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Abstract—A prototype Active Noise Control (ANC) headphone
with oversampling was developed in this project. To develop
the prototype, a ANC headset was used, with its controller
removed and another developed based on a FPGA board.
Additionally, high-performance converters were needed to be
able to support oversampling. In order to use oversampled
signals, signal processing techniques were used, namely, the use
of Sigma-Delta converters. Thus, it was possible to implement
the system with a high sampling frequency, yet utilizing fewer
bits per sample, hence reducing the computational complexity
of the system. FxLMS algorithms with feedfoward and feedback
were implemented with the secondary path modeling performed
in offline mode. To find out if the secondary path estimation
was being performed correctly, several tests were performed.
Lastly, the performance of the FxLMS system with feedback
was examined for various types of noise. It was found that
for sinusoidal noise the system was able to perform a full
cancellation, leaving only ambient noise and high frequency noise
that is not audible to the human ear. However, for white noise,
the system can only reduce about 3% of the total signal power.

Index Terms—Active Noise Control, Sigma-Delta Converters,
FxLMS, ZedBoard, Feedfoward Controller, Feedback Controller

I. INTRODUCTION

The technique for active noise cancellation consists of using
a cancellation source, which generates a signal with phase
opposition and amplitudes equivalent to that of the noise
source [3], thus resulting in a cancellation (Figure 1).

Fig. 1. Visual representation of Active Noise Reduction

For this project, one Active Noise Control (ANC) technique
will be applied to a product commonly used in consumers daily
life, namely in headphones. For the ANC feedfoward system

a reference microphone will be used inside the headphones to
measure the noise signal, which will be inverted and inserted
into the cancellation source, which in this case will be the
headphone speaker itself, in order to create an anti-noise wave
[1]-[3]. To give the controller feedback that if the system is
canceling correctly, a microphone was used in front of the
speaker.

However, it is important to consider that there is a minimum
delay margin between the reference signal and the error
microphone (Primary Path), and between the sound propagated
by the loudspeaker and the error microphone (Secondary
Path), which requires that calculations concerning the anti-
noise signal have to be performed in this short interval.
Thus, to achieve significant noise reduction, it is necessary
to implement a ANC with the shortest possible delay.

This delay cannot be greater than the difference between
the PP delay (dp) and the SP delay (ds), and this delay can be
small. Also, the delay in the ANC controller is equal to the
sum of the delay of the reference sensor, converters and all the
digital delays. To reduce this delay, high sampling frequencies
can be used, but this increases the computational complexity
and power consumption of the controller.

To reduce the computational complexity and power con-
sumption of using a high sampling rate, signal processing tech-
niques were used, namely, the use of Sigma-Delta converters,
since with the use of these, the number of bits per sample are
reduced.

II. BACKGROUND

In this chapter theoretical concepts are introduced that are
necessary to understand the methodology used in this project.

A. Adaptive filtering

Unlike ordinary (non-adaptive) filtering, adaptive filtering
does not consist of a system defined in advance, but instead
uses the information around it to estimate the value of the
parameters, which control the linear filter transfer function,
present in the adaptive filtering system [5].

The mode of operation of this type of filtering essentially
involves two processes, namely the filtering process, in which
a result is produced in response to a sequence of input data,
and the adaptive process, which provides a control mechanism
for the parameters used in the preceding process [6].

The structure of the adaptive filter (Figure 2) is composed
of a digital linear filter, whose coefficients will vary with



the adaptive algorithm, and input, output, reference, and error
signals. The adaptive process is controlled by the error signal,
which represents a measure of the adaptation of the filter
parameters, thus indicating the level of conformity between the
output and the reference signal, which is the desired response
of the adaptive filter [5]. The main goal of adaptive filtering
is then to optimize the error signal, that is, to minimize the
difference between the desired signal and the output signal
of the filter, through a constant adaptation of the parameters
present in the filter [5].

Fig. 2. Adaptive Filter Structure

1) Digital Linear Filters: The linear filter can be realized
using finite impulse response (FIR) or infinite impulse re-
sponse (IIR), however the most widely used adaptive filter
structures are FIR, due to their unconditional stability and the
relatively simple analysis of the properties of these filters [5],
and due to these factors only FIR filters will be explored in
this project.

Unlike IIR filters, FIR filters only depend on the previous
inputs, and have the following equation

y(n) =

M−1∑
k=0

ak ∗ x(n− k) (1)

Where M is the number of filter coefficients, ak are the
coefficients, x(n) is the input signal and y(n) is the output of
the filter.

Since this type of filter only depends on the prior inputs,
its transfer function only has zeros, which indicates that the
filter is always stable. FIR filters also have a low sensitivity
with respect to quantization errors of the coefficients [8].

Of all the existing FIR filter structures, the most intuitive
would be to perform the multiplications first and add them
to an accumulator (Direct Form: 3), however, there is another
structure of FIR filters: the transposed.

In theory, both structures will give equivalent results, but
when calculated with finite precision, there may be differences
between the different implementations.

In this project it will be used the direct form because it
has better numerical properties, namely, it is possible to use
a buffer with a smaller number of bits. With a reduced FIR
implementation it is possible to perform all multiplications in
parallel and then perform the necessary sums.

Fig. 3. FIR Filter Direct form

2) Adaptive Algorithms: The adaptive algorithm can take
many forms, and is usually derived as a form of optimization,
responsible for minimizing the error criterion, useful for the
task at hand [9]. The goal of the adaptive algorithm is to set
the adaptive filter coefficients so that the output minimizes
an objective function, and thus the output tends toward the
desired signal [10].

The least mean squares (LMS) procedure uses a Stochastic
gradient method, in which the FIR filter coefficients, are
updated based on the instantaneous error signal [5]. Where
the error signal at discrete time n is represented by:

e(n) = d(n)− y(n) (2)

e(n) = d(n)− xT(n)w (3)

The parameter d(n) corresponds to the desired signal, y(n)
is the output signal of the digital filter, xT(n) is the transposed
vector containing the input signals, and W is the vector
containing the filter coefficients. Thus, the LMS cost function
is represented by:

C(n) = E[e2(n)] (4)

In other words, the cost function is equal to the expected
value of the squared error, and this cost function is called
the mean square error (MSE). The graphical representation of
the cost function will have the shape of a ”bowl”, which will
be called the performance surface. The minimum point of the
performance surface will have the coefficients that minimize
this function, and there are no local minimum, but only a
global minimum.

Many useful adaptive processes that cause the coefficients of
digital filters to trend toward performance surface minimum
do so by gradient methods [11]. These take advantage of a
mathematical property whereby when the gradient of a convex
function is zero, it means that point is a global minimum. So,
to find the coefficients that minimize the cost function, just
calculate the gradient of that function and set it equal to zero,
as represented in the following equations.

R = E[X(n)xT(n)],P = E[d(n)X(n)] (5)

∇C(n) = 2RW − 2P (6)

W∗ = R−1P (7)

The variable R relates to the self-correlation matrix of the
input signal, P to the cross-correlation vector of the input and
reference signal, and W ∗ to the coefficients that minimize
the performance surface. However, in many applications, the



parameters of this quadratic performance surface are unknown,
and an analytical description of it is not available.

A well-known method, which overcomes this issue, is
steepest descent, it is an iterative gradient search method that
also causes all components of the coefficient vector to change
at each iteration [11]. The iterative gradient search procedure
can be represented algebraically as

w(n+ 1) = w(n)− µ∇C(n) (8)

Where n is the iteration number, w(n) a vector that consists of
the filter coefficients at ”present” time, while w(n+1) is the
new value of the coefficients, µ is the step size, and ∇C(n) is
the gradient of the cost function with respect to w(n). In the
stochastic gradient method, C(n) is approximated by e2(n),
obtaining the following expression

w(n+ 1) = w(n) + µe(n)X(n) (9)

For this algorithm to be stable, that is to converge to the
desired coefficients, the step size must be contained between
0 and 2/trace(R). The value trace(R) represents the sum
of the main diagonal elements (from top left to bottom right)
of R [6]. The LMS algorithm is simple, and yet capable of
achieving satisfactory performance under the right conditions.
Its main limitation is a relatively slow convergence rate [6].

Variants of the LMS algorithm, such as the leaky LMS
version, have been proposed to deal with some problems of
the LMS algorithm, such as when there is no input signal or
when a sinusoidal signal without noise is used as input, the
LMS algorithm can result in divergence of the coefficients.

This is because the weight update stops, i.e., the weight
increases are very small, and finite precision effects can cause
the unconstrained weights to grow unboundedly, resulting
in overflow during the weight update process. Introducing
leakage into the LMS algorithm stabilizes the system, this
algorithm is based on adding a parameter to the update
equation, referred to as the leakage factor, which tends to bias
each filter weight towards zero.

Leakage is known to result in distortions in the coefficients
and, as such, must be kept at low values. Leaky LMS, changes
the cost function, thus resulting in the following equations,
where the leakage factor corresponds to λ.

C(n) = e2(n) + γwT(n)w(n) (10)

w(n+ 1) = w(n) + µe(n)x(n)− 2µγw(n) (11)

w(n+ 1) = (1− λ)w(n) + µe(n)x(n) (12)

Where λ = 2µγ.

B. Active Noise Canceling

Active noise control systems provide sound attenuation by
introducing a second electronically generated sound wave into
the acoustic environment. If the amplitude of the second sound
wave is equal to that of the first, but the phase reversed, then
the two will be canceled [18]. One of the focuses of this project
is a specific type of controller, which is the most common

among researchers and developers, and called feedforward
adaptive controller, whose structure is depicted in Figure 4.
The adaptive feedback controller will also be a topic of study,
where the main difference is that it does not contain a reference
signal, but rather it is calculated from the error signal.

Fig. 4. ANC feedforward system

For feedforward systems the noise signal received at the
reference microphone is represented by x(n), y(n) is the linear
filter output signal, and e(n) is the error signal obtained at
the error microphone. The presence of the secondary path has
led to the existence of new adaptive algorithms such as the
”Filtered-x LMS” algorithm (FxLMS), which is the adaptation
for ANC LMS algorithm [19].

In this algorithm, the input signal samples are filtered by
the secondary path transfer function estimate. This filtered set
of signals is then multiplied by the error signal to produce the
gradient estimate used to modify the current weight values so
that the disturbance attenuation levels are improved [18].

To be able to filter the inputs with the transfer function of
the secondary path, it is first necessary to estimate it (Ŝ). This
can be done in two ways, offline or online, and in offline mode
the estimation occurs at system startup, since the secondary
path practically does not vary with time [19].

To perform secondary path estimation in offline mode, the
control system has to generate white noise and send to the
headset [19]. Thus, the error signal will the white noise after
passing through the secondary path. With this, it is possible
to use the LMS method to estimate the secondary path.

In an ANC feedback system the reference microphone is
not used, so no reference signal is available. An advantage
of this system is that it avoids the acoustic feedback problem
belonging to two-microphone feedforward systems, and also
reduces the hardware required (ADCs, microphones and am-
plifiers). One disadvantage is that the reference signal has to be
estimated, so this signal may contain noise. For the estimation
of the reference signal we have:

u(n) = e(n)− yT(n)̂s(n) (13)

u(n) = d(n) + xT(n)ws− xT(n)wŝ (14)



If the estimation of the secondary path is done well then the
terms cancel out, resulting:

u(n) = d(n) (15)

The feedforward system performs better since it does not have
to rely on the estimate of the reference signal, but rather gets
the desired signal from the reference microphone with no
estimate, which if miscalculated in the feedback system the
system may not converge or even diverge.

C. Signal Processing Techniques with Oversampling

For ANC systems to be able to achieve a significant amount
of noise reduction, it is necessary to implement the controller
with a small delay. However, in most ANC applications, this
delay is significant due to the typically low sampling rate, anti-
aliasing (AA) and reconstruction filters (RC) of the AD and
DA converters.

One technique to decrease this delay is to increase the
sampling frequency, but with the consequence of a significant
increase in computational complexity.

The use of sigma-delta converters, although these work at
high sampling frequencies, use AA and RC filters, which
introduce a large delay, and consequently makes their use in
ANC limited. One way to overcome this problem would be to
completely remove the AA and RC filters, thus working with
the oversampled signals in the controller, and with the use of
this type of converters it is possible to decrease the number
of bits used per sample thus decreasing the computational
complexity [7].

Normally the signal transfer function (STF) is unitary and
the noise transfer function (NTF) can vary with design needs.
However, for this project, we used a simple NTF that is given
as (1− z−1)P , where P is the order of the SDM. Resulting in
the following equation:

Y (z) = U(z) + (1− z−1)PE(z) (16)

Where U(z) represents the input of the SDM, Y(z) the output
of the SDM, and E(z) the error that the quantizer introduces
into the system, this type of SDMs has a relatively simple
implementation.

Regarding the choice of quantizer, the simplest and histori-
cally oldest method is to use single-bit quantization. However,
there are great advantages to employing a multi-bit quantizer,
since stability is improved and the quantization error is re-
duced 6dB for each bit added in the quantizer resolution.

The common application of SDMs is to use frequencies
higher than the sampling frequency of the system, to decrease
quantization noise. However, for this project, since the sam-
pling frequency is already high, it will not be necessary for
SDMs to work at a higher frequency, since between samples
their values do not vary much in the audible frequency band.

The NTF of the SDM represents a high-pass filter function,
which is depicted by Figure 5. This suppresses the error at
frequencies around 0, but the NTF function also increases the
error at higher frequencies. As the order of the SDM increases,

Fig. 5. Noise Modeling Curves and Noise Spectrum in First, Second and
Third Order SDM

it can be seen that the error is suppressed more strongly at low
frequencies, but is stressed even more at high frequencies.

This error caused at high frequencies by the SDM will spill
over to the LMS algorithm, which is no problem as long as
the sampling frequency is high enough so that the error is not
present at frequencies audible to humans.

III. STATE OF THE ART

Modeling unknown systems using adaptive filtering has
many applications for practical problems. One of the appli-
cations is in the area of communications, for example, in the
transmission of information over long distances (antennas). In
this type of communication, there are several paths (multipath)
from the transmitter to the receiver (i.e. reflections from the
ground), which can cause interference and echoes in the
received signal. One way to overcome this problem would
be to model the multipaths with an adaptive filter and thus at
the receiver it is possible to remove the interference and echo
in the received signal [11].

Short Word length (SWL) filters, in which signals and
filter coefficients are stored using a reduced number of bits,
have been explored since the early 1980s [22]. First, ternary
FIR filters were proposed, which take advantage of a fixed
coefficient that can only take the value -1, 0, or 1 [23].
Even though 1-bit signals have demonstrated applicability in
real-time control, and a significant reduction in computational
complexity [24], adaptive SWL filters (such as coefficients
in 2-bit format), have been found to outperform the others
(1-bit and ternary) [22]. Thus, it is essential that there is a
trade-off between hardware efficiency and performance [25],
which implies that a SWL implementation produces better
performance in exchange for higher computational complexity
[26].

The sigma-delta system, has proven not only to be more
efficient at noise reduction than a standard modulator [27],
but also capable of achieving higher resolution compared to



analog circuits [28], and has therefore gained great popularity
in audio signal processing as an effective method for building
high-resolution ADCs and DACs [21][24].

The implementation of the aforementioned filters and other
sigma-delta based techniques in FPGA were examined. It is
recognized that this type of technology will provide more
and more solutions to signal processing problems, as well as
a mechanism to work with important variables such as the
increasing demand for better performance, since they are able
to maintain the flexibility of software-based solutions while
providing high levels of performance [30].

Despite extensive research on the topic, and several headsets
with different designs have already been implemented, such
as in-ear noise-canceling headsets with the ASIC controller
[34], there are still opportunities for improvement, namely in
reducing costs, and investigating alternative noise modeling
techniques to reduce system components [35], mainly because
there is continuous pressure to achieve better performance with
lower power consumption in a smaller area [36].

IV. METHODOLOGY

The ANC system of the prototype will be implemented on
a ZedBoard FPGA, where the microphone and speaker signals
will have to pass through high-performance converters.

Fig. 6. ANC system with feedforward FxLMS algorithm and SDMs

SDM blocks will be used to reduce the number of bits
in general from B bits (16 bits) to C bits (5 bits), thus
lowering the computational complexity and be able to use a
high sampling frequency.

The SDM5 block converts W, which is the result of
updating the FIR filter coefficients (B bits), into W’, which
corresponds to the coefficients used in the FIR filter, but with
a smaller number of bits (C bits). To reduce computational
complexity, the conversion is performed on only one coeffi-
cient in each sampling period.

The filter Ŝ’ represented using only C bits, is obtained by
quantizing the estimate of Ŝ. This estimation always happens
at system startup using the offline method, as mentioned above.
Since Ŝ has a limited number of coefficients, this number
has to be well refined, since the estimation has to present
a frequency and amplitude response very similar to the real
secondary path, so if the number of coefficients is low, a good
estimation of the secondary path may not be achieved, and if
they are too many there is an unnecessary use of resources.

In the case of u2(n) and y1(n), since these signals have
already been processed by SDMs, they are the input of the
SDM2 and SDM4 blocks, in which case the high frequency
quantization noise also dictates the maximum input level.
Thus, the LP block (low pass filter) reduce the high frequency
quantization noise before SDM2 and SDM4, thus allowing
them to reduce their quantization steps.

Another system that will be covered in this project is the
FxLMS with feedback, where the reference signal is calculated
from the error signal, thus obtaining the following block
diagram.

Fig. 7. ANC system with feedback FxLMS algorithm and SDMs

A disadvantage to this method is having to estimate the
reference signal while the feedforward system uses hardware
to obtain it, which implies that if the secondary path is only
a D-sample delay, then the anti-noise signal must have a D-
sample lead in order to compensate for the secondary path
delay, so for cancellation to occur the following must be true:
y(n) = d(n+D) ⇔ y(n)*S=d(n). This means that it is necessary
for the anti-noise signal to be D samples ahead (a predictor
is required), and this is only possible at the expense of an
increase in high frequency noise, i.e., to reduce noise at low
frequencies you have to increase it at high frequencies, this
effect is known as the waterbed effect which results from
Bode’s integral formula [41].

In the feedforward system these problems do not occur,
since the primary path will have a longer delay with respect
to the secondary path (ignoring the controller delay), so the
reference signal will be more than D samples behind compared
to the error signal. Thus, it is only necessary for the primary
noise signal to have a delay relative to the reference signal.

V. HARDWARE

The hardware of this ANC system consists of headphones,
which contain a pair of microphones and speakers, an analog
circuit to amplify their signals, a ZedBoard development
board, and AD and DA converters to be able to interpret these
signals.

The ZedBoard is a complete development kit for designers
interested in high-performance solutions, as the board contains
all the necessary interfaces and support functions to enable a
wide range of applications. The choice of FPGA over other



options was due to the fact that this project requires a high
value for the sampling frequency and the need for many
resources. Compared to DSPs (Digital signal processor), for
high sampling rates, it can have difficulty capturing, processing
and outputting the data without any loss. This is due to the
many shared resources, buses and even the core within the
processor. The FPGA, however, can dedicate resources to each
function.

The ATH-ANC1 QuietPoint Headphones only contain
within each capsule a loudspeaker and an error microphone,
and therefore no reference microphone, which only allows
the feedback system to be used. However, in order to be
able to test the feedforward system, it can be used the error
microphone of one of the capsules as the reference microphone
and the other capsule for noise cancellation.

The amplification circuit for the microphone and speaker
signals was previously developed. Using potentiometers it is
possible to adjust the gain of the microphone and the speaker,
thus controlling the gain of the secondary path.

To allow the ZedBoard to interpret the microphone signals,
the ADS8363EVM analog-to-digital converter was used. It
features two channels, which have the ability to sample si-
multaneously, and can sample signals at a maximum frequency
of 1MHz, yielding 16-bit digital signals. The MAX5216PMB1
was used to convert the signal from digital to analog that would
be sent to the speaker. This converter takes 16-bit words and
converts them into an analog signal with a 2.5V reference.

VI. SOFTWARE

The development of all the software for this project was
carried out in three applications: Vivado, Vitis, where both
are from Xilinx, and MatLab. These Xilinx development
environments include all the necessary resources for synthesis
and analysis of VHDL designs (FPGA programming language)
and programming of ARMs and FPGAs.

A digital high-pass filter has been developed because the
microphone signal readings are not absolutely zero mean,
witch the offset can interfere with the performance of the
system, so using a cut-off frequency below 5Hz it is possible
to remove the DC component without interfering with the
integrity of the microphone signals.

For this the ANC system, the first thing to do is estimate
the secondary path, in offline mode and for this it was used
the LMS algorithm. For this purpose, a value of 10M samples
was set for the estimation, so for a sampling frequency of
1MHz this estimation takes 10 seconds. In this estimation, the
coefficients must have a frequency response very similar to the
real secondary path for the entire frequency band, so SDMs
cannot be used. To obtain a good resolution, 16-bit words were
used, and after the estimation, the coefficients were rounded to
5 bits, not causing much disparity in the frequency response.

The delays inserted in the system must be taken into account
so that when updating the coefficients the signals are at the
same time instant. In the feedback system it is also necessary
to pay attention to the estimation of the reference signal,

because at the slightest delay of one of the signals, the
reference signal is no longer correct.

The low-pass filters (LP blocks), which are before the
SDMs, are just moving average filters. This type of filter was
chosen, since they require few resources and do not have much
computational complexity when using a filter of dimension 4.

An improvement made in the calculation of the output of
FIR filters was to use the parallelism allowed by the VHDL
language. So, instead of constantly multiplying an input by a
coefficient and subsequently adding it to an accumulator, a FIR
filter with reduction was performed. That is, all multiplications
are performed, placed in a vector, and after it is completely
filled, sums are performed two by two in parallel, thus creating
a tree of sums.

For the updating of the coefficients, the leaky LMS was
used due to the advantages mentioned above. It should be
noted that the filter sizes were varied throughout the project,
since they depend on the sampling frequency and available
resources. Regarding the step size and the leakage factor, both
were determined experimentally to obtain better results.

VII. RESULTS

This chapter presents the results of various simulations and
tests performed on the hardware to understand the capabilities
and limitations of the system. All tests were performed with
the environment as similar to reality as possible, with ambient
noise and sound reflections from various objects. For these
tests, one earpiece is sufficient to evaluate the performance of
the system, and for this case the left one was used arbitrarily.

To perform the secondary path estimation it was chosen
to use the offline mode, as mentioned earlier. Thus, it is
important to evaluate the performance of the system when
doing this procedure. To do so, first, the algorithm was tested
by performing simulations, with the following parameters:
µsp = 7 ∗ 2−11;Lsp = 128;Fs = 1MHz.

Fig. 8. Error of the estimation of the simulated secondary path

As you can see from Figure 8, the error converges to zero,
which means that the coefficients are converging correctly.



However, since we are using a finite number of bits for each
word (16 bits) and since the step size is relatively large, there
will be quite a bit of residual noise.

The estimation of the secondary path does not have to
exactly match the real one, but the phase error cannot be
greater than 90°, otherwise the system is prone to instability
[19].

Thus, to evaluate whether the estimation was well done, the
difference of the frequency response of the real coefficients
of the simulation and the estimated coefficients after being
rounded was performed, and it was found that from approx-
imately 0.15 Fs, the phase error is greater than 90º, which
means that for the proper functioning of the FxLMS system
one cannot exceed this frequency. Regarding the magnitude
error, this only interferes in the rate of convergence, because
the larger the error the longer the convergence time.

To get an idea of the secondary path that the algorithm is
intended to estimate, a small program was first made to just
send to the headset white noise and to read the values from
the microphone. So the LMS algorithm was run in MatLab
(64 bit words) to estimate the secondary path for different
sampling frequencies, and also with the headphones placed
outside the head and on the head. Regarding the placement
of the headphones on the ears, there was no great difference
in the change of the secondary path, however, the more the
sampling frequency was increased, the greater the number of
coefficients had to be to be able to estimate it correctly. Thus
it was obtained an idea of what the structure of the coefficients
would be (figure 9).

Fig. 9. Secondary path estimation in MatLab

After getting an idea of the values of the secondary path co-
efficients, the algorithm developed in VHDL for the estimation
of the secondary path was tested.

Since the secondary path is controlled by the headphone
and microphone gains, these had to be adjusted so that the
estimation did not have too low coefficient values but also
not too high, since they could saturate. Another reason for

adjusting the secondary path was also so that its gain was as
close to 0dB as possible, so that the signals in the FxLMS
system do not saturate.

To evaluate the performance of the secondary path esti-
mation in Hardware, 10 estimations were performed to vi-
sualize the variation in the frequency response of the esti-
mates. For these tests, the parameters used were as follows:
µsp = 2−11;Lsp = 128;Fs = 100KHz. A lower sampling
frequency than intended was used, since for a higher frequency
one would have to have a larger number of coefficients and
the ZedBoard does not have enough resources to have more
than 128 coefficients together with the FxLMS system.

Fig. 10. Frequency response of the various estimates of the secondary path
in Hardware

In Figure 10 it is possible to observe the frequency response
of the various estimations, and it can be seen that the greatest
variation is at high frequencies. With this difference it is
possible to conclude that from 20KHz the system can have
a phase error greater than 90º. As seen previously in the
simulations, the error that the estimation causes is mostly
from 0.15Fs=15KHz, for Fs=100KHz, so it is possible to
conclude with great certainty that from 20KHz the system can
be unstable.

As a preliminary analysis of the performance of the FxLMS
feedback system, we started by looking at the ambient noise
that is picked up by the error microphone in order to examine
possible anomalies.

It was found that the ambient noise is mostly in the low
frequencies and presents two peaks, one at 300Hz with power
of -13dB, corresponding to the computer fan, and another at
50Hz with power of 13 dB that comes from the building’s
mains voltage that works at 50Hz and causes electromag-
netic interference in the system. This interference can cause
problems in the system, since it is not possible to cancel it
with sound signals. So, to reduce this interference, the cutoff
frequency of the previously designed high-pass filter was
changed to 88Hz, thus filtering out much of the interference.

The parameters used for the results presented below were:



TABLE I
SYSTEM PARAMETERS

Parameter Symbol Value
Control Filter Size L 128

SP Filter Size N 128
Moving Average LP Filter Size T 4

Sampling Frequency f0 100KHz
SDM order P 2

Coefficients and Signals Word Length (Most) C 5
SP LMS Algorithm Step Size µsp 5 ∗ 2−11

FxLMS Algorithm Step Size µpp 3 ∗ 2−11

FxLMS Algorithm Leakage λ 2−15

With the aid of an auxiliary loudspeaker a sinusoidal signal
with a frequency of 3KHz was generated and the error signal
was observed to see if the system was converging correctly.

Thus, looking at Figure 11, it is possible to conclude that the
system is performing noise cancellation. It took about 1 second
for it to converge completely, leaving only high frequency
noise, in which it is not audible.

Fig. 11. FxLMS system error feedback signal for 3KHz sinusoidal noise

After verifying that the system was working properly, an
evaluation of the amount of sinusoidal noise cancellation was
made for several frequencies, for this, it is necessary to realize
the difference of signal strength at the noise frequency when
the system is deactivated and activated. The first step was to
analyze the low frequencies.

Observing Figure 12, it is possible to conclude that the sys-
tem works with greater efficiency for noises with frequencies
above 300Hz, this may be due to the fact that a high-pass filter
is being used to filter the signal coming from the microphone,
with a cutoff frequency of 88Hz, the secondary path for
low frequencies is poorly estimated due to the complexity of
estimation of a high-pass filter and due to the plant (secondary
path) cut off frequency. For frequencies above 300Hz it is
possible to verify that the system can cancel more than 45dB,
and looking at the spectrum of the error signal it is possible
to verify that the noise was totally canceled at the sinusoid
frequency, since there is no trace of the existence of the given

Fig. 12. System performance for low frequency noise

frequency. All the measurements of the cancellation values
were only at the given frequencies and not of the total noise.

Fig. 13. System performance for high frequency noise

To check up to which frequencies the system had a good
performance, Figure 13 was made, which indicates how much
decibels the system can cancel at a given frequency. Thus, it is
possible to conclude that the system has a good performance
up to a frequency of 7KHz. This indicates that the system
can cancel with good performance from 300Hz to 7KHz. One
would expect the system to cancel up to 20KHz, however,
since the sampling frequency is only 100KHz instead of
1.4MHz which was the originally intended sampling fre-
quency, then the SDMs have a higher quantization noise, since
the higher the working frequency of the SDM, the lower the
quantization noise at low frequencies. Another hypothesis for
the system not being able to cancel almost anything after
10KHz would be due to poor estimation of the secondary path,
that from 0.15*Fs the phase error is greater than 90º, which
may indicate instability, which in this case does not occur, but
as there is already a large error it cannot cancel.

It was also tested by setting the speaker to produce soft
noise and observing the behavior of the error signal with the
system deactivated and activated, as can be seen in Figure 14.

As Figure 14, presents values on a logarithmic scale (dB) it
is not possible to have much insight into whether the system
within the audible band decreases the noise or increases it,



Fig. 14. System performance for high frequency noise

so performing the variance of both signals, it is obtained that
the system decreases by approximately 3% the noise power,
which is not much, but it was the expected for the FxLMS
system with feedback.

VIII. CONCLUSION

The goal of this project was to implement an oversampled
ANC headphone system with an FPGA development board,
the ZedBoard housing an FPGA and a dual-core ARM. An
analog circuit was also used to amplify the input/output signals
to/from the AD and DA converters, which in turn generate
signals to/from the ZedBoard. This system was then used to
experiment with various system configurations to achieve good
attenuation, stability and robustness.

FxLMS was the only algorithm to be developed. The active
noise cancelling headphone system with feedback settings
showed satisfactory attenuation. However, theoretically, feed-
forward systems would perform better than feedback systems,
but still both systems have better attenuation compared to some
fixed-frame controllers.

The results obtained indicated that this ANC headphone
system can be considered for commercialization. However, the
stability performances need to be improved before reaching the
end user. In this project, a prototype was created, which needs
some future research and improvements in order to be sold in
the market using its full potential at the lowest possible cost.

REFERENCES

[1] S. J. Elliott, “Down with noise [active noise control],” IEEE spectrum,
vol. 36, nº 6, pp. 54-61, 1999.

[2] C. Y. Chang, A. Siswanto, C. Y. Ho, T. K. Yeh, Y. R. Chen e S. M.
Kuo, “Listening in a noisy environment,” IEEE Consumer Eletronics
Magazine, vol. 5, nº 4, pp. 34-43, 2016.

[3] S. M. Kuo e D. R. Morgan, “Active noise control: a tutorial review,”
Proceedings of the IEEE , vol. 87, nº 6, pp. 943-973, 1999.

[4] A. Zaknich, Principles of adaptive filters and self-learning systems,
Springer Science & Business Media, 2005.

[5] B. Kovacevic, Z. Banjac e M. Milosavljevic, Adaptive Digital Filters,
Springer-Verlag, 2013.

[6] S. Haykin, Adaptive Filter Theory, 3ª ed., Prentice-Hall, 1996.
[7] P. W. Wong e R. M. Gray, “FIR Filters with Sigma-Delta Modulation

Encoding,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 38, nº 6, pp. 979-990, 1990.

[8] L. Litwin, “FIR and IIR digital filters,” IEEE Potentials, vol. 19, nº 4,
pp. 28-31, 2000.

[9] V. K. Madisetti e D. B. Williams, Digital Signal Processing Handbook,
Atlanta, Georgia: CRC Press, 1999.

[10] P. S. R. Diniz, Adaptive Filtering Algorithms and Practical Implemen-
tation, Rio de Janeiro, Brazil: Springer, 2013.

[11] B. Widrow e S. D. Stearns, Adaptive Signal Processing, New Jersey:
Prentice-Hall, 1985.

[12] S. S. Haykin, Adaptive Filter Theory, Prentice Hall, 2002.
[13] P. A. C. Lopes, G. Tavares e J. B. Gerald, “A NEW TYPE OF

NORMALIZED LMS ALGORITHM BASED ON THE KALMAN
FILTER,” IEEE Xplore, vol. 3, p. 4, 2007.

[14] D. T. M. Slock, “On the Convergence Behavior of the LMS and the
Normalized LMS Algorithms,” IEEE TRANSACTIONS ON SIGNAL
PROCESSING, vol. 41, nº 9, p. 15, 1993.

[15] K. Mayyas e T. Aboulnasr, “Leaky LMS algorithm: MSE analysis for
Gaussian data,” IEEE Transactions on Signal Processing, vol. 45, nº 4,
pp. 927 - 934, 1997.

[16] H. C. Woo, “Variable Step Size LMS Algorithm using Squared Error
and Autocorrelation of Error,” Procedia ENgineering, vol. 41, pp. 47-52,
2012.

[17] R. H. Kwong e J. E. W., “A varible step size LMS algorithm,” IEEE
Transactions on Signal Processing, vol. 40, pp. 1633-1642, 1992.

[18] S. D. Snyder, Active Noise Control Primer, South Australia: Springer,
2000.

[19] S. M. Kuo e D. R. Morgan, Active Noise Control Systems: Algorithms
and DSP Implementations, New York: Wiley-Interscience, 1996.

[20] P. A. C. Lopes e J. A. B. Gerald, “Low Delay Short Word Length Sigma
Delta Active Noise Control”

[21] R. Schreier e G. C. Temes, Understanding delta-sigma data converters,
IEEE Press, 2004.

[22] T. Memon, P. Beckett e A. Z. Sadik, “Sigma-Delta Modulation Based
Digital Filter Design Techniques in FPGA,” ISRN Eletronics, vol. 2012,
pp. 1-10, 2012.

[23] T. Memon, P. Beckett e Z. M. Hussain, “Design and Implementation
of a Ternary FIR Filter using Sigma Delta Modulation,” International
Symposium on Computing, Communication, and Control, vol. 1, 2009.

[24] X. Wu e R. Goodall, “One-bit processing for real-time control,” Euro-
pean Control Conference, pp. 3347-3352, 2003.

[25] A. C. Thompson, P. O’Shea, Z. M. Hussain e B. R. Steele, “Efficient
single-bit ternary digital filtering using sigma-delta modulator,” IEEE
Signal Processing Letters, vol. 11, nº 2, pp. 164-166, 2004.

[26] A. Z. Sadik e Z. M. Hussain, “Short word-length LMS filtering,”
International Symposium on Signal Processing and Its Applications, pp.
1-4, 2007.

[27] D. A. Johns e D. M. Lewis, “Design and analysis of delta-sigma based
IIR filters,” IEEE Transactions on Circuirs and Systems II: Analog and
Digital Signal Processing, vol. 40, nº 4, pp. 233-240, 1993.

[28] S. S. Abeysekera e K. P. Padhi, “Design of multiplier free FIR filters
using a LADF sigma-delta modulator,” IEEE International Symposium
on Circuits and Systems, vol. 2, pp. 65-68, 2000.

[29] C.-L. Chen e A. N. Wilson, “Higher order sigma-delta modulaiton
encoding for the design of efficient multiplierless FIR filters with
powers-of-two coefficients,” IEEE International Symposium on Circuits
and Systems, vol. 4, pp. 2361-2364, 1997.

[30] C. Dick e F. Harris, “FPGA signal processing using sigma-delta mod-
ulation,” IEEE Signal Processing Magazine, vol. 17, nº 1, pp. 20-35,
2000.

[31] P. N. Samarasinghe, W. Zhang e T. D. Abhayapala, “Recent Advances in
Active Noise Control Inside Automobile Cabins: Toward quieter cars,”
IEEE Signal Processing Magazine, vol. 33, nº 6, pp. 61 - 73, 2016.

[32] K. Mazur, S. Wrona e M. Pawelczyk, “Active noise control for a washing
machine,” Applied Acoustics, vol. 146, pp. 89-95, 2019.

[33] W. Niu, “Adaptive vibration suppression of time-varyung structures
with enhanced FxLMS algorithm,” Mechanical Systems and Signal
Processing, vol. 118, pp. 93-107, 2019.



[34] H. S. Vu e K. H. Chen, “A low-power broad-bandwidth noise cancella-
tion vlsi circuit design for in-ear heaphones,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 24, nº 6, pp. 2013-2025, 2016.

[35] P. N. Samarasinghe, W. Zhang e T. D. Abhayapala, “Recent Advances in
Active Noise Control Inside Automobile Cabins: Toward quieter cars,”
IEEE Signal Processing Magazine, vol. 33, nº 6, pp. 61-73, 2016.

[36] T. Memon, P. Beckett e A. Sadik, “Power-area-performance charac-
teristics of FPGA-based sigma-delta FIR filters,” Journal of Signal
Processing Systems, vol. 70, nº 3, 2013.

[37] J. Blauert, Spatial hearing: the psychophysics of human sound localiza-
tion, MIT press, 1997.

[38] D. H. Crawford e R. W. Stewart, “Adaptive IIR filtered-v algorithms for
active noise control,” Acoustical Society of America, vol. 101, nº 4, pp.
2097-2103, 1997.

[39] Texas Instruments, “TLC5540/TLC5510/TLC5510A Evaluation Mod-
ule, User’s Guide,” 2002.

[40] M. Integrated, “MAX5214/MAX5216 14-/16-Bit, Low-Power, Buffered
Output, Rail-to-Rail DACs with SPI Interface,” 2013.

[41] H. K. Sung and S. Hara, ”Properties of sensitivity and complementary
sensitivity functions in single input and single output digital control
systems”, Int. J. Control, vol. 48, no. 6, pp. 2429-2439, 1988.


