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Abstract—Service robots provide services to humans such as
helping humans in their domestic chores or serve as companion
to elderly people. To accomplish a good social behaviour, the
robot should be able to recognize and differentiate people in
the scene, since this skill enables personalized human-robot
interaction. People re-identification in service robots is key for
their acceptance in people’s homes, as well as for performing
a wide variety of tasks. People re-identification and tracking
are too closely related tasks. However, existing Re-ID tracking
methods designed for mobile robots have some limitations since
they either assume constrained conditions on the environment
and the movement of people, or they are not robust enough in
challenging conditions such as the presence of obstacles or similar
targets. This thesis proposes a Re-ID based multi-people tracker
suitable for mobile robots. It combines existing methods such as:
a people detector, a people localizer, a Re-ID feature extractor
and a Kalman filter framework with simple data association and
track management approaches. A novel RGB-D Re-ID multi-
people 3D tracking dataset recorded with a moving camera
in an environment with obstacles and target’s occlusions and
appearance changes is presented. Experimental evaluation shows
that the method achieves very good tracking and re-identification
performance on the proposed dataset, at a high frame-rate, and
that it outperforms another state-of-the-art method on an open-
space dataset. The proposed system is lightweight, robust and
suitable for real-world applications, allowing for an improvement
of human-robot interaction.

Index Terms—human-robot interatction, people re-
identification, people tracking, multiple kalman-filter, RGB-D
dataset

I. INTRODUCTION

Service robots have received increased attention in recent
years, covering a great variety of applications and system
designs. These robots can be extremely helpful since they
can replace humans in hazardous situations, help physically
handicapped people and serve as a companion to elderly
people or children [1]. Some of these robots are in constant
interaction with humans, which requires additional skills and
functionalities to provide a natural and efficient human-robot
interaction.The MOnarCH robot (MBOT) is a service robot
originally designed to interact with children in hospitals. The
MBOT was adapted for robotic competitions in domestic
scenarios by SocRob@Home [2]. In order to accomplish a
good social behaviour, the robot should be able to recognize,
identify and re-identify humans, that is, determine if a certain
person is present in a set of candidates and recall that person’s
identity through time. This skill enables personalized interac-
tion between the robot and the people in his surroundings.

These interactions build up the robot’s personality and adapt-
ability, which are key factors for increasing trust in the robot
[3]. Re-identification of people also improves people tracking
and following, in cases where there are occlusions or where
the target is lost. This improves the perception that the robot
has of the people in the scene. The scientific contributions of
this work are three-fold: (1) integration of existing modules
and methods (people detector, people localizer, Re-ID feature
extractor and Kalman filter) in the development of a novel
Re-ID 3D multi-people tracker, (2) construction of a RGB-D
Multi-people tracking and Re-Identification dataset recorded
using a moving camera, including people 3D position ground-
truth in an indoor and occluded scenario, representative of a
domestic environment, (3) an experimental evaluation of the
method proposed in a real-word dataset.

II. BACKGROUND

A. Computer Vision Person Re-Identification

In the context of computer vision and pattern recognition,
people re-identification is the task of retrieving the occurrences
of a certain person (probe) from a set of person candidates
(gallery) [4]. This task is mostly useful for surveillance sys-
tems and is very challenging because a person’s appearance
varies a lot with illumination, pose and viewpoint changes,
obstructions and resolution. The gallery and probe are rep-
resented by bounding boxes that enclose the person. The
appearance information of the probe and the gallery candidates
is extracted from the bounding boxes and is represented by
a feature descriptor. Feature descriptors are then compared
using a similarity function, which measures how similar
two instances are. Some Person Re-ID methods make use
of hand-crafted techniques such as different histograms and
segmentation techniques to construct the appearance descriptor
for each person [5], [6]. Hand-crafted features are a fast
and simple way of computing person feature descriptors,
although their discriminative power can be limited, which
makes the performance of the methods very dependent on
the robustness of matching techniques. With the development
of deep learning in the recent years, several deep Re-ID
methods have been gaining relevance and achieving the best
performance on the most challenging datasets [7], [8]. Deep
Re-ID models can achieve very high performance but their
real-world application is still a challenging task, considering



that they require large amounts of training data and that they
are usually computationally expensive.

B. Related Work

On the context of mobile robotics, people Re-ID can be
extremely helpful. One of the most common tasks in mobile
robotics is the tracking of multiple targets [9]. Besides tracking
their positions, knowing their identities and being able to
differentiate between different individuals is very valuable.
Hence, people Re-ID methods are used to assign unique ID’s
to the targets being tracked. The use of people Re-ID methods
in mobile robotics is usually integrated in a pipeline that
contains three modules: a person detector, a person Re-ID
module and a tracker [10].

Wengefeld et al. [11] shows the importance of fusing Re-ID
and tracking, although the actual performance of the method
could be better, since the spatio-temporal model is not robust
enough to noise and the appearance Re-ID method, which
is composed of hand-crafted features, does not perform well
when two targets have similar appearances.

With the development of deep learning, Re-ID methods
based on these types of models have been implemented
recently, which improve performance comparing to methods
that are based on hand-crafted features. One of them uses
online transfer learning [12], using three CNN’s: one for
person detection, one for person feature extraction and one for
person re-identification. Carslen also proposed two new CNN’s
called LuNet Light and LuNet Lightest with the purpose of
implementing Re-ID in mobile robots [13]. The resulting mod-
els achieve close to state-of-the-art performance, while being
much lighter than others, although a deployment on a real
robot and an integration with a complete pipeline including a
person detector and a tracker was not experimented.

Recently, a novel T-D-R framework for quadruped robots
was proposed, including a visual tracker based on a correlation
filter, a person detector based on deep learning and a Re-ID
module also based on a deep learning model [14]. Although
this method shows a very good tracking performance, it
is designed for tracking and following a single-target. The
methods presented so far use mainly RGB data and some use
laser data for the people detection task. However, depth data is
frequently available in mobile robots. Hence, there are some
methods that use this type of information. Liu et al. proposed
a method for people detection and tracking using RGB-
D cameras for mobile robots, that also re-identifies targets
through association [15]. Although this method provided good
insight into the use of RGB-D data for this task, it does not
perform well when the targets are highly occluded by obstacles
or other people. In [16], a very fast RGB-D people tracking
method for service robots is proposed, that can run in real-time
at a very high frame-rate even without using GPU.

C. Critical Discussion

The methods described above provide meaningful insights
and show progresses in developing a multi-target tracker
based on a Re-ID module to be deployed in a mobile robot.

They show that the integration of person re-identification with
tracking benefits performance, specially in the data association
step, increasing robustness in cases where targets walk out of
the scene and re-enter it, crowded environments and noise,
while on the other hand, tracking can handle better cases where
the target’s appearance changes [17], [18]. They show that
there are lightweight methods for feature extraction that are
discriminative and allow for robust person re-identification in a
mobile robot. However, they have some limitations since they
either assume constrained conditions on the environment and
the movement of people or their tracking and re-identification
is not robust enough in challenging conditions such as the
presence of obstacles or similar targets. It is also important
to note that there are not many existing methods designed for
multi-people tracking using Re-ID features on mobile robots.
Hence, there is need for a development of a Re-ID based
multi-people tracker designed to be deployed in a mobile robot
working in an environment with obstacles and occlusions.

III. METHODOLOGY

A. Coordinate frames

Before presenting the overall system architecture, it is
important to define the relevant coordinate frames of our
problem. If we consider the robot, four relevant frames can
be identified: the 3D frame centered in the base of the robot,
base link, the 3D world frame of the odometry of the robot,
odom, the 3D frame centered in the camera of the robot
which moves along with the camera, camera frame, and
the 2D frame that represents pixels on the camera image,
image frame. We also have the map coordinate frame which
is fixed and represents the world and the environmnet where
the robot is moving. The transformations between odom and
base link and between odom and map changes based on the
odometry errors. Tracking in this work is done in the map
frame, i.e. in the world frame, hence a person’s position is
given by 3 coordinates, (X,Y, Z).

B. System architecture and components

An overview of the system architecture is presented in figure
1. The system receives as input a RGB and a depth image and
is composed of a people detector, a people localizer, a Re-ID
feature generator and a Multi-people tracker. The output of the
system is a set of ID-assigned tracks, that correspond to the
people in the scene.

People detector
(Yolov3) 

Re-ID feature generator 
(TriNet) 

People localizer

Multi-people tracker
(Multi-Kalman-filter) 

RGB image

Depth image

ID-assigned
tracks

3D positions of the
detections 

Appearance descriptors of the
detections  

Fig. 1: System architecture overview.

The people detector module is responsible for detecting the
people present in the scene. It takes as input the RGB image
taken by the robot’s camera and outputs bounding boxes in the



image frame, that represent the detected people. For this
task, a trained model of Yolov3 [19] is used. This network
was chosen because it is very fast and robust, making it a
very reliable and suitable solution for person detection in a
robotic context. An example of a bounding box generated by
the people detector module of the proposed system, can be
seen in Figure 2

Fig. 2: Example of a person detection.

The people localizer module was already implemented in
the MBOT and converts detections in the image plane to
3D positions in the world frame. For that, it takes as input
the bounding boxes from the people detector and the depth
image taken by the robot’s camera. First, it takes the center
of the bounding box and, using the image geometry ROS
package 1, it calculates the unit vector in the camera frame
that passes through the pixel corresponding to the center of
the bounding box in the image plane. The unit vector is
multiplied by a depth value to obtain the position of the target
in the map frame. The depth value is determined by finding
the region in the depth image that corresponds to the bounding
box and getting the 25th percentile of the depth values from
that region. This is a good estimate of the depth of the person
relative to the camera frame because the region in the depth
image enclosing the person will have some high depth values
originated by the background, as can be seen in Figure 3, that
should not be taken into consideration.

Fig. 3: Depth image showing two people. In this image, a brighter
colour represents points that are further away from the
camera. Totally black represents a NaN point where the depth
could not be obtained. We can see here that a person is
surrounded by background points that have bigger depth.

The positions obtained by the people localizer, which are in
the camera frame, are first transformed to the odom frame

1http://wiki.ros.org/image geometry

and then transformed to the map frame. The transformation
between odom and map depends on the localization of the
robot, which is running in parallel. After the conversion, we
get the 3D position in the world frame of every target present
in the scene. Regarding the z position, since the point obtained
by the people localizer refers to the center of the bounding box
of the detection, it will represent approximately the height of
the center of the body of the person. This information can be
useful to determine if a person is sitting or laying down, but
cannot be used to compare people’s heights, for instance.

To be able to differentiate people in the environment and re-
identify them when they exit the scene and reappear, a Re-ID
module is required. This module computes feature descriptors
that represent a target’s appearance. In this work, the neural
network TriNet [20] is used, due to its robustness and light
computational effort, which is key for the deployment of the
method in a mobile robot. TriNet is trained with batch hard
triplet loss and the model used in this work was trained in
the MARS dataset [21]. The Re-ID feature extractor takes as
input the people detections from the people detector, feeds
them to TriNet and outputs a 128-feature vector, which is
the appearance descriptor, for each detection. An example is
shown in Figure 4.

Re-ID feature
generator 
(TriNet) 

Re-ID feature
generator 
(TriNet) 

[0.161, -0.564, 3.163 ... 1.294, -0.222, -0.778]

[0.776, 0.138, 2.839 ... 2.498, 0.626, 2.751]

128-feature vector

128-feature vector

Fig. 4: Example of Re-ID feature extraction using the Re-ID feature
generator.

The Multi-people tracker implemented in this thesis is com-
posed of multiple single-hypothesis Kalman filters and frame-
by-frame data association using appearance descriptors and
was inspired by Deep SORT [22]. A Kalman filter approach
was chosen because it is lightweight while achieving good
tracking performance and, when combined with an appearance
metric, it allows for fast and robust tracking of multiple targets.

The tracker is composed by a set of Kalman filters, one
for each track. Each person is tracked using a simple Kalman
filter, that predicts and updates the person’s position in the
map coordinate frame. At the same time, the appearance
descriptor generated by the Re-ID feature extractor is used
to associate detections to tracks and to manage the creation
and elimination of tracks. At each frame, the tracker decides
which tracks to keep, delete or create, along with the Kalman
filters associated with them. The track management and data
association methodology are described in the next section. The
multi-tracker execution loop is ilustrated in Figure 5.

A general overview of the Kalman filter algorithm is pre-
sented in figure 6. When a track is initialized, a new Kalman
filter is initialized with an initial state and covariance. At each
timestep, which in this case corresponds to a frame, the state is
then predicted using a motion model that models the person’s

http://wiki.ros.org/image_geometry


Kalman filter's prediction and
update steps 

Associates detections to
existing tracks 

Data association

3D position
Appearance descriptor 

Detections

Deletes and creates
tracks 

Track management

Next frame 

Fig. 5: Multi-tracker execution loop. In the figure, each colored circle
ilustrates a single Kalman filter, corresponding to an existing
track. This loop repeats every frame during the execution of
the system.

movement from one frame to another. The state is then updated
using a measurement of the position of that person, if available.
The measurement is a vector containing the 3D position of the
target in the map frame, given by the people localizer module.
At each timestep, the Kalman filter outputs the estimated track
state.

s0
P0

Based on a motion
model

Initial state Prediction step

Using incoming
measurements

Update step

3D position from the
people localizer

Measurement

st-1|t-1
Pt-1|t-1

st|t-1
Pt|t-1

st|t
Pt|t

t          t+1

s
P

Current estimate of the state

Fig. 6: Kalman filter algorithm, where s, P and t are the state, the
covariance matrix and the timestep, respectively

C. Tracks and state estimation

The Kalman filter will predict and update each track’s
position in the world at each frame. Each track’s state is
modelled as:

x̂ = (x, y, z, vx, vy, vz), (1)

where x, y and z are the positions in the X , Y and Z axis
of the world frame, respectively, and vx, vy, vz are their
corresponding velocities. A new track is initialized with the
position of the target, initial velocities are considered zero and
an uncertainty is also assigned to the state, represented by the
following covariance matrix:

P0 =


σx

2 0 0 0 0 0
0 σy

2 0 0 0 0
0 0 σz

2 0 0 0
0 0 0 σvx

2 0 0
0 0 0 0 σvy

2 0
0 0 0 0 0 σvz

2

 , (2)

where σ is the standard deviation of each of the state variables,
with the following values, that were previously determined
experimentally:

σ =


σx

σy

σz

σvx

σvy

σvz

 =


0.2
0.2
0.2
1
1
1

 (3)

At each frame, the states are predicted using a constant
velocity model for the x and y positions and a zero velocity
model for the z position, described by matrix A. The predic-
tion step is described by:

x̂k|k−1 = Akx̂k−1|k−1 (4)

x̂k|k−1 =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 x̂k−1|k−1 (5)

Uncertainty about the state increases in the prediction step,
so the covariance is recalculated. The process noise covariance
matrix Q is the same as the initial covariance matrix P0 and
it is used to update the covariance matrix, P in the prediction
step:

Pk|k−1 = AkPk−1|k−1Ak
T +Qk (6)

At each frame, a measurement of the target’s position can be
received. This measurement Z is given by the people localizer
module and gives information on the 3D position of the target,
(x, y, z), in the world frame. The update step is performed
using a linear observation model where the target’s position
Z is taken as a direct observation of the target’s state, using
the following measurement matrix:

Hk =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (7)

Using the measurement of the targets position Z, the current
state vector s, and the measurement matrix H , an innovation
factor y is obtained:

yk = Zk − (Hkx̂k|k−1) (8)

The uncertainty associated with the measurement is also
calculated. The measurement uncertainty is the following:

Rk =

σx
2 0 0

0 σy
2 0

0 0 σz
2

 (9)

The measurement uncertainty matrix indicates how reliable
the values of the measurements are. Using the above measure-
ment uncertainty matrix, the innovation covariance associated
with the measurement step S is calculated:



Sk = HkPk|k−1Hk
T +Rk (10)

Using the above calculations, the Kalman gain K is com-
puted. The Kalman gain is the weight given to the measure-
ments and the state estimation, stating which one should be
trusted more. It is given by:

Kk = Pk|k−1Hk
TSk

−1 (11)

The elements of K will be larger if the measured values
do not match the predicted state and will decrease otherwise.
The state and the state covariance are then updated:

x̂k|k = x̂k|k−1 + (Kkyk) (12)

Pk|k = (I −KkHk)Pk|k−1, (13)

where I is the identity matrix.

D. Data association

The data association task is handled as an assignment
problem where we have a set of detections that have to be
assigned to a set of existing tracks and a detection can be
associated to one and only one track and vice-versa. Each
detection has its own position, (x, y, z), and an appearance
descriptor. Each existing track has also a 3D position given
by its state and an appearance gallery associated with it.

In this problem, two metrics are used: a spatial distance
metric and an appearance metric. The spatial distance metric
between a detection, d, and a track, t, is computed by
calculating the squared Mahalanobis distance, D, following
this expression:

s(d, t) = D(d, t)2 = (xd −mt)
T · Pt

−1 · (xd −mt), (14)

where xd is the vector containing the x and y position of the
detection, mt is the vector containing the x and y position
of the track and Pt is the covariance matrix associated to
the track. The z position is not taken into account in this
metric because, as stated before, it represents approximately
the height of the center of the body of a person and that is
not a variable that allows to match detections to tracks.

The appearance metric is calculated by computing the small-
est Euclidean distance between the 128-dimensional appear-
ance descriptor of the detection, and the appearance descriptors
present in the track appearance gallery. This gallery is com-
posed of all the appearance descriptors associated to the track
since its initialization. The appearance metric computation
between a detection and a track is given by:

c(d, t) = min(d(ld, li)|liϵLt) (15)

where

d(v, u) =

√
(v1 − u1)

2
+ ...+ (v128 − u128)2, (16)

ld is the detection appearance descriptor, li is the i-th ap-
pearance descriptor of the track and Lt is the track gallery
containing all the appearance descriptors associated with the
track.

Algorithm .1: Data association

1 Input: Tracks T , Detections D
2 A←− ∅ // Initialize set of associations

3 Ud ←− ∅ // Initialize set of unmatched

detections

4 Ut ←− ∅ // Initialize set of unmatched tracks

5 C =
[
cd,t

]
// Compute cost matrix

6 S =
[
sd,t

]
// Compute distance matrix

7 for each detection d do
8 for each track t do
9 if Tlower < C[d, t] < Tupper ∧ S[d, t] > Smax

then
10 C[d, t] = INFINITE COST

11 else if C[d, t] ≥ Tupper then
12 C[d, t] = INFINITE COST

13 A,Ud, Ut ←− hungarian algorithm(C, T,D)
14 for each association (d, t), in A do
15 if C[d, t] = INFINITE COST then
16 A←− A \ (d, t)
17 Ud ←− Ud ∪ d
18 Ut ←− Ut ∪ t

Algorithm .1 describes the data association algorithm. The
assignment problem is represent by a cost matrix and the cost
between a detection and a track is the appearance distance, as
can be seen in line 5. A distance matrix is also computed, with
the spatial distances between detections and tracks, in line 6.
Then, all possible associations are assessed considering both
metrics, from line 7 to 12. The goal of this step is to assign
an ”infinite” cost, which in our case is a very large number
(10e5), to associations which are not admissible considering
their combination of appearance and distance metrics. A range
of values of the appearance metric between two thresholds,
Tlower and Tupper, is considered, where the spatial distance
determines if the association is admissible or not. This step is
important because it discards associations where a detection is
not similar in appearance to a track, but at the same time keeps
associations where although the appearance is not that similar,
the spatial distance between them is very close, which strongly
indicates that they belong to the same target. The upper limit
of the appearance range is used to discard completely an
association where the detection and the track are not similar at
all and, even if they are spatially very close, they cannot belong
to the same target. The spatial and appearance thresholds were
determined experimentally through several tests and the values
used are:

Tlower = 300, Tupper = 700, Smax = 0.05m (17)



After checking both metrics, the assignment problem is
solved using the Hungarian algorithm [23], in line 13. From
the resutl, unmatched detections and tracks are identified and
the association set is filled. Finally, the association set is
iterated and the cost of each association is checked, discarding
unadmissible associations.

E. Track Management

Each track has an associated state indicator, which can
be Confirmed, Tentative or Deleted. When a track is
initialized it is assigned the Tentative state. A Tentative
track changes to Confirmed if there is an association with a
detection for three consecutive frames. A Confirmed track
is considered Tentative if there is no association at the
current frame. A Tentative track changes to Deleted if there
is no association for five consecutive frames. When a track
is Deleted, the corresponding track appearance gallery,Lt,
containing all the appearance feature descriptors previously
associated with that track, is saved to memory. The three state
indicators and the conditions that determine when to change
states are represented in Figure 7 by a state-machine.

Fig. 7: Track state indicators

At each frame, both Confirmed and Tentative tracks
serve as input to the data association algorithm. Based on the
data association result, the state indicator of each track can
change and finally only Confirmed tracks are the output of
the overall system. They identify the different people in the
scene that the tracker is tracking with confidence. Tentative
tracks serve two purposes: one is to prevent keeping tracks
that were created based on an erroneous detection, eg. a false
positive and the other purpose is to keep tracks of targets that
are occluded only for a short time, and should continue to be
tracked after they reappear in the scene.

The initialization of new tracks is done based on the
unmatched detections at each frame. For each unmatched
detection, a new track is initialized. The ID that is assigned to
the new track is determined based on the target’s appearance.
To accomplish that, the appearances of all previously seen
people are saved in memory in a dictionary, I , which is
updated by appending the track gallery, Lt, to a list containing
all the appearance descriptors previously associated with that
track’s ID. This track gallery was introduced in the previous
section in equation (15). In this dictionary, all the previous
ID’s and their corresponding appearance descriptors, combined
in track galleries, are listed. Every frame, this dictionary is
updated with the track galleries of the tracks that were deleted

in that frame. When those tracks have an associated ID that is
already present in the dictionary, the track gallery is appended
to that ID’s list of galleries. Otherwise, a new entry is added
to the dictionary. An example of the structure and update step
of the ID dictionary is shown in figure 8.

5

1

Keys (ID's) Values
(List of track galleries containing appearance

descriptors) 

L1(1)
,

L1(2)

L5(1)
Next frame

1

5

2

Keys (ID's)
Values

(List of track galleries containing appearance
descriptors) 

L1(1)
,

L1(2)
,

L1(3)

L2(1)

L5(1)

Fig. 8: ID dictionary, I , example. Each dictionary entry contains a
list of track galleries, Lt. Each track gallery contains several
128-feature vectors. In this example, from one frame to the
next, two tracks are deleted: one with the ID 1 and the other
with the ID 2. Hence, the dictionary is updated: a new L1 is
appended to the ID 1 list and a new ID, with the number 2, is
added to the dictionary with its corresponding track gallery
being saved.

To determine which ID is assigned to a new track, the
algorithm described in Algorithm .2 is performed. The ap-
pearance distance between the new track and all previously
seen people is computed using the appearance distance metric
described before. The exception is that ID’s that are associated
with tracks currently being tracked are not possible ID’s to be
recovered and assigned to a new track, hence, are excluded
from this comparison. The best match with a previously seen
ID is found and , if the appearance distance between the
detection and that ID’s appearance is below a threshold, that
ID is assigned to the new track. The threshold Trecover was
determined experimentally and has the following value:

Trecover = 400 (18)

Algorithm .2: ID assignment to a new track

1 Input: New track t, ID dictionary I , list of active ID’s
B, next unused ID, next id

2 Z ←− ∅ // Initialize list of appearance

distances

3 for each k in I do
4 if k is not in B then
5 V = [c(t, I[k](i))] // Compute appearance

distance vector

6 Z ←− min(V ) // Append minimum of V to

list Z

7 min distance = min(Z) // Find minimum of Z

8 min id = argmin(Z) // Find respective ID

9 if min distance < Trecover then
10 Track t’s ID = min id

11 else
12 Track t’s ID = next id
13 next id = next id+ 1



IV. RE-ID MULTI-TRACKING DATASET

Analyzing the state-of-the-art for multi-object tracking
datasets [24], we can see that there is an overall lack of datasets
aimed at tracking in 3D and that the ones that exist are very
limited in the conditions in which they were taken. They depict
very crowded scenes and most of them were taken using a
static camera. The existing datasets show outdoor areas or
open-space indoor areas. There is also a lack of robust and
reliable ground-truth of 3D positions of targets, along with
depth information besides RGB. Considering the application
of the method proposed in this work, there is a need for a
multi-target dataset with track ID’s and target 3D position
ground-truth taken in an apartment-based environment with
occlusions caused by obstacles in the scene and taken by a
moving camera. A dataset with these characteristics was not
found in the literature, therefore a novel Re-ID multi-target
tracking dataset is proposed.

A. Data and ground truth collection

The data was collected by teleoperating the MBOT in the
ISRoboNet@Home Testbed2 with up to 3 targets moving in
the environment. The robot is equipped with a tilt-controlled
Orbbec Astra RGB-D camera positioned on the head that
captures RGB and depth images with 640 x 480 pixel res-
olution at 30Hz. The testbed is an apartment-like environment
designed to benchmark service robots and is equipped with a
motion capture system composed of 12 OptiTrack® ”Prime
13” cameras (1.3 MP, 240 FPS), which provides real-time
tracking data of rigid bodies with sub mm precision in 6
dimensions with low latency (4.2ms). The dataset consists in
a total of 3144 RGB images, 3437 depth images and 2154
people instances. The RGB-D images, camera information, a
map of the environment, odometry of the robot, transforms
along reference frames and ground-truth are made available
as ROS bag files3. People detections originated by the people
detector module of the proposed system described earlier
have also been included in the dataset. As ground-truth, 3D
positions of people in environment and the robot and target’s
ID’s were obtained using the motion capture system. 3D
ground-truths of targets that were out of the field of view of the
robot or completely occluded were manually deleted. Besides
that, there were frames where the motion capture system
failed, due to the positioning of the cameras and markers
that were not visible, and the 3D ground-truth of some of the
targets was not registered. In these cases, ground-truth was not
associated with these frames and they should not be considered
as valid. After this process, ground-truth is associated with
approximately 70% of the frames.

B. Dataset sequences description

The dataset consists of 7 videos with durations ranging
from 40s to 1:10s. Each video contains different characteristics

2https://welcome.isr.tecnico.ulisboa.pt/isrobonet
3https://ulisboa-my.sharepoint.com/:f:/g/personal/ist187134 tecnico

ulisboa pt/Emz8wKesZThJsO TNoR1mTkBWJ6JjriW-0le5CsfWRd3ig?e=
KfJtlT

(camera and people movement) and represents different cases.
The 7 sequences (videos) present in the dataset are: Still
and Moving camera featuring three targets moving freely
recorded with a static camera and with the camera rotating
while the robot’s base was static, respectively; 5 sequences
recorded with the robot moving around the environment in-
cluding Moving base, featuring occlusions, Chairs, featuring
target’s sitting and switching places, Peoplefollowing, where
the robot is following a specific person, Changing clothes 1
and Changing clothes 2, where targets swith clothing in front
of the camera and out of camera-view, respectively. Statistics
of the sequences and the overall dataset are presented in Table
I.

TABLE I: Re-ID Multi-target tracking dataset statistics
Sequence Duration(s) #RGB images #Depth images #People instances %Ground-truth frames #ID’s
Still 39.5 398 454 326 90.3 3

Moving head 42.1 374 457 237 74.1 3
Moving base 60 590 574 490 71.7 3

Chairs 52.2 424 544 366 66.5 3
People following 39.0 399 394 174 42.1 3
Changing clothes 1 68.0 621 676 347 67.6 2
Changing clothes 2 56.7 338 338 214 75.4 2

Total 357.5 (5:75s) 3144 3437 2154 70.1 -

These sequences cover most of the common cases that can
occur in a domestic environment. There are several occlusions
caused by furniture such as chairs, tables and a sofa or caused
by other people when targets cross paths with each other.
The last two sequences represent cases where targets change
their clothes during the sequence, which is a challenging
scenario for people re-identification. This dataset also has
the particularity that all of the people present are wearing
cirurgical masks, due to the Covid-19 pandemic.

V. EXPERIMENTAL RESULTS

A. Implementation

The system was deployed in the MBOT, that features two
on-board computers with i7 processors, one dedicated for
navigation and the other for human-robot interaction and a
NVIDI GeForce 1060 6GB GPU. The system was imple-
mented using ROS and Python and consists in the following
ROS nodes: darknet ros py, which is used as the people
detector, mbot object localization, which is used as the people
localizer and re id tracker, which includes the Re-ID feature
generator and the multi-people tracker.

B. Evaluation metrics

All the experiments conducted in this thesis were evaluated
using the CLEAR MOT metrics [25]. CLEAR MOT are
composed of two separated metrics that tackle different aspects
of tracking performance: the multiple object tracking precision
(MOPT) and the multiple object tracking accuracy (MOTA).
These metrics are computed based on matches made between
tracker hyphotesis and ground-truth objects. We considered a
match to correspond to a ground-truth if their distance was
below 1 meter. The MOTP shows the ability of the tracker
to estimate the position of the targets, regardless of its skill
in assigning identities and keeping trajectories. The MOTA
takes into account all object identity and track errors, such

https://welcome.isr.tecnico.ulisboa.pt/isrobonet
https://ulisboa-my.sharepoint.com/:f:/g/personal/ist187134_tecnico_ulisboa_pt/Emz8wKesZThJsO_TNoR1mTkBWJ6JjriW-0le5CsfWRd3ig?e=KfJtlT
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TABLE II: Re-ID Multi-Tracking Dataset experiment results divided by sequence and in total. The ratios of misses, false positives and ID
switches, in percentage, are given relative to the number of objects seen.

Objects Matches Misses Misses (%) False Positives False Positives (%) ID Switches ID Switches (%) Recall errors MOTP (m) MOTA (%)
Still 330 267 15 4.55 4 1.21 0 0.00 0 0.195 94.24

Moving head 261 213 10 3.83 3 1.15 0 0.00 0 0.247 95.02
Moving base 522 296 51 9.77 16 3.07 13 2.49 4 0.237 84.67

Chairs 429 160 26 6.06 11 2.56 6 1.40 3 0.290 89.98
People follow 186 72 11 5.91 5 2.69 4 2.12 0 0.186 89.25

Changing clothes 1 280 172 15 5.36 6 2.14 1 0.36 0 0.148 92.14
Changing clothes 2 226 173 34 15.04 17 7.52 9 3.98 3 0.180 73.45

Total 2234 1353 162 7.25 62 2.78 33 1.48 10 0.215 88.50

as false positives, misses and mismatches. Both metrics were
computed using the expressions in [25].

C. Experiments on the Re-ID Multi-Tracking Dataset

1) Evaluation results: The method was evaluated on the
novel Re-ID Multi-Tracking Dataset using the CLEAR MOT
metrics.Results divided by sequence and in total can be seen
in Table II. Besides the CLEAR MOT metrics, an additional
count is reported which is the number of recall errors. The
recall errors are the number of ID switches that occurred by
initializing a track with an ID that was previously associated
with a different person.

The total MOTP value is 0.215 meters which shows a
good target position estimation. We can see greater error in
the sequences where the robot is moving the most. As the
robot moves, the error in the robot’s localization increases,
which also impact the error in the transformation calculation
between coordinate frames thus increasing the error in the
tracker’s position estimation. In the Chairs sequence the
MOTP is the highest, with almost 30cm of error, which can
be explained by the fact that in this sequence generally targets
do not follow the constant velocity motion model used in the
Kalman Filter predictions. The total MOTA score is 88.50%
which shows a very good performance in assigning unique
ID’s to targets, keeping trajectories and identifying people in
the scene. In the complete dataset, the system produces only
1.48% ID switches, which shows a very good performance
in keeping target’s ID’s and associating a specific ID to
only one person. The results in the Changing clothes 1
sequence show that changing clothes while in the camera
view does not pose an identification challenge for the system,
leading to only one ID switch, contrary to the performance
in the Changing clothes 2 sequence, where the results show
the highest ratio of ID switches. In this dataset, the system
achieved a 33Hz frame rate, which is suitable for real-time
robotic applications.

2) Parameters fine-tuning: The system has several param-
eters that were fine-tuned to achieve the best performance
possible. The parameters that were analyzed and tuned were
Tlower, Tupper, Smax and Trecover. In Figure 9 and Figure 10,
the values of MOTA, MOTP, ID switches and recall errors are
reported, when varying Smax and Trecover. In these figures,
MOTP is given in percentage, for better visualization. This
percentage represents the position accuracy relative to 1 meter,
which was the threshold used to determine matches in the
CLEAR MOT procedure, as proposed in [25]. In Table III,

the values of MOTA, MOTP, ID switches and recall errors are
also reported for different combinations of Tlower and Tupper.

Fig. 9: Evaluation metrics on the Re-ID Multi-Tracking Dataset
when varying the value of Trecover . The values of the other
parameters are: Smax = 0.05, (Tlower ,Tupper) = (300,700)

Looking at the evaluation results on the Re-ID Multi-
Tracking Dataset on Figure 9 and Figure 10 we can see that
varying Trecover and Smax does not impact the MOTA and
MOTP scores greatly. Although the number of ID switches
varies, the MOTA score is practically constant in every ex-
periment which can be explained by the fact that the number
of ID switches is always low when comparing to the number
of objects seen, thus, the impact on MOTA is not high. On
the other hand, the values of these parameters affect the data
association and track management steps, which are not related
to the track’s position estimation, so it was expectable that the
MOTP would not change either. To compare the optimal values
of these two parameters, the number of ID switches and recall
errors is compared. Out of the 5 values tested, the optimal
values for Trecover and Smax are 400 and 0.05, respectively.
Five pairs (Tlower,Tupper) were also tested and the results can
be seen in Table III. The pair (300,700) is chosen because it
produces the smallest number of ID switches and recall errors.

D. Evaluation on a test sequence

The proposed system performance was evaluated in a test
sequence. This sequence was recorded in the same conditions
as the Re-ID Multi-Tracking Dataset. This test sequence
includes challenging scenarios such as targets sitting down,
crossing paths with each other and frequent occlusions by
obstacles and other people. The sequence was recorded with



Fig. 10: Evaluation metrics on the Re-ID Multi-Tracking Dataset
when varying the value of Smax. The values of the other
parameters are: Trecover = 400, (Tlower ,Tupper) = (300,700)

TABLE III: Evaluation metrics on the Re-ID Multi-Tracking
Dataset when varying the values of Tlower and Tupper .
The best results for the various metrics are highlighted
in bold. The values of the other parameters are: Trecover

= 400, Smax = 0.05

Tlower Tupper ID switches Recall errors MOTP (m) MOTA (%)
100 700 70 25 0.213 86.41
100 1000 72 24 0.215 86.33
300 700 33 10 0.215 88.50
300 1000 37 16 0.220 89.85
400 600 34 19 0.218 90.17

the robot moving around the environment while the targets
walked randomly and assumed different poses. This sequence
was not used to tune the system’s parameters, therefore the
performance of the tracker in this sequence provides valuable
insight into how the system performs in unseen scenarios. The
tracking results on the test sequence are reported in Table IV.

The results show a very good performance on the test
sequence. The system achieves a MOTA score of 87.25%
which is very close to the MOTA score on the Re-ID Multi-
Tracking Dataset and a MOTP of 0.190m which is even lower
than the MOTP achieved on the proposed dataset.

E. Experiments on the Kinetic Precision dataset

The system was also evaluated in the Kinetic Precision
dataset (KTP) [16]. Along with the presentation of the KTP
dataset, Munaro and Menegatti [16] proposed a RGB-D track-
ing system for service robots, which will be referred to as State
of The Art Method (SOAM) for the remainder of this work.
The results of this thesis’s system for the KTP dataset are
compared with the results of that method, as reported in their
work, in Table V.

Overall the system proposed in this thesis shows a better
tracking performance on the KTP dataset than SOAM. The
number of ID switches is almost the same in every situation
for both methods, with a slightly better performance of SOAM
if we consider the total amount of ID switches and the fact

that in the two most challenging situations (random walk
and group) it produces less ID switches than the system
proposed. The MOTP, in meters, is approximately two times
lower in every situation for SOAM. Nonetheless, the MOTP
of the proposed system is always below 40cm, which is still
an acceptable result for people tracking. It is important to note
that, due to difficulties in synchronizing the ground-truth with
the image frames provided in the KTP dataset, the MOTP error
of the proposed system is inflated. The ratio of misses of the
proposed system is much smaller than the one of SOAM in
every situation except one. One of the reasons for this is that
the people detector used in this work, the Yolov3, has a much
better performance than the people detector used in SOAM,
which is a HOG detector. The number of ID switches shows
that the proposed system struggles more when there is a group
of people present in the scene, such as in the random walk
and group situations.

F. Discussion

In these experiments it became clear that the value of the
parameters Tlower, Tupper, Smax and Trecover does not have
a big impact on the MOTP and MOTA scores. This thresholds
impact mostly the number of ID switches and recall errors.
The number of misses and false positives is determined mainly
by the performance of the people detector module which is
constant in every experiment.

The experimental results when varying Smax and pairs of
(Tlower, Tupper) showed that a combination of the spatial
and the appearance distance metrics is key for achieving a
better re-identification performance. The value of Trecover has
a great impact on the number of recall errors, since a target’s
appearance can change a lot during the system’s execution,
due to illumination changes for instance, but two different
people can also have small appearance distances between
each other. Hence, choosing the right value implies a trade-
off between correctly re-identifying targets and reducing ID
switches, while keeping recall errors low.

The system’s performance on the Re-ID Multi-Tracking
Dataset shows robust target tracking and identity assignment
with precise position estimation, achieving a MOTA score of
88.50% and MOTP of 0.215 meters. Even in the sequence
were targets changed clothing, the ID switches ratio did not
increased to values above 4%.These results show that the
proposed system is robust at tracking and re-identifying people
in an environment with multiple targets, obstacles and frequent
occlusions. The system achieved a frame rate of 33Hz on the
MBOT, which shows that the system is suitable for mobile
robotics.

Finally, the system was also evaluated on the KTP dataset,
achieved an overall MOTA score of 85.98% and MOTP of
0,354m on this dataset and produced overall better results than
the method proposed in [16].

The results show that the proposed system is robust at multi-
target tracking and re-identification in an indoor environment
with challenging scenarios such as occlusions and obstacles.



TABLE IV: Tracking results on a test sequence, compared with the results on the Re-ID Multi-Tracking Dataset

Objects Matches Misses Misses(%) False Positives False Positives (%) ID Switches ID Switches (%) Recall errors MOTP (m) MOTA (%)
Test sequence 690 174 54 7.82 20 2.86 14 1.99 4 0.190 87.25

Re-ID Multi-Tracking Dataset 2234 1353 162 7.25 62 2.78 33 1.48 10 0.215 88.50

Situation ID switches Misses (%) False Positives (%) MOTP (m) MOTA (%)
Proposed system Back and forth 0 0 0 0,306 1

SOAM Back and forth 1 8,5 2,4 0.196 88.97
Proposed system Random walk 23 8,9 4,7 0,355 85.30

SOAM Random walk 20 18,9 9,8 0.171 70.93
Proposed system Side by side 5 5,9 1,9 0,386 89.35

SOAM Side by side 5 11,6 1,2 0.146 87.22
Proposed system Running 2 5,66 2,0 0,350 88.68

SOAM Running 4 4,4 1,1 0.143 94.57
Proposed system Group 30 11,68 2,1 0,364 80.98

SOAM Group 26 42,53 9,1 0.181 47.91

TABLE V: Tracking results for the Kinetic Tracking Precision
dataset of the proposed system and the system presented
in [16], divided by situation. Best results by situation are
shown in bold.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a robust Re-ID based multi-people 3D tracker
using RGB-D data to be deployed in a mobile robot is
presented. A novel RGB-D Re-ID Multi-Tracking Dataset
recorded with a moving camera mounted on top of a mobile
robot and representative of real-world scenarios, including
obstacles and occlusions, was constructed. An experimental
analysis was conducted and evaluation of the method was
performed in the proposed dataset, as well as in a test
sequence and in a state-of-the-art dataset. The system achieved
a MOTA score above 85% in all of them and a MOTP always
below 0.4m. The proposed method is robust to appearance
changes, such as clothing, pose and illumination changes and
occlusions. The proposed method runs at 33Hz on a mobile
robot, which is suitable for real-time robotic applications.

As future work, a better data association approach could
be implemented using a probabilistic model to model the
combined appearance and spatial distance between detections
and existing tracks. The track management step can also be
changed to reduce recall errors, by keeping deleted tracks with
a random walk motion model combined with ”memory” of
the last position where the target was seen. The experiments
could be evaluated using different metrics, such as metrics
more focused on the re-identification performance only and
an addition to the dataset could be made with more sequences
including larger groups of people and more challenging sce-
narios such as more complex appearance and pose changes or
in an outdoor environment.
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