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Abstract

Considerable progress in Artificial Intelligence, supported by unprecedented hardware capabilities,
promises to revolutionize aviation. In an emergency, an aircraft autonomous navigation system should
propose a safe trajectory until a suitable diversion runway to save the aircraft in real time. However, avia-
tion is safety-critical, since failures might incur loss of human lives. Validating these automatic functions
is therefore fundamental. Due to systems increasing complexity, or black-box nature, formal validation
methods become impractical.

We propose a data-driven framework to support the development and validation of a black-box au-
tomated emergency procedure generator. Smooth complete trajectories are reconstructed from Fligh-
tRadar24 historical measurements through convex optimization. These allow to evaluate whether the
simplified terrain representation used by the system is sufficiently precise to accept usually flied routes
as safe. Trajectory clusters are obtained thanks to Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise (HDBSCAN) and for each cluster a list of suitable diversion airports is constructed
from historical data, ensuring that an option always exists within a certain distance through a set cover
problem. Each cluster is represented by a group of cells and the system is evaluated on them, ensuring
relevant search space coverage. Representative environments are constructed using real restricted areas
and historical weather obstacles. A genetic algorithm guides the search for challenging scenarios.

The proposed framework was validated by applying it on a prototype under development, successfully
identifying several axis of improvement, hence, proving itself useful to support the design process.
Keywords: Black-Box Safety Validation, Falsification, Optimization, Trajectory Clustering, Big Data

1. Introduction
In 2018, IATA forecast a significant growth in air
passenger numbers for the next two decades [1]. A
shortage of qualified pilots was therefore expected.
Although COVID-19 has greatly impacted passen-
ger traffic, as IATA does not expect it to return to
pre-COVID-19 levels until 2024 [2], the issue re-
mains for the long-term. Additionally, pilots costs
are significant part of aircraft operating costs.

For these reasons, working towards autonomous
aircraft is important. It is equally important to de-
velop functions to assist pilots in stressful emer-
gency situations. In both of these contexts, a sys-
tem capable of proposing in real-time a suitable di-
version target and a safe and flyable trajectory to
reach it and save the aircraft in case of emergency
is useful. Several works on this topic can be found
in the literature [3] [4]. However, validating such a
system is a far from trivial necessity. Since aviation
is a safety-critical domain, any system must un-
dergo extensive validation and testing before cer-
tification and deployment. As systems become in-
creasingly complex, formal validation methods be-

come impractical, in favor of black-box techniques
not requiring internal system knowledge.

This work addresses the design and implemen-
tation of an efficient strategy for the evaluation and
validation of a black-box system as the one de-
scribed above. A major challenge lies on the huge
size of the search space, composed by aircraft and
environment states. The framework should allow to
either validate the system (ensuring good coverage
of the search space) or find axis of improvement to
support the design and development. To ensure
that test scenarios are representative, these are
constructed from FlightRadar24 recordings, real
restricted areas and historical weather obstacles.
The framework is tested on a use case prototype
and successfully identifies axis of improvement.

2. Background
2.1. Safety Validation of Black-box Autonomous Sys-

tems
Autonomous systems are becoming increasingly
capable, promising to revolutionize aviation. How-
ever, since aviation is safety-critical, these systems
must undergo extensive validation and testing prior
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to certification and deployment. A System Un-
der Test (SUT) can be considered safe if no fail-
ure is found after adequate exploration of the in-
put space, or if the failure probability is below an
acceptable threshold. Since conventional testing
does not scale well to the complexity and unknown
internal nature of next-generation systems, black-
box validation techniques are required.

The work in [5] has proposed an effective
method for automatic generation of test inputs for
embedded control systems by maximizing a cover-
age function with the help of a Genetic Algorithm.

In [6], a falsification problem is defined as:
1) Given model M (takes input u and outputs

M(u)) and a specification ϕ (temporal formula),
2) find an error input, that is, a signal u such that

the corresponding outputM(u) violates ϕ.
Real-valued robust semantics of temporal logics

assigns a value to represent not only if a specifica-
tion is true or false but also how robust, reducing
hybrid system falsification to an optimization prob-
lem of generating inputs in the direction of decreas-
ing robustness. To be confident about accepting
the system if no falsifying inputs are found, guaran-
teeing good search space coverage is important.
This is possible if enough exploration is performed.

A time-staged approach is followed to find a fal-
sifying sequence of inputs. The approach can
be converted to an adversarial form of Reinforce-
ment Learning (RL). A two-layered optimization
framework that balances exploration of new areas
and exploitation of promising ones is proposed by
[6]. In an upper layer, Monte Carlo Tree Search
(MCTS) is used for high-level planning and con-
trols this balance, picking a region from the input
space. A lower layer performs hill-climbing opti-
mization within the region selected to sample the
input. The system is then simulated to obtain the
corresponding output and the robustness is com-
puted and fed back to the MCTS.

For the safety validation of next-generation Air-
borne Collision Avoidance Systems, [7] formulates
the search for the most likely state trajectory lead-
ing to an event given only a simulator of the system
as an RL problem and successfully solves it using
MCTS. Figure 1 illustrates the test input generation
cycle. The reward was designed to be maximized if
an event is found and favor more likely sequences
otherwise. It is defined by (1).

R (st, st+1) =

 0 if st ∈ E
−∞ if st /∈ E, t ≥ T
logP (st+1 | st) if st /∈ E, t < T

(1)

MCTS is one of the most successful sampling-
based online approaches to RL. A search tree is
incrementally built using sampling and forward sim-
ulation to inform the search and focus on the most

Figure 1: MCTS for test input generation. From [7].

promising areas. Several variations of MCTS exist.
A detailed review of these is presented in [8].

Reference [9] presents a comprehensive survey
of algorithms for black-box safety validation. The
problem formulation is represented in Figure 2.
There is an environment in which the system takes
actions based on its observations. The problem is
finding a disturbance trajectory that leads to fail-
ure. Disturbances could represent positioning er-
rors, unexpected closing of restricted areas or yet
unexpected temporal evolution of critical weather.
The adversary has one of the following goals:

1. Falsification: find any disturbance trajectory
that leads to a failure;

2. Most likely failure analysis: find the most likely
disturbance trajectory that leads to a failure;

3. Estimation of the probability of failure: deter-
mine how likely any failure will occur.

Figure 2: Problem formulation for the safety validation of black-
box autonomous systems. From [9].

This work focuses on falsification. The taxonomy
in [9] categorizes three approaches for this end:
optimization (adaptive sampling of disturbance tra-
jectories guided by a cost function) path-planning
(trajectories built by choosing disturbances that
bring the environment to unexplored regions) and
Reinforcement Learning (algorithms select distur-
bances based only on the current state). Path-
planing is not directly applicable to black-boxes.

This work only addresses a ”static” validation of
the SUT, meaning its ability to produce a suitable
solution considering the information initially avail-
able. An optimization approach seems suitable for
this. The capacity to deal with disturbances (like an
unexpected evolution of critical weather) that ren-
der the solution found and engaged invalid while
flying it is not tested yet. However, finding a distur-
bance trajectory leading to failure is a fundamental
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stream of future work. It could probably be well ad-
dressed by a Reinforcement Learning approach.

Several works have focused on falsification or on
providing runtime assurances and ensuring search
space coverage. However, it is important to in-
terpret the decision-making process of the au-
tonomous system and how environmental factors
affect it. The work in [10] proposes to focus on
regions where small changes in the scenario re-
sult in transitions between performance modes.
Sampling preferentially from these regions allows
to maximize the information returned by a limited
number of runs. In a first step, adaptive sampling is
used to search the parameter space. In a second
step, unsupervised learning is used to determine
performance modes and performance boundaries.

2.2. Trajectory Reconstruction
Reconstructing a complete and smooth trajectory
from a set of recorded measurements can be for-
mulated as a convex optimization problem [11].

Let q represent a sampling rate. If all trajecto-
ries are uniformed to have a same duration Tldg,
the number of points defining each reconstructed
trajectory is N = Tldg/q. Let P = (p1, p2, . . . , pN ) ∈
RN×3 be the optimization variable (trajectory to be
reconstructed). The ith row of P , pi = ( lat i, lon i,
alt i), is the reconstructed position at time i.

To ensure reconstructed trajectories stay truthful
to observations, a least-squares regression term
‖AP − P̂‖2F , where ‖.‖F defines the Frobenius
norm, is inserted in the objective function. P̂ ∈
RN×3 contains in its ith row measurements of time
i if these are available and zero otherwise. A ∈
RN×N is a diagonal matrix with Aii = 1 if an obser-
vation is available at time i and Aii = 0 otherwise.

Realistic flight dynamics needs to be included
when reconstructing trajectories. To ensure
that the acceleration is low on average, a term
λ1 ‖D2P‖2F is introduced. The scalar λ1 is a reg-
ularization hyper-parameter to be tuned and D2 ∈
RN−2×N is the second-order difference matrix rep-
resenting the acceleration operator, defined by (2).

(D2)i = ei − 2ei+1 + ei+2, i ∈ {1, . . . , N − 2} (2)

where ei denotes the ith standard unit vector.
To ensure that the jerk (change of acceleration)

is also low on average, the term λ2 ‖D3P‖2F is also
introduced in the objective function. Here, λ2 is an-
other scalar regularization hyper-parameter to be
tuned and D3 ∈ RN−4×N is the third-order differ-
ence matrix representing the jerk operator (3).

(D3)i = −ei−1 + 2ei − 2ei+2 + ei+3, i ∈ {1, . . . , N − 4} (3)

Summing the terms just introduced, the objective
function is defined and a convex unconstrained op-
timization problem is formulated by (4).

minimize
P

‖AP − P̂‖2F + λ1 ‖D2P‖2F + λ2 ‖D3P‖2F (4)

Regarding the tuning of λ1 and λ2, the authors in
[11] suggest a selection for each trajectory through
out-of-sample validation, which is performed by
randomly holding out measurements from the tra-
jectory, fitting trajectories with varying λ1 and λ2
using the measurements not held out, and select-
ing the parameters that have the lowest loss on
held-out measurements.

2.3. Trajectory Clustering
There are four basic clustering frameworks: parti-
tioning, hierarchical, density-based and grid-based
[12].

Given a set of n objects, partitioning methods
construct K partitions and each object is assigned
to exactly one (this may be relaxed). Usually, an ini-
tial partitioning is iteratively relocated based on the
distance between objects until convergence. The
two most popular algorithms are K-means and K-
medoids. Major drawbacks are that K is a required
input and they are fit to cluster spherical-shaped
data, not data of irregular shape.

Hierarchical methods partition the data into
groups at different levels, as in a hierarchy. They
can be agglomerative (a bottom-up strategy where
individual objects start as clusters and are itera-
tively merged to form larger clusters) and divisive
(a top-down strategy where all objects start belong-
ing to a single cluster and are iteratively divided
into smaller clusters).

Density-based methods are based on the notion
of probability density, rather than distance between
objects. They can identify clusters of data of any
irregular shape and identify and filter out outliers.
The most popular algorithm is DBSCAN [13]. In
a probabilistic framework, some approaches allow
for the estimation of the optimal K from data [14].

Grid-based methods partition the space into
cells, regardless of the distribution of input objects.
Clustering operations are then performed on such
a grid structure. For more details refer to [12].

The techniques described were originally intro-
duced to cluster points. Clustering aircraft trajec-
tories is more difficult, since one needs to choose
not only a suitable algorithm but also a metric for
similarity or dissimilarity between trajectories [15].

Euclidean distance is simple and intuitive be-
cause it is parameter-free. However, two trajecto-
ries being compared must be composed by a same
number of segments with corresponding times.
This is hard to ensure, since trajectories do not
necessarily have the same temporal nor distance
lengths. Noise may have a strong impact, but some
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variations exist to address this problem. Other met-
rics allow to consider shape or time dimension.

Hausdorff distance is used to measure the maxi-
mum mismatch between two trajectories, consider-
ing them close if every sampling point of either tra-
jectory is close to some sampling point of the other
one. Being defined by the point in each trajectory
that is farther to the other trajectory, it is sensitive to
noise. It does not seem suitable to give an overall
idea of how similar or dissimilar trajectories are.

Dynamic Time Warping (DTW) finds the opti-
mal alignment between two trajectories, instead of
using predefined correspondences like Euclidean
distance does. Each sample from each trajectory
must be monotonically non-decreasingly mapped
to a sample of the other trajectory. An advantage
is that the trajectories lengths can be different, so
different sampling rates can be handled. The main
inconvenience is the sensitivity to noise and need
to have quite continuous trajectory data points.

At last, instead of a distance, one can also com-
pute the Longest Common Subsequence (LCS).
Several combinations of algorithms and metrics
have already been successfully applied to prob-
lems involving aircraft trajectory clustering.

In [16], agglomerative hirearchical clustering
was used to find trajectory patterns in the context
of aircraft arrival times prediction. DTW was cho-
sen to compute the distance between trajectories.

The work in [17] presents two clustering meth-
ods. The first one is way-point-based: it identi-
fies turning points, uses DBSCAN to identify the
main ones, represents trajectories as sequences
of these and uses LCS to cluster them. It shows
good empirical results. However, it only keeps tra-
jectories going over way-points. A parallel trajec-
tory might be seen as an outlier, while one contain-
ing a large rerouting period will belong to a cluster
if it contains its way-points. In the second method,
trajectories are resampled to obtain time series of
equal length. The data is augmented and a Prin-
cipal Components Analysis is run to reduce data
dimensionality. Clusters and outliers are obtained
using DBSCAN.

In [11], Euclidean distance and K-means++ are
used. A Gaussian Mixture Model is constructed
based on intra-cluster covariance matrices, allow-
ing accurate inference and realistic generation of
trajectories. The probabilistic generative model
may be used for anomaly detection tasks as well.

3. System Under Test (SUT)
3.1. System Purpose and Interfaces
The SUT computes automatically and in real-time
an emergency diversion solution, either to as-
sist pilots or be automatically engaged by an au-
tonomous aircraft, depending on the use case. It
receives the aircraft position (latitude, longitude

and altitude), speed (horizontal and vertical) and
heading, restricted areas and critical weather ob-
stacles to be avoided and a list of diversion options.
It selects the diversion target from the list of options
and outputs it and then computes and outputs a
safe trajectory starting at the aircraft and ending
at the runway. A safe trajectory avoids terrain, re-
stricted areas and critical weather obstacles.

To ensure terrain avoidance, the SUT uses a
simplified terrain representation obtained from a
raster with elevation data such as NASA’s Shuttle
Radar Topography Mission (SRTM) database.

3.2. Restricted Areas and Weather Construction
In order to ensure test scenarios as realistic as
possible, real prohibited areas, danger areas and
restricted areas were recovered from Aeronauti-
cal Information Procedures (AIPs). The declared
Spanish and French areas retrieved are repre-
sented on the left side of Figure 3.

An easy way to reproduce realistic weather ob-
stacle shapes is to retrieve historical data. Histori-
cal weather images are retrieved and from them a
library of representative shapes enclosing weather
obstacles is created. A variety of scenarios can be
created by selecting some shapes from this library
and playing with their positioning and orientation.
A weather scenario generated with this strategy is
represented on the right side of Figure 3.

Figure 3: Representative scenarios. Real restricted areas on
the left and weather generation from historical data on the right.

3.3. Validation of Solutions
The trajectory produced must be safe in light of the
terrain. To ensure that such is the case, the ter-
rain profile under the lateral trajectory is retrieved
from NASA’s Shuttle Radar Topography Mission
(SRTM) [18] database. Such a terrain profile is
represented in red in Figure 4 for one trajectory
produced by the SUT. The trajectory is considered
safe with respect to the terrain, since its vertical
profile is always above the terrain elevation profile.
Likewise, all the restricted areas and weather ob-
stacles fed to the SUT that are placed along the
trajectory produced are retrieved and the trajectory
is valid because its vertical profile avoids these.

Terrain and obstacle avoidance is verified until
the Final Approach Fix. For the final approach,
it is checked if the trajectory finishes on the run-
way threshold and if the glide slope and Instrument
Landing System procedure are coherent.
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Figure 4: Validation of the safety of a trajectory.

3.4. Performance Metrics and Cost Functions
A diversion option is well selected if the trajectory
generated by the SUT to reach it is shorter than
the trajectory it would generate to reach any of the
other options. Let n be the number of options in the
list. The n − 1 options not selected are sorted by
increasing order of ground distance from the air-
craft (so in index 1 is the closest alternative, and
so on). Let lSUT be the ground length of the tra-
jectory produced to reach the option selected and
li the ground length of the trajectory produced to
reach option i (obtained by passing a list with only
option i to the SUT). Cost function fi defined by (5)
evaluates the pertinence of the diversion selection.

fi =
lSUT

li
(5)

The selection is not good in case fi > 1 for any
i ∈ {1, ..., n − 1}. A search for sub-optimal trajec-
tories could be guided by a maximization of lSUT .
However, this would favor scenarios where the air-
craft is far from the airport and would not identify
sub-optimal trajectories when the aircraft is closer
to it. Let dSUT be the ground distance between air-
craft and runway. The search for sub-optimal tra-
jectories could be guided by fSUT defined by (6).

fSUT =
lSUT

dSUT
(6)

However, fSUT might be large for optimal trajec-
tories if obstacles need to be avoided or the aircraft
is close to the runway at high altitude and needs to
dissipate substantial energy. In future work, it could
be interesting to design a cost function to guide the
search based on energetic considerations.

Ideally, if another algorithm could compute op-
timal solutions (not necessarily in real-time) with
ground length lopt, cost function g defined by (7)
could drive the search for non-optimal trajectories.

g =
lSUT

lopt
(7)

A search for scenarios where a prototype a pro-
duces trajectories of length la longer than those
produced by b of length lb could be driven by h (8).

h =
la
lb

(8)

In case prototype a is an improved version of
prototype b, h can drive a search for regressions,
supporting the design process.

The SUT being real-time, the last term of the
cost function that should drive the validation sce-
nario choice is proportional to the execution time,
t. The principle of h also allows to find scenarios in
which a prototype is faster or slower than another.

4. Exploratory data analysis and preprocessing
4.1. Dataset - FlightRadar24
FlightRadar24 is a data source that compiles Au-
tomatic Dependent Surveillance-Broadcast (ADS-
B) data from most aircraft worldwide. The flight
recordings dataset used comes in two tables. The
first one contains flight metadata, including param-
eters such as flight id, code of departure, sched-
uled and arrival airports or yet flight phase dur-
ing which ADS-B transmission began and ended.
The second one contains the time-series for each
flight, including timestamp, altitude, heading, lat-
itude, longitude, speed and vertical speed. The
datasets used contain over 200 million flights be-
tween February 2014 and December 2018.

4.2. Diversions in the Dataset
Historical diversions can be identified (scheduled
and arrival airports are different). Figure 5 presents
diversions from LIS-MUC or MUC-LIS flights.

Figure 5: Diversions that occurred during LIS-MUC (in yellow)
or MUC-LIS (in green) flights.

There were three different diversion moments:
right after take-off (a probable cause is the aircraft
having problems during take-off), during cruise (to
LFBO and LFML, both a problem with the aircraft
or a passenger feeling sick are plausible causes)
and already close to the scheduled airport (severe
weather conditions could be the cause). Regard-
less of the causes, we know which airports were
chosen by pilots or airlines OCC when a diversion
was necessary. They should therefore be intro-
duced in the list of diversion options.

4.3. Data of Interest
For clustering purposes and to allow testing the
SUT throughout whole flights, the trajectories used
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should start before or during take-off and finish dur-
ing or after landing, so that they are complete. The
majority of the trajectories in the dataset is com-
plete, so those that are not were filtered out. A
minority of complete trajectories that do not start
or finish exactly on a runway was also filtered out.

4.4. Trajectory Reconstruction
Trajectory reconstruction from historical recordings
was formulated as an unconstrained optimization
problem in Section 2.2, for which there is a closed
form solution defined by (9).

P =
[
ATA+ λ1D

T
2 D2 + λ2D

T
3 D3

]−1
AT P̂ (9)

The reconstructed trajectory P is obtained from
available measurements P̂ as a function of scalar
regularization parameters λ1 and λ2, which are
greater than 0 to be tuned. To understand their ef-
fect, a LIS-MUC trajectory was reconstructed using
different values of λ1 and λ2. Figure 6 presents the
lateral profile of reconstructed trajectories, zoom-
ing on the departure from Lisbon. Vertical profiles
are more easily interpolated.

Figure 6: Effect of λ1 and λ2 on the reconstruction of smooth
trajectories from historical measurements.

As Figure 6 shows, if regularization parameters
are too small, rapid and aggressive maneuvers that
are unrealistic from an aircraft dynamics point of
view can exist to ensure a position error almost
nonexistent. On the contrary, if they are too high,
aircraft performances are too limited, not allowing
the proper reconstruction of the actual aircraft tra-
jectory neither. An out-of-sample-validation strat-
egy (see Section 2.2) is adopted to find a balance.

5. Data-driven terrain representation validation
The SUT terrain representation must fully enclose
the real terrain, so that any trajectory judged safe is
so. This was verified by checking that each triplet
of (latitude, longitude, elevation) values from the

Figure 7: FlightRadar24 recordings considered to be inside the
SUT inner terrain representation.

SRTM raster is considered to be inside or on the
surface of the SUT inner terrain representation.

The representation cannot be too simplistic ei-
ther, so that common aircraft positions are not
considered as unsafe and the SUT can launch
computations from them. An interface allows to
communicate with the SUT software that deter-
mines the safety (or not) of a point or part of a
trajectory. Therefore, a data-driven approach us-
ing FlightRadar24 data is followed to understand if
common aircraft trajectories are accepted as safe.

Recordings were tested for collisions with the
SUT terrain representation and points inside the
latter were plotted on Google Earth (see Figure 7).

The representation needs to be more precise
close to airports, since good part of departure and
arrival procedures are declared as colliding with
the terrain. This means that the SUT cannot pro-
duce emergency trajectories when flying these pro-
cedures for now, even though it should. Since
emergencies can occur during these phases, ac-
cepting them as safe is an improvement required.

The height of collisions with respect to the rele-
vant runway was computed and an histogram was
plotted. From its analysis it was determined that
the minimum height above the runway at which the
terrain representation is already sufficiently precise
regardless of the scenario is 5000 ft. Therefore, in
this work the SUT can only be tested after reach-
ing 5000 ft above the departure runway and until
reaching 5000 ft above the arrival runway.

As the representation becomes more precise,
trajectories should be considered instead of points.
Consecutive points may be considered safe with-
out the trajectory connecting them being so.

6. SUT Evaluation

To evaluate the SUT performance on the environ-
ment it was designed for, a data-driven strategy
is proposed. Route trajectories are first clustered.
Then, for each cluster a realistic and as optimal as
possible diversion list is constructed and the SUT
is evaluated, first under a nominal environment and
then under a challenging one. A general search for
challenging scenarios is also performed.
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6.1. Commercial Route Trajectories Clustering
Two clustering algorithms are considered: HDB-
SCAN and Gaussian Mixture Model (GMM). They
are evaluated on the LIS-MUC route.

HDBSCAN [19] is a density-based, hierarchical
clustering method that provides a clustering hierar-
chy with all DBSCAN*-like solutions for an infinite
range of density thresholds. Let X = {x1, · · · , xn}
be a dataset of n objects and d (xp, xq) the distance
between xp, xq ∈ X. HDBSCAN defines density-
based clusters based on core objects, accordingly
to the definitions presented in [19], that follow.

Definition 1. (Core Distance): For an object
xp ∈ X w.r.t. mpts, dcore (xp) is the distance from
xp to its mpts-nearest neighbor (including xp).

Definition 2. (ε-Core Object ) : An object xp ∈ X
is ε-core for every ε such that dcore (xp) ≤ ε.

Definition 3. (Mutual Reachability Distance):
For xq, xp ∈ X, it is defined as dmreach (xp,xq) =
max {dcore (xp) , dcore (xq) , d (xp,xq)}.

Definition 4. (Mutual Reachability Graph):
Complete graph, Gmpts

, in which the objects of X
are vertices and edge weights are mutual reacha-
bility distances between respective pairs of objects.

If graph Gmpts,ε ⊆ Gmpts results from removing
all edges from Gmpts having weights greater than
ε, then connected components of ε-core objects
in Gmpts,ε correspond to DBSCAN* clusters w.r.t.
mpts and ε. All DBSCAN* partitions for ε ∈ [0,∞)
may be produced in a hierarchical way by removing
edges in decreasing order of weight from Gmpts .

A flat partitioning is obtained through local opti-
mal cuts through the cluster tree (while DBSCAN
uses a global density threshold) to maximize an
overall cluster stability measure proposed in [19].

A Gaussian Mixture is a function containing K
Gaussians, each defined by a mean µk, a covari-
ance Σk defining the width and a mixing probability
πk defining the cluster frequency (probability of ob-
serving a sample from it) such that (10) holds.

K∑
k=1

πk = 1 (10)

The problem is determining optimal values for
πk, µk and Σk. They correspond to the Maximum
Likelihood Estimates of the Gaussian density func-
tion differentiated with respect to the mean and co-
variance and equalled to zero. Trajectories are as-
signed to each cluster with a certain probability.
This soft clustering allows identifying outliers, un-
like K-means. Regarding the choice of K, several
models can be fit and the best one is chosen. This
is called model selection. Two probabilistic model
selection options based on performance and com-
plexity used are AIC [20] and BIC [21].

Clusters from the LIS-MUC route obtained with
HDBSCAN and GMM are presented in Figure 8.

Figure 8: LIS-MUC clusters (yellow, green and blue) and noise
(purple) found by HDBSCAN (left) and clusters (yellow, purple
and green) found by GMM (right).

HDBSCAN identifies three clear distinct clusters,
whereas two of the clusters identified by GMM are
very intertwined. HDBSCAN is therefore chosen to
be used henceforth for clustering route trajectories.

6.2. Diversion List Construction
To ensure that the approach of the procedure com-
puted is safe, auto-land-compliant and accepted
even under low visibility conditions, only runways
with ILS category II or III means are considered.

There should always be a suitable diversion air-
port within a distance corresponding to one hour of
flight. To be very conservative, a distance of 250
Nautical Miles (NM) is considered. To ensure this,
each cluster is first represented by a set of points
from a grid. Each recording is assigned to the grid
point it is closest to and only grid points with at least
one recording assigned to them are kept. Cluster
representative points are illustrated in Figure 9.

Airports selected for diversion while flying the
route of interest in the past are first inserted in the
lists of pertinent clusters. Determining the minimal
number of airports to ensure all uncovered cluster
representative point are within 250 NM of at least
one of them is formulated as a set cover problem.

Set Cover Problem. Given universe U , a collec-
tion of subsets of U , S = {S1, ..., Sk}, and a cost
function c : S −→ Q+, find a minimum cost subcol-
lection of S that covers all elements of U [22].

Universe U consists of uncovered cluster repre-
sentative points. Each set Si contains points from
U within 250 NM of airport i. Airports farther than
250 NM from any points from U are disregarded.
Among the approaches in the literature to solve the
problem, defining it as an Integer Linear Program
was chosen. A variable xSi

is assigned for each set
Si ∈ S. This variable is allowed 0 (set not picked)
or 1 (set picked) values. For each element e ∈ U at
least one of the sets containing it must be picked.
The problem is formulated by (11).

min
xSi

∑
Si∈S

xSi

subject to

{ ∑
Si:e∈Si

xSi ≥ 1, e ∈ U
xSi
∈ {0, 1}, Si ∈ S

(11)

Figure 9 presents the construction of the diver-
sion list for one LIS-MUC cluster.
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Figure 9: Diversion list construction. Historical diversion air-
ports are in black. Cluster representative points less than 250
NM from these are in blue and those not yet covered by any
airport in magenta. The two airports selected are in red. Other
airports from the database are in green.

6.3. Evaluation of the SUT on Commercial Routes
6.3.1 Nominal Environment

To ensure cluster coverage, clusters are repre-
sented by a group of hyper-cubes, by creating a
grid in the search space and keeping cells con-
taining recordings. Figure 10 shows the latitude-
longitude representation of the LIS-MUC route.

Figure 10: Cells representing the LIS-MUC route.

The diversion list corresponding to a cluster is
selected and n random samples are taken from
each cell and fed to the SUT. The cost functions
proposed in Section 3.4 are then computed.

The execution time was very low, with a mean
under 0.01 seconds and maximum under 0.1 sec-
onds. fSUT was judged a poor cost function to
search for sub-optimal trajectories, since when the
aircraft is close to the target at high altitudes fSUT

is large even if the aircraft dissipates its energy in
an optimal manner. Should an alternative proto-
type be available, cost function g would be more
suitable to guide a search for sub-optimal trajecto-
ries. For the moment, a visual analysis of trajec-
tories with different fSUT values does not allow to
find sub-optimal trajectories from a length point of
view under a nominal environment. Scenarios with
a high value of f1 allowed to find sub-optimal diver-
sion selections, as illustrated in Figure 11.

Figure 11 shows scenarios where the diversion
option chosen is slightly closer to the aircraft than
the alternative but the trajectory to reach the alter-
native is shorter due to the heading. It is also more
intuitive to keep the heading rather than turn back.

Figure 11: Sub-optimal diversion selection by the SUT (in blue)
vs optimal selection of diversion option 1 (in green).

6.3.2 Challenging Environment Search

This section addresses the search for challenging
environments created from the libraries presented
in Section 3.2 when the aircraft state belongs to a
given cell. An optimization approach is suitable for
this. To define the aircraft and environment states,
the optimization variable, x, is defined by (12).

x =
[
xAC , nrestr, nwx, xwx, θwx

]> (12a)

xAC =
[
lat, lon, alt, hdg, spd, vSpd

]>
AC

(12b)

nrestr =
[
nr1, nr2, nr3, nr4

]> (12c)

nwx =
[
nwx1, nwx2, nwx3, nwx4

]> (12d)

xwx =
[
lat1, lon1, lat2, lon2, lat3, lon3, lat4, lon4

]> (12e)

θwx =
[
θ1, θ2, θ3, θ4

]> (12f)

where xAC defines the aircraft state, nrestr is an
array of integers indicating which restricted areas
are selected, nwx is an array of integers indicating
which critical weather obstacles are selected, xwx

defines their location and θwx their orientation.
It was a choice to only allow the selection of a

maximum of 4 restricted areas and 4 weather ob-
stacles. An environment filled with obstacles would
obviously be more challenging, but less realistic.

To tackle the optimization problem, a Genetic
Algorithm approach was chosen due to its suc-
cess in the past for several applications. An ini-
tial population is generated randomly or heuris-
tically. It evolves iteratively thanks to evolution-
theory-inspired operators, which favor the survival
of the fittest. On each iteration, individuals are
evaluated through a fitness function and in the se-
lection phase those with a higher fitness are more
likely to be chosen for reproduction. A new pop-
ulation is generated from the selected individu-
als thanks to crossover and mutation operations.
Crossover is a re-combination operator, taking two
parents and swapping some of their genes to pro-
duce two children. It favors exploitation, biasing the
search towards promising search space regions.
Mutation favors exploration, by randomly sampling
new points from the search space. Hence, prevent-
ing premature convergence to local optima (using
a population also prevents this). The algorithm pro-
vides a set of solutions. It is suitable for global op-
timization of black-box functions that may or not be
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continuous, since no local gradient information is
required, only the ability to compute fitness values.
The main risk is not choosing well the parameters.

The search could quickly and successfully find
challenging scenarios with the aircraft restrained to
a given cell. Figure 12 presents two of them.

Figure 12: Challenging scenarios found when searching for
maximum execution time (left image) and maximum fSUT (right
image) values from a given aircraft cell (in yellow). Weather is
represented in red and restricted areas in grey.

Obstacles are placed between the aircraft and
the diversion option, obliging the trajectory to go
around these. The orientation is such that most
concavities face the aircraft. The design team was
informed of this to support future improvements.

6.4. Worst Scenario Search
The genetic algorithm presented in Section 6.3.2
can be used to find the most challenging scenario
to reach a fixed diversion option (constraining air-
craft positions only to be within 250 NM of it) or sce-
narios where the diversion selection is the worse
possible (given a list of diversion options and not
constraining the aircraft state to a cell). Figure 13
represents two of the scenarios successfully con-
structed during a quick search.

Figure 13: Challenging scenarios. Forcing a diversion to LFBO,
it took the SUT 80.56 seconds to produce the solution for the
left scenario. Searching for sub-optimal diversion selections the
scenario on the right was constructed. The trajectory produced
to reach the SUT choice (in green) is 2.53 times longer than the
one produced to reach diversion option 1 (in blue).

From the left scenario, it is clear that dealing with
a restricted area defined by many concavities fac-
ing the aircraft is very challenging. From the right
scenario, it seems like the environment between
the aircraft and airports is not taken into account
when selecting the most suitable diversion option,
yielding a trajectory much longer than needed.

7. Conclusions and Future Work
This paper proposed a complete framework to sup-
port the development and validation of a real-time
black-box system for automated selection of the
most suitable diversion option from a list and gen-
eration of a safe and flyable trajectory to reach it

and save an aircraft in case of emergency. To en-
sure that test scenarios are representative, they
are constructed from historical aircraft and weather
data, as well as real restricted areas. The frame-
work was successfully tested on a prototype under
development, identifying axis of improvement.

Smooth and complete trajectory reconstruction
from FlightRadar24 data was formulated as a con-
vex optimization problem, showing good perfor-
mance. A data-driven strategy was proposed to
evaluate the SUT’s internal representation of the
terrain. It allowed to verify that the representation
fully encloses the real terrain but also understand
that it should be more precise close to airports. In
fact, many recordings belonging to departure and
arrival procedures are considered not to be safe,
not allowing to launch the SUT from them. In future
work, as the representation becomes more mature,
reconstructed trajectories should be tested instead
of single positions. Additionally, it is important to
take into account aircraft navigation performances.

The capacity to cluster trajectories from a route
was required by the strategy designed to evaluate
the SUT performance. HDBSCAN and Gaussian
Mixture Models were implemented and their per-
formance tested on a use case, with the former
showing significantly better performance than the
latter. HDBSCAN was therefore chosen.

Airports historically chosen (by pilots or airlines
OCC) for diversion were introduced in the diversion
list of pertinent clusters. In a second phase, In-
teger Linear Programming was successfully used
to solve a set cover problem and ensure that any-
where on the cluster a diversion option exists within
1 hour of flight. Since there are usually several
solutions, it would be interesting to introduce tie-
breakers such as the airport capacity or existence
of emergency response means in future work.

Cost functions were proposed to evaluate the
SUT performance and compare it with that of alter-
native prototypes. Further improving them would
be interesting. To evaluate the performance on a
cluster, the cluster is represented by a group of
cells and scenarios are sampled from each cell to
ensure cluster coverage. The SUT has shown very
good performance on nominal environments. How-
ever, an axis of improvement was identified. When
the aircraft is between two airports the diversion
selection is not optimal when the aircraft heading
favors the solution not chosen by the system.

A genetic algorithm was proposed to efficiently
search for challenging environments. To ensure
they are representative, real restricted areas were
retrieved and a library of historical critical weather
shapes was constructed. The algorithm selects
which areas and weather obstacles are to be con-
sidered and also the placement and orientation
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of the weather selected. It has successfully con-
structed challenging environments, mainly by se-
lecting complex shapes and placing them between
the aircraft and airport. It was found that the diver-
sion selection does not take into account the envi-
ronment very well. Sometimes the diversion option
selected is closer to the aircraft but requires it to go
around several obstacles, yielding a solution con-
siderably longer than the one produced to reach an
alternative from the list. The algorithm could be im-
proved with problem-specific crossover and muta-
tion operators. It could also be interesting to allow
it to define the actual shapes of obstacles instead
of selecting them from libraries.

The framework will once again be useful to test
future versions and identify potential regressions.

The SUT was only tested with static inputs so
far. In future work, its capacity to react to distur-
bances while flying the computed trajectory must
be evaluated. The background presented may sup-
port the design and implementation of strategies
to discover sequences of disturbances leading to
failure. MCTS could be an interesting approach.
Computing error probabilities is another interesting
stream of work. At last, it is important to develop
approaches allowing to better understand how the
system works to build confidence on it.
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