
Local Web Application Development
Framework Proposal and Demonstration on Two Case

Studies
Extended Abstract

Diogo Miguel de Mello Caldeira Reis Almiro

Instituto Superior Técnico, Universidade de Lisboa, Portugal
diogo.almiro@tecnico.ulisboa.pt

Abstract Web technology has reached a penetration that makes it rel-
evant not only for web applications but also for what used to be the
classic domain of desktop applications. The challenge of this project is
to propose a reference architecture that combines attributes of desktop
applications and attributes of web technology, recommending a solution
using mature technology. There are two real-life case studies to demon-
strate and validate this technology. Both of them require the manage-
ment of documents and the execution of optical character recognition.
The first case study relates to the workflow when archiving historical doc-
uments on the Archives and Records Management Section of the United
Nations. The second case study relates to the workflow of making de-
cisions by judges of the “Supremo Tribunal de Justiça”. This project
starts by introducing some core concepts and requirements for the case
studies. It then analyses the state of the art of technologies related to the
server-side of an application. Instead of introducing completely new tech-
nology, this project introduces an expansion from a particular technology
from the analysis. The chosen technology is Express, and the project de-
scribes this expansion. It also demonstrates the usage of the proposed
solution by implementing small applications for the case studies.

Keywords: Web Technology · Hybrid Application · Framework ·
Express · NodeJS · OCR

1 Introduction

The so-called “web technology” has reached a penetration that makes it relevant
not only for real web applications but also for what used to be the classic domain
of “desktop applications”, meaning applications intended to execute in a single
personal computer by an individual user. Therefore, the challenge of this project
was to propose a reference architecture for this kind of scenario, recommending
mature technology and demonstrating it.

This work relates to the workflows from two other projects, ARMS and IRIS.
These are used as case studies. These relate because both are exploring new
technologies to digitise and process optical character recognition (OCR) in an
administrative environment of documents.



2 Diogo Miguel de Mello Caldeira Reis Almiro

Although the primary objective is to know the value of the technology pro-
posed, it should also implement the case studies applications with the solution
to be the most valuable to the end-user.

2 Core Concepts and State of the art Technology

A software application, or application for short, is a program created to perform
specific tasks. It can be classified regarding its installation method into three
categories: native application, web application and hybrid application. Regarding
the application’s permissions, they are directly dependent on the application’s
classification. Native and hybrid are very trusted applications by the OS with
many permissions, while web applications are run inside the browser’s sandbox
[3].

Regarding the development of a hybrid application, it can be seen as devel-
oping a web application using the client-server paradigm. The positive aspects
are that it is simpler to develop the user’s interface, use the browser as support,
and have full access to the system like a native application on the back-end [5].

A framework is an artefact that helps solve a group of problems. It improves
development efficiency and reduces cost by implementing several functions or
classes to provide the typical behaviour for similar problems [8]. Flask1 and Ex-
press2 are examples of back-end framework, as they implement server function-
alities, while Bootstrap3 is an example of a front-end framework, as it provides
CSS styles for well-defined HTML classes.

A test-driven development approach (TDD) can be used to validate the de-
velopment process, ensuring the quality of the solution proposed and that all the
behaviours were the expected ones [2, 6]. It is common to perform small local
tests, unit tests on a TDD approach. There are frameworks to facilitate their
creation, such as Mocha4. Another perspective is the end to end testing (E2E),
where an application is fully tested. A framework to perform E2E is Cypress5.

Regarding data management, databases are a collection of data structured
according to a schema. There are several data storage paradigms6. Regardless
of its structure, the database usually exists in a separate server accessed by the
web application.

3 Requirements

This project aimed to create a framework that helps generate hybrid applications,
specifically local-only web applications [7]. Using the client-server paradigm,
1 See palletsprojects.com/p/flask/
2 See expressjs.com/
3 See getbootstrap.com/
4 See mochajs.org/
5 See www.cypress.io/
6 See fireship.io/lessons/top-seven-database-paradigms/

https://palletsprojects.com/p/flask/
https://expressjs.com/
https://getbootstrap.com/
https://mochajs.org/
https://www.cypress.io/
https://fireship.io/lessons/top-seven-database-paradigms/


Local Web Application Development 3

where the browser is the user interface, and the server has access to local data
and programs having also permissions to download extra dependencies. Note
that a hybrid application could be extended to a web application for other users
inside the private network.

It created some user scenarios for the ARMS end-user, the IRIS end used,
the administrator and the developer to understand better what functionalities
the framework should have and each case study’s application should have:

- For ARMS application:
1. Select a folder with TIFF files to

process.
2. Execute a bulk OCR to the files.
3. Notify the user.
4. See OCR metadata.
5. Edit OCR results.

- For IRIS application:
1. Select a PDF document to use.
2. See the document and annota-

tions.
3. Annotate the document.
4. Correct the OCR.
5. Synchronise an external editor to

the application.
6. Export an archived document.
7. Import an archived document.

4 Analysis of the State of the Art Technology

The project started by defining some criteria to evalutate frameworks: “Pop-
ularity & Community”, “Maintainability & Support”, “Documentation & Ex-
amples”, “Use Cases”, “License”, “Learning Curve”.

The first criteria defined the search space: the most popular back-end frame-
works of 2020, based on StackOverflow’s survey 7. Which yielded: Express,
ASP.NET Core, Spring, Flask, Laravel and Ruby on Rails.

Their release date varies a lot. However, all are actively updated on Github.
They are also very popular, and as such, they are well documented or at least the
strong community can help developers [8]. A lot of big companies use them on
a day to day basis. Every framework is open source, and, between the licenses,
there are no significant differences that affect the project. All grant modification,
distribution, commercial and private use, no warranty and no liability 8.

The main differentiation point is the “Learning Curve”, which connects dir-
ectly to the programming language used. Another factor that affects it negatively
is if the framework uses convention over configuration. For instance, by forcing
a project structure, the framework can be harder to learn 9. Only Express and
Flask are not “opinioated”.

Regarding the database, using an external database would mean having an
internet connection to the database server or having a different server for the
database consistently running in the background of the user’s device, spending
7 See insights.stackoverflow.com/survey/2020
8 See choosealicense.com/licenses/bsd-2-clause/
9 See facilethings.com/blog/en/convention-over-configuration and

devopedia.org/convention-over-configuration

https://insights.stackoverflow.com/survey/2020#technology-web-frameworks-all-respondents2
https://choosealicense.com/licenses/bsd-2-clause/
https://facilethings.com/blog/en/convention-over-configuration
https://devopedia.org/convention-over-configuration


4 Diogo Miguel de Mello Caldeira Reis Almiro

more resources than needed. Using a particular type of database, an embedded
one can exclude the previous problem. With them, there is no external server.
Instead, the database coexists inside the webserver application. It can also re-
move the extra processing time of continuously running a database and have a
data connection between servers using an embedded database [1, 4].

Electron10 is a framework that allows developers to build native applications
using web technologies. Among other problems like user experience, when a user
installs an Electron application, it also installs a built-in version of the Chromium
browser, making the application require more storage to install. Using Electron
would also prevent having a distributed application within a network as it does
not automatically run a server.

5 Solution Proposed

All frameworks are relatively alike, with similar popularity and community. How-
ever, Express’s “unopinionated” characteristic allows it to have a more flexible
project structure. Since there is a need to configure the application for each use
case, it sounds more reasonable to be able to configure the project as well. The
project also does not require any specific language for the server-side. Albeit,
Flask would also give the configuration freedom. The fact that Express extends
the functionality of NodeJS allows to have a consistent language (JavaScript) in
both the front-end and back-end of the project and a consequent JSON commu-
nication between both layers. Another factor to use the Express framework is
the community around the NodeJS runtime and JavaScript language.

After reviewing the architecture, see figure 1, the approach on the server-
side was changed to a more modular approach to the problem, segregating the
application’s components and having an unopinionated view over the database
usage, enabling the reuse of components for other applications.

6 Implementation

The framework is structured into an “app” and a “component” package. The
first package defines the WebfocusApp class, while the second defines the class
WebfocusComponent. There are also three packages with reusable components:
“send-mail”, “util”, and “tray”. Use $ npm install @webfocus/<package-name>
to install and use them. See figure 2 for an overview of the framework packages
and classes. With this structure, it is possible to implement components without
requiring the whole application package.

Next follows a short description of the three main reusable components im-
plemented.

Util: Some client-side and server-side generic utilities. It sets a property hidden
to true soo that the end-user does not see it. It provides the static files

10 See www.electronjs.org/

https://www.electronjs.org/


Local Web Application Development 5

Figure 1: Reviewed framework architecture.

submit-json.js, pagination.js and inline-fecth.js to the browser, all
of them depending on the previously mentioned /wefocus-static/js/fetch.js
file. It also provides on the server-side the functions serversideevents and
pagination.

Send Mail: It allows configuring an email server in order to be able to send
emails to the end-user. It uses the nodemailer package and defines the
function on the app instance sendMail so that other components can also
send emails if defined. Its index.pug is a submittable form to update the
server configuration locally.

Tray: It allows the application to have an icon and menu on the system tray
of the end-user. It uses the ctray package that this project implemented
outside the framework’s scope as a nice-to-have feature. Its index.pug is a
repetition of the actions on the system tray in case it is not available.

A TDD approach was used to ensure the behaviour of the “app” and “com-
ponent” packages as they are the core of the framework. E2E tests were also
done on a sample application, ensuring the behaviours of the application as a
whole.

7 Demonstration

The framework was applied to several real-life implementations related to the
case studies.



6 Diogo Miguel de Mello Caldeira Reis Almiro

Figure 2: Webfocus Framework overview.

The first application from the early stages of the framework featured the
connection to an embedded database.

Regarding IRIS, an application was created to explore the DGSI11 public
database. Beforehand the DGSI database was collected to local files. This ap-
plication allows us to compare the summary and the full text of each process. It
also allows seeing other metadata related to the process. This implementation
inspired a more profound report over the DGSI database, as abnormal fields
were found.

Another IRIS application showcases the integration between the text editor
of DOCX files and the application. It demonstrates that it is possible to detect
and update in real-time changes in the external technology.

The first ARMS implementation was the proof of concept that shows it could
run the external technology and create a ZIP file with the OCR result.

The second ARMS implementation does not implement everything from the
proof of concept, but it demonstrates that it can control the Docker Engine.

Table 1 specifies all the use cases implemented from the previous descriptions.

11 See http://www.dgsi.pt/jstj.nsf/

http://www.dgsi.pt/jstj.nsf/


Local Web Application Development 7

Table 1: List of the use cases.
■- Implemented, ⊠- Partially Implemented

□ Case Study Use Case
ARMS

■ Select a TIFF files’ location.
■ Define OCR settings.
■ Execute a bulk OCR on a location.
■ Notify the user.
⊠ See TIFF files.
□ See OCR metadata.
⊠ Edit OCR results.
□ Regenerate a PDF from manually edited OCR.

IRIS
□ Select a PDF document to use.
□ See the document and annotations.
□ Exectue OCR on demand.
□ Annotate the document.
□ Correct the OCR.
⊠ Synchronise an external editor to the application.
□ Export an archived document.
□ Import an archived document.

8 Conclusions

The challenge of this project was to propose a reference architecture for the use
of web technologies in the desktop domain. Precisely, it ought to improve work-
flows in an administrative environment of two case studies: digitising historical
documents on ARMS and analysing legal documents on a top national court.

After introducing some basic concepts, aimed solution and the application
characteristics were described according to the case studies. Afterwards, tech-
nologies that could help solve the problem were analysed, reaching a reasoned
ground to formulate a solution and a proposed architecture in more detail. Archi-
tecture that was implemented afterwards alongside several use cases to demon-
strate it.

References

1. A. Adamanskiy and A. Denisov. Ejdb - embedded json database engine. In 2013
Fourth World Congress on Software Engineering, pages 161–164, 2013.

2. Cristian Augusto. Efficient test execution in end to end testing : Resource optimiz-
ation in end to end testing through a smart resource characterization and orchestra-
tion. In 2020 IEEE/ACM 42nd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 152–154, 2020.



8 Diogo Miguel de Mello Caldeira Reis Almiro

3. Adrienne Porter Felt, Kate Greenwood, and David Wagner. The effectiveness of
application permissions. WebApps’11, page 7, USA, 2011. USENIX Association.

4. L. Junyan, X. Shiguo, and L. Yijie. Application research of embedded database
sqlite. In 2009 International Forum on Information Technology and Applications,
volume 2, pages 539–543, 2009.

5. G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger. Web Engineering: The Dis-
cipline of Systematic Development of Web Applications. Wiley, 2006.

6. R. Paul. End-to-end integration testing. In Proceedings Second Asia-Pacific Con-
ference on Quality Software, pages 211–220, 2001.

7. Peter Seebach. Develop web applications for local use. IBM, developerWorks, 2007,
accessed October 2020.

8. Leonor Teixeira, Ana Raquel Xambre, Helena Alvelos, Nelson Filipe, and Ana Luísa
Ramos. Selecting an open-source framework: A practical case based on software
development for sensory analysis. Procedia Computer Science, 64:1057 – 1064, 2015.


