
Stepwise Migration of a Monolith to a
Microservices Architecture:

Performance and Migration Effort Evaluation
Diogo Faustino∗

∗Supervised by António Rito Silva

Abstract—The agility inherent to today’s business promotes the
definition of software architectures where the business entities are
decoupled into modules or services. However, there are advan-
tages to having a rich domain model, where domain entities are
tightly connected because it fosters reuse. On the other hand, the
split of the business logic into modules or services, encapsulated
through well-defined interfaces, and the introduction of inter-
service communication foster an agile development but introduce
a cost in terms of performance.

In this paper, we analyze the impact of migrating a rich
domain monolith into a modular architecture and sequentially
into microservice architecture, both in terms of the development
cost associated with the refactoring, and the performance cost
associated with the execution. The current state of the art
analyses the migration of monolith systems into a microser-
vices architecture, but we observed that migration effort and
performance issues are already relevant in the migration to a
modular monolith and concluded the impact of establishing a
microservice architecture with a rich domain model and inter-
service communication on the performance. Additionally, we also
addressed challenges exclusive to the microservice architecture
such as eventual consistency of the databases and the deployment
of the services.

Index Terms—Domain-driven design, Modular architecture,
Refactoring Cost, Performance evaluation, Microservices, Even-
tual consistency.

I. INTRODUCTION

Domain-driven design [1] advocates the division of a large
domain model into several independent bounded contexts to
split a large development team into several small, and busi-
ness focused, teams to foster an agile software development.
Additionally, these bounded contexts can be implemented as
modules, each one of them with a well-defined interface,
to further decouple the teams by reducing the number of
required interactions between them. This modularization is
also suggested as an intermediate step of the migration of a
monolith to a microservices architecture [2].

The correct identification of what should be the responsi-
bilities associated with each module is not trivial, and has
to be done through several refactoring steps [1], [3], [4].
These refactoring operations can be more easily performed in
a strongly connected domain model where the business logic is
scattered among the domain entities, a rich domain model, and
in the absence of interfaces between the domain entities [5].
So, it is common that projects start with a single domain
model, because in the first development phases the domain

model is not completely understood. Premature modularization
adds a cost to development, because of the need to refactor
modules’ interfaces, since it initial design does not capture the
correct abstractions.

The use of interfaces between modules requires the trans-
formation of data between them to encapsulate their domain
models, anticorruption layers [1], which implies significant
changes do the domain model, and have impact on the perfor-
mance of the system. Therefore, the process of modularizing
a monolith system, or further migrating it to a microservices
architecture [6], has to address these problems.

The migration into a microservice architecture further en-
capsulates the bounded contexts into independent processes
that become cohesive services, capable of being individually
deployed and isolated through an API that provides the anti-
corruption layers. Therefore, the modules can provide the
groundwork for achieving the services without costly ramifi-
cations to implement them and allow to focus the refactoring
efforts in more intricate aspects introduced with the architec-
ture, such as inter-process communication and decentralized
data management.

Research has been done on the comparison of the per-
formance quality between a monolith system and its corre-
spondent implementation using a microservices architecture,
but these results are sometimes contradictory, e.g. [7], [8],
addresses different characteristics of a microservices sys-
tem, e.g. [9], [10], or are evaluated using simple systems,
e.g. [11], where the monolith functionalities do not need to
be redesigned in order to be migrated to the microservices
architecture.

In this thesis, we describe the refactoring process of a large
monolith system into a microservice architecture, removing
circular dependencies between modules, and adapting each
of these modules into independent services with well defined
REST APIs, focusing on the refactoring effort and the per-
formance. Concerning the refactoring, we describe the types
of refactoring that were applied and measure their impact
on the migration effort. Regarding performance, we describe
the architectural tactics that were applied to improve the
performance of the microservice architecture, and compare it
with the modular monolith performance.

From the point of view of the microservice architecture, we
observed the benefits of establishing the modular architecture



in terms of refactoring necessary in the migration process and
present the refactoring made to the interfaces and modules
to obtain the services. Similar to the modular monolith, the
results presented a significant impact on the latency due to
the remote invocations and network overheads. Additionally, it
could also be observed how the data consistency was affected
by a decentralized approach.

In the next section we describe the architectural elements of
a microservice architecture from a modular architecture. Then,
in section III, we present the refactoring activities that adapt
the modules into services, the refactoring necessary to the
interfaces for the inter-service communication, the behavioral
changes for a decentralized data approach and discuss some
performance tactics that should be considered during the
process. A large monolith system is introduced in section IV,
in which we describe how it migrated into a microservice by
applying the migration refactorings. In section V the migration
process is evaluated in terms of refactoring cost, performance,
and data consistency and the results are discussed in sec-
tion VI, in which they are generalized to applications that
have a similar architecture and how these results apply to
the migration into a microservice architecture. Section VII
presents related work and section VIII the conclusions.

II. MICROSERVICE DECOMPOSITION

The decomposition of a rich and complex domain into
loosely decoupled subdomains is a fundamental procedure
into obtaining, respectively, the modules and services for the
modular monolith and microservice architecture. Therefore,
by implementing a modular monolith, the decomposition of
the domain is achieved through the modules which then can
be converted into services with little effort. Additionally, the
two types of interactions, uses and notification, applied in the
modular monolith, are an initial fit to the introduction of inter-
service communication.

The microservice architecture defines two types of inter-
service communication, synchronous communication, where a
service requests the information through an API and awaits
its response, and asynchronous communication, which can
undergo between multiple variants depending on the require-
ments of the architecture, but mainly allows for services to
share information without any dependencies. The synchronous
request/response communication presents a similar behaviour
to the uses interaction and allows to remotely invoke an
API using protocols such as HTTP, to retrieve information.
Therefore, the uses interaction can be replaced by this type
of communication without redesigning the features of the
service. On the other hand, the asynchronous communication
allows to adapt the notification interaction by maintaining
the communication between the services without creating
circular dependencies. This is achieved through an event-
driven asynchronous communication, in which a publisher
service sends events to a message broker and then, the message
broker publishes the event to subscribed services. In addition,
the event-driven communication plays an important role on

the consistency of the information, establishing eventual con-
sistency between the databases of the services.

At the end of the migration, the microservice architecture is
composed by front-end services that contain the user interface
and act as a gateway to the back end services, and back-
end services responsible for the features. Each service is
implemented through a well defined API compatible with the
necessary inter-service communication, persists the informa-
tion in separate databases and are independently deployable.

III. REFACTORING

Most of the refactoring effort to achieve a microservice
architecture from the modular monolith is focused on the in-
terfaces of the services, since both the uses and notification in-
teraction have to be adapted into the appropriate type of com-
munication. This requires a redesign of the provides/requires
interfaces to implement synchronous communication, and the
publisher/subscriber interfaces to introduce the message broker
and implement the asynchronous communication.

To implement the synchronous communication, the provides
interface of the services were implemented as a REST API,
that offers public endpoints for fetching the information of the
services, which then can be accessed by the requires interface
through HTTP requests. The refactoring process consisted of
mapping the publicly available methods from the interface to
an unique URI and to an appropriate request type, GET, POST,
PUT, and DELETE, according to the actions of the method on
the information. On the other hand, the requires interface needs
to match the changes of the provides interface and implement
a remote access through the defined URL of the REST method
with the appropriate mapping in terms of parameters and type
of request. Therefore, the cost associated to the refactoring of
the interfaces depends on the number of methods and quality
of the interface, but in general these mappings are simple to
implement.

An additional requirement related to the provides interface
introduced with the microservice architecture is the compat-
ibility of the dtos to the serialization required in a remote
invocation. Generally, this is a trivial process since the dtos
have simple structure and mostly carry domain information,
however when carrying non-serializable information, this can
introduce additional refactoring effort to adapt without affect-
ing the behaviour of the application.

Focusing on the notification interaction, the refactoring
effort focuses on the publisher and subscriber interfaces to
introduce the message broker. This is due to how the notifi-
cation interaction provides the groundwork into achieving the
event-driven communication by implementing the events and
removing the dependencies between the modules. Overall, the
introduction of a message broker is not a complex task and
mostly requires a publish and listen method for respectively the
publisher and subscriber interfaces to communicate with the
broker. An important refactoring is the introduction of eventual
consistency through this communication, where a publisher
service notifies subscribed services of relevant changes to
maintain consistency between them. This can have different



impacts on the consistency and refactoring cost depending on
the changes to the information and the indirect associations
between services.

Similarly to what occurred in the modular monolith, the
definition of independent services and the introduction of syn-
chronous communication raised several performance problems
associated with the remote invocations, fine granularity of the
functionalities, and the large amount of information transferred
in dtos. The following optimizations were applied:

• Implementation of additional caches in the services for
faster information retrieval speed and to reduce the num-
ber of remote invocation for faster performance. These
caches are created upon service creation and the data
is preserved until the services stop their execution, this
is very effective since chosen data remains immutable
throughout the execution.

• After evaluating the performance, a similar optimization
from the modular monolith was applied to the dtos,
where a few were adapted into containing an extensive
amount information associated with several interrelated
domain entities, in order to decrease the number of
remote invocations thus increasing the performance of
the application.

IV. CASE STUDY

The LdoD monolith1 is a digital archive for digital hu-
manities that offers features like searching, browsing and
viewing the original text fragments, different variations of
the text fragments, as well as different editions of a book.
It also provides a way for users to create their own (virtual)
editions of the book, in which they can add, remove and
order the fragments as they wish. Other features include a
recommendation feature, that defines a proximity measure
between different fragments according to a set of criteria, a
game feature, which implements a serious game where users
tag text fragments, a reading feature, which suggests reading
sequences of the text fragments, and a visual feature that
provides graphical visualizations of the relations between text
fragments.

The monolithic application is implemented in Java using
the Spring-Boot framework2 and an Object-Relational Map-
per (ORM) to manage the domain model’s persistence. The
domain model has 71 domain entities and 81 bidirectional
relations between domain entities, which resulted in a strongly
coupled rich domain model. This solution provides high
reusability, because the business logic is split among the
domain entities and can easily be reused, and also due to
the bidirectional relations that facilitate the navigation in the
domain model. In total, the monolith has 25.862 lines of Java
code, 20.039 lines of JSP code and 7.721 lines of JavaScript
code.

The modular monolith implements the same features as the
monolith. These features are implemented as a set of modules

1https://ldod.uc.pt/
2https://spring.io/

that apply the uses and notification interactions to preserve
the dependencies between features. The LdoD microservice
architecture migrated the modules into seven different types
of back-end services with well defined REST API, capable of
being independently deployed and providing the same func-
tionalities from the respective module, two client-side front-
end services and a server-side front-end service responsible
for the user interface, processing and routing the requests
for the respective back-end services. These services apply
the described synchronous HTTP request/response type of
communication between the services to exchange information
and maintain the application behavior from the uses inter-
action. Additionally, the services Text, User, Game, Virtual,
Recommendation and Front-End implement a database per
service pattern accordingly to the subdomain.

The notification interaction is implemented as an event-
driven asynchronous communication using an ActiveMQ mes-
sage broker responsible for managing the events between
the services. Using the Fragment removal example, when
a text fragment is deleted by a instance of Text, an event
is published into the message broker, which then will be
responsible for publishing this event to all subscribed services
and remove the fragment from the virtual editions that refer
to it. Due to the decentralized data management, eventual
consistency is also described in the removal example, meaning
that inconsistent information is a possibility and its impact
needs to be evaluated.

Another important aspect of the microservice architecture is
the deployment of the services for an efficient scalability of the
resources into features that are regularly accessed from several
services. The LdoD microservice architecture is capable of
managing and deploying several instances of the services
through the Kubernetes technology. Note that, the Kubernetes
is responsible for the dynamic aspects from the services, like
the service discovery, networking, resources management and
load balancing.

V. EVALUATION

The evaluation presents the impact of the migration from
the modular monolith to the microservice architecture from
the perspectives of refactoring and performance.

A. Refactoring to Microservices

From the perspective of refactoring into a microservice
architecture, the changes were focused on two different major
aspects of the modular architecture: the provides and requires
interface and the corresponding dtos from each service. Table I
presents the impact of refactoring the uses interaction into
synchronous communication in terms of mapped methods in
the interfaces of each service to incorporate a REST API
and remote invocations. It can be observed significantly high
percentages of modified methods where at least 83% of the
methods had to be mapped. This may look like a significant
migration effort, but these changes were simple changes to
implement, consisting of repetitive mapping procedures.



Text User Virtual Recomm
P R P R P R P R

Modified/Total Methods 91/109 (83%) - 43/47 (91%) - 152/155 (98%) 6/6 (100%) 6/6 (100%) 7/7 (100%)
New Methods 16 - 2 - 2 18 1 0

Modified/Total Dtos 6/15 (40%) 2/3 (67%) 9/14 (64%) 3/11 (27%)

Game Search Visual Front-End
P R P R P R P R

Modified/Total Methods 14/14 (100%) 9/9 (100%) 2/2 (100%) 14/14 (100%) - 9/9 (100%) - 145/153 (95%)
New Methods 0 2 0 0 - 1 - 42

Modified/Total Dtos 2/6 (33%) 5/17 (29%) 1/4 (25%) 64/74 (86%)

TABLE I: Impact of the refactoring in the provides interfaces (P) and requires interface (R) and dtos from each of the services
in terms of refactored methods and dtos

However, a few incompatibilities were detected that directly
affected the refactoring cost which should be taken into
consideration. An incompatibility was the transference of non-
serializable information between the modules, which could not
occur in remote invocations. This behaviour had a more serious
consequence, since it could affect areas outside the scope of
the API. A way to address this situation is by implementing a
custom serialization for that type of information, which would
allow to write the object into a JSON format that could be
sent between the services and be applicable to every usage
throughout the interfaces. This also allows the reuse of the
information in the dtos and maintains the refactoring in the
scope of the API. On the other hand, if the serialization
cannot be achieved, it is necessary to individually address their
usages and adapt how the information is transferred, while
maintaining the behaviour of the functionality. Therefore, note
that the quality of the interfaces in the modular monolith has
an effect on the refactoring effort and it is important to keep
the information transferred between the modules simple for an
efficient migration.

Additionally, it could also be observed in Table I a surpris-
ingly high number of modified dtos from the back-end and
front-end services to, respectively, serializable and deserial-
izable formats, despite their simple structure. This was due
to an optimization tactic applied to the back-end dtos in the
modular monolith that implemented them as an entry point into
obtaining additional information related to a domain entity,
for an easier access. However, this proved to be unsuited for
remote communication due to JSON serialization requirements
not being met. By default, the JSON serialization requires the
invocation of every getter field publicly available in order to
be serialized, but this resulted in the creation of larger dtos that
contained all the information they referred to, without it being
required. Therefore, this was an inefficient behaviour for the
inter-service communication, since it increased the network
overheads and had to be refactored to avoid performance
degradation in the functionalities.

Note that, this problem was more significant in the Front-
End service, because it is responsible for most of the deseri-
alization process of the dtos and had to match the refactoring
applied to them in the serialization changes. In addition, the
deserializable dtos remained responsible for providing the
entry point to fetch the additional information and were refac-

tored similarly to a requires interface to implement remote
communication. Overall, despite the high percentages, the
refactoring was simple to implement.

B. Performance

To evaluate the impact that the new architecture has on the
performance of the system, we performed performance tests
on the previously described features of the application, using
the JMeter3. The testing was done with the application running
inside Docker containers on a dedicated machine with an Intel
I7 6 cores, 16GB of RAM and a 1TB of SSD.

Four functionalities were selected for the analysis. They
were chosen due to their impact in terms of: the number
of the domain entities they interact with, the number of
modules/services accessed by the functionality, and the amount
of processing required by the functionality.

The Source Listing functionality presents the listing of the
archive sources, where a source corresponds to a physical
source document. When using this functionality, the end
user obtains all the information about each one of the 754
sources, such as date, dimensions, and type of ink used in
the document. The implementation of this functionality is
done through an interaction between the Front-End and Text
modules/services.

The Fragment Listing functionality is implemented in the
modular monolith and microservice as an interaction between
the Front-End and Text modules and services respectively
to present the list of all text fragments. There are 720 text
fragments in the archive. For each fragment it is presented the
information of its several interpretations, where each fragment
can have 2 to 7 interpretations.

The Interpretation View functionality presents an interpre-
tation of a text fragment. Its implementation in the modular
monolith and microservice requires several interactions be-
tween the Front-End, Text, User and Virtual modules/services.
To do the performance test it was chosen an interpretation of
a virtual edition, to have a test that includes more different
domain entity types.

The Assisted Ordering functionality orders the fragments
according to a set criteria, such as date and text similarity
(tf-idf). This ordering requires more than 250 000 fragment
comparisons (considering for instance a virtual edition with

3https://jmeter.apache.org/



720 fragments, we get 720 ∗ 719/2 = 258 840 comparisons
between fragments), and each comparison requires information
about the fragment for up to 4 criteria. For its implementation
the front-end accesses 4 back-end modules/services, Text,
User, Virtual and Recommendation. Because this function-
ality repeatedly interacts through the same set of data, the
information about the fragments is cached in the monolith
implementation, to improve performance. The modular mono-
lith implementation also uses this cache and the microservice
architecture implemented two additional caches due to avoid
performance deterioration caused by remote invocations of the
same set of data.

From the performance results between the architectures,
it could be observed that the microservice architecture had
a severe negative impact on the performance, both in terms
of latency and throughput, independently of the functionality
and information in the database. The Fragment Listing and
Source Listing functionalities experienced significant latency
values for 720 fragments and huge performance differences
between the architectures for 100 fragments. This is due to
the number of remote invocations, which accumulate latency
due to network overheads and affect the performance as
the number of invocations and information increases. To
supplement these results, the number of remote invocations
between the services for each functionality was measured
and it could be observed 4283/28540 and 854/5966 remote
invocations for 100 and 720 fragments in the database, on the
Fragment Listing and Source Listing functionalities. Therefore,
this fine-grained behaviour combined with large amounts of
information correlates to the performance degradation of the
functionalities in the microservice architecture

The Interpretation View also underwent through similar
degradation of the performance, however the variation was
significantly lower compared to the previous functionalities.
This is due to not only the difference in the amount of infor-
mation, but also the required number of remote invocations
being relatively low. The combination of both these factors
helped in reducing the overhead times. On the other hand,
the difference in performance between the architectures is
still considerably high, meaning that even with reduced infor-
mation and invocations, the performance of the microservice
architecture is worse that the monolith. In a positive note, the
microservice architecture did not impact the performance of
the Assisted Ordering functionality. This is mainly due to two
reasons. First, the use of additional caches in the microservice
architecture that stored information of the domain, proved to
be effective in optimizing the performance of the functionality.
Because the functionality repeatedly interacts through the
same set of data, these caches reduced the number of remote
invocations necessary to perform the functionality. Second,
the functionality is computationally demanding, which reduces
the impact of the remaining distributed communication on the
overall performance.

However, it is also important to note that, before the
optimization, the Assisted Ordering functionality presented an
unusable experience due to millions of invocations performed.

This demonstrates a serious impact of migrating a computa-
tionally demanding functionality with fine-grained interactions
to a microservice architecture. Through the use of caches, we
were able to match the performance of the modular monolith
and reduce the number of remote invocations to 524/4388 for
respectively 100 and 720 fragments in the database.

C. Microservice Optimization

In the previous section, it was observed a correlation be-
tween the performance degradation and the number of remote
invocations performed in all four functionalities. Therefore,
in order to improve the performance, an optimization was
introduced into the microservice application that effectively
reduced the number of remote invocations on all four func-
tionalities to the minimum to improve the performance.

1) Refactoring: From the previous analysis, we concluded
that most of the performance degradation came from the
high number of fine-grained invocations between the services.
Therefore, to establish a more coarse-grained behaviour in
the functionalities, an optimization was implemented in the
microservice architecture that consisted of increasing the
amount of domain information preemptively sent in certain
dtos, which were frequently utilized together, to replace the
remote invocations for local invocations. This would allow
reducing the network overheads and improve the performance.
By adding additional methods to the dtos, we cached the
information and supported the composition of several dtos
in a single object. With this simple change, the information
is now accessible through a single invocation, where before
would require multiple inter-service invocations. However,
it is necessary to consider some trade-offs when choosing
the information to send, to avoid sending information that
is not necessary which will introduce additional overheads.
Therefore, it is necessary to analyse whether the data is
frequently used together by the functionalities.

2) Performance: In terms of network usage, the optimiza-
tion was successful in reducing the remote invocations, while
simultaneously improving the performance of the functional-
ity. It could be observed a drastic decrease in the number
of remote invocations from the Source Listing and Fragment
Listing functionalities into a minimum value of 1 and 5 remote
invocations respectively, independently of the information in
the database. In terms of performance, the results confirmed
that a major factor of the previous performance degradation
came from their fine-grained behaviour. The Source Listing
functionality significantly improved the latency and throughput
with a single coarse-grained invocation and, a similar situation
occurred in the Fragment Listing. Therefore, it shows the
benefits of coarse-grained granularity in the functionalities.

Despite the fine-grained behaviour, the performance of
Interpretation View also benefited from the reduction of the
number of invocations to 48. On the other hand, the As-
sisted Ordering remained with similar performance despite
the reduction of the remote invocations, but this is due to
the low effects of the remote invocation on the latency of a
computational expensive functionality.



However, despite the performance improvements, the final
results were still considerably worse than the monolith archi-
tectures. This is still the consequence of the network overheads
from the remote invocations, even in a coarse-grained context.
Note that, a major performance bottleneck came from the
serialization/deserialization process that becomes more notice-
able as the number of invocations and information increase.
An example of this bottleneck occurs in the Source Listing
functionality where this process corresponds to 82% of the
latency of the functionality after the optimization. This is a
significant impact that by itself is far superior than the latency
of the functionality in the modular monolith.

D. Performance - Deployment

An important aspect of the microservice architecture is the
independent deployment of the services and the scalability
benefits it offer. The LdoD microservice is composed by
independent services that allow to scale the instances and
the resources of the services for demanding functionalities.
Therefore, it is important to evaluate the benefits of this
deployment aspect on the application.

In this section, the performance of different features of the
microservice architecture are evaluated in terms of latency
and throughput, by running different run-time deployments
in a cloud environment under separate network workloads.
The main goal is to compare the performance between run-
time deployments with different number of instances deployed,
to understand the resource usage and scaling benefits of the
run-time deployments. Three functionalities of the previous
performance test cases were chosen for this scenario: Source
Listing, Fragment Listing and Interpretation View.

Two run-time architectures were deployed for this testing.
First, a single instance deployment composed by a single
instance of each service, in order to provide the performance
values for a basic deployment that will be used as the reference
base values of the application in a cloud environment. Second,
a multi instance deployment composed by five instances of
each of the following services: Text, Virtual and Front-End,
and a single instance of the remaining services. This allows
to evaluate how increasing the resources of specific services
affected the performance.

For this performance evaluation scenario, two workload
scenarios were designed to measure the performance of the
application: a sequential workload and a concurrent work-
load. The sequential workload simulates a normal usage,
implemented with the same load test settings described in
the local environment. On the other hand, the concurrent
workload is responsible for a heavier usage of the application,
which simulates 50 different users concurrently invoking the
functionalities and evaluates how both run-time deployments
performed under this scenario. This testing was done with
the services being deployed into a Google Kubernetes Engine
cluster with 8 nodes, 16 vCPU and 32 GB of memory.

From the results of the test cases, it could be observed some
benefits and drawbacks of the different run-time versions of
the architecture under different usages of the application. In

what concerns the concurrent workload, there is a significant
throughput increase of running multiple instances of specific
services for all three functionalities. The Source Listing and
Fragment Listing functionality, which under normal usage
already has significantly high latency values, especially with
720 text fragments in the database, had a throughput increase
between 150% to 200%, which is a significant improvement
of the scalability. This is due to how deploying more instances
increases the use of resources and supports parallel processing
of the requests.

Similar performance benefits could also be observed in the
Interpretation View functionality from the parallel processing.
But, note that this functionality has significantly less infor-
mation and latency which allowed both versions to provide
a reasonable end-user experience for such a heavy workload.
However, we could also observe how poorly the single instance
version of the architecture performed under a concurrent
workload for functionalities with large amounts of information
like the Source Listing and Fragment Listing, and with fine-
grained invocations like the Interpretation View.

Focusing on the sequential workload, the measured results
were very similar to the ones obtained in the previous perfor-
mance evaluation section but with much more latency due to
its deployment into the remote cluster and the cluster server
location. Note that, there is a slight latency increase in all
three functionalities under the multi-instance version when
compared to the single version. This can be explained by
the necessary internal load balancing that occurs between the
services in the multi-instance version.

Overall, we could observe a scaling benefit of a microser-
vice architecture, however, there was a significant performance
degradation of running the microservice application in a cloud
environment compared to our local deployment. Despite the
throughput increase of the multi-instance version, the latency
values were significantly high especially for functionalities
with large amounts of information like the Fragment and
Source Listing, resulting in a general bad user experience. This
is due to the additional network overheads that are introduced
with remote invocation through a real network, which is not fit
for large payloads of information or fine-grained invocations.

In the LdoD microservice architecture, two improvements
can still be implemented that will benefit the performance
in a cloud deployment. First, a redesign of functionalities
like the Fragment and Source Listing functionalities to im-
plement a pagination pattern, which reduces the information
to manageable data sets while maintaining a coarse-grained
behaviour. This allows to reduce the network overheads and
improve the performance independently of the information in
the database. Second, the introduction of additional caches
to reduce the number of remote invocations and improve the
overall performance of the functionalities.

E. Data consistency

The decentralization of the application data introduces chal-
lenges to the architecture concerning the data consistency. This
is due to the transactional behaviour between the different



databases, where, in some cases, transactions that span across
multiple services cannot implement ACID properties between
them. In a distributed context, there are four different types
of possible transactions between the services: (1) multiple
read transactions; (2) single write transaction that ends the
sequence of transactions; (3) multiple write transactions that
span multiple services or a single write transaction in a service
but not the last in the sequence; (4) write transactions that
require notifications of the changes to other services.

The LdoD microservice application implemented a simple
transactional behaviour between the services, that does not
require the implementation of a distributed transaction to
preserve the ACID properties on most functionalities. This is
due to how the sequence of transactions between the services
is mostly composed of read transactions and, in some cases, a
single write transaction to end the sequence, which causes no
harm to the consistency of the information. Note that, there
were a few exceptional cases of multiple write transactions
between the services, but by structuring the write transactions,
the consistency of the information is respected even in case
of failures.

In general, read transactions do not have an effect on the
consistency since most of the information of a service does
not depend on other services and the local transactions are
able to provide the ACID properties in the database. However,
when reading information of a domain entity related to events,
these transactions are affected by eventual inconsistencies. As
previously stated, the LdoD microservice architecture imple-
ments an event-driven asynchronous communication between
the services that, due to the decentralized data manage-
ment, introduces eventual consistency to the architecture. This
communication addresses the write transactions between the
services that require notification to be kept consistent, but at
the same time it does not offer the usual ACID properties to the
databases. Therefore, the eventual consistency is an important
aspect that was introduced into the LdoD Archive that needs
to be evaluated in terms of the effects on the information and
its impact on the functionalities of the application.

With the introduction of the decentralized data approach and
the asynchronous event-based communication, the application
depends on the use of the different types of events to achieve
data consistency between the different services. Most of the
events are related with the remove of a domain entity. For
instance, upon the removal of a Fragment from the Text
service, the Virtual service needs to receive the appropriate
event to delete any reference to this text fragment from the
database. This means that it is important to understand the
different type of events sent between the services, how they
affect the data consistency of the different services and how
eventual states affect the different functionalities.

In the microservice architecture, it could be observed nine
different types of events that affect different services and
domain entities with different degrees of frequency and impact
on the information. Most events are published upon the
removal of domain entities that are referenced from services
that use the modules where the events occur, which affects

their consistency. Additionally, the events can trigger a chain
of events which further increases the inconsistency of the
application.

Concerning the impact of the events, the domain entities
Fragment and ScholarInter from the Text service,
and User from the User service have the highest impact
on the consistency from the information of the application,
affecting three different databases and multiple domain en-
tities. In addition, they are also responsible for a chain
of events in the Virtual service by triggering three differ-
ent types of events, VirtualEditionInter-Remove,
VirtualEdition-Remove, and Tag-Remove, that fur-
ther increase the inconsistency in the services. Note that, the
impact of establishing multiple databases in this case study
correlated to the indirect associations of the domain entities.

The events have a higher impact if they trigger a large
number of changes, which fortunately, are the ones that have
a lower frequency. On one hand, the archive has a predefined
set of fragments that do not change, which means that they
are almost like immutable entities. On the other hand, it is
very uncommon to delete the archive users. Therefore, the
Text and User service information remains static throughout
the execution of the application under a normal context and are
only removed under exceptional contexts with administrator
privileges, which reduces the complexity of managing the
consistency.

Therefore, under a normal context, most of the inconsis-
tencies result from the Virtual service subdomain and their
associations to the ClassficationGame. The Virtual ser-
vice has a significant number of events that are frequently
published because a end-user can interact with its virtual
edition, removing some of their entities. On a positive note, the
impact of the inconsistent information is mainly focused on the
Game service and has a low effect on the overall information
of the application.

In another perspective, it is important to analyse how even-
tual consistency affects the application from the perspective of
an end user, by evaluating the behaviour of the different func-
tionalities under inconsistent states. The data inconsistencies
may have different types of impact, depending on the specific
functionality and the type of events. In the Interpretation View,
the functionality performs as expected despite any inconsistent
information between the User and Virtual service displaying
the presence of tags and categories of the removed user until
the databases are eventually consistent. This behaviour is the
result of no direct communication between the Virtual and
User services, since the basic information of the user is
duplicated in the Virtual database. Therefore, having a low
impact on the behaviour of the functionality.

On the other hand, the Virtual Edition Listing and Game
Listing functionalities present a more serious consequence of
the inconsistent information in the architecture, where the
functionalities cannot perform under inconsistent states. This
occurs because when the functionalities try to obtain the data
from the services, it is not present, resulting in a failed request.

In general, the decentralized data approach and eventual



consistency achieved through the event-driven asynchronous
communication proved to be an efficient alternative to a
distributed transactional behaviour between the services in the
LdoD microservice architecture, where most of the function-
alities presented the same behaviour and were not affected by
inconsistencies between the databases. This is mainly due to
the simple transactional behaviour of the functionalities that
do not span across different services, which allows for in most
situations to apply the ACID local transactions and maintain
the information consistent, thus having an overall low impact.

To improve the LdoD Archive performance, different caches
were implemented in the modular and microservice archi-
tecture. However, throughout their use in the application,
the caches might become inconsistent as the information
changes and affect the consistency of the application. In this
case study, the overall impact from inconsistencies in the
caches was low due to the immutability of the information,
which minimized the drawbacks of caching the information.
However, it could also be stated that as the mutability of the
information increases, the worse the effects on the consistency
of the application. Therefore, it is important to consider
which information can be cached and how the inconsistent
information can affect the application.

VI. DISCUSSION

The process of modularizing a monolith and migrating it to a
microservice architecture requires extensive refactoring of the
application and has a significant impact on the performance.
The modular monolith and microservice architecture share the
modularization requirements to address the decomposition of
the domain into the modules/services, while also addressing
the granularity of the interaction between the domain entities
for performance reasons. Therefore, the modular monolith
offers a beneficial groundwork for achieving a microser-
vice architecture that massively reduces the refactoring effort
by accomplishing the modularization process through well-
encapsulated modules that serve as the foundation of services
and reduce the development effort.

Through the evaluation, we addressed some concerns that
are often neglected in the literature that focus more on
technical aspects like communication technology, running en-
vironments, and performance benchmarks. In what concerns
the refactoring effort, the inter-service communication requires
changes in the interfaces of each service and the cost is
directly related to the size and quality of the API. Even though
the refactoring is composed of small changes, a poor quality
interface can increase the refactoring cost and propagate the
changes to the service features. Therefore, if these constraints
are considered when designing the modular interfaces, it will
help in the introduction of remote invocations.

On the other hand, we could also observe a consequence
of migrating a modular monolith with a significant number of
uses relationships like the LdoD Archive in terms of coupling
between the services. As previously stated, the behaviour
of the uses interaction corresponds to a synchronous re-
quest/response style of communication between the services in

order to maintain the dependencies. However, the synchronous
communication results in the coupling of the services being
too tight due to the fine-grained behaviour, which becomes
problematic due to the weight of remote invocation and results
in serious performance degradation.

Therefore, in the context of a stepwise migration of a
monolith into a microservice architecture, the intermediate step
of a modular monolith is advantageous, because it highlights
complexities that might have to be addressed before imple-
menting a microservice architecture and helps on the decision
on how to migrate. Note that with the modular monolith,
the developers can predict the coupling of the services, the
expected performance degradation of the communication and
decide the type of communication between the services to
detect functionalities that can be affected by the lack of ACID
transactional behaviour.

In what concerns the performance, the impact on the
performance was a major factor from the migration into a
modular and microservice architecture that was thoroughly
evaluated. Focusing on the modular monolith, the impact on
the performance was related to the amount of information sent
between the modules through the dtos, while the number of
inter-module invocations did not have a relevant effect. Note
that, the modular monolith, when the amount of information
transferred between modules is low, can match and even obtain
better performance in some cases due to faster accesses to the
database through the unique identifiers that were introduced
with the modularization. However, contrary to the modular
monolith, the performance of the microservice architecture
was also affected by the number of inter-service invocations.
These two factors combined should be avoided when designing
the microservice architecture, where there is a performance
degradation as the amount of transferred information and the
number of invocations increases.

In the context of the migration process, this study confirmed
the complexity of synchronous communication in a microser-
vice architecture in both a local and cloud scenario and
addressed some possible performance optimizations, however
the performance degradation proved to be far too severe
compared to the scalability benefits. A positive side of the
LdoD microservice architecture was the evaluation of the data
consistency, since it showed an example of a simple case of
eventual consistency which did not require complex solutions
like SAGAs or two-phase commit like protocols to maintain
the information consistent. However, this solution does not
address cases with multiple write transactions that require
some sort of compensation in case of failures, which would
significantly increase the migration effort and introduce new
challenges.

The following threats to the validity of this study were
identified: (1) it is a single example of a migration; (2) it
depends on the technology and programming techniques used
in the monolith.

Despite being a single case study, it has some level of com-
plexity and the literature lacks descriptions of the problems
and solutions associated with the migration from monolith to



microservices architecture. In this study, it was addressed both
the migration into a modular and microservice and provides
feedback of challenges faced in the migration that benefits the
overall process.

The technology and programming techniques used in the
implementation of the monolith follow an object-oriented
approach, where the behavior is implemented through fine-
grained interactions between objects. A more transaction script
based architecture may result in different types of problems.
The conclusions of this study apply when the monolith is
developed using a rich object-oriented domain model. On the
other hand, the monolith is implemented using Spring-Boot
technology which follows the standards of web application
design.

Additionally, the case study presented specific types of
functionalities that either requested significant amounts of
information or was implemented through fine-grained invo-
cations with a strong synchronous behaviour. Different type
of functionalities can present other performance results, but in
general most functionalities in the LdoD Archive were similar
to the Interpretation View. Therefore, we provided a good
coverage of the functionalities.

VII. RELATED WORK

There are several challenges when migrating from monolith
systems to a microservices architecture [12], [13], such as the
effort to redesign the monolith and the performance impacts,
and we can find in the literature the description of the
migration of some large monoliths [14]–[16].

There are several reports on the migration of large monoliths
to a microservices architecture. The migration described by
Gouigoux and Tamzalit [14] discusses the aspects of service
migration, deployability and orchestration. It reports an im-
provement in the performance, but does not describe details
of the refactorings and optimizations done. Bucchiarone et
al [15] describe the lessons learned from their migration of
a monolith in the banking domain, focusing on the benefits
and challenges of the new system, but doe not discuss the
migration effort and the impact on performance. Barbosa and
Maia [16] discuss the migration of a large monolith to a
microservices architecture, where the monolith business logic
is implemented using stored procedures and they focus on the
process of identifying microservices. Megargel et al [17] pro-
vided a a practice-based view and a methodology to transition
from a monolith application into a cloud-based microservice
architecture. However, the migration effort was not addressed
but they did observe benefits from the migration including on
the performance. On the other hand, an opposite point of view
was presented by Mendonça [18] that discussed the decision
to revert the microservice architecture back into a monolith,
due to the burdens of a microservice architecture, but even in
this case, refactoring and performance were not addressed.

Therefore, it is necessary to have more case studies that
describe the migration efforts and the architectural trade-offs,
besides the advantages, and drawbacks, of the final product.
In this paper we contribute by describing the refactoring, and

related effort, associated with the migration of a large monolith
to a modular monolith, which can be used as an intermediate
step of the migration.

On the other hand, there is work on impact that the
migration of a monolith to a microservices architecture has
on performance, although it follows different perspectives.

Ueda et al [8] compare the performance of microservices
with monolith architecture to conclude that the performance
gap increases with the granularity of the microservices, where
the monolith performs better. Villamizar et all [7] show differ-
ent results, concluding that in some situations the performance
is better in the microservices context and that it reduces the
infrastructure costs, but request time increases in microservices
due to the gateway overhead. Al-Debagy and Martinek [10]
conclude that they have similar performance values for average
load, and the monoliths performs better for a small load. In
a second scenario the monolith has better throughput, but
similar latency, when the system was stressed in terms of
simultaneous requests. Bjørndal et al [19] benchmark a library
system, that has 4 use cases and considers synchronous and
asynchronous relations between microservices. They observe
that monolith performs better except for scalability. Therefore,
they identify the need to carefully design the microservices,
in order to reduce the communication between them to a
minimum, and conclude that it would be interesting to apply
these measures in systems that are closer to the kind of systems
used by companies. Guamán et al [20] designed a multi-
stage architectural migration, compared the performance of the
monolith stages to the microservice architecture and observed
a worse latency from the microservice architecture. Flygare et
al [21] found that in their case study the monolith performed
better in terms of latency and throughput while consuming less
resources than the microservice architecture.

Some other perspectives compare the performance of mono-
lith and microservices systems in terms of the distributed
architecture of the solution, such as master-slave [22], the
characteristics of the running environment, whether it uses
containers or virtual machines [9], the particular technology
used, such as different service discovery technologies [10], or
other microservices deployment aspects [11]. A major aspect
of the performance is the type of inter-service communication
and the technology used. Hong et al [23] compare the per-
formance of synchronous and asynchronous communication
and concluded that the asynchronous approach offered a
more stable performance overall but with a lower response
request performance. Fernandes et al [24] presented similar
results with the asynchronous communication outperforming
the REST communication in performance and data loss pre-
vention on a large data context. Shafabakhsh et al [25] built
upon Fernandes et al [24] research and conclude a benefit of
synchronous communication under small loads.

These results show that an asynchronous communication
tends to be more suitable to a microservice architecture,
however a behaviour suited synchronous communication like
the REST API is more accessible to the migration from a
modular monolith. Our approach allows to separate concerns



when measuring the performance impact of the migration, and
led us to conclude that it is already visible when migrating
to a modular monolith, in the absence of distributed com-
munication and microservices implementation technologies.
And contrarily to some of the related work, in which there
is no redesign of the functionalities of the monolith, we
highlight that such redesign is required and has impact on
the performance.

VIII. CONCLUSION

With this work, we described the migration from a large
object-oriented monolith into a microservice architecture using
a modular monolith as a middle stage, while analysing the
migration effort to achieve both, the modular and microservice
architectures and the overall impact on the performance.

The results showed that the modular monolith can be
used as an intermediate artifact that facilitates the migration
into the microservice architecture, while providing a more
agile software development environment before tackling the
challenges of a microservice architecture. In addition, the
modular monolith also helped in addressing concerns regard-
ing the inter-service communication, eventual consistency and
performance optimizations before the migration.

The migration into a microservice architecture revealed a
significant impact on the application for both refactoring and
performance. Most of the migration cost was connected to
the modules and the interfaces to implement services with the
desired inter-service communication, in which the quality of
the modules and interfaces has a significant impact on the cost.
On the other hand, a serious consequence of the migration was
the large impact on performance associated with the inter-
service communication, which required functionalities to be
redesigned into having coarse-grained interactions.

Overall, the migration to a microservices architecture pre-
sented several challenges with different levels of impact on the
refactoring effort, performance, and data consistency, which
highly depended on the application structure and semantics. In
the LdoD Archive, the migration presented a serious impact
on the performance due to the network overheads that proved
to be far too high compared to the previous architectures, but
on the other hand, it offered a more scalable and manageable
architecture.

REFERENCES

[1] E. Evans, Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley Longman Publishing Co., Inc., 2003.

[2] C. Richardson, Microservices Patterns. Manning, 2019.
[3] W. F. Opdyke and R. E. Johnson, “Creating abstract superclasses

by refactoring,” in Proceedings of the 1993 ACM Conference on
Computer Science, ser. CSC ’93. New York, NY, USA: Association
for Computing Machinery, 1993, p. 66–73. [Online]. Available:
https://doi.org/10.1145/170791.170804

[4] M. Fowler, Refactoring: Improving the Design of Existing Code (2nd
Edition). Addison-Wesley Longman Publishing Co., Inc., 2018.

[5] D. Haywood, “In defense of the monolith,” in Microservices vs.
Monoliths - The Reality Beyond the Hype. InfoQ, 2017, vol. 52, pp.
18–37. [Online]. Available: https://www.infoQ.com/minibooks/emag-
microservices-monoliths

[6] M. Fowler and J. Lewis, “Microservices,” 2014. [Online]. Available:
http://martinfowler.com/articles/microservices.html

[7] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in 2015 10th
Computing Colombian Conference (10CCC), 2015, pp. 583–590.

[8] T. Ueda, T. Nakaike, and M. Ohara, “Workload characterization for
microservices,” in 2016 IEEE International Symposium on Workload
Characterization (IISWC), 2016, pp. 1–10.

[9] A. M. Joy, “Performance comparison between linux containers and
virtual machines,” in 2015 International Conference on Advances in
Computer Engineering and Applications, 2015, pp. 342–346.

[10] O. Al-Debagy and P. Martinek, “A comparative review of microservices
and monolithic architectures,” in 2018 IEEE 18th International Sympo-
sium on Computational Intelligence and Informatics (CINTI), 2018, pp.
149–154.

[11] F. Tapia, M. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis,
“From monolithic systems to microservices: A comparative study of
performance,” Applied Sciences, vol. 10, no. 17, 2020.

[12] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microser-
vice architectures: An industrial survey,” in 2018 IEEE International
Conference on Software Architecture (ICSA), 2018, pp. 29–2909.

[13] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving
from monolith to microservice architecture,” in Current Trends in Web
Engineering, I. Garrigós and M. Wimmer, Eds. Cham: Springer
International Publishing, 2018, pp. 32–47.

[14] J. Gouigoux and D. Tamzalit, “From monolith to microservices: Lessons
learned on an industrial migration to a web oriented architecture,” in
2017 IEEE International Conference on Software Architecture Work-
shops (ICSAW), 2017, pp. 62–65.

[15] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From monolithic to microservices: An experience report from the
banking domain,” IEEE Software, vol. 35, no. 3, pp. 50–55, 2018.

[16] M. H. Gomes Barbosa and P. H. M. Maia, “Towards identifying
microservice candidates from business rules implemented in stored
procedures,” in 2020 IEEE International Conference on Software Ar-
chitecture Companion (ICSA-C), 2020, pp. 41–48.

[17] A. Megargel, V. Shankararaman, and D. K. Walker, “Migrating from
monoliths to cloud-based microservices: A banking industry example,”
in Software Engineering in the Era of Cloud Computing. Springer,
2020, pp. 85–108.

[18] N. C. Mendonca, C. Box, C. Manolache, and L. Ryan, “The monolith
strikes back: Why istio migrated from microservices to a monolithic
architecture,” IEEE Software, vol. 38, no. 05, pp. 17–22, sep 2021.

[19] N. Bjørndal, A. Bucchiarone, M. Mazzara, N. Dragoni, S. Dustdar,
F. B. Kessler, and T. Wien, “Migration from monolith to microservices:
Benchmarking a case study,” 2020, unpublished. [Online]. Available:
http://10.13140/RG.2.2.27715.14883

[20] D. Guaman, L. Yaguachi, C. C. Samanta, J. H. Danilo, and F. Soto,
“Performance evaluation in the migration process from a monolithic
application to microservices,” in 2018 13th Iberian Conference on
Information Systems and Technologies (CISTI). IEEE, 2018, pp. 1–
8.

[21] R. Flygare and A. Holmqvist, “Performance characteristics between
monolithic and microservice-based systems,” Bachelor’s Thesis, Faculty
of Computing at Blekinge Institute of Technology, 2017.

[22] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Stein-
der, “Performance evaluation of microservices architectures using con-
tainers,” in 2015 IEEE 14th International Symposium on Network
Computing and Applications, 2015, pp. 27–34.

[23] X. J. Hong, H. S. Yang, and Y. H. Kim, “Performance analysis of
restful api and rabbitmq for microservice web application,” in 2018 In-
ternational Conference on Information and Communication Technology
Convergence (ICTC). IEEE, 2018, pp. 257–259.

[24] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah,
“Performance evaluation of restful web services and amqp protocol,” in
2013 Fifth International Conference on Ubiquitous and Future Networks
(ICUFN), 2013, pp. 810–815.

[25] B. Shafabakhsh, R. Lagerström, and S. Hacks, “Evaluating the impact
of inter process communication in microservice architectures.” in QuA-
SoQ@ APSEC, 2020, pp. 55–63.


