported. The ratio of misses and false positives

are much higher in the Changing clothes 2 sequence than in the other sequences, which also leads to
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the lowest MOTA score. This is due to two reasons: this sequence is the most challenging in terms of

targets appearance changes, since one of the targets changes clothes twice and exits the scene several

times, which leads to many ID switches and consequently more misses; this sequence was the only one

that was recorded in a different day than the others and there are ground-truth errors that could not be

completely eliminated by manually removing frames, such as errors in the estimation of the position and

in the ID’s assigned to the targets. Evaluation in this sequence is reported anyways because it shows

that, even with some ground-truth errors and in a very challenging scenario with heavy appearance

changes, the system still achieves a MOTA above 70%, which is acceptable.

Figure 5.3: Experiment on the Changing clothes 2 sequence. The images and the elements in the map represent
the same as in Figure 5.1. Three frames from the sequence and the respective tracker output are
shown. In the first frame, a target is identified with ID 2. The other target is not being seen by the
camera, so it has no track associated with it. In the second frame, in the middle of the figure, we see a
correct re-identification of the target seen in the first frame, now wearing different clothes, and the ID 2
is re-assigned to that target. In the last frame, the first target is wearing different clothes again and we
see that an ID switch occurs, because the tracker assigns the ID 4 to that target. In the last frame we
can also see the atribution of ID 1 to a target that was not shown before.

The number and ratio of ID switches are some of the most relevant results because, considering the

system is based on a Re-ID module, one of the main goals is to have the least amount of ID switches

as possible. In the complete dataset, the system produces only 1.48% ID switches, which shows a very

good performance in keeping target’s ID’s and associating a specific ID to only one person. Out of the

total 33 ID switches, 10 were recall errors, caused by assigning a previously seen ID to a wrong person

when initializing a track. The recall errors were caused by different targets with similar appearances,

that the system could not tell apart.

We can see that in the Still and Moving head sequences there were no ID switches, since as stated

before the targets were in the camera view most of the time and the system could easily distinguish

targets using both spatial distance and appearance metrics. In the Moving base sequence, the system
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produces the second worst ID switch ratio, which can be explained by the fact that in this sequence the

robot moves a lot around the room and the targets are often occluded by obstacles and other people,

besides exiting and re-entering the field of view often. All of theses situations make the targets appear-

ance change a lot, so when they re-enter the scene they are sometimes assigned a different ID than

before.

It is also interesting to note that the ID switches ratio in the People following is higher than the

average. In this sequence there are cases where targets cross between the camera and the person

being followed, and in this cases the camera only sees a very small portion of the people that is crossing,

since it is very close. This results in a track with a very specific appearance, corresponding to only a

part of the person’s body. When the system detects this person again, and the full-body is seen, the

person’s appearance is completely different and a different ID is assigned, leading to an ID switch. In this

sequence there are effectively no ID switches associated to the track of the target that is being followed

by the robot, only to the tracks of people passing by.

The results in the Changing clothes 1 sequence show that changing clothes while in the camera view

does not pose an identification challenge for the system, leading to only one ID switch. Since the system

constantly updates the target’s appearance, a change in appearance while the person is being tracked

is registered in the track’s appearance gallery and that person continues to be assigned the same ID.

When the target is later seen and its appearance corresponds to one of the appearances previously

associated with its ID, that same ID is assigned to it again.

Finally, in the Changing clothes 2 sequence the results show the highest ratio of ID switches. In

this case, contrary to the previous, the person changes clothes while out of the camera view. Although

in some cases when it re-enters the room the system still manages to assign the same ID, there are

other cases where a different ID is assigned, as ilustrated in Figure 5.3, which leads to the number of ID

switched reported. In the figure, we can see that when the target that was first identified with ID 2 exits

the scene and re-enters with different clothing, the system correctly re-identifies it. On the last frame, an

example is shown where a re-identification error occurs, since the target is now identified with ID 4. In

this example, the target’s clothes are very similar to the clothes of the other person in the scene, which

caused a recall error. Although it is not shown in the figure, the ID 4 was previously assigned to the other

target.

Another important consideration is the real-time performance of the method. In this dataset, the

system achieved a 33Hz frame rate, which is suitable for real-time robotic applications.

5.3.2 Parameters fine-tuning

The system has several parameters that were fine-tuned to achieve the best performance possible. The

parameters that were analyzed and tuned were Tlower, Tupper, Smax and Trecover. The values of these
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parameters were previously chosen when developing the system, by a qualitative analysis of the output

of the system. To find the optimal values for these thresholds and check the initial assumptions, the

CLEAR MOT metrics were computed by running the method on the full Re-ID Multi-Tracking Dataset,

i.e. in every sequence, with varying values of the parameters. Additionally, the recover errors were also

counted. In Figure 5.4 and Figure 5.5, the values of MOTA, MOTP, ID switches and recall errors in

total are reported, when varying Smax and Trecover. In these figures, MOTP is given in percentage, for

better visualization. This percentage represents the position accuracy relative to 1 meter, which was the

threshold used to determine matches in the CLEAR MOT procedure, as proposed in [125]. In Table 5.3,

the values of MOTA, MOTP, ID switches and recall errors are also reported for different combinations of

Tlower and Tupper.

First, the value of the Trecover threshold was fine-tuned. This threshold determines when a new track

is assigned a previously seen ID. A higher threshold means that the appearance distance between a

new track and a previously seen person can be higher and will increase the amount of times that a new

track is assigned previously seen ID’s. A small value of this threshold leads to the opposite. Next, the

value of Smax was also looked into. This parameter determines the maximum spatial distance that a

detection can be from a track in order to be considered that it belongs to the same person, when the

appearance threshold is between the range [Tlower, Tupper], as detailed in section 4.2.

Looking at the evaluation results on the Re-ID Multi-Tracking Dataset on Figure 5.4 and Figure 5.5 we

can see that varying Trecover and Smax does not impact the MOTA and MOTP scores greatly. Although

the number of ID switches varies, the MOTA score is practically constant in every experiment which can

be explained by the fact that the number of ID switches is always low when comparing to the number of

objects seen, thus, the impact on MOTA is not high. On the other hand, the values of these parameters

affect the data association and track management steps, which are not related to the track’s position

estimation, so it was expectable that the MOTP would not change either. To compare the optimal values

of these two parameters, the number of ID switches and recall errors is compared. Although the MOTA

score is similar, it is relevant to compare the number of times a track switches ID’s and, out of the total

ID switches, how many times a previously seen ID is wrongly associated to a target. The smaller these

numbers are the better. Following this logic, it is clear that, out of the 5 values tested, the optimal values

for Trecover and Smax are 400 and 0.05m, respectively.

For values of Trecover below 400, the number of recall errors drops, since the recover threshold is

low, while the number of ID switches rises. This shows that, for values below 400, the tracker assigns

previoulsy seen ID’s to new tracks much less, which leads to assigning different ID’s to the same person

when the target exits and re-enters the scene, for instance. For values above 400, the number of recall

errors and ID switches increase because more targets are considered to be the same person.

In Table 5.2, the mean and the minimum values of the appearance distances between a detection
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Figure 5.4: Evaluation metrics on the Re-ID Multi-Tracking Dataset when varying the value of Trecover. MOTA and
MOTP are given in percentages and ID switches and recall errors are the total number of these occur-
rences on the complete dataset. The values of the other parameters are: Smax = 0.05m, (Tlower,Tupper)
= (300,700)

Mean Distance
Appearance distance 301.7 40

Table 5.2: Mean and minimum values of the appearance distance between a detection and a previously seen target,
for the cases where an ID was recovered, on the Re-ID Multi-Tracking Dataset. The value of Trecover

when running this experiment was 600.

and a previously seen target, for the cases where an ID was recovered are reported. The results were

obtained by running the system on the complete dataset, using a value of 600 for the Trecover threshold.

The goal was to check the average appearance distance while using the highest value considered for

the threshold. The average appearance distance between a track’s appearance and a previously seen

ID is around 300 and the minimum of that distance in the complete dataset was 40. This shows that the

appearance distance between two instances of the same person can be as low as 40, but at the same

time, due to the frequent appearance changes, it can also be much higher. This result backs the decision

of using a value of 400 for the Trecover threshold, since this is a value that is just above the average,

which will allow for the recall of ID’s even in case of appearance changes. Increasing the threshold more

does not make sense, since it would increase the recall errors, as stated before.

When Smax is zero, it corresponds to the case where the spatial distance metric has no impact

and the data association step is done using solely the appearance metric. In this case, the MOTA

score is slightly lower than in the other cases and the number of ID switches is the highest. Since the

spatial distance is not being considered, in this case detections are matched to tracks based only on

appearance and that leads to many errors when targets have similar appearances. This result shows

that combining the spatial and appearance metric is very important for the performance of the tracker. By

increasing the Smax value to 0.25, the number of ID switches increases by just 1, while the MOTA score
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Figure 5.5: Evaluation metrics on the Re-ID Multi-Tracking Dataset when varying the value of Smax. MOTA and
MOTP are given in percentages and ID switches and recall errors are the total number of these occur-
rences on the complete dataset. The values of the other parameters are: Trecover = 400, (Tlower,Tupper)
= (300,700)

Tlower Tupper ID switches Recall errors MOTP (m) MOTA (%)
100 700 70 25 0.213 86.41
100 1000 72 24 0.215 86.33
300 700 33 10 0.215 88.50
300 1000 37 16 0.220 89.85
400 600 34 19 0.218 90.17

Table 5.3: Evaluation metrics on the Re-ID Multi-Tracking Dataset wen varying the values of Tlower and Tupper.
MOTP is given in meters and represents position estimation error, hence, the lower the better. MOTA
is given in percentages and ID switches and recall errors are the total number of these occurrences on
the complete dataset. The best results for the various metrics are highlighted in bold. The values of the
other parameters are: Trecover = 400, Smax = 0.05m

is slightly better, but there are 6 more recall errors. The value of 0.05 for Smax was chosen because it

is more important to have less recall errors, which in practice impact more the perception of the robot

of the identities of the people present in the scene, specially since the increase in MOTA for an Smax of

0.25 is not substantial and the number of ID switches is almost the same.

To determine the optimal values for Tlower and Tupper it is necessary to consider the combination

of both, since they define a range of values of appearance distance between a detection and a track

where the spatial distance metric will also be taken into account. Five pairs (Tlower,Tupper) were tested

and the results can be seen in Table 5.3. The MOTP is practically constant in every case, because this

parameters also do not impact the track’s position estimation. A big range of values, (100, 1000), corre-

sponds to the case where the spatial distance has much more weight in the data association step than

the appearance distance, and we can see that it does not perform as well as the other combinations:

the number of ID switches is the highest and the MOTA is the lowest. It is interesting to note that even if
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we decrease Tupper to 700, while keeping Tlower at 100, the number of ID switches is almost the same

and the number of recall errors even increases by one. This shows that what is really affecting perfor-

mance is the low value of Tlower, that is causing a lot of ID switches by discarding correct associations

between detections and tracks based on the spatial distance. The best performance is achieved for the

pair (300,700). Although the MOTA is higher for the pair (400,600), the difference is very small and the

number of ID switches and recall errors show that the pair (300,700) is the optimal combination. For the

combination of values (400,600), the range of appearance distance values for which the spatial distance

is taken into consideration in the data association step is smaller, which leads to more associations

based only on appearance distance, which causes more errors when similar people are present in the

scene.

Considering the results obtained by testing on the Re-ID Multi-Tracking Dataset, the optimal values

for the system’s parameters and that lead for the best tracking results are:

Trecover = 400, Smax = 0.05, Tlower = 300, Tupper = 700

5.4 Evaluation on a test sequence

The proposed system performance was evaluated in a test sequence. This sequence was recorded

in the same conditions as the Re-ID Multi-Tracking Dataset. The ground-truth were obtained using the

same method described in chapter 5. The sequence statistics are presented in Table 5.4.

Table 5.4: Test sequence statistics

Sequence Duration (s) #RGB images #Depth images #People instances %Frames with ground-truth #ID’s
Test sequence 112 (1:52s) 1301 813 824 50.5 3

This test sequence includes challenging scenarios such as targets sitting down, crossing paths with

each other and frequent occlusions by obstacles and other people. The sequence was recorded with the

robot moving around the environment while the targets walked randomly and assumed different poses.

This sequence was not used to tune the system’s parameters, therefore the performance of the

tracker in this sequence provides valuable insight into how the system performs in unseen scenarios.

The tracking results on the test sequence are reported in Table 5.5.

The results show a very good performance on the test sequence. The system achieves a MOTA

Table 5.5: Tracking results on a test sequence, compared with the results on the Re-ID Multi-Tracking Dataset

Objects Matches Misses(%) False Positives (%) ID Switches ID Switches (%) Recall errors MOTP (m) MOTA (%)

Test sequence 690 174 7.82 2.86 14 1.99 4 0.190 87.25

Re-ID Multi-Tracking Dataset 2234 1353 7.25 2.78 33 1.48 10 0.215 88.50
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Table 5.6: Tracking results for the Kinetic Tracking Precision dataset of the proposed system and the system pre-
sented in [2], divided by situation. Best results by situation are shown in bold.

Situation ID switches Misses (%) False Positives (%) MOTP (m) MOTA (%)
Proposed system Back and forth 0 0 0 0,306 1

SOAM Back and forth 1 8,5 2,4 0.196 88.97
Proposed system Random walk 23 8,9 4,7 0,355 85.30

SOAM Random walk 20 18,9 9,8 0.171 70.93
Proposed system Side by side 5 5,9 1,9 0,386 89.35

SOAM Side by side 5 11,6 1,2 0.146 87.22
Proposed system Running 2 5,66 2,0 0,350 88.68

SOAM Running 4 4,4 1,1 0.143 94.57
Proposed system Group 30 11,68 2,1 0,364 80.98

SOAM Group 26 42,53 9,1 0.181 47.91

score of 87.25% which is very close to the MOTA score on the Re-ID Multi-Tracking Dataset and a

MOTP of 0.190m which is even lower than the MOTP achieved on the proposed dataset. The miss, false

positive and ID switches ratios are almost the same, although slightly higher on the test sequence. The

system produced some ID switches and recall errors but most of the time the targets were consistently

identified and re-identified.

5.5 Experiments on the Kinetic Precision dataset

The system was also evaluated in the Kinetic Tracking Precision (KTP) dataset [2], that was mentioned

in the previous chapter, where RGB-D data was recorded using a Microsoft Kinect mounted on top

of a mobile robot moving inside an open-space room equipped with a motion capture system. The

dataset consists of 4 videos of around 1 minute each. The robot moves differently in each video, to test

tracking performance for different robot motion. The videos are named with the movement that the robot

performs: Still, Translation, Rotation and Arc. In each video, the same five cases occur: back and forth,

where a single target walks back and forth once, random, where three targets walk randomly for about

20 seconds, side-by-side, where two targets walk side-by-side in a linear trajectory, running, where one

person runs across the scene and group, where five persons get together in a group and then exit the

room.

Along with the presentation of the KTP dataset, Munaro and Menegatti [2] proposed a RGB-D track-

ing system for service robots, which will be referred to as State of The Art Method (SOAM) for the

remainder of this thesis. The results of this thesis’s system for the KTP dataset are compared with the

results of that method, as reported in their work, in Table 5.6.

Overall the system proposed in this thesis shows a better tracking performance on the KTP dataset

than SOAM. The MOTA scores are higher in every situation except one. The ratio of misses and the ratio

of false positives are also lower for most of the situations. The number of ID switches is almost the same
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Table 5.7: Tracking results of the system for the KTP dataset, divided by video.

Misses (%) False Positives (%) ID Switches ID Switches (%) MOTP (m) MOTA (%)
Still 6.31 2.35 18 2.60 0,340 87.77

Translation 7.91 2.06 10 1.60 0,354 87.20
Rotation 10.42 4.75 20 3.66 0,371 79.26

Arc 10.04 3.06 12 2.60 0,356 82.09
Total 8.46 2.98 60 2.59 0.354 85.98

in every situation for both methods, with a slightly better performance of SOAM if we consider the total

amount of ID switches and the fact that in the two most challenging situations (random walk and group) it

produces less ID switches than the system proposed. The MOTP, in meters, is approximately two times

lower in every situation for SOAM, which shows a better position estimation of the targets. Nonetheless,

the MOTP of the proposed system is always below 40cm, which is still an acceptable result for people

tracking, since it still provides a good estimation of the target’s position for most tasks. It is important

to note that, due to difficulties in synchronizing the ground-truth with the image frames provided in the

KTP dataset, the MOTP error of the proposed system is inflated, which explains the bigger error in these

experiments when comparing to the experiments presented in the previous section. The ratio of misses

has the most impact on the MOTA scores when comparing the two methods. The ratio of misses of

the proposed system is much smaller than the one of SOAM in every situation except one. One of the

reasons for this is that the people detector used in this work, the Yolov3, has a much better performance

than the people detector used in SOAM, which is a HOG detector. The number of ID switches shows

that the proposed system struggles more when there is a group of people present in the scene, such

as in the random walk and group situations. The KTP dataset also features 5 different people, while

the Re-ID Multi-Tracking Dataset only features 3 different targets, which also increases the difficulty in

keeping track’s identities.

Tracking results on the KTP dataset, divided by video, are also reported in Table 5.7. In [2], 3D

tracking results divided by video are not reported, so it is not possible to compare the two methods in

this case.

The results show that the system has a good tracking performance in all of the videos, producing a

low ratio of misses, false positives and ID switches. The MOTA scores are higher in the videos where

there is less camera and robot motion, because camera movement introduces more errors in the position

estimation and when targets exit the field of view, their re-identification is more challenging.

The experimental results in the KTP dataset show that the proposed system is robust to different

scenarios and situations and, compared with SOAM, it achieves an overall better tracking performance.
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5.6 Discussion

Several experiments were conducted by running the system on the MBOT using two different datasets

and a test sequence. Evaluation results were obtained using standard tracking evaluation metrics, the

CLEAR MOT metrics, with the addition of a count of the recall errors produced by the system.

The system’s parameters were fine-tuned through experiments on the Re-ID Multi-Tracking Dataset.

First, in these experiments it became clear that the value of the parameters Tlower, Tupper, Smax and

Trecover does not have a big impact on the MOTP and MOTA scores. This thresholds impact mostly

the number of ID switches and recall errors. The number of misses and false positives is determined

mainly by the performance of the people detector module which is constant in every experiment. Since

the people detector detects very accurately the people present in the scene, the number of misses is

never high and is only caused by the track initialization delay of 3 frames, that is needed to prevent false

positives. This trade-off results in a very low number of false positives, which in these experiments can

be due to ground-truth errors that could not be completly eliminated.

Secondly, the experimental results when varying Smax and pairs of (Tlower, Tupper) showed that

a combination of the spatial and the appearance distance metrics is key for achieving a better re-

identification performance. For the values of these parameters where the spatial or the appearance

metric have much more impact in the data association step, the number of ID switches increases, due to

either appearance similarities between people or unexpected movement from a target which increases

the spatial distance to a point where the association is not performed. Combining both metrics trough the

optimal values of the parameters leads to an optimal performance where both spatial and appearance

considerations are taken in the data association step.

Thirdly, the value of Trecover has a great impact on the number of recall errors, since a target’s

appearance can change a lot during the system’s execution, due to illumination changes for instance, but

two different people can also have small appearance distances between each other. Hence, choosing

the right value implies a trade-off between correctly re-identifying targets and reducing ID switches, while

keeping recall errors low.

The system’s performance on the Re-ID Multi-Tracking Dataset shows robust target tracking and

identity assignment with precise position estimation, achieving a MOTA score of 88.50% and MOTP of

0.215 meters. The system was also tested in an unseen test sequence, in which the performance was

also very good, achieving a MOTA score of 88.50% and MOTP of 0.190 meters. Even in the sequence

were targets changed clothing, the ID switches ratio did not increased to values above 4%. These

results show that the proposed system is robust at tracking and re-identifying people in an environment

with multiple targets, obstacles and frequent occlusions. Considering the dataset was recorded using

a moving camera mounted on a mobile robot and that the system achieved a frame rate of 33Hz, this

shows that the system can be applied for mobile robotics with good performance.
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Finally, the system was also evaluated on an open-space dataset with up to 5 different targets in the

scene, the KTP dataset, and was compared against a state-of-the-art method, proposed with that same

dataset. The system achieved an overall MOTA score of 85.98% and MOTP of 0,354m on this dataset

and produced overall better results than SOAM, the method proposed in [2].

The results show that the proposed system is robust at multi-target tracking and re-identification in

an indoor environment with challenging scenarios such as occlusions and obstacles. The system is also

suitable for robotic applications, considering the real-time performance of the method.
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6.1 Conclusions

Service robots are designed to interact with humans which means they should have a good social be-

haviour. In order to improve human-robot interaction, the robot should be able to locate and differentiate

the different people in the environment, which allows for personalized interactions. For this purpose, this

thesis aimed at developing a 3D position tracking system to be deployed on a mobile robot that robustly

recognized and identified multiple people in the scene, besides re-identifying targets previously seen,

while maintaining real-time performance, on an environment with obstacles and occlusions caused by

other people. The results show that the proposed Re-ID based multi-people tracker achieves these goals

and even outperforms another state-of-the-art method.

Multiple limitations in existing Re-ID and tracking methods and datasets were pointed out in this

thesis. Most Re-ID and tracking methods are not suitable for robotic applications since they are com-

putationally too demanding or they are based on underlying assumptions that not hold for real-world

scenarios such as a perfect gallery of targets or constrained movement of the robot and people in the

scene. This work combines existing methods suitable for robotic applications such as a people detector,

a people localizer, a Re-ID feature extractor and a Kalman filter framework with simple data associa-

tion and track management approaches that result in a lightweight and robust Re-ID based multi-people

tracker suitable for real-world scenarios and applications.

Regarding the existing datasets, the great majority of the tracking datasets are aimed at 2D tracking

only and the 3D tracking datasets are very limited in terms of camera movement and environments. If

we consider datasets that use depth information, it was found only one dataset available recorded with a

moving camera. To overcome this lack of datasets, a novel RGB-D Re-ID multi-people tracking dataset

recorded with a moving camera mounted on top of a mobile robot was constructed. This dataset is

representative of real-world scenarios, it was recorded on an apartment-like environment with obstacles

and features up to three different targets that suffer several occlusions and appearance changes. The

dataset includes target’s 3D position and identities ground-truth. This dataset has characteristics that

are new and fullfills the lack of a moving camera RGB-D 3D tracking dataset in an environment with

obstacles.

An experimental analysis was conducted and evaluation of the method was performed in the pro-

posed dataset, as well as in a test sequence and in a state-of-the-art dataset. The system achieved a

MOTA score above 85% in all of them and a MOTP always below 0.4m. The proposed method is robust

to appearance changes, such as clothing, pose and illumination changes and occlusions. The proposed

method runs at 33Hz, which is suitable for real-time robotic applications.

To conclude, this thesis presents a robust 3D tracking method focused on people re-identification

that can be used for robotic applications. This method was designed for the MBOT, but can be easily

deployed in other mobile robots to accomplish tasks that rely on people re-identification and tracking,
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improving human-robot interaction and allowing for personalized robot behaviour, which is key for a

better acceptance of robots in domestic environments. The results and findings of this thesis can be a

contribution for further developments of Re-ID based tracking systems suitable for mobile robots.

6.2 System Limitations and Future Work

Although the experimental results show that the proposed system is robust to various scenarios and

achieves a very good tracking performance, there are still improvements that can be made.

There are still some cases where the system produces ID switches, which introduce error in the

perception of the people present in the scene. The ideal case would be for the system to produce zero

ID switches and there are several research paths that can be taken to try to accomplish this. First, the

data association step could be improved. Currently, the data association relies on the fine-tuning of

the system’s thresholds which are rigid and will always discard correct associations due to appearance

changes that lead to distances slightly above the threshold. A better performance could be achieved by

using a probabilistic model to model the combined appearance and spatial distance between detections

and existing tracks. This approach could better model the changes in appearance and spatial distance,

resulting in a combined probabilistic metric that could be used to assign detections to tracks.

Secondly, the track management step can also be changed to reduce recall errors, which will also

reduce ID switches. Instead of deleting tracks when the targets are not being seen, those tracks could be

kept with an Inactive track indicator, described by a random walk motion model, for instance. Following

this approach, when deciding whether to assign a previously seen ID to a new track or not, the spatial

distance could also be taken into account. Other option would be, besides the random walk motion

model, keep the position where the track was deleted and check if the new track is being initialized in

that position. This option would help in recalling a person that may had not moved since the track was

lost. Combining these two options in a probabilistic way, e.g. by assuming equal probability to both

cases, could further improve this approach.

Besides these improvements in the algorithm, more experiments could also be conducted in order

to access and improve the system’s performance. The experiments could be evaluated using different

metric, such as metrics more focused on the re-identification performance only. The proposed dataset

only features a maximum of three different people at the same time in the scene, which is not much.

Although in a domestic environment usually there are not more than three people at the same time, an

addition to the dataset could be made with more sequences including larger groups of people, consider-

ing that the complexitiy of the people re-identification task increases with the number of people present.

Additionally, more challenging scenarios could be considered, such as cases where people assume

more poses such as lying down, bending down or while doing sports. It could also be interesting to test
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the re-identification performance of the method in a case where every target is using the same clothes,

to access how that scenario would affect the appearance distances between them. It could also be in-

teresting to test the system in an outdoor environment, where the depth camera can be less accurate, or

in sequences where the light intensity changes abruptly, to evaluate how that impacts the performance

of the system.

6.3 Ethical Considerations

As a final note, it is important to mention some ethical considerations about this work. With the devel-

opment of every new technology there should always be a discussion regarding its impact in our society

and on human rights. Technology brings unmeasurable benefits to humans and helps us in every aspect

of our lives nowadays, however, it can also have a negative effect in the way we interact with others, in

our privacy and in issues such as discrimination, inequality and environmental impact. The recent devel-

opments in the field of Artificial Intelligence (AI) have been receiving attention from an ethical and legal

perspective which lead to the publication of the proposal of the new EU Artificial Intelligence Act (AIA)

by the European Commission [126]. This proposal shows the importance of considering ethics, legality,

equality and environmental sustainability in applications and research that use AI.

People re-identification is a specially concerning topic since its most widely application is surveil-

lance. It is even more concerning since, to the extent of my knowledge, none of the papers referred to

in this thesis related to people re-identification mentioned any ethical concerns. People re-identification

provides machines with a skill that can be easily used for unethical purposes such as authoritarian

surveillance, ethical groups discrimination and invasion of privacy. Another concern is the construction

of image and video datasets without the consent of the people that were recorded. One of the largest

Re-ID datasets, DUKE MTMC Re-ID, is an extension of the DUKE MTMC dataset [51], which has now

been terminated following a report from Exposing.ai1 and an investigation from the Financial Times2

which reported its use for discriminative surveillance applications and raised concerns regarding the im-

age rights of the people present in the dataset, which did not explicitly authorized the recording. Despite

the shutdown of the main dataset, extensions such as the ones used for Re-ID are still available and

continue to be used by many researchers.

Following this remarks, the dataset constructed in this thesis was recorded with the consent of all the

participants, which signed an informed consent that can be seen in Appendix B. The participants also

agreed with the public distribution of the dataset for research purposes.

In conclusion, it is important to state that the dataset and the work presented in this thesis aim at

improving human-robot interaction and providing service robots with the ability to conduct personalized

1https://exposing.ai/duke_mtmc/
2https://www.ft.com/content/cf19b956-60a2-11e9-b285-3acd5d43599e
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interactions that benefit human’s well-being and helps them in their daily activities. This work should not

be used in any circunstances for surveillance applications or discriminative purposes.
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[13] M. Pietikäinen, “Local binary patterns,” Scholarpedia, vol. 5, no. 3, p. 9775, 2010.

[14] T. Matsukawa, T. Okabe, E. Suzuki, and Y. Sato, “Hierarchical gaussian descriptor for person re-

identification,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 1363–1372.
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[115] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “MOTChallenge 2015: Towards

a benchmark for multi-target tracking,” arXiv:1504.01942 [cs], Apr. 2015, arXiv: 1504.01942.

[Online]. Available: http://arxiv.org/abs/1504.01942
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7
Appendix A - Experiment’s people

trajectories and tracks

This appendix contains examples of people tracks generated by the proposed system compared with

ground-truth trajectories, for each sequence of the Re-ID multi-people tracking dataset. In each figure,

ground-truth trajectories are represented by circles and the system’s output tracks are represented by

squares. Different colors in ground-truth trajectories represent different people and different colors in the

tracks represent different ID’s assigned to the track. The examples shown here represent trajectories

and tracks belonging to only a portion of the full sequences, for better visualization.
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Figure 7.1: Still sequence trajectories In this figure we can see the trajectories of two targets, represented by the
colors blue and black. The two tracks generated by the system show a good estimation of the target’s
position and there are no ID switches.
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Figure 7.2: Moving head sequence trajectories In this figure we can see the trajectories of two targets, repre-
sented by the colors green and blue. The two tracks generated by the system show a good estimation
of the target’s position on the most part of the trajectories and there are no ID switches. We can see
that the target represented by the color green goes around the other target, occluding it several times,
and the system is still able to keep the track’s IDs.
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ID switch

False Positives

Figure 7.3: Moving base sequence trajectories In this figure we can see the trajectories of two targets, repre-
sented by the colors brown and blue. We can also see an ID switch, where the brown ground-truth
trajectory is temporarily assigned a different ID (represented in black). We can also see some false
positives generated by the system.
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(a)

(b)

ID switch

ID switch

Figure 7.4: Chairs sequence trajectories In this figure we can see the trajectories of three targets, represented
by the colors brown, black and blue. In (a) we can see the trajectories of the three targets while they
are sitting down. In (b), two of the targets get up and walk around the environment. We can see
two ID switches: one where the blue target is assigned the ID of the target that is sitting close to him
(represented in black) and another one where the blue target is assigned a different ID (represented in
green)
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ID switch

Recall error

Figure 7.5: People following sequence trajectories In this figure we can see the trajectories of three targets,
represented by the colors brown, black and blue. In this figure the main trajectory is the blue one, which
belongs to the person being followed by the robot, and the other trajectories are temporary occlusions
to that person. We can see an ID switch in the blue trajectory, where the ID assigned to that track
switches momentarily. We can also see a recall error, where the brown trajectory is assigned an ID,
black, that was previously assigned to the trajectory of other target, i.e. the black one.
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Figure 7.6: Changing clothes 1 sequence trajectories In this figure we can see the trajectories of two targets,
represented by the colors black and blue. The target represented by the color black is tracked without
any errors. The other target is first assigned an ID, represented by the color blue but when it re-enters
the scene, a different ID, green, is assigned, which shows an ID switch.
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ID switch

ID switch

Misses

Figure 7.7: Changing clothes 2 sequence trajectories In this figure we can see the trajectories of two targets,
represented by the colors black and green. There is no ground-truth for the target represented by the
black track, due to a motion capture system failure. The other target is first assigned an ID, represented
by the color gree, and then continues to be tracked although it suffers two ID switches. There is also a
part of the trajectory that is not tracked, which leads to misses.
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8
Appendix B - Dataset recording

informed consents

In this appendix the informed consent that was signed by the three participants in the videos recorded

for the Re-ID multi-people tracking dataset is presented.
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INFORMED CONSENT

❏ I read and understood the procedures, duration and place of the user study.
❏ I read and understood what data can be recorded (robot: telemetry; participant: video and 3D

position in space) for the exclusive purpose of scientific research. I authorize that the recorded
data during the experimental sessions include:
❏ video recording
❏ 3D position recording

❏ I authorize the anonymous treatment of data collected under this project for the purpose of
analysis, research and dissemination of results in magazines or conferences, by the researchers
of the project.

❏ I authorize the public release of this data for access by others for research purposes, with the
possibility of requesting the removal of the data from public access at any time.

❏ I understood that my participation in this user study does not pose any risk, discomfort or
disadvantage to myself.

❏ I understood that my participation in this study is voluntary and that I can withdraw at any time
without giving an explanation. If this happens, no penalty will occur and my data will be removed
and destroyed.

I accept the crossed terms of this consent,

Name   ...........................................................       Date   ....................................................

Signature   ...........................................................................................................................

……………............................................................................................................
For more information, please contact:
Vicente Pinto (Responsible for the user study and data protection)

vicenteppinto@tecnico.ulisboa.pt
Rui Bettencourt

rui.bettencourt@tecnico.ulisboa.pt
Professor Rodrigo Ventura

rodrigo.ventura@isr.tecnico.ulisboa.pt
Instituto Superior Técnico, Universidade de Lisboa & ISR

ONE COPY OF THE CONSENT IS FOR THE INVESTIGATORS AND, IF REQUESTED, ANOTHER ONE IS FOR THE PARTICIPANT.

THIS INFORMED CONSENT WAS WRITTEN ACCORDING TO THE GUIDELINES OF THE ETHICS COMMITTEE OF INSTITUTO SUPERIOR TÉCNICO

Figure 8.1: Informed consent that was signed by the participants
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