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Abstract

Let M be a smooth 2m-manifold. In some cases, the degeneracy loci of a geometric structure on M

give rise to homology classes in H∗ (M ). The computation of their Poincaré duals (usually referred to as

Thom polynomials) is an active area of research. In this thesis we compute the Thom polynomials of

degeneracy loci in two settings.

Chapter 2 gives some theoretical background and necessary results needed in the rest of the thesis.

In chapter 3, we study the degeneracy loci of sections of the bundle Λ2T ∗M → M or, in other words,

of 2-forms over M . There will be a Thom polynomial PRk for each integer k ∈ {0, ...,m}. To compute PRk ,

we define it first as a certain cohomological obstruction to the existence of sections with rank everywhere

greater than 2k . We compute those obstructions classes and then show that they are indeed the Poincaré

duals of the degeneracy loci.

In chapter 4, we consider a smooth map i : M → N between a 2m-manifoldM and an almost symplectic

2n-manifold N with m ≤ n. We study the degeneracy loci of sections of the bundle Hom (TM , i ∗T N ) → M .

In this setting, the degeneracy loci may not give rise to homology classes, but the definition of Thom

polynomials as obstructions classes remains valid and that is the one we will use. The procedure to

compute the Thom polynomials in this case will be the same as the one used in chapter 3.

Keywords: Degeneracy Loci, Characteristic Classes, Classifying Spaces, Thom Poly-
nomials
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Resumo

Seja M uma 2m-variedade diferenciável. Por vezes, os loci de degenerescência de uma estrutura

geométrica em M dão origem a classes de homologia em H∗ (M ). O cálculo dos seus duais de Poincaré

(usualmente denominados por polinómios de Thom) é uma área ativa de investigação. Nesta tese,

calculamos os polinómios de Thom de loci de degenerescência em dois casos.

No capítulo 2 introduzimos preliminares teóricos e conceitos necessários no resto da tese.

No capítulo 3, estudamos os loci de degenerescência de secções do fibrado Λ2T ∗M → M ou, por

outras palavras, de 2-formas sobre M . Haverá um polinómio de Thom PRk para cada inteiro k ∈ {0, ...,m}.

Para calcular PRk , definimo-lo primeiro como uma certa obstrução cohomológica à existência de secções

com rank em todo o lado maior do que 2k . Calculamos essas obstruções e por fim mostramos que são

os duais de Poincaré dos loci de degenerescência.

No capítulo 4, consideramos uma aplicação diferenciável i : M → N entre uma 2m-variedade M e

uma 2n-variedade quase-simplética N , com m ≤ n. Estudamos neste caso os loci de degenerescência do

fibrado Hom (TM , i ∗T N ) → M . Neste contexto, os loci poderão não dar origem a classes de homologia,

mas a definição de polinómios de Thom como classes de obstrução permanece válida e é essa que

usamos. O procedimento para calcular os polinómios de Thom é o mesmo que o usado no capítulo 3.

Palavras-Chave: Loci de Degenerescência, Classes Características, Espaços Classifi-
cantes, Polinómios de Thom
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Chapter 1

Introduction

A central problem in singularity theory and enumerative geometry is to study cohomological properties

of singularities and degeneracy loci of geometric structures. Perhaps the simplest examples are the

Chern classes. The i -th Chern class ci (E ) of an n-vector bundle E can be interpreted as the Poincaré

dual of the locus of points where n − i + 1 generic sections of E become linearly dependent. Another

typical (and more complicated) example concerns the degeneracy loci of a vector bundle map: let E and

F be complex vector bundles of ranks m and n, respectively, over a compact manifold M . A vector bundle

map E → F is the same as a section s of the bundle

Hom (E , F )

M

s

Given a positive integer k , the degeneracy locus of rank k of s is the set of points x ∈ M where the

rank of s (x ) is at most k . Let us denote this degeneracy locus by Fk ⊂ M . For a generic section, Fk gives

rise to an homology class [Fk ] ∈ H∗ (M ;Ú2), independent of the chosen section. In [Tho57], R. Thom

observed that there exists a universal polynomial PFk (x1, ..., xm , y1, ..., yn ) such that, when evaluated on

the Chern classes ci (E ) and ci (F ), yields the Poincaré dual of [Fk ]. Later, I. Porteous in [Por71] found

a formula for PFk , based on Giambelli’s formula for Schubert classes (see equation (10) in page 146 of

[Ful97]). For this reason, the formula for PFk is usually called the Giambelli-Thom-Porteous formula:

PFk (c (E ), c (F )) = det ((c (F )/c (E ))n−i+j )m×m . (1.1)

Here, (c (F )/c (E ))i is the i -th coefficient of the formal quotient of the total classes c (F ) and c (E ). Note

that if PFk (c (E ), c (F )) , 0, then there cannot exist a section s with rank everywhere greater than k . The

class PFk (c (E ), c (F )) is thus a cohomological obstruction to the existence of such sections.

One can replace Hom (E , F ) by another vector bundle and compute the Poincaré duals of degeneracy

loci of other geometric structures. In many cases, there exist universal polynomials, like PFk , which evaluate

1



to the Poincaré duals of the degeneracy loci. Such polynomials are usually called Thom Polynomials,

as was R. Thom who initiated their study in the case of singularities of smooth maps. The problem of

computing Thom polynomials is, in general, hard and not many examples are known.

In this thesis, we compute the Thom polynomials of two different types of degeneracy loci. In chapter 3,

we consider the bundle of 2-forms Λ2T ∗M → M over a compact 2m-manifold M and compute the Thom

polynomials of the following degeneracy loci:

Fk = {x ∈ M | r ank (s (x )) ≤ 2k },

where s : M → Λ2T ∗M is a generic section. We conclude the following:

Theorem 1.1. Let wi (M ) ∈ H i (M ) denote the i -th Stiefel Whitney class of TM . The Poincaré dual of

[Fk ] ∈ H∗ (M ) is given by

PFk (w1 (M ), ...,w2m (M )) = det (w2(m−k )−2i+j )2(m−k )×2(m−k ) . (1.2)

These Thom polynomials have already been computed for the bundle of complex 2-forms (see for

instance Theorem 3.1 of [FNR05]). They are given by formula (1.2) but with Chern classes instead of

Stiefel-Whitney classes. M. Kazarian, in the beginning of page 4 of [Kaz06], observes that it is a general

principle that one may obtain Thom polynomials for real singularities from the Thom polynomials of

complex singularities by substituting Chern classes in the formula by Stiefel-Whitney classes and reducing

the coefficients to Ú2. This however needs to be checked in each case and we conclude that it is indeed

true for degeneracy loci of 2-forms. Observe that, as with the Giambelli-Thom-Porteous classes, the class

in (1.2) is a cohomological obstruction to the existence of sections of Λ2T ∗M whose rank is everywhere

greater than 2k .

In chapter 4, we consider a more complicated problem with degeneracy loci that may not give rise

to homology classes. In spite of that, we can interpret Thom polynomials as certain cohomological

obstructions and compute them for these degeneracy loci as well. Let M be a 2m-manifold, N a 2n-

manifold with 2m ≤ 2n and i : M → N a smooth map. Endow N with an almost symplectic form ω (meaning

a non-degenerate 2-form not necessarily closed). The differential d i can be seen as a section of the

bundle Hom (TM , i ∗T N ) → M . And, given x ∈ M , the rank of (d i )x can be any integer l ∈ {0, ..., 2m} and

the rank of (d i )∗xωx can be any integer 2k for k ∈ {0, ..., bl /2c}. One can thus try to obtain cohomological

obstructions to the existence of sections s homotopic to d i whose ranks satisfy r ank (s (x )) > l and

r ank (s (x )∗ωx ) > 2k .

Theorem 1.2. Let wi (M ) denote the i -th Stiefel Whitney class of TM and ci (N ) denote the i -th Chern

class of T N . Pick integers l ∈ {0, ..., 2m} and k ∈ {0, ..., bl /2c}. Then, if the class ol ,k ∈ H ∗ (M ) below is

different from zero, there cannot exist a section s : M → Hom (TM , i ∗T N ), homotopic to d i , such that

2



r ank (s (x )) > l or r ank (s (x )∗ωx ) > 2k for every x ∈ M .

ol ,k = det

©«
{(i ∗c (M )/w (M ))2n−l−i+j }i=2m−l ,j=2(m−k )i ,j=1

{wl−2k−2i+j (M )}i ,j=l−2ki=1,j=1−2m+l

ª®®®®¬
(1.3)

Note that the elements of the upper submatrix in (1.3) follow the pattern in the Giambelli-Thom-Porteous

classes (1.1) and the elements of lower submatrix follow the pattern in (1.2). The obstructions ol ,k are

thus a mix of 1) obstructions to the existence of sections whose rank is everywhere greater than l with 2)

obstructions to the existence of sections s such that r ank (s (x )∗ωx ) > 2k for all x ∈ M . What is perhaps

surprising is that ol ,k is not just the product of the obstructions coming from (1.1) with the ones coming

from (1.2).

Structure of the Thesis

We start with a chapter on some preliminary concepts which will be needed later. We will provide an

introduction to fibre bundles, classifying spaces and characteristic classes. Formulas (1.1), (1.2) and

(1.3) are deeply related to what are known as Schur polynomials, so a quick introduction to those will

also be given. Chapter 2 ends with some necessary results about homotopy pushouts and locally trivial

stratifications.

In chapter 3, we treat the case of degeneracy loci of 2-forms and compute the classes in (1.2). M.

Kazarian introduced a method to obtain Thom Polynomials for loci arising from group actions (details in

[Kaz06]). In [FR04], L. M. Fehér and R. Rimányi continue Kazarian’s work giving an interpretation of Thom

polynomials as cohomological obstructions and describing a method to compute them, introduced by the

second author and called the method of restricting equations. This interpretation of Thom polynomials and

the method of restricting equations are described in section 3.3 and are used in section 3.5 to compute

the classes (1.2). In section 3.5. we also show that the Thom polynomials are indeed the Poincaré duals

of the degeneracy loci.

In chapter 4, we treat the case of degeneracy loci of smooth maps to an almost symplectic manifold

and compute the classes in (1.3). To do so, we use the same interpretation of Thom polynomials as

cohomological obstructions and the method of restricting equations. The classes (1.3) are computed in

section 4.5.

In chapters 3 and 4, we will only work with cohomology with coefficients in Ú2. Thus, any time the

coefficient ring is not mentioned, one should assume it is Ú2.
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Chapter 2

Preliminaries

2.1 Fibre Bundles

2.1.1 First Definitions

Let us start by defining fibre bundles.

Definition 2.1. Let E and B be topological spaces, p : E → B a continuous map, G a topological group

and F a space endowed with an effective 1 left action of G (or G -action). The tuple E = (E ,B , p, F ,G ) is

called a fibre bundle with typical fibre F and structure group G if the following condition is satisfied:

• B has an open cover indexed by a set J {Vj }j ∈J such that for each j ∈ J , there is an homeomorphism

φj :Vj × F → p−1 (Vj )

that

– makes the following diagram commute:

Vj × F p−1 (Vj )

Vj

φj

π1
p

with π1 denoting the projection onto the first factor;

– Fixing b ∈ Vj , the map φj ,b : F → p−1 (b) defined by φj ,b (x ) = φj (b, x ) is such that for each

i , j ∈ J and b ∈ Vi ∩Vj , the homeomorphism φ−1j ,bφi ,b : F → F coincides with the action of an

element of G on F .

– Moreover, the map gi j :Vi ∩Vj → G given by gi j (b) = φ−1j ,bφi ,b is continuous.

Remark 2.2 (Terminology).
1A continuous action of a topological group G on a space F is a continuous homomorphism G → Aut (F ). The action is said to

be effective if this homomorphism is injective. This means that every element of the group is uniquely determined by its action on F .
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• The spaces E and B are named the total and base spaces, respectively. The map p : E → B

is called the projection map, the functions φj are the coordinate functions and gi j the transitions

functions. The fibres p−1 (b) for each b ∈ B will be denoted by Fb .

• When the typical fibre F and structure group G are obvious from context or do not matter, the

notation p : E → B will be used to denote the fibre bundle E = (E ,B , p, F ,G ).

• A open cover {Uj }j ∈J of B , along with maps φj as in the definition, is called a trivializing cover B .

Definition 2.3. Let p : E → B define a fibre bundle. A section of the bundle is a map s : B → E such

that p ◦ s = i dB .

Definition 2.4. Consider the action of GL (n;Ò) on Òn given by the usual matrix product on the left. A

fibre bundle with structure group GL (n;Ò) and typical fibre Òn with that action is called a vector bundle

of rank n (or an n-vector bundle).

Example 2.5. Let M be an m-dimensional. It is easy to prove that the tangent bundle TM → M is an

m-vector bundle.

Example 2.6. Consider Grk (Òn ) the grassmannian of k -planes in Òn and define

γn (Òk ) = {(P ,v ) ∈ Grn (Òk ) ×Òn | v ∈ P }

The projection onto the first factor γn (Òk ) → Grn (Òk ) can be proved to define an n-vector bundle. It is

called the tautological bundle over Grn (Òk ).

Having defined fibre bundles, one now wishes to study what it means for two to be isomorphic.

Definition 2.7. Let (E ,B , p, F ,G ) and (E ′,B ′, p ′, F ,G ) be two fibre bundles with the same fibre and group.

By a bundle map between them, one means a map h : E → E ′ that satisfies two conditions:

1. h maps each fibre Fb ⊂ E , b ∈ B homeomorphically into some fibre Fb′ ⊂ E ′ with b ′ ∈ B ′.

This in particular implies the existence of a map f : B → B ′ that makes the following diagram

commute:

E E ′

B B ′

h

p p′

f

2. Let {(Vj ,φj )}j ∈J and {(V ′j ,ψj )}j ∈J ′ be any trivializing covers of B and B ′, respectively, and, given

b ∈ Vi ∩ f −1 (V ′j ), let hb : Fb → Ff (b) be the restriction of h to the fibre over b. Then, the composition

g̃i j (b) = ψ−1
j ,f (b)hbφi ,b coincides with the action of an element of G and the so defined map g̃i j :

Vi ∩ f −1 (V ′j ) → G is continuous.
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Remark 2.8.

• It is easy to see that if a map satisfies condition 2 for two covers {(Vj ,φj )}j ∈J and {(V ′j ,ψj )}j ∈J ′ , then

it satisfies the condition for any other trivializing covers of B and B ′.

• It is readily checked that the identity E → E satisfies these conditions and the composition of bundle

maps is a bundle map, so the set of bundles with fixed fibre and group defines, in this way, a

category.

Definition 2.9. Let E and E ′ be two bundles with the same typical fibre, structure group and base space.

One says that E and E ′ are isomorphic bundles if there is a bundle map between them that induces the

identity map on the base space.

A fibre bundle with base B , total space E and fibre F can also be denoted by F ↪→ E → B .

Proposition 2.10. Let F ↪→ E
p
−→ B be a fibre bundle, fix points b0 ∈ B and x0 ∈ p−1 (b0) and let F0 be the

fibre over x0. There is a long exact sequence of homotopy groups:

· · · → πi (F0, x0) → πi (E , x0)
p∗−→ πi (B , b0) → πi−1 (F0, x0) → · · ·

Proof. See Theorem 17.1 of [Ste51]. �

2.1.2 Construction of Bundles

It turns out that, given a base B and a fibre F with an effectiveG -action, the transition functions determine

completely the structure of a bundle (up to isomorphism).

Theorem 2.11. Let G a topological group, F a space endowed with an effective left G -action, {Uj }j ∈J an

open cover of a space B and {gi j } a family of maps gi j : Ui ∩Uj → G that satisfy the relation

gi j gj k = gi k [i , j , k ∈ J . (2.1)

Then, there exists a fibre bundle E with base space B , fibre F , structure group G and transition functions

{gi j } for the cover {Uj }j ∈J . This bundle is unique up to isomorphism.

Proof. See Theorem 3.2 in [Ste51]. �

Let us now briefly discuss three methods one uses to obtain new bundles out of old ones.

Definition 2.12 (Pullback). Let E = (E ,B , p, F ,G ) be a fibre bundle and f : B ′ → B a map from some

space B ′ to the base space. The pull-back of E by f is the bundle f ∗E with base space B ′, total space

given by

f ∗E = {(b ′, e) ∈ B ′ × E | f (b ′) = p (e)},

and projection map p ′ : f ∗E → B ′ defined by p ′(b ′, e) = b ′.

6



Let π2 : f ∗E → E denote the projection onto the second factor. The picture of the pullback one should

have in mind is the following commutative square:

f ∗E E

B ′ B

π2

p′ p

f

If {(Uj ,φj }j ∈J is a trivializing cover of B , then the cover {f −1 (Uj )}j ∈J with the functions

ψj : f −1 (Uj ) × F → p ′−1 (f −1 (Uj ))

(b ′, f ) ↦→ (b ′,φj (f (b), f ))

is a trivializing cover of B ′. Moreover, if gi j are the transition functions of E relative to {Uj }j ∈J , one can

check that those of f ∗E relative to {f −1 (Uj )}j ∈J are given by

g ′i j : f
−1 (Ui ∩Uj ) → G

b ′ ↦→ gi j (f (b ′))

There is a simple and useful property of pullbacks concerning sections:

Proposition 2.13. Let p : E → B be a fibre bundle and g : B ′→ B some map. Then, there is a section

of the pullback bundle if and only if there is a map f : B ′→ E making the diagram

E

B ′ B

p
f

g

commute.

Proof. If there is a section s : B ′ → g ∗E , then f = π2 ◦ s makes the diagram commute. On the other

hand, if there is such a map f , then define s (b ′) = (g (b ′), f (b ′)). It is obviously continuous, the image is

contained in g ∗E and it makes the diagram commute. �

Definition 2.14 (Cartesian Products). Now consider two bundles E1 = (E1,B1, p1, F1,G1) and E2 =

(E2,B2, p2, F2,G2). The product bundle E1 × E2 has total space E1 × E2, base space B1 × B2 and

projection map p = p1 × p2. Moreover, given {Uj }j ∈J1 a trivializing cover of B1 and {Vj }j ∈J2 a trivializing

cover of B2, then {Uj ×Vi } is a trivializing cover of B1 × B2. The coordinate and the transition functions are

also the products of the ones of E1 and E2. The typical fibre and structure group are F1 × F2 and G1 ×G2,

respectively.

Definition 2.15. (Whitney Sum) Let E1 and E2 be two bundles with the same base space and consider

7



the diagonal embedding of B :

d : B → B × B

b ↦→ (b, b)

The Whitney sum of E1 and E2 is the bundle E1 ⊕ E2 = d ∗ (E1 × E2).

2.1.3 Principal and Associated Bundles

Let G be any topological group. G acts on itself by left multiplication and this action is effective. When

both the fibre and structure group are G with this action, the bundle is called a principal G -bundle.

Definition 2.16. Two bundles E1 = (E1,B , p1, F1,G ) and E2 = (E2,B , p2, F2,G ), with the same base space

and structure group and different fibres, are said to be associated if there is a trivializing cover of both

such that the transition functions of E1 subordinate to that cover are the same as those of E2.

Example 2.17. The bundle Λk (T ∗M ) → M of k -forms on M is associated to TM → M .

Definition 2.18. Let E be a right G -space and F a left G -space. The balanced product of E and F ,

denoted by E ×G F , is the quotient of E × F by the equivalence relation (e, f ) ∼ (e · g , g−1 · f ) for all

e ∈ E , f ∈ F and g ∈ G .

Proposition 2.19. Let E = (E ,B , p,G ,G ) be a principal G -bundle and F a space with an effective 2 left

G -action. Then,

q : E ×G F → B

[e, f ] ↦→ p (e)

defines a fibre bundle with fibre space F , denoted by E[F ]. Moreover, a trivializing cover of E also

trivializes E[F ] and the transition functions of the latter are the ones of E.

Proof. Let {Uj ,φj } be a trivializing cover of B for E. Then φ ′j : Uj × F → q−1 (Uj ), defined as φ ′j (b, f ) =

[φj (b, 1), f ], is a coordinate function (with inverse φ ′−1j ( [e, f ]) = (p (e),φ
−1
j (e) ·f )). The transition functions

are

g ′i j (b) · f = φ
′
j ,b
−1φ ′i ,b (f ) = φ

−1
j ,bφ

−1
i ,b (1) · f = gi j (b) · f

All these maps are continuous so the statement follows. �

A few properties of the balanced product should be mentioned:

Proposition 2.20. Consider H a subgroup of a topological group G , X a right G -space,Y a left and right

G -space and Z a left G -space. Then,
2If the action is not effective this becomes a G/H bundle with H = {g ∈ G | g · e = e [e ∈ E }. The transition functions are in

this case the composition of the transition functions of E with the quotient G → G/H .
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1. X ×G ∗ � X /G , where ∗ denotes the singleton set;

2. X ×G G � X , where G is regarded as a left G -space with the action of left multiplication;

3. (X ×G Y ) ×G Z � X ×G (Y ×G Z ). Here X ×G Y is given the action of G coming from the right action

of G onY and the same goes for the left action onY ×G Z ;

4. X ×GG ×HY � X ×HY , whereG is regarded as a right H -space with the action given by multiplication

on the right;

5. X ×G (G/H ) � X /H .

6. If p : E → B is a principal G -bundle, F has a right G -action and f : X → B is some map, then

f ∗ (E ×G F ) � f ∗E ×G F .

Here the right action of G on f ∗E is just (x , e) · g = (x , e · g ), for all (x , e) ∈ f ∗E , g ∈ G .

Proof. In all cases, the homeomorphisms are fairly obvious. One only needs to pay attention to continuity,

which follows from the fact that if f :Y → Z is an open G -equivariant map, then g : X ×G Y → X ×G Z

defined as g ( [x , y ]) = [x , f (y )] is also open. Details for points 1.-5. can be found in [Bre72]. The

isomorphism of point 6. is just

F : f ∗ (E ×G F ) → f ∗E ×G F

(x , [e, f ]) ↦→ [(x , e), f ]

�

Let us now study some properties related to restricting the structure group.

Definition 2.21. Let H ⊂ G be a subgroup of a topological group G and E = (E ,B , p, F ,G ) a fibre bundle.

One says that E admits a reduction of structure group to H if there exists a local trivialization of E

whose transition functions all have values in H .

Example 2.22. Let M be an m-manifold and consider the tangent bundle TM → M , which has structure

group GL (m;Ò). It is easy to see that TM admits a reduction of structure group to O (m) if and only if

M admits a riemannian metric. It is a basic fact that every manifold admits a metric, so actually every

tangent bundle admits such a reduction. The same goes for all associated bundles like the bundles of

forms on M .

Example 2.23. Similarly, if a 2m-dimensional manifold M is endowed with an almost symplectic form

(a non-degenerate 2-form) then one can show that TM admits a reduction of structure group to the

symplectic group Sp (2m).
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2.2 Classifying Spaces

2.2.1 Classification Problem

By Theorem 2.11, the converse of Proposition 2.19 also holds: given a fibre bundle E with fibre space

F , one can construct its principal associated bundle η. Furthermore, one has

Proposition 2.24. Let E = (E ,B , p, F ,G ) be a fibre bundle and η its associated principal bundle. Then,

η [F ] � E

Proof. This is a direct consequence of Proposition 2.19 and the uniqueness in Theorem 2.11. �

As a consequence,

Corollary 2.25. Two fibre bundles Ei = (Ei ,B , pi , F ,G ), i = 1, 2 are isomorphic if and only if their associated

principal bundles are isomorphic.

By this corollary, the classification of bundles is reduced to classifying principal bundles. So fix a

topological group G and consider the contravariant functor PG : T op → Set such that

PG (B) = {Isomorphism classes of principal G -bundles over B}

PG (f ) = f ∗

A first result is that, for paracompact base spaces, this functor descends to the homotopy category

hT op:

Theorem 2.26. Let p : E → B be a principal G -bundle and f , g : B ′→ B . If B is paracompact, then

f ' g =⇒ f ∗E � g ∗E

Proof. Theorem 4.9.9 of [Hus94] proves the result for numerable fibre bundles (see Definition 4.9.2 of

[Hus94]). It is a standard result that fibre bundles over paracompact spaces are numerable. �

2.2.2 Classifying Spaces

Now, the question is whether this induced functor PG : hT op → Set is representable. Let p : E → B be

a principal G -bundle with B paracompact. Then, by the previous theorem, there is a well-defined natural

transformation

TE : [X ,B] → PG (X )
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Definition 2.27. A principal bundle E is called universal if TE is bijective for every space X . The base

space of such a bundle is called the classifying space of G and is denoted by BG . The total space is

denoted by EG .

In other words, every principal bundle η over X is the pullback of EG → BG by a unique map from X to

BG . This map is called the classifying map of η.

By Yoneda’s Lemma, if a universal bundle exists, it is unique up to isomorphism and the classifying

space is unique up to homotopy equivalence. Using this, one can give a criterion for a principal bundle to

be universal:

Proposition 2.28. If p : E → B is a principal G -bundle, B is paracompact and E is contractible, then the

bundle is isomorphic to EG → BG and B ' BG .

Proof. See [Dol63], Theorem 7.5. �

Remark 2.29.

• If F is a space endowed with an effective, right G -action, denote by F i bF (X ) the set of isomorphism

classes of fibre bundles over X with fibre F and structure group G . Proposition 2.24 implies there is

a bijection

PG (X ) → F i bF (X )

η ↦→ η [F ]

So, the classifying space BG also classifies bundles with fibre F . Moreover, by point 6 of Proposition

2.20, the natural transformation

[X ,BG ] → F i bF (X )

maps each f : X → BG to f ∗.

• The space EG ×G F will also be denoted by FhG .

Example 2.30. Let Grn (Ò∞) be the set of n-planes in Ò∞ and

γn = {(P ,v ) ∈ Grn (Ò∞) ×Òn | v ∈ P }.

The projection γn → Grn (Ò∞) defines an n-vector bundle. In Lemma 5.3 of [MS74], the authors show that

γn classifies n-vector bundles. Therefore, BGL (n;Ò) ' Grn (Ò∞). If M is an m-manifold, the classifying

map of the tangent bundle is denoted by τM : M → BGL (m;Ò).
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2.2.3 Milnor Construction

The universal bundle of a given topological group G can be constructed in the following way, introduced

by John Milnor.

Definition 2.31. The join of two spaces X andY is the quotient space

X ?Y B X × I ×Y /∼

where ∼ is the equivalence relation generated by (x , 0, y ) ∼ (x ′, 0, y ) and (x , 1, y ) ∼ (x , 1, y ′) for all

x , x ′ ∈ X and y , y ′ ∈ Y .

In the following, let us use the notation X?n = X ? · · ·?X , where X appears n times.

Theorem 2.32. Let G be a topological group. Define

EG = col imnG
?n

where G?n ⊂ G?n+1 through the inclusions ∑n
i=1 t i gi ↦→

∑n
i=1 t i gi + 0g . Define also an action of G on EG by

( n∑
i=1

t i gi

)
· g =

n∑
i=1

t i gi g

Finally, write BG = EG/G , the orbit space of the action. Then, the projection

p : EG → BG

defines a universal principal G -bundle.

Proof. See sections 4.11 and 4.12 of [Hus94]. �

A nice property of this construction is that it is functorial.

Proposition 2.33. Let φ : G → H be a continuous homomorphism. Then, φ induces a diagram between

universal bundles

EG EH

BG BH

Eφ

Bφ

such that, if ψ : H → K is another such homomorphism, then E (ψ ◦φ) = Eψ ◦Eφ and B (ψ ◦φ) = Bψ ◦Bφ.

Proof. Eφ is defined as Eφ (∑n
i=1 t i gi ) =

∑n
i=1 t iφ (gi ). One can check that this map is continuous and that

is equivariant with respect to the actions of G and H . Thus, it induces a map on the quotients BG → BH .

The composition property is also clear from the definition of Eφ. �
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Example 2.34. As O (n) is a maximal compact subgroup of GL (n;Ò), it follows that the inclusion O (n) i
↪−→

GL (n;Ò) is an homotopy equivalence (Theorem 2 of [Mos49]). The maps i , E i and Bi induce maps

between the homotopy exact sequences of the bundles O (n) ↪→ EO (n) → BO (n) and GL (n;Ò) ↪→

EGL (n;Ò) → BGL (n;Ò). Since O (n) ' GL (n;Ò) and EO (n) ' EGL (n;Ò), it follows that BO (n) '

GL (n;Ò).

2.2.4 Properties of classifying spaces

We end the section about classifying spaces on a quick listing of properties that will be needed in the

main chapters. Let H ⊂ G be topological groups. The action of G on EG restricts to an action of H .

Proposition 2.35.

1. The inclusion BH ↪→ EG/H is an homotopy equivalence.

2. If F is a space with a left H -action, then the inclusion EH ×H F ↪→ EG ×H F is an homotopy

equivalence.

Proof.

1. One can show that EG → EG/H is a principal H -bundle. Since EG is contractible, it follows from

Proposition 2.28 that BH ' EG/H .

2. The inclusion in question and BH ↪→ EG/H induce maps between the homotopy exact sequences

of the bundles F ↪→ EH ×H F → BH and F ↪→ EG ×H F → EG/H . Using the the previous point

and the 5-lemma, the result follows.

�

The orbit space G/H has a natural G -action given by left multiplication by elements of G . Then, one

may consider the associated bundle EG ×G G/H → BG .

Proposition 2.36. If i : H ↪→ G denotes the inclusion map, then the following diagram commutes:

EG ×G G/H

BH BG

'

Bi

Proof. By point 5 of Proposition 2.20,

EG ×G G/H ' EG/H

The composition

EG ×G G/H → EG/H → BG

[x , gH ] ↦→ x · g ↦→ xg = x

13



is just the projection EG ×G G/H → BG . On the other hand, using the Milnor construction, one sees that

the composition

BH ↪→ EG/H → BG

n∑
i=1

t ihi ↦→
n∑
i=1

t ihi ↦→
n∑
i=1

t ihi

is just Bi . This translates into the commuting diagram

EG ×G G/H

EG/H BG

BH

Bi'

from which the result follows. �

There is a particularly important special case of last proposition:

Corollary 2.37. Let G be a topological group andV be a vector space endowed with a left G -action. Fix

an element p ∈ V and denote by I so ⊂ G the isotropy group of p. Then O(p) the orbit of p is isomorphic

to G/I so and the following diagram commutes

EG ×G G/I so EG ×G V

BI so BG

'

Bi

Proposition 2.38. Let G and H be topological groups. Then,

B (G × H ) ' BG × BH

Proof. This follows just from the fact that EG × EH → BH × BG is a principal G ×H bundle and EG × EH

is contractible. �

Proposition 2.39. If G is a discrete topological group, then π1 (BG ) � G . Moreover, if H is another

discrete topological group and φ : G → H is a continuous homomorphism, then the following diagram

commutes:

π1 (BG ) π1 (BH )

G H

�

(Bφ)∗

�

φ
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Proof. Since G is discrete, the local triviality condition of the bundle EG → BG translates into the triviality

condition of coverings. Hence, it is a covering. The action of G on EG makes it a subgroup of the Deck

transformation group. Actually, given f any automorphism of the covering and x ∈ EG , there is some

g ∈ G such that x · g = f (x ) so, by the unique lifting property, g , as an automorphism, is equal to f . Thus,

G is, in fact, the Deck transformation group. Let us fix a point x0 ∈ BG and a point x̃0 ∈ EG over x0 and

write π1 (BG ) for π1 (BG ; x0). EG is contractible so Proposition 1.39 of [Hat02] implies that there is an

isomorphism π1 (BG ) → G sending each loop [γ] ∈ π1 (BG ) to the element g that takes x̃0 ∈ EG to γ̃ (1),

where γ̃ is the lifting of γ that begins in x̃0. This proves the first statement.

The lifting of Bφ ◦ γ that begins in Eφ (x̃0) is just Eφ◦. The commutativity of the square will follow from

the equality Eφ (x̃0) · φ (g ) = Eφ ◦ γ̃ (1). To prove this equality, write x̃0 =
∑n
i=1 t i gi . Then,

Eφ ◦ γ̃ (1) = Eφ (x̃0 ◦ g ) = Eφ
(
n∑
i=1

t i gi g

)
=

n∑
i=1

t iφ (gi )φ (g ) = Eφ (x̃0) · φ (g )

�

2.3 Characteristic Classes

In this section, we restrict our attention to vector bundles. Characteristic classes are cohomology classes

associated to vector bundles, invariant by isomorphisms. We will define and present some properties of

three types of characteristic classes: Stiefel-Whitney classes, Euler classes and Chern classes.

2.3.1 Stiefel-Whitney Classes

Let E be a vector bundle with base space B . The Stiefel-Whitney classes of E are the only cohomology

classes

wi (E) ∈ H i (B ;Ú2)

that satisfy the following four axioms.

Axioms for Stiefel-Whitney Classes:

1. w0 (E) = 1 and wi (E) = 0 for i > n if E has rank n.

2. If η is a vector bundle with base B ′ and there exists a bundle map between E and η that induces

f : B → B ′, then

wi (E) = f ∗wi (η)
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3. If E and η are vector bundles with the same base space, then

wi (E ⊕ η) =
i∑
j=0

wj (E)wi−j (η)

4. For the line bundle γ1 (Ò) → Ð1, w1 (γ1 (Ò)) , 0.

Theorem 2.40. For each vector bundle E there exists a unique set of cohomology classes that satisfy

these four axioms.

Proof. See chapter 8 of [MS74]. �

For simplicity of notation, define the total Stiefel-Whitney class of E by

w (E) = 1 +w1 (E) + ... +wn (E) ∈ H ∗ (B ;Ú2)

With this notation, the third axiom translates to the equality w (E ⊕ η) = w (E)w (η).

Proposition 2.41. Let E and η denote vector bundles over the same base B and τ the product vector

bundle over B (of some rank n). Then,

• If E and η are isomorphic, then w (E) = w (η).

• w (τ)i = 0 for i > 0 and w (E ⊕ τ) = w (E).

• w (E × η) = w (E) ×w (η), where the × on the right denotes the cross-product of cohomology classes.

Proof. The first two items are simple applications of the axioms. For the third and details on the other,

see chapter 4 of [MS74]. �

If one computes wi (γn ) the Stiefel-Whitney classes of the universal bundle of n-vector bundles, then,

by axiom 2, the classes of any vector bundle p : E → B are given by f ∗wi (γn ), where f : B → Grn (Ò∞) is

its classifying map. It is important then to understand the cohomology of Grn (Ò∞).

Proposition 2.42. Let Ð∞ = Gr1 (Ò∞) be the infinite projective space. Then,

H ∗ (Ð∞;Ú2) = Ú2 [t ]

where t = w1 (γ1).

Proof. See Lemma 4.3 of [MS74]. �
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The cohomology ring of (Ð∞)n is then given by Ú2 [t1, ..., tn ] where t i is the generator of the cohomology

of the i -th factor in (Ð∞)n .

Proposition 2.43. Letwi denote the i -th Stiefel-Whitney class of γn → Grn (Ò∞) and j : (Ð∞)n → Grn (Ò∞)

the canonical inclusion. Then the map

H ∗ (Grn (Ò∞);Ú2)
j ∗

−→ H ∗ ((Ð∞)n ;Ú2) = Ú2 [t1, ..., tn ]

is injective. Furthermore, it sends wi to e i (t1, ..., tn ) the i -th elementary symmetric polynomial in the

variables t1, ..., tn 3.

Proof. (γ1)n → (Ð∞)n is an n-vector bundle and w ((γ1)n ) = w (γ1)n = ∏n
i=1 (1 + t i ). Moreover, j is covered

by the bundle map

h : (γ1)n → γn

(xi ,vi ) ↦→ (j (x1, ..., xn ),v1 + ... + vn )

so j ∗w =
∏n
i=1 (1 + t i ) and note that the term of degree i in the product is e i . This implies that the classes

wi do not satisfy any polynomial relations. The injectivity of j ∗ is then proved if one shows that they

generate the cohomology of Grn (Ò∞). See Theorem 7.1 of [MS74] for the rest of the proof. These fact

that wi do not satisfy any polynomial relations and generate the cohomology of Grn (Ò∞) also prove the

next theorem. �

The variables t1, ..., tn are called the Stiefel-Whitney roots.

Theorem 2.44. The cohomology ring of Grn (Ò∞) is given by

H ∗ (Grn (Ò∞);Ú2) � Ú2 [w1, ...,wn ] .

Remark 2.45. Let Ú2 [t1, ..., tn ]Sn denote the algebra of symmetric polynomials in the Stiefel-Whitney

roots. Proposition 2.43 implies that

H ∗ (Grn (Ò∞);Ú2) � Ú2 [t1, ..., tn ]Sn .

2.3.2 Euler Class

For orientable vector bundles, there is an important characteristic class called the Euler class.

Definition 2.46. Let p : E → B be an n-vector bundle. For any b ∈ B , denote by Fb the fibre over b.

The bundle is said to be orientable if for each Fb there is a choice of generator ub ∈ H n (Fb , Fb\{0};Ú))

satisfying the following local compatibility condition: For each point of the base, there exists a neighborhood

3See Definition 2.73
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V ⊂ B and u ∈ H n (p−1 (V ), p−1 (V )\{0};Ú) such that for every b ∈ V ,

H n (p−1 (V ), p−1 (V )\{0};Ú) → H n (Fb , Fb\{0};Ú)

u ↦→ ub

An orientation is a choice of generator for each fibre.

Theorem 2.47 (Thom Isomorphism Theorem). Let p : E → B be an oriented n-vector bundle. Then,

H i (E , E \0;Ú) = 0 for 0 < i < n and there exists a unique class

u ∈ H n (E , E \0;Ú)

such that for each b ∈ B ,

H n (E , E \0;Ú) → H n (Fb , Fb\{0};Ú)

u ↦→ ub

where ub is the chosen generator of Fb . Moreover, the map

H i (E ;Ú) → H i+n (E , E \0;Ú)

a ↦→ a ∪ u

is an isomorphism.

Proof. See chapter 10 of [MS74]. �

Remark 2.48. The class u is usually denoted by uE , the Thom class of E . Observe that the Thom class

is functorial, meaning that if h : E → E ′ is a bundle map, then

h∗ (uE ′) = uE .

This follows from the uniqueness properties of the Thom class and the fact that h is an isomorphism on

each fibre.

Definition 2.49. The Euler class of an oriented n-vector bundle E is the cohomology class

e (E) ∈ H n (B ;Ú)

the image of uE ∈ H n (E , E \0;Ú) by the composition

H n (E , E \0;Ú) → H n (E ;Ú)
(p∗)−1
−−−−−→ H n (B ;Ú)

Proposition 2.50. Let E and η be oriented vector bundles over B and E ′ an oriented vector bundle over

some base B ′. Then,
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• If there is an orientation preserving4 bundle map from E to E ′ that induces a map f : B → B ′, then

e (E) = f ∗e (E ′).

• e (E ⊕ η) = e (E)e (η) and e (E × η) = e (E) × e (η)

• If E has a nowhere zero section, then e (E) = 0.

Proof. These are Property 9.2, Property 9.6 and Property 9.7 of [MS74], respectively. �

Remark 2.51. Note that the last property gives an interpretation of the Euler class as an obstruction to

the existence of non vanishing sections of a vector bundle.

The projection Ú→ Ú2 induces a restriction of coefficients H ∗ (−;Ú) → H ∗ (−;Ú2).

Proposition 2.52. Under this restriction, e (E) ↦→ wn (E).

Proof. See Property 9.5 of [MS74]. �

Let p : E → B define an oriented n-vector bundle, denote by p0 : E0 → B the restriction of p to E0 and

let e denote the Euler class of the bundle. e appears in a long exact sequence of cohomology groups:

Theorem 2.53 (Gysin Sequence). One can associate to p : E → B a long exact sequence of the form

· · · → H i (B ;Ú) ∪e−−→ H i+n (B ;Ú)
p∗0−−→ H i+n (E0;Ú) → H i+1 (B ;Ú) → · · ·

Where ∪e is the map that sends x ∈ H i (B ;Ú) to x ∪ e.

Proof. See Theorem 12.2 in [MS74]. �

2.3.3 Chern Classes

Definition 2.54. A complex vector bundle of complex rank n is a fibre bundle with fibre Ãn and structure

group Gl (n;Ã) with the action of A ∈ Gl (n;Ã) on v ∈ Ãn given by the matrix product Av .

Example 2.55. Similar to the real case, one has Grn (Ãk ) the grassmannian of complex n-planes in Ãk ,

γn (Ãk ) = {(P ,v ) ∈ Grn (Ãk ) × Ãk | v ∈ P }

and γn (Ãk ) → Grn (Ãk ) defines a complex n-vector bundle.

Example 2.56. Moreover, Grn (Ã∞) is the grassmannian of complex n-planes in Ã∞, γn (Ã∞) is defined

analogously and γn (Ã∞) → Grn (Ã∞) classifies complex n-vector bundles. Hence, BGL (n;Ã) ' Grn (Ã∞).

Furthermore,U (n) is a maximal compact subgroup of GL (n;Ã), soU (n) ' GL (n;Ã) and, as with Example

2.34, one has BO (n) ' BGL (n;Ã).
4If E1 and E2 are orientend n-vector bundles, a bundle map F : E1 → E2 is said to be orientation preserving if its restriction to

each fibre (F1)b sends the chosen generator of H n ( (F1)b , (F1)b\{0}) to the chosen generator of H n ( (F2)b , (F2)b\{0}).
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With the usual identification Ãn = Ò2n ( x + i y = (x , y ) for x , y ∈ Òn ), one can see Gl (n;Ã) as a

subgroup of Gl (2n;Ò) under the identification

A + i B ↦→ ©«
A −B

B A

ª®¬ , A,B ∈ Gl (n;Ò)

Now let E be a complex n-vector bundle. Under these identifications, E is also a real 2n-vector bundle.

Denote it by EÒ.

Lemma 2.57. If E is a complex vector bundle, EÒ is orientable and has a canonical choice for orientation.

Proof. See Lemma 14.1 of [MS74]. �

Just as real vector bundles have associated characteristic classes satisfying certain axioms, complex

vector bundles have also characteristic classes, now with coefficients in Ú. So let E be a complex vector

bundle with complex dimension n and base space B . The Chern Classes of E are cohomology classes

ci (E) ∈ H 2i (B ;Ú)

that satisfy the following four axioms:

Axioms for Chern Classes:

1. c0 (E) = 1 and ci (E) = 0 for i > n.

2. If η is a complex vector bundle with base B ′ and there exists a bundle map between E and η that

induces f : B → B ′, then

ci (E) = f ∗ci (η).

3. Let c (E) = 1 + c1 (E) + ... + cn (E) ∈ H ∗ (B ;Ú) and let η be a complex vector bundle also with base B .

Then,

c (E ⊕ η) = c (E)c (η).

4. For the complex line bundle γ1 (Ã) → ÃÐ1, c1 (γ1 (Ã)) is a generator of H 2 (ÃÐ1;Ú).

Theorem 2.58. For each complex vector bundle E there exists a canonical choice of cohomology classes

that satisfy these four axioms.

Proof. One can construct the Chern classes in several different ways. In chapter 14 of [MS74] for instance,

these are constructed using the Euler class associated to the canonical orientation. See Remark 2.63 for

another possibility. �
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Proposition 2.59. Let E be a complex vector bundle of complex dimension n, with base B . Then,

1. cn (E) = e (E).

2. The restriction of coefficients H ∗ (−;Ú) → H ∗ (−;Ú2) sends c (E) to w (EÒ) .

If η is another complex vector bundle over B and τ the product complex vector bundle over B of some

dimension. Then,

3. If E and η are isomorphic, then c (E) = c (η).

4. c (E ⊕ τ) = c (E).

5. c (E × η) = c (E) × c (η).

Proof. Point 1. follows immediately from the construction in [MS74]. By Proposition 2.52 and point 1.,

point 2. follows for cn (E). For the lower classes, one uses induction on the complex dimension of the

bundle and their definition in chapter 14 of [MS74]. Point 3. is obvious from axiom 2 and point 4. is

Lemma 14.3 in [MS74]. To prove point 5., one can use the same argument as in the proof of Lemma 14.8

in [MS74]. �

Similarly to the real case, one has

Proposition 2.60. Let ÃÐ∞ = Gr1 (Ã∞) be the infinite complex projective space. Then,

H ∗ (ÃÐ∞;Ú) = Ú[x ]

where x = c1 (γ1 (Ã∞)).

Proof. Follows from Theorem 14.5 in [MS74]. �

Theorem 2.61. Let ci denote the i -the Chern class of γn (Ã∞) → Grn (Ã∞). The cohomology ring of

Grn (Ã∞) is given by

H ∗ (Grn (Ã∞);Ú) = Ú[c1, ..., cn ]

Proof. See Theorem 14.5 of [MS74]. �

Proposition 2.62. Let j : ÃÐ∞ → Grn (Ã∞) be the canonical inclusion. Then the map

H ∗ (Grn (Ã∞);Ú)
j ∗

−→ H ∗ ((ÃÐ∞)n ;Ú) = Ú[x1, ..., xn ]

is injective. Furthermore, it sends ci to e i (x1, ..., xn ), the i -th elementary symmetric polynomial in the

variables x1, ..., xn .

Proof. The proof of the second statement follows as in the case of Stiefel-Whitney classes. The injectivity

part follows from this fact and the previous theorem. �

21



The variables x1, ..., xn are called the chern roots.

Remark 2.63. To construct the Chern classes, one could also prove first that H ∗ (BU (n)) is a polynomial

ring in n variables c1, ..., cn with ci ∈ H 2i (BU (n)) as in Theorem 5.5 in [MT91]. Then, define ci (γn (Ã∞)) = ci
and use the universality of this bundle to define the chern classes of any bundle E as ci (E) = f ∗ci where

f is its classifying map.

Remark 2.64. Let Ú[x1, ..., xn ]Sn denote the algebra of symmetric polynomials in the Chern roots. Propo-

sition 2.62 implies that

H ∗ (Grn (Ã∞)) � Ú[x1, ..., xn ]Sn .

We now know the cohomology of BU (n) ' Grn (Ã∞) and BO (n) ' Grn (Ò∞). Note that O (n) ⊂ U (n)

and, under the identification GL (n;Ã) ⊂ GL (2n;Ò), one has U (n) = O (2n) ∩GL (n;Ã), so U (n) ⊂ O (2n).

The maps induced by these inclusions are computed in the following propositions:

Proposition 2.65. Consider H ∗ (BO (n);Ú2) = Ú2 [w1, ...,wn ] and H ∗ (BU (n);Ú2) = Ú2 [c1, ..., cn ], where

ci denotes the reduction of the i -th Chern class to Ú2 coefficients. The inclusion O (n) ⊂ U (n) induces the

map in cohomology

H ∗ (BU (n);Ú2) → H ∗ (BO (n);Ú2)

ci ↦→ w 2
i

Proof. See Theorem 5.11 (1) of [MT91]. �

Proposition 2.66. The inclusion U (n) ⊂ O (2n) induces

H ∗ (BO (2n);Ú2) → H ∗ (BU (n);Ú2)

w2i ↦→ ci

w2i−1 ↦→ 0

Proof. See Theorem 3.5.11 (2) of [MT91]. �

One can also ask whether the inclusions O (n) ×O (m) ↪→ O (n +m) and U (n) ×U (m) ↪→ U (n +m) yield

easy relations between characteristic classes. And indeed,

Proposition 2.67. These inclusions induce in cohomology the following maps:

H ∗ (BO (n +m)) → H ∗ (BO (m) × BO (n))

wi ↦→
∑
j+k=i

wj ×wk
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H ∗ (BU (n +m)) → H ∗ (BU (m) × BU (n))

ci ↦→
∑
j+k=i

cj × ck

Proof. See Theorems 3.5.11 (3) and 5.8 (3) of [MT91]. �

2.4 Schur Polynomials

It turns out that the characteristic classes that we will compute in the next chapter can be written as

Schur polynomials in the Stiefel-Whitney roots t i .

Definition 2.68. A partition of length n (or an n-partition) of a non-negative integer k is a tuple λ =

(λ1, ..., λn ) with λ1 ≥ · · · ≥ λn ≥ 0 and λ1 + ... + λn = k . If λ = (λ1, ..., λn ) and δ = (δ1, ..., δn ) are two

partitions of the same length, then λ + δ = (λ1 + δ1, ..., λn + δn ). If λ is a partition of length n ≤ m, its

associated partition of length m is λ̃ = (λ1, ..., λn , 0, ...0).

A partition λ = (λ1, ..., λn ) can be represented through a Ferrers diagram. This is a diagram of dots with

n rows and λi dots on the i -th row. For example, the Ferrers diagram for the partition λ = (4, 3, 1) is

• • • •

• • •

•

Definition 2.69. The conjugate of a partition λ is the partition λ ′ obtained from λ by transposing its Ferrers

diagram.

Definition 2.70. Let α = (α1, ..., αn ) be a tuple of non-negative integers. The alternant aα (x1, ..., xn ) is the

polynomial

aα (x1, ..., xn ) = det
©«
xα11 · · · xαn1
...
. . .

...

xα1n · · · xαnn

ª®®®®¬
Definition 2.71 (Schur Polynomial). Let n be a non-negative integer and δ be the partition (n − 1, n −

2, ..., 1, 0). For a partition λ of length ≤ n, the Schur polynomial sλ of λ in n variables is the polynomial

sλ =
aλ̃+δ
aδ

where λ̃ is the partition of length n associated to λ.

Remark 2.72. sλ is a symmetric polynomial. It is symmetric because it is a quotient of alternants, which

are alternating polynomials. Theorem 2.74 gives another possible definition for sλ , one for which it is clear

that sλ is a polynomial with coefficients in Ú.
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Definition 2.73. The i -th elementary symmetric polynomial in n variables is the polynomial

e i (x1, ..., xn ) =
∑

j1+· · ·+jn=i
j1,...,jn ≤1

x
j1
1 · · · x

jn
n

The polynomials e i with negative i or i > n are defined to be 0.

Theorem 2.74 (Second Jacobi-Trudi Formula). Let λ be a partition of length ≤ n and λ ′ its conjugate.

Then,

sλ (x1, ..., xn ) = det (eλ′
i
+j−i )ni ,j=1 = det

©«

eλ′1 eλ′1+1 · · · eλ′1+n−1

eλ′2−1 eλ′2 · · · eλ′2+n−2
...

...
. . .

...

eλ′n−n+1 eλ′n−n+2 · · · eλ′n

ª®®®®®®®¬
Proof. See formula 3.5 in Chapter I.3 of [Mac99]. �

An important special case is the Schur polynomial of δ = (n − 1, n − 2, ..., 1, 0).

Proposition 2.75.

sδ (x1, ..., xn ) = det

©«

en−1 en · · · e2n−2

en−3 en−2 · · · e2n−4
...

...
. . .

...

e−n+1 e−n+2 · · · 1

ª®®®®®®®¬
=

∏
1≤i<j ≤n

(xi + xj ) (2.2)

Proof. A proof can be found in [gri]. �

2.5 Homotopy Pushouts

Another construction that will be useful in the subsequent chapters is the notion of a homotopy pushout.

We will consider certain decompositions of spaces (called stratifications) and homotopy pushouts describe

the way in which the pieces are glued into the whole space.

Definition 2.76. Consider maps X f←− Z
g
−→Y . The double mapping cylinder of f and g is the quotient

space

M (f , g ) = X t Z × I tY
(z , 0) ∼ f (z ) (z , 1) ∼ g (z )

There are canonical inclusions

iX : X → M (f , g ), iY :Y → M (f , g )
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and a canonical homotopy h : Z × I → M (f , g ) between iX ◦ f and iY ◦ g making the following square

homotopy commutatitve:

Z Y

h
=⇒

X M (f , g )

f

g

iY

iX

This square is called the standard homotopy pushout of f and g .

Given any other homotopy commutative square

Z Y

H
=⇒

X W

f

g

k

h

one can construct a map

θH : M (f , g ) →W

x ↦→ h (x )

y ↦→ k (y )

(z , t ) ↦→ H (z , t )

Definition 2.77. A homotopy commutative square

Z Y

X W

f

g

k

h

is said to be a homotopy pushout is there exists a homotopy H : Z × I →W between h ◦ f and k ◦ g

such that θH is a homotopy equivalence.

Homotopy pushouts are invariant under homotopies:

Proposition 2.78. If the diagram
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Z Y

X W

Z ′ Y ′

X ′ W ′

' '

' '

homotopy commutes and the vertical maps are equivalences, then the top square is a homotopy pushout

if and only if the bottom square is a homotopy pushout.

Proof. See Proposition 6.3.2 of [Ark11]. �

Let us present some properties of homotopy pushouts that will be needed later.

Theorem 2.79. Let

Z Y

X W

f

g

k

be a homotopy pushout, f an n-equivalence and g an m-equivalence. Then, k is an (n +m)-equivalence.

Proof. One can assume thatW = M (f , g ). With this, it is clear that the following diagram homotopy

commutes:

Z Y

X W

Z Mg

Mf M (f , g )

f

g

'

' '

Then the result is a direct application of the homotopy excision theorem (Theorem 4.23 in [Hat02]) on

the bottom square. Indeed, the bottom square is a pushout and the connectedness of the maps on this

square is the same as the one of the maps on top. �

Theorem 2.80. Let the following strictly commutative square

Z Y

X W

f

g

be a pushout. If f (or g ) is a cofibration, then the square is a homotopy pushout.

Proof. See Proposition 6.2.6 of [Ark11]. �
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Example 2.81. Let N be a manifold, M ⊂ N a closed submanifold and U ⊂ N an open tubular neighbor-

hood of M . Then,

U\M N \M

U N

is a pushout. IfV ⊂ V ⊂ U is a smaller tubular neighbourhood of M ,

V \M N \M

V N

i

is also a pushout and, furthermore, i :V \M → N \M defines an NDR-pair. Indeed,V \M is closed and a

deformation retract of an open neighbourhood U\M . Hence, i is a cofibration and thus, this last square is

a homotopy pushout. Using the following diagram, Proposition 2.78 implies that the first square is also a

homotopy pushout.

V \M N \M

V N

U\M N \M

U N

'

'

Proposition 2.82. A homotopy pushout

Z Y

X W

f

g

k

h

induces a long exact sequence in cohomology

· · · → H ∗ (W )
(h∗,k ∗)
−−−−−→ H ∗ (X ) ⊕ H ∗ (Y )

f ∗−g ∗
−−−−→ H ∗ (Z ) → H ∗+1 (W ) → · · ·

Proof. The square can be assumed to be a standard homotopy pushout. Then,W = U ∪V , where U

is an open neighborhood of X that deformation retracts onto X , V is an open neighborhood of Y that

deformation retracts ontoY and U ∩V � I × Z . Then, the sequence of the statement is the Mayer-Vietoris

cohomology sequence associated to this decomposition ofW . �
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2.6 Locally Trivial Stratifications

Many times, a manifold is best understood by partitioning it into submanifolds in a controlled way. One

way to obtain such a partition is through locally trivial stratifications.

Definition 2.83. Let M be a manifold, K = {0, ..., n} ⊂ Î, for some integer n, and {Fk }k ∈K a family of

closed subsets of M totally ordered by inclusion.

F0 ⊂ F1 ⊂ Fn = M

This family is said to be a finite stratification if, for each k ∈ K , the space Rk = Fk \Fk−1 is an embedded

submanifold of M . The submanifolds Rk are called the strata of the filtration.

The stratification is said to satisfy the frontier condition if the strata Rk satisfy the following property:

R j ∩ Rk , ∅ =⇒ R j ⊂ Rk

Definition 2.84. Let M be a manifold with a stratification {Fk }k ∈K , N a manifold with a stratification

{Gk }k ∈K . A diffeomorphism of stratifications is a diffeomorphism f : M → N such that f (Fk ) = Gk .

Definition 2.85. Let M be a manifold and {Fk }k ∈K be a finite stratification. The stratification is said to

be locally trivial if for each k ∈ K and x ∈ Rk = Fk \Fk−1, there is an open neighborhoodV ⊂ M of x , a

stratified manifold U and a diffeomorphism of stratifications

φ :V → (V ∩ Rk ) ×U

Here, if {Gk ′}k ′∈K is the stratification of U , then {(V ∩ Rk ) ×Gk ′}k ′∈K is the stratification of (V ∩ Rk ) ×U .

We will use two ways of constructing stratifications out of old ones. The first one, introduces a

stratification on the total space of a bundle from a stratification on the typical fibre. The second, introduces

a stratification on the domain M of a map s : M → N out of a stratification {Fk } on N , if s is transversal to

the stratification {Fk }.

Proposition 2.86. Let p : E → B define a fibre bundle with fibre F and suppose F has a locally trivial

stratification {Fk }k ∈K that is preserved by the action of the structure group. Then, E has a locally trivial

Stratification given by {⋃x ∈B (Fk )x }k ∈K .

Proof. For each k ∈ K , let Rk = Fk \Fk−1, Gk =
⋃
x ∈B (Fk )x and Sk = Gk \Gk−1. Fix k ∈ K and x ∈ Sk .

There is an open neighborhoodW ⊂ B of x and a diffeomorphism ψ1 : p−1 (W ) →W × F (since the action

of the structure group is stratification preserving, ψ1 is also stratification preserving). Let ψ1 (x ) = (b, f ).

Then, there exists an open neighborhood Ṽ ⊂ F of f , a stratified manifold U and a stratification preserving

diffeomorphism ψ2 : Ṽ → (Ṽ ∩ Rk ) ×U . Then, definingV = ψ−11 (W × Ṽ ), the following composition is the
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desired stratification preserving diffeomorphism φ :V → (V ∩ Sk ) ×U :

V
ψ1−−→W × Ṽ

i dW ×ψ2−−−−−−→W × (Ṽ ∩ Rk )︸            ︷︷            ︸
=ψ1 (V∩Sk )

×U
ψ−11 ×i dU−−−−−−→ (V ∩ Sk ) ×U

�

Proposition 2.87. Let s : M → N be a map of manifolds and {Fk } ⊂ N a locally trivial stratification of N .

If s is transversal to each strata Fk \Fk−1, then the family {s−1 (Fk )} is a locally trivial stratification of M .

Proof. Let m be the dimension ofM . Given k , let us use the notation Rk = Fk \Fk−1 and Sk = s−1 (Fk \Fk−1).

Since s is transversal to Rk , it follows that Sk is an embedded submanifold of M , so {s−1 (Fk )} forms a

stratification of M . Let us now show that it is locally trivial.

Fix k ∈ K and x ∈ Sk . There existsV ′ ⊂ N an open neighborhood of s (x ), U ′ a stratified manifold and

a stratification preserving diffeomorphism ψ : V ′ → (V ′ ∩ Rk ) ×U ′. Let d be the dimension of U ′ and

π2 : (V ′ ∩ Rk ) ×U ′ → U ′ be the canonical projection. Then, as s is transversal to Rk , it follows that the

following composition, denoted by φ2, is a submersion at x :

s−1 (V ′) s−→V ′
ψ
−→ (V ′ ∩ Rk ) ×U ′

π2−−→ U ′

Therefore, there existsV ⊂ s−1 (V ′) an open neighborhood of x , U ⊂ U ′ an open neighborhood of φ2 (x )

and local coordinates αV :V → Òm and βU : U → Òd such that βU ◦ φ2 ◦ α−1V is the projection given by

(x1, ..., xm ) ↦→ (xm−d+1, ..., xm ).

In the coordinates given by αV , points inV ∩ Sk are written as (x1, ..., xm−d , 0, ..., 0). Let φ1 :V →V ∩ Sk
be the map written in the coordinates given by αV as

(x1, ..., xm ) ↦→ (x1, ..., xm−d ).

Then, the following map is a diffeomorphism of stratifications:

φ :V → (V ∩ Sk ) ×U

x ↦→ (φ1 (x ),φ2 (x ))

�

Locally trivial stratifications satisfying the frontier condition admit triangulations:

Theorem 2.88. Given {Fk } a locally trivial stratification of a manifold M , such that {Fk } satisfies the

frontier condition, there is a triangulation of M with each Fk a subcomplex.

Proof. It is easy to prove that every locally trivial stratification satisfying the frontier condition is a Whitney

stratification (see the beginning of section 5 in page 480 of [Mat12] for the definition ofWhitney stratification).
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In page 491 of [Mat12], after Definition 8.2, the author shows that Whitney stratifications are Thom-Mather

stratifications (see Definition 8.1 of [Mat12] for the definition). The result then follows from the fact that

Thom-Mather stratifications admit triangulations (see Proposition 5 of [Gor78]). �

For stratifications {Fk } where d im (Fk ) − d im (Fk−1) ≥ 2, Theorem 2.88 in particular implies that Fk has

a well defined homology class [Fk ] ∈ H ∗ (M ). The next theorem (applied with K = Fk and L = ⋃
l<k Fl )

gives a description of the Poincaré dual of [Fk ].

Theorem 2.89. Suppose M is a compact orientable m-manifold and L ⊂ K ⊂ M are compact subsets

such that K \L is an orientable submanifold of dimension k and L is a union of submanifolds of dimensions

≤ k − 2. Suppose further that there exists a triangulation of K with L a subcomplex. Then, K has a

well defined homology class [K ] ∈ Hk (M ) and its Poincaré dual is the unique class in Hm−k (M ) whose

restriction to Hm−k (M \L) is the Thom class of the normal bundle of K \L in M \L.

Proof. LetV be an open neighborhood of L in K that deformation retracts onto L. The sum of k -simplices

of the triangulation of K generates Hk (K ,V ) � Hk (K , L).

Since L is a union of manifolds of dimensions ≤ k − 2, the map Hk (K ) → Hk (K , L) is an isomorphism, so

the sum of k -simplices is a generator of Hk (K ) - it is the fundamental class. The image of this fundamental

class in Hk (M ) is [K ]. Now let j : M \L → M be the inclusion map and let U be a tubular neighborhood

of K \L in M \L.

Hm−k (M ) Hm−k (M \L)

Hk (M ) Hm−k (M \L,M \K ) Hm−k (U ,U\(K \L))

Hk (K ) Hk (K , L)

j ∗

D

�

D

Here, both instances of D denote duality maps, the one on the right being a relative version of duality

proved in Theorem 6.2.17 of [Spa66]. Since the codimension of L in M is greater than m − k + 1, the

top map is an isomorphism. Lastly, the fundamental class in Hk (K , L) is mapped to the Thom class

in Hm−k (U ,U\(K \L)) because D is an isomorphism. Therefore, the dual of [K ] is the unique class in

Hm−k (M ) that restricts to the (image of the) Thom class in Hm−k (M \L). �
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Chapter 3

Degeneracy Loci of 2-forms

3.1 Introduction

Let M be a compact 2m-manifold and consider the vector bundle Λ2T ∗M → M of 2-forms over M .

Given a generic section s of Λ2T ∗M and an integer k ∈ {0, ...,m}, the degeneracy locus of points x ∈ M

where r ank (s (x )) ≤ 2k gives rise to an homology class. The purpose of this chapter is to compute the

Poincaré dual of this homology class, following the methods of M. Kazarian in [Kaz06] and of L. M. Fehér

and R. Rimányi in [FR04].

The chapter starts by studying the typical fibre Λ2 (Ò2m )∗ of Λ2T ∗M and the properties of the following

spaces:

Rk = {ω ∈ Λ2 (Ò2m )∗ | rank(ω) = 2k } ⊂ Λ2 (Ò2m )∗.

In section 2.3, we define the Thom polynomials as cohomological obstructions. Then, in section 2.5,

we compute those cohomological obstructions and show that they are indeed the Poincaré duals of the

homology classes of the degeneracy loci. We finish the chapter by computing the Poincaré dual of such a

class in a specific example.

3.2 The Homogeneous Spaces Rk and their Normal Bundles

Consider the vector space Λ2 (Ò2m )∗ endowed with the action of GL (2m;Ò) given by

GL (2m;Ò) × Λ2 (Ò2m )∗ → Λ2 (Ò2m )∗ (3.1)

(A,ω) ↦→ A∗ω.
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And define Rk = {ω ∈ Λ2 (Ò2m )∗ | rank(ω) = 2k }.

Proposition 3.1. The sets {Rk }k=0,...,m are the orbits of action (3.1).

Proof. Given ω ∈ Rk , denote by O(ω) the orbit of ω. For any A ∈ GL (2m;Ò), r ank (A∗ω) = r ank (ω), so

O(ω) ⊂ Rk . The other inclusion follows from the general fact that, for any 2-form σ ∈ Rk , there exists a

basis {e i }i=1,...,2m of Ò2m such that σ is represented by

J =
©«
J2k 0

0 02(m−k )

ª®¬ =
©«
0 I2k

−I2k 0
0

0 02(m−k )

ª®®®®¬
. (3.2)

Let {e i }i=1,...,2m be such a basis for ω. Given any other ω ′ ∈ Rk , let {fi }i=1,...,2m be a basis of Ò2m such that

ω ′ is represented by J . Define A ∈ GL (2m;Ò) by A(e i ) = fi . Then, ω ′ = A∗ω and Rk ⊂ O(ω). �

Proposition 3.2. Rk =
⋃
j ≤k R j = {ω ∈ Λ2 (Ò2m )∗ | rank(ω) ≤ 2k }

Proof. Pick a basis {e i }i=1,...,2m of Ò2m . A form ω, represented in this basis by a matrix J , has rank ≤ 2k if

and only if all (2k + 1) × (2k + 1) minors of J are zero. Hence the set {ω ∈ Λ2 (Ò2m )∗ | rank(ω) ≤ 2k } is

closed. This set obviously contains Rk so it also contains Rk .

Now, given some form σ ∈ {ω ∈ Λ2 (Ò2m )∗ | rank(ω) ≤ 2k } of rank 2k ′ ≤ 2k , pick a basis {e i }i=1,...,2m
such that σ is represented by

©«
M1 0

0 0

ª®¬
where M1 ∈ M2k ′×2k ′ (Ò) is skew-symmetric and non-singular. Consider a sequence σn ∈ Rk given, in the

basis {e i }i=1,...,2m , by

©«
M1 0 0

0 1
nM2 0

0 0 0

ª®®®®¬
.

whereM2 ∈ M2(k−k ′)×2(k−k ′) (Ò) is also skew-symmetric and non-singular. As σn → σ, we have σ ∈ Rk . �

Note that both Rk and Λ2 (Ò2m )∗\Rk are invariant under the action (3.1). Proposition 3.1 implies that

each Rk is an immersed submanifold of Λ2 (Ò2m )∗ and Proposition 3.2 says that the closures Rk form a

stratification satisfying the frontier condition.

R0 ⊂ R1 ⊂ · · · ⊂ Rm = Λ2 (Ò2m )∗

The next theorem improves these results.
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Theorem 3.3. Let

dk = 2(m − k ). (3.3)

Rk is an embedded submanifold of Λ2 (Ò2m )∗ of codimension 1
2 (d

2
k − dk ). Furthermore, the stratification

{Rk }k=0,...,m is locally trivial.

Proof. Fix k ∈ {0, ...,m} and ω ∈ Rk . Pick a basis {e i }i=1,...,2m for Ò2m such that ω is represented by J , as

in (3.2). Take a neighborhood U ⊂ Λ2 (Ò2m )∗ of ω such that every form σ ∈ U is written in {e i }i=1,...,2m as

G =
©«
A B

−BT C

ª®¬
with A ∈ M2k×2k (Ò) skew-symmetric and non-singular, B ∈ M2k×2(m−k ) (Ò) and C ∈ M2(m−k )×2(m−k ) (Ò)

skew-symmetric. Multiplying G on the right by ©«
I −A−1B

0 I

ª®¬ gives

©«
A 0

−BT BTA−1B + C

ª®¬
The rank of this matrix is given by 2(k +k ′) with k ′ equal to the rank of BTA−1B+C . Note that BTA−1B+C is

a 2(m−k )×2(m−k ) skew-symmetric matrix, so it represents a 2-form inÒ2(m−k ) , in the basis {e i }i=2k+1,...,2m .

Consider the stratification of Λ2 (Ò2(m−k ) )∗ given by {R ′
k
}k=0,...,m−k with

R ′k = {ω ∈ Λ
2Ò2(m−k ) | r ank (ω) = 2k }.

Then, the map f defined by

(Λ2 (Ò2k )∗ ∩GL (2k ;Ò))×M2k×2(m−k ) (Ò) × Λ2 (Ò2(m−k ) )∗
f−→ U ⊂ Λ2 (Ò2m )∗

(A,B ,X ) ↦→ ©«
A B

−BT X + BTA−1B

ª®¬
is a diffeomorphism of stratifications, as it satisfies the property: X has rank 2k ′ if and only if f (A,B ,X )

has rank 2(k + k ′).

This proves that {Rk } is a locally trivial stratification and Rk is embedded. Its dimension is 1
22k (2k −

1) + (2k )2(m − k ) + 1
22(m − k ) (2(m − k ) − 1). Hence,

cod im (Rk ) =
1

2
2m (2m − 1) − d im (Rk ) =

1

2
(d 2k − dk )

�
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Fix an element ω ∈ Rk and denote by I so (k ) the isotropy group of the action (3.1) at ω. Consider the

bijective smooth immersion φ given by

GL (2m;Ò)/I so (k )
φ
−→ Rk

A ↦→ A · ω

The map φ makes Rk an immersed submanifold of Λ2 (Ò2m )∗ but, since Rk is embedded, the smooth

structure induced by φ must be the same as the one defined in the proof of Theorem 3.3. To better

understand Rk � GL (2m;Ò)/I so (k ), let us compute I so (k ):

Theorem 3.4. I so (k ) � (Sp (2k ;Ò)×GL (2(m−k );Ò))nM2(m−k )×2k (Ò), where Sp (2k )×GL (2(m−k );Ò)

acts onM2(m−k )×2k in the natural way.

Proof. Pick a basis {e i }i=1,...,2m such that ω is represented by J , as in (3.2). Represent also the elements

of GL (2m;Ò) by matrices using the basis {e i }i=1,...,2m . Then I so (k ) is composed of non-singular 2m × 2m

matrices A such that AT JA = J . Decompose A in blocks as

A =
©«
A1 A2

A3 A4

ª®¬ ,
where A1 is 2k × 2k and the dimensions of the other blocks are determined by those of A1. Then,

AT JA = J ⇔ ©«
AT1 AT3

AT2 AT4

ª®¬ ©«
J2k 0

0 0

ª®¬ ©«
A1 A2

A3 A4

ª®¬ = ©«
J2k 0

0 0

ª®¬⇔
⇔ ©«

AT1 J2kA1 AT1 J2kA2

AT2 J2kA1 AT2 J2kA2

ª®¬ = ©«
J2k 0

0 0

ª®¬ .
This equality implies A1 ∈ Sp (2k ;Ò) and A2 = 0. Since A must be non-singular, A4 ∈ GL (2(m − k );Ò).

One can thus form a short exact sequence

0→M2(m−k )×2k (Ò)
f−→ I so (k )

g
−→ Sp (2k ;Ò) ×GL (2(m − k );Ò) → 0 (3.4)

with

f (A3) =
©«
I 0

A3 I

ª®¬ and g
©«
A1 0

A3 A4

ª®¬ = (A1,A4).
Moreover, the inclusion

Sp (2k ;Ò) ×GL (2(m − k );Ò) ↪→ I so (k )

(A1,A4) ↦→
©«
A1 0

0 A4

ª®¬
provides a right inverse to g , so (3.4) splits and I so (k ) is the semidirect product stated in the theorem. �
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Now let g be an O (2m)-invariant metric on Λ2 (Ò2m )∗ and let NRk → Rk be the normal bundle of Rk with

respect to g . It is a cod im (Rk )-vector bundle. NRk \Rk → Rk is the bundle, with fibre homotopy equivalent

to S cod im (Rk )−1, obtained by removing the zero section from NRk . Using the riemannian exponential map,

one can see NRk as a tubular neighborhood U of Rk inside the open submanifold Λ2 (Ò2m )∗\R k−1. Under

the identification NRk � U , π : NRk → Rk can be seen as a retraction of U onto Rk . In the following, we

will often use the notation NRk to mean both the normal bundle and the tubular neighborhood and also

denote by π both the bundle projection and the retraction.

Proposition 3.5. Λ2 (Ò2m )∗\Rk−1 is the homotopy pushout of Rk
π←− NRk \Rk ↪→ Λ2 (Ò2m )∗\Rk .

Proof. Denote by U = NRk the tubular neighborhood of Rk and consider the pushout

U\Rk Λ2 (Ò2m )∗\Rk

U Λ2 (Ò2m )∗\Rk−1

By Example 2.81, this is also a homotopy pushout. Hence, using the equivalences

U\Rk NRk \Rk

U Rk

π

�

'

and Proposition 2.78, the square

NRk \Rk Λ2 (Ò2m )∗\Rk

Rk Λ2 (Ò2m )∗\Rk−1

π (3.5)

is a homotopy pushout. �

Remark 3.6. GL (2m,Ò) and I so (k ) are semisimple Lie groups1 so they deformation retract to their

maximal compact subgroups (Theorem 2 in [Mos49]). Let us denote by G c the maximal compact subgroup

of a given Lie group G . So GL (2m;Ò)c = O (2m) and, since Sp (2k ) ∩O (2k ) � U (k ), one has I so (k )c =

I so (k ) ∩O (2m) � U (k ) ×O (2(m − k )).

Define also R c
k
B O (2m)/I so (k )c . Using the homotopy equivalences GL (2m;Ò) ' O (2m) and I so (k ) '

I so (k )c , the homotopy long exact sequence of the bundles I so (k ) ↪→ GL (2m;Ò) → Rk and I so (k )c ↪→

O (2m) → R c
k
and the 5-lemma, one checks that Rk ' R ck .

1A semimsimple Lie group is a Lie group whose Lie algebra is semisimple. See section 3.1 of [Hum72] for the definition of
semisimple Lie algebra. GL (n;Ò) and Sp (2n;Ò) are semisimple Lie groups and a finite product of semisimple Lie groups is
semisimple.
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Recall that I so (k ) is the isotropy group of a fixed ω ∈ Rk . Consider the following action of O (2m) on

TωΛ
2 (Ò2m )∗:

A · v = (dA)ωv [A ∈ O (2m), v ∈ TωΛ2 (Ò2m )∗ (3.6)

where (dA)ω : TωΛ2 (Ò2m )∗ → TA∗ωΛ
2 (Ò2m )∗ is the differential of the map

Λ2 (Ò2m )∗ A−→ Λ2 (Ò2m )∗

σ ↦→ A∗σ

Note that (dA)ω sends vectors in TωRk to vectors in TA∗ωRk so, by invariance of the metric g , (dA)ω also

sends vectors in (TωRk )⊥ to vectors in (TA∗ωRk )⊥. In particular, if A ∈ I so (k )c then (dA)ω sends vectors

in (TωRk )⊥ to vectors in (TωRk )⊥ so if we restrict to elements A ∈ I so (k )c and v ∈ (TωRk )⊥, then formula

(3.6) yields an action of I so (k )c on (TωRk )⊥.

Proposition 3.7. LetVk B (TωRk )⊥. Then one has the following diagram:

O (2m) ×I so (k )c Vk NRk
��
R c
k

NRk

R c
k

Rk

�

y

π

'

Proof. The inclusion R c
k
↪→ Rk is an equivalence by Remark 3.6. Consider the following map:

O (2m) ×I so (k )c Vk
f−→ NRk

��
R c
k

[A,v ] ↦→ (dA)ωv

For A ∈ O (2m), (dA)ω restricts to an isomorphism betweenVk and (TA∗ωRk )⊥ so f is well defined and the

restriction of f to each fibre is an isomorphism. It follows that f is a bundle isomorphism. �

To finish this section, let us computeVk . Recall that we defined dk = 2(m − k ).

Theorem 3.8. Under the identification of I so (k )c with U (k ) ×O (dk ), the representationVk of I so (k )c is

isomorphic to Λ2 (Òdk )∗ endowed with the action of U (n) ×O (dk ) given by

(A,B) · σ = B∗σ [(A,B) ∈ U (k ) ×O (dk ), σ ∈ Λ2Òdk .

Proof. Pick a basis {e i }i=1,...,2m of Ò2m such that ω is represented by J , as in (3.2).

J =
©«
J2k 0

0 0

ª®¬
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GivenV ∈ gl(2m),

d

d t

���
t=0
(exp (tV ) · ω) = d

d t

���
t=0
(exp (tV )T Jexp (tV )) =VT J + JV

WriteV =
©«
V1 V2

V3 V4

ª®¬ withV1 a 2k × 2k matrix.

VT J + JV =
©«
VT1 J2k + J2kV1 J2kV2

VT2 J2k 0

ª®¬ .
Since J2k is non-singular,VT1 J2k + J2kV1 spans all the 2k × 2k skew-symmetric matrices and J2kV2 spans

all 2k × 2(m − k ) matrices. Therefore,

TωRk = a (gl(2m))ω =
©«

A B

−BT 0

ª®¬
��� AT = −A .

And so,

Vk �

©«
0 0

0 C

ª®¬
��� CT = −C  � Λ2 (Òdk )∗.

The isotropy action of A ∈ Iso(k )c on M ∈ TωΛ2 (Ò2m )∗ is given by A · M = ATMA and this yields the

action on Λ2Òdk stated in the theorem:

©«
AT1 0

0 AT4

ª®¬ ©«
0 0

0 C

ª®¬ ©«
A1 0

0 A4

ª®¬ = ©«
0 0

0 AT4 CA4

ª®¬ .
�

Remark 3.9. Observe that A4 is the only term that acts on the elements of Vk so Vk is reduced to an

O (dk )-representation.

3.3 Cohomology of Degeneracy Loci

The bundle Λ2T ∗M → M is associated to TM so its structure group is O (2m). By Theorem 2.13,

sections of Λ2T ∗M are in one-to-one correspondence with lifts f of τM (the classifying map of TM ) to the

total space of the universal bundle with fibre Λ2 (Ò2m )∗.

Λ2T ∗M (Λ2 (Ò2m )∗)hO (2m)

M BO (2m)τM

s f (3.7)
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There is an induced stratification of (Λ2 (Ò2m )∗)hO (2m) , given by {(Rk )hO (2m) }k=0,...,m . Moreover, by

definition of f , the image of s is contained in Λ2T ∗M \Rk if and only if the image of f is contained in

(Λ2 (Ò2m )∗)hO (2m) \ (Rk )hO (2m) = (Λ2 (Ò2m )∗ \Rk )hO (2m) .

This section is devoted to defining cohomological obstructions to lifting f to (Λ2 (Ò2m )∗ \Rk )hO (2m) and

finding a method to compute them. Starting with some map f as in (3.7), the existence of a map g

homotopic to f that avoids (Rk )hO (2m) is expressed in the commutativity (up to homotopy) of the following

diagram:

(Λ2 (Ò2m )∗\Rk )hO (2m)

(Λ2 (Ò2m )∗)hO (2m)

M BO (2m)

ι

f

g (3.8)

If g exists, then one has in cohomology f ∗ = g ∗ ◦ ι∗ so the kernel of ι∗ is contained in the kernel of f ∗.

Thus, for g to exist, f ∗ needs to satisfy the equations

f ∗ (x ) = 0 [x ∈ k er (ι∗). (3.9)

The generators of k er (ι∗) can therefore be regarded as cohomology classes which obstruct the existence

of a lifting of f . These will be referred to as the obstruction classes.

Up to degree cod im (Rk ) in cohomology, there are no obstructions to the existence of such a lifting g .

Proposition 3.10. ι is a (cod im (Rk ) − 1)-equivalence. In particular, for degrees < cod im (Rk ), ι∗ is

injective.

Proof. Given n ≤ k , consider the following square:

(NRn\Rn )hO (2m) (Λ2 (Ò2m )∗\Rn )hO (2m)

(Rn )hO (2m) (Λ2 (Ò2m )∗\Rn−1)hO (2m)

in

πn jn

ln

(3.10)

All the spaces are well defined as the fibres are invariant by theO (2m)-action (the tubular neighborhood

NRn\Rn is invariant because the chosen metric g is invariant so the exponential map is equivariant).

Using the arguments of Proposition 3.5 and Example 2.81, one can see that (3.10) is a homotopy pushout.
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(NRn\Rn )hO (2m)
πn−−→ (Rn )hO (2m) is a bundle with fibre homotopy equivalent to S cod im (Rn )−1, so by the

exact sequence of this bundle, πn is a (cod im (Rn ) − 1)-equivalence. Then, Theorem 2.79 implies that jn
is also a (cod im (Rn ) − 1)-equivalence.

Now, note that dk = 2(m − k ) ≤ dn for n ≤ k , so cod im (Rk ) = 1
2dk (dk − 1) ≤ cod im (Rn ) for n ≤ k .

Note also that ι = j0 ◦ j1 ◦ · · · ◦ jk . It follows that j0, ..., jk are all (cod im (Rk ) − 1)-equivalences and hence,

so is ι. Thus, in cohomology, ι∗ is an isomorphism up to degree cod im (Rk ) − 2 and injective in degree

cod im (Rk ) − 1. �

Remark 3.11. Proposition 3.10 could also be proved using transversality. Indeed, let n < cod im (Rk )

and take some map f : Sn → Λ2 (Ò2m )∗. Theorem 3.2.5 in [Hir76] implies that there is a smooth map g

homotopic to f which is transversal to all submanifodls R0, ..., Rk . By definition of transversality, it follows

that the image of g does not intersect any of these sets, therefore it is contained in Λ2 (Ò2m )∗\Rk . Thus,

the inclusion Λ2 (Ò2m )∗\Rk ↪→ Λ2 (Ò2m )∗ is a (cod im (Rk ) − 1)-equivalence. Using the exact sequences

of the bundles Λ2 (Ò2m )∗\Rk ↪→ (Λ2 (Ò2m )∗\Rk )hO (2m) → BO (2m) and Λ2 (Ò2m )∗ ↪→ (Λ2 (Ò2m )∗)hO (2m) →

BO (2m) and the 5-lemma, one concludes that ι is also a (cod im (Rk ) − 1)-equivalence.

In degree cod im (Rk ), however, obstructions appear and if the Euler classes 2 en ∈ H cod im (Rn ) ((Rn )hO (2m) )

of the normal bundles (NRn )hO (2m) → (Rn )hO (2m) are not zero-divisors for n ≥ k , then the obstructions

can be computed using the following maps ψn .

(Rn )hO (2m) (Λ2 (Ò2m )∗\Rn−1)hO (2m)

(Λ2 (Ò2m )∗)hO (2m)

ln

ψn

Theorem 3.12. Suppose that for every n ≥ k , en ∈ H cod im (Rn ) ((Rn )hO (2m) ) is not a zero-divisor. Then, in

H cod im (Rk ) ((Λ2 (Ò2m )∗)hO (2m) ),

k er (ι∗) =
m⋂

n=k+1

k er (ψ∗n )

Moreover, in degree cod im (Rk ), d imÚ2 (k er (ι∗)) = 1, and therefore k er (ι∗) is generated by a single

non-zero class which will be denoted by ok .

Proof. Given n ≥ k , consider the homotopy pushout:

(NRn\Rn )hO (2m) (Λ2 (Ò2m )∗\Rn )hO (2m)

(Rn )hO (2m) (Λ2 (Ò2m )∗\Rn−1)hO (2m)

in

πn jn

ln

2Since the cohomology coefficients are Ú2, by Euler class one means the top Stiefel Whitney class. It is however easier just
saying "Euler class" and, due to Proposition 2.52, this terminology should cause no confusion.
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Passing to cohomology, Proposition 2.82 then gives the Mayer-Vietoris sequence

· · · → H ∗ ((Λ2 (Ò2m )∗\Rn−1)hO (2m) )
(l ∗n ,j ∗n )−−−−−→ H ∗ ((Rn )hO (2m) ) ⊕ H ∗ ((Λ2 (Ò2m )∗\Rn )hO (2m) ) →

π∗n−i ∗n−−−−→ H ∗ ((NRn\Rn )hO (2m) ) → · · · (3.11)

Consider also the Gysin Sequence

· · · → H ∗−cod im (Rn ) ((Rn )hO (2m) )
∪en−−−→ H ∗ ((Rn )hO (2m) )

π∗n−−→ H ∗ ((NRn\Rn )hO (2m) ) →

→ H ∗−cod im (Rn )+1 ((Rn )hO (2m) ) → · · · (3.12)

where ∪en denotes the map given by cup product with en . Since en is not a zero divisor, the map

∪en : H ∗−cod im (Rn ) ((Rn )hO (2m) ) → H ∗ ((Rn )hO (2m) )

is injective for ∗ ≥ cod im (Rn ). Then, exactness of (3.12) implies that π∗n is surjective for ∗ ≥ cod im (Rn ).

This turns the Mayer-Vietoris sequence (3.11) into a short exact sequence for each degree ∗ ≥ cod im (Rn ):

0→ H ∗ ((Λ2 (Ò2m )∗\Rn−1)hO (2m) )
(l ∗n ,j ∗n )−−−−−→ H ∗ ((Rn )hO (2m) ) ⊕ H ∗ ((Λ2 (Ò2m )∗\Rn )hO (2m) ) →

π∗n−i ∗n−−−−→ H ∗ ((NRn\Rn )hO (2m) ) → 0 (3.13)

In particular, the pair (l ∗n , j ∗n ) is injective for ∗ ≥ cod im (Rn ). As cod im (Rk ) ≥ cod im (Rn ) for all n ≥ k ,

the pair (l ∗n , j ∗n ) is injective in degree cod im (Rk ).

Starting with n = k +1, it follows that, in degree cod im (Rk ), one has k er (ι∗) = k er (lk+1◦ ι∗)∩k er (jk+1◦

ι∗). Note that ι ◦ lk+1 = ψk+1, so k er (ι∗) = k er (ψ∗k+1) ∩ k er (j
∗
k+1 ◦ ι

∗).

(Λ2 (Ò2m )∗\Rk+2)hO (2m)

(Rk+2)hO (2m) (Λ2 (Ò2m )∗\Rk+1)hO (2m)

(Rk+1)hO (2m) (Λ2 (Ò2m )∗\Rk )hO (2m)

(Λ2 (Ò2m )∗)hO (2m)

jk+2

lk+2

jk+1

lk+1

ψk+1
ι
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The result now follows from applying the same reasoning to k er (j ∗k+1 ◦ ι
∗) and then to the maps that

follow. For instance, in the next step, one has k er (j ∗k+1 ◦ ι
∗) = k er (l ∗k+2 ◦ j

∗
k+1 ◦ ι

∗) ∩ k er (j ∗k+2 ◦ j
∗
k+1 ◦ ι

∗)

and ι ◦ jk+1 ◦ lk+2 = ψk+2. Hence, k er (ι∗) = k er (ψ∗k+1) ∩ k er (ψ
∗
k+2) ∩ k er (j

∗
k+2 ◦ j

∗
k+1 ◦ ι

∗). In the last step,

one has k er (ι∗) = ⋂m−1
n=k+1 k er (ψ∗n ) ∩ k er (j ∗m−1 ◦ · · · ◦ j

∗
k+1 ◦ ι

∗), but (Λ2 (Ò2m )∗\Rm−1)hO (2m) = (Rm )hO (2m)
and j ∗m−1 ◦ · · · ◦ j ∗k+1 ◦ ι

∗ = ψ∗m .

To prove that d imÚ2 (k er (ι∗)) = 1 (in cohomology degree cod im (Rk )), we may apply Lemma 3.13

below to short exact sequence (3.13) with n = k to show that d imÚ2 (k er (j ∗k )) = d imÚ2 (k er (π∗k )).

From Gysin sequence (3.12) also with n = k , it follows that k er (π∗k ) = Im (∪ek ) = 〈ek 〉 in cohomology

of dimension cod im (Rk ), hence d imÚ2 (k er (j ∗k )) = 1. To conclude, note that ι = j0 ◦ j1 ◦ · · · ◦ jk and j ∗n are

isomorphisms in degree cod im (Rk ) for n < k (this was observed in the last paragraph of the proof of

Proposition 3.10). Therefore, d imÚ2 (k er (ι∗)) = d imÚ2 (k er (j ∗k )) = 1 �

Lemma 3.13. If 0→ A
(l ,j )
−−−→ B ⊕ C π−i−−−→ D → 0 is a short exact sequence of vector spaces over a field K ,

then d imK (k er (j )) = d imK (k er (π)).

Proof. A short exact sequence as the one in the statement yields a pullback of the form

A B

C D

j

l

π

i

(3.14)

By the universal property of the pullback there is a map α : k er (π) → A such that l ◦ α is the inclusion

k er (π) ↪→ B and j ◦ α = 0.

k er (π)

A B

C D

0

\α

j

l

π

i

Using again the universal property of the pullback (3.14), one can check that the left square of the next

diagram is also a pullback.

k er (π) A B

0 C D

α

j

l

π

i

The universal property of the pullback for the left square is the universal property for the kernel of j .

Therefore, k er (π) � k er (j ). �
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Theorem 3.12 transforms the problem of computing k er (ι∗) into one of solving the equations ψ∗n (x ) = 0

for all n > k . In [FR04], the authors also use the equations ψ∗n (x ) = 0 to compute the obstruction

classes (the generators of k er (ι∗)) but in a more general context. The authors refer to these equations

as the restriction equations and refer to the obstruction classes as Thom polynomials. In the context

considered in this chapter, the restriction equations are not very hard to solve and the solution is given in

Theorem 3.17. However, before solving the equations, one must first check that we are indeed in the

conditions of Theorem 3.12, meaning that the Euler classes are not zero-divisors. That is the goal of next

section.

3.4 The Euler classes

The Euler class of (NRk )hO (2m) → (Rk )hO (2m) can be easily computed with an appropriate description

of the normal bundle:

Lemma 3.14. There is a bundle morphism

EI so (k )c ×I so (k )c Vk (NRk )hO (2m)

BI so (k )c (Rk )hO (2m)
'

Proof. By Proposition 3.7, R c
k
' Rk . Using the 5-lemmawith the long exact sequences of the bundles R c

k
↪−→

(R c
k
)hO (2m) → BO (2m) and Rk ↪−→ (Rk )hO (2m) → BO (2m), one can show that (R c

k
)hO (2m) ' (Rk )hO (2m) .

Therefore, one has the following bundle morphism:(
NRk

��
(R c

k
)

)
hO (2m)

(NRk )hO (2m)

(R c
k
)hO (2m) (Rk )hO (2m)

y

'

On the other hand,(
NRk

��
(R c

k
)

)
hO (2m)

' EO (2m) ×O (2m)
(
O (2m) ×I so (k )c Vk

)
' EO (2m) ×I so (k )c Vk '

' EI so (k )c ×I so (k )c Vk

The first equivalence follows from Proposition 3.7, the second from point 4 of Proposition 2.20 and the

third from Proposition 2.35. Also from Proposition 2.35 and point 5 of Proposition 2.20 it follows that

(R ck )hO (2m) ' EO (2m) ×O (2m) O (2m)/I so (k )
c ' BI so (k )c

�
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Recall that dk = 2(m − k ). By Proposition 2.38 and Remark 3.6, BI so (k )c ' BU (k ) × BO (dk ) so, from

Theorems 2.44 and 2.61, it follows that

H ∗ ((Rk )hO (2m) ) � H ∗ (BI so (k )c) � Ú2 [c1, ..., ck ,w1, ...,wdk ] . (3.15)

Using this identification, one can write a formula for ek .

Theorem 3.15. The Euler class of (NRk )hO (2m) → (Rk )hO (2m) is the Schur polynomial of the partition

δ = (dk − 1, dk − 2, ..., 1, 0) in the Stiefel-Whitney roots t1, ..., tdk or, equivalently,

ek = det

©«

wdk−1 wdk . . . w2dk−2

wdk−3 wdk−2 . . . w2dk−4
...

...
. . .

...

w−dk+1 w−dk+2 . . . 1

ª®®®®®®®¬
.

Proof. By the pullback formula for the Euler class and Lemma 3.14, the goal is to compute the Euler class

of EI so (k )c ×I so (k )c Vk → BI so (k )c . Take π to be the projection

BI so (k )c � BU (k ) × BO (dk ) → BO (dk )

and consider Λ2 (Òdk )∗ endowed with the action of O (dk ) given by

A · ω = A∗σ [A ∈ O (dk ),σ ∈ Λ2 (Òdk )∗.

Remark 3.9 implies the existence of the next bundle map

EI so (k )c ×I so (k )c Vk EO (dk ) ×O (dk ) Λ2 (Òdk )∗

BI so (k )c BO (dk )π

So one may compute the Euler class of EO (dk ) ×O (dk ) Λ2 (Òdk )∗ → BO (dk ) and pull it back with π∗.

Now consider the inclusion of the diagonal matrices (Ú2)dk
j
↪−→ O (dk ). The restriction of the action on

Λ2 (Òdk )∗ to this subgroup yields another square of bundles:

(EÚ2)dk ×(Ú2)dk Λ
2 (Òdk )∗ EO (dk ) ×O (dk ) Λ2 (Òdk )∗

(BÚ2)dk BO (dk )
j

Observe that, by Proposition 2.43, j ∗ is injective on cohomology and, with the identificationsH ∗ (BO (dk )) =

Ú2 [w1, ...,wdk ] and H ∗ ((BÚ2)dk ) = Ú2 [t1, ..., tdk ], j ∗ sends wi to the i -th elementary symmetric polynomial

in the variables t1, ..., tdk . It is therefore sufficient to compute the Euler class of (EÚ2)dk ×(Ú2)dk Λ
2 (Òdk )∗ →

43



(BÚ2)dk and write it in terms of the elementary symmetric polynomials.

Λ2 (Òdk )∗ has a basis given by {vi j }i<j where vi j is the skew-symmetric dk × dk matrix with zeros

everywhere except in positions (i , j ) and (j , i ) where it has a 1 and a −1, respectively. Given an element

A ∈ (Ú2)dk , the action of A on vi j is given by

A · vi j = Avi jAT .

Hence, depending on A, the action yields either vi j or −vi j . Given s ∈ {1, ..., dk }, the generator of the

s-th factor of (Ú2)dk is the diagonal matrix As = d i ag (1, ...,−1, ..., 1) with 1’s along the diagonal, except in

the s-th position, where it has a −1. One has, in fact,

As · vi j =


−vi j , if s = i or j

vi j , otherwise

Therefore, for each (i , j ) with i < j , the subspace spanned by vi j is a one dimensional subrepresentation

that is acted on by Ú2 × Ú2, the i -th and j -th factors of (Ú2)dk . Moreover, the map

Ú2 × Ú2
+−→ Ú2

(a, b) ↦→ a + b

reduces this action of Ú2 × Ú2 on Span (vi j ) to the (only) non-trivial action of Ú2 on Span (vi j ) � Ò.

Considering Ò endowed with the non-trivial action of Ú2, the + map is covered by a map of bundles:

(EÚ2)2 ×Ú2×Ú2 Span (vi j ) EÚ2 ×Ú2 Ò

(BÚ2)2 BÚ2
+

Furthermore, it can easily be checked that EÚ2 ×Ú2 Ò � γ1. Therefore, with H ∗ (BÚ2) = Ú2 [t ], the

Euler class of the bundle on the left is +∗ (t ).

Since Ú2 is discrete, Proposition 2.39 implies that π1 (BÚ2) = Ú2 and the map π1 ((BÚ2)2) → π1 (BÚ2)

induced by + is just Ú2 × Ú2
+→ Ú2. Since π1 (BÚ2) = H1 (BÚ2), +∗ is the dual of + and it follows that

+∗ (t ) = t1 + t2, where H ∗ ((BÚ2)2) = Ú2 [t1, t2].

Therefore, the Euler class of the vi j summand is t i + t j . Since Vk =
⊕

i<j Span (vi j ), the bundle

(EÚ2)dk ×(Ú2)dk Vk decomposes as a Whitney sum of line bundles (EÚ2)dk ×(Ú2)dk Span (vi j ) for i < j and

its Euler class is thus the product of the Euler classes of the summands:
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ek =
dk∏
i ,j=1
i<j

(t i + t j )

It follows from Proposition 2.75 that such a product is equal to sδ (t1, ..., tdk ) and so the result follows

from substituting the i -th elementary symmetric polynomial with wi in the determinantal formula (2.2). �

Since the cohomology ring in (3.15) is a polynomial ring and the Euler class ek is clearly non-zero, it

follows that ek is not a zero divisor and therefore the hypothesis of Theorem 3.12 is satisfied.

3.5 Computing the Obstructions

Recall that, by Theorem 3.12, to compute the obstruction class ok , one must solve the restriction

equations ψ∗n (x ) = 0 for all n > k . To do so, we first need the following lemma:

Lemma 3.16. Recall that dk = 2(m − k ). One has isomorphisms

H ∗ ((Rk )hO (2m) ) � Ú2 [c1, ..., ck ,w1, ...,wdk ]

H ∗ ((Λ2 (Ò2m )∗)hO (2m) ) � Ú2 [w1, ...,w2m ] .

Under these identifications, the maps ψ∗k are given by

ψ∗k : Ú2 [w1, ...,w2m ] → Ú2 [c1, ..., ck ,w1, ...,wdk ] (3.16)

w ↦→ cw

where c and w denote the total characteristic classes.

Proof. The first isomorphism is the one in (3.15). The second one comes from the fact that the fibres

of the bundle (Λ2 (Ò2m )∗)hO (2m) → BO (2m) are vector spaces, hence contractible, so the total space is

homotopy equivalent to BO (2m) by the long exact sequence of the bundle. Thus, one has

H ∗ ((Λ2 (Ò2m )∗)hO (2m) ) � H ∗ (BO (2m)) � Ú2 [w1, ...,w2m ],

the second isomorphism coming from Theorem 2.44.

To prove the last claim, observe that the following square commutes, by Corollary 2.37.

(Rk )hO (2m) (Λ2 (Ò2m )∗)hO (2m)

BI so (k )c BO (2m)

ψk

' '
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Denote also by ψk : BI so (k )c ↪→ BO (2m) the bottom map and note that ψk factors through the

composition of inclusions:

BI so (k )c � BU (k ) × BO (dk ) BO (2m)

BO (2k ) × BO (dk )

ψk

αk βk (3.17)

Writing H ∗ (BO (2k ) × BO (dk )) = Ú2 [v1, ...,v2k ,w1, ...,wdk ], v = 1 + v1 + v2 + ... and w = 1 +w1 +w2 + ...,

Proposition 2.67 implies that β ∗k (w ) = vw and Proposition 2.66 implies that α∗k (v ) = c, so composing β ∗k
and α∗k , the result follows. �

Finally, we are ready to compute the obstructions.

Theorem 3.17. For each 0 < k ≤ m, the kernel of ι∗ in cohomology of degree cod im (Rk ) is generated by

ok = sδ (t1, ..., tdk ) = det

©«

wdk−1 wdk . . . w2dk−2

wdk−3 wdk−2 . . . w2dk−4
...

...
. . .

...

w−dk+1 w−dk+2 . . . 1

ª®®®®®®®¬
where wi = 0 for i > 2m or i < 0 and dk = 2(m − k ).

This looks exactly like the formula for the Euler class. The only difference is that in the Euler class, the

elements wi for dk < i ≤ 2m are zero, while those in the obstruction class are not.

Proof. By Theorem 3.12, one only needs to check that ψ∗n (ok ) = 0 for all k + 1 ≤ n ≤ 2m. For such an

n > k , by (3.16), one has

ψ∗n (ok ) = det

©«

(cw )dk−1 (cw )dk . . . (cw )2dk−2
(cw )dk−3 (cw )dk−2 . . . (cw )2dk−4
...

...
. . .

...

(cw )−dk+1 (cw )−dk+2 . . . 1

ª®®®®®®®¬
. (3.18)

Note that ψ∗n (ok ) ∈ H cod im (Rk ) ((Rn )hO (2m) ), so for all instances of wi in (3.18), one has wi = 0 for i > dn =

2(m − n). Denote the matrix in (3.18) by M . The element of M in position (i , j ) is of the form (cw )dk−2i+j .

By the product formula,

(cw )dk−2i+j =
(dk−2i+j )/2∑

s=0

cswdk−2i+j−2s = wdk−2i+j + c1wdk−2i+j−2 + ...
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Thus, M can be written as a product of matrices:

M =

©«

1 c1 c2 · · · cdk

0 1 c1 · · · cdk−1

0 0 1 · · · cdk−2
...
...

...
. . .

...

0 0 · · · · · · 1

ª®®®®®®®®®®¬

©«

wdk−1 wdk . . . w2dk−2

wdk−3 wdk−2 . . . w2dk−4
...

...
. . .

...

w−dk+1 w−dk+2 . . . 1

ª®®®®®®®¬
(3.19)

The first matrix of the product (3.19) has determinant equal to 1 so

det (M ) = det

©«

wdk−1 wdk . . . w2dk−2

wdk−3 wdk−2 . . . w2dk−4
...

...
. . .

...

w−dk+1 w−dk+2 . . . 1

ª®®®®®®®¬
(3.20)

But wi = 0 for i > dn and n > k =⇒ dn < dk , therefore wi = 0 for i ≥ dk − 1. Hence, the first row

of the matrix in (3.20) is composed of only zeroes and so has zero determinant. It then follows that

ψ∗n (ok ) = det (M ) = 0. �

Recall diagram (3.7):

Λ2T ∗M (Λ2 (Ò2m )∗)hO (2m)

M BO (2m)τM

s f

Here s was any section, f was the map to the universal bundle induced by s and τM was the classifying

map of TM . We saw in (3.9) that f ∗ (ok ) = 0 was a necessary condition for the existence of a lift of f to

(Λ2 (Ò2m )∗\Rk )hO (2m) , i.e, a map homotopic to f that avoids Rk . Under the equivalence (Λ2 (Ò2m )∗)hO (2m) '

BO (2m), condition f ∗ (ok ) = 0 is given by τ∗M (ok ) = 0. But, by the properties of the Stiefel-Whitney classes,

τ∗M (wi ) = wi (M ) where the latter is the Stiefel-Whitney class of TM . Therefore, τ∗M (ok ) = 0 translates into

det

©«

wdk−1 (M ) wdk (M ) . . . w2dk−2 (M )

wdk−3 (M ) wdk−2 (M ) . . . w2dk−4 (M )
...

...
. . .

...

w−dk+1 (M ) w−dk+2 (M ) . . . 1

ª®®®®®®®¬
= 0 (3.21)

A trivial first observation about condition (3.21) is that, as one would expect, if the manifold admits a

non-degenerate 2-form - or equivalently, an almost complex structure - then the classes are automatically
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zero. This can be seen using the fact that, on such manifolds, wi = 0 for odd i 3. Odd columns of the

matrix in (3.21) have only odd classes so certainly there will be columns of zeroes and so the determinant

will be zero.

Consider the bundle Λ2T ∗M → M and let Rk = {ωx ∈ Ω2 (TxM ) | x ∈ M , r ank (ωx ) = 2k }. Hopefully,

this abuse of notation will not cause confusion. Equation (3.21) gives an obstruction to the existence of a

section avoiding Rk and it is valid for any manifold M . But when M is compact, the classes τ∗M ok gain

another interpretation. They are actually the Poincaré duals of the degeneracy loci Rk . Let us now show

that.

Lemma 3.18. Rk is an embedded submanifold and the family {Rk } is a locally trivial stratification. Moreover,

given a section s : M → Λ2T ∗M transversal to the sets Rk , the spaces (Rk )M B s−1 (Rk ) ⊂ M are also

embedded submanifolds and {(Rk )M } is also a locally trivial stratification.

Proof. Local coordinates for Rk come from a trivializing cover of Λ2T ∗M and local coordinates for the fibre

Rk ⊂ Λ2 (Ò2m )∗. By Theorem 3.3, the fibre Rk ⊂ Λ2 (Ò2m )∗ is an embedded submanifold of Λ2 (Ò2m )∗, so

Rk ⊂ Λ2T ∗M is an embedded submanifold of Λ2T ∗M . {Rk } is a locally trivial stratification by Proposition

2.86. By Theorem 1.3.3 of [Hir76], (Rk )M is an embedded submanifold of M and by Proposition 2.87,

{(Rk )M } forms a locally trivial stratification of M . �

By Theorem 3.2.5 of [Hir76], generically, a section s is transversal to the spaces Rk .

Theorem 3.19. The sets (Rk )M give rise to homology classes [(Rk )M ] ∈ H2m−cod im (Rk ) (M ). Moreover,

letting D : H∗ (M ) → H 2m−∗ (M ) denote the Poincaré duality map, one has

D ( [(Rk )M ]) = τ∗M ok (3.22)

Proof. By Lemma 3.18, Theorem 2.88 and the fact that cod im (Rk−1) − cod im (Rk ) ≥ 2, it follows that

(Rk )M give rise to homology classes. To prove (3.22), we will show that both D ( [(Rk )M ]) and τ∗M ok are

the restriction of the Thom class of N (Rk )M → M to H cod im (Rk ) (M ).

To avoid cluttering the proof, let us reduce the notation XhO (2m) to just Xh and write ∗ for the de-

gree cod im (Rk ) in cohomology. Let us denote by uNh ∈ H ∗ ((NRk )h, (NRk \Rk )h) the Thom class of

(NRk \Rk )h → (Rk )h and denote by Tk ∈ H ∗ (BO (2m)) the image of uNh by the composition

H ∗ ((NRk )h, (NRk \Rk )h) � H ∗ ((Λ2 (Ò2m )∗\R k−1)h, (Λ2 (Ò2m )∗\R k )h) →

→ H ∗ ((Λ2 (Ò2m )∗\R k−1)h) � H ∗ ((Λ2 (Ò2m )∗h)) � H
∗ (BO (2m)).

We begin by showing that τ∗M ok is the restriction of the Thom class of N (Rk )M → M toH ∗ (M ). First note

that ok ∈ H ∗ (BO (2m)) is equal toTk . Indeed, recall that ok is the generator of k er (ι∗)∩H cod im (Rk ) (BO (2m)),
3This is a consequence of the fact that an almost complex structure gives TM a structure of complex vector bundle. Then, point

2 of Proposition 2.59 implies that wi = 0 for odd i .
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which is one-dimensional by Theorem 3.12. Recall also the inclusions jk : (Λ2 (Ò2m )∗\R k )h ↪→ (Λ2 (Ò2m )∗\R k−1)h .

One has j ∗k (Tk ) = 0 by exactness of the following sequence

H ∗ ((Λ2 (Ò2m )∗\R k−1)h, (Λ2 (Ò2m )∗\R k )h) → H ∗ ((Λ2 (Ò2m )∗\R k−1)h)
j ∗
k−→ H ∗ ((Λ2 (Ò2m )∗\R k )h), (3.23)

uNh ↦→ Tk

Since ι = j0 ◦ · · · ◦ jk , one has ι∗ (Tk ) = 0. This means that either Tk = 0 or Tk = ok . By exactness

of (3.23) and the fact that uNh generates H ∗ ((Λ2 (Ò2m )∗\R k−1)h, (Λ2 (Ò2m )∗\R k )h), it suffices to show that

j ∗k is not injective to see that Tk , 0. Indeed, if j ∗k were injective then ι∗ would too be injective because

ι = j0 ◦ · · · ◦ jk and the maps j ∗n for n < k are injective in degree cod im (Rk ). However, ι∗ is not injective.

Take h : Λ2T ∗M → (Λ2 (Ò2m )∗)h a bundle map over τM and denote by uN the Thom class of NRk → Rk .

The restriction of h to the tubular neighborhood NRk yields a bundle map between NRk and (NRk )h .

Functoriality of the Thom class implies that h∗ (uNh ) = uN . This, together with the commutativity of (3.24)

implies that h∗ok is the restriction of uN to H ∗ (Λ2T ∗M \Rk−1).

uNh H ∗ ((Λ2 (Ò2m )∗\Rk−1)h, (Λ2 (Ò2m )∗\Rk )h) H ∗ ((Λ2 (Ò2m )∗\Rk−1)h) ok

uN H ∗ (Λ2T ∗M \Rk−1, Λ2T ∗M \Rk ) H ∗ (Λ2T ∗M \Rk−1) h∗ok

h∗ h∗ (3.24)

Now, denoting by uNM the Thom class of N (Rk )M → M , one applies the same reasoning using the

section s to map h∗ok to the restriction of uNM to H ∗ (M \Rk−1). Since s is transversal to every stratum,

there is a bundle map

N (Rk )M NRk

(Rk )M Rk

s |N (Rk )M

s | (Rk )M

Hence s∗ (uN ) = uNM . Then, a commuting diagram as (3.24) shows that s∗h∗ok is the restriction of uNM

to H ∗ (M \Rk−1).

uN H ∗ (Λ2T ∗M \Rk−1, Λ2T ∗M \Rk ) H ∗ (Λ2T ∗M \Rk−1) h∗ok

uNM H ∗ (M \(Rk−1)M ,M \(Rk )M ) H ∗ (M \(Rk−1)M ) s∗h∗ok

s∗ s∗ (3.25)

Because cod im (Rk−1) > cod im (Rk )+1, the restriction map H ∗ (M ) → H ∗ (M \Rk−1) is an isomorphism.

And, under the identification H ∗ (M ) � H ∗ (M \Rk−1), s∗h∗ok translates to τ∗M ok . Finally, use Theorem

2.89 with K = (R k )M and L = (R k−1)M to conclude that D ( [(Rk )M ]) is also the restriction of uNM to

H ∗ (M \Rk−1) � H ∗ (M ). �
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3.6 An Example

Computing the determinant in (3.21) yields in general intricate equations relating the wi ’s. However,

for low cohomology degrees, the formulas turn out to be relatively simple. For instance, for om−1 the

obstruction in degree 1, one has om−1 = w1. Note that τ∗M o1 = w1 (M ) is zero if and only if M is orientable
4. The next obstruction in higher degree is τ∗M om−2 ∈ H 6 (M ;Ú2),

om−2 = det

©«

w3 w4 w5 w6

w1 w2 w3 w4

0 1 w1 w2

0 0 0 1

ª®®®®®®®¬
= w 2

3 +w1w5 +w1w2w3 +w
2
1w4.

If the manifoldM is orientable,w1 (M ) = 0, thus there is no obstruction in degree 1 and τ∗M om−2 = w3 (M )2.

The next proposition proves that M = Gr +3 (Ò
7), the grassmannian of oriented 3-planes in Ò7, is an

orientable 12-manifold with w3 (M )2 , 0. Hence, every 2-form on this manifold cannot have rank greater

than 2(m − 2) = 8 everywhere.

Proposition 3.20. M = Gr +3 (Ò
7) is an orientable 12-manifold with w3 (M )2 , 0.

Proof. The fact that M = Gr +3 (Ò
7) is an orientable 12-manifold is an easy check. The proof of the identity

w3 (M )2 , 0 can be subdivided into two main steps:

1. w3 (M )2 , 0 iff w3 (Gr3 (Ò7))2 is not a multiple of w1 (γ3 (Ò7)):

This follows from a version of the Gysin sequence for double coverings and Ú2 coefficients, found in

Corollary 12.3 of [MS74]. The sequence applied to the covering Gr +3 (Ò7)
π−→ Gr3 (Ò7) takes the form

· · · → H ∗−1 (Gr3 (Ò7))
∪w1 (γ3 (Ò7))−−−−−−−−−−→ H ∗ (Gr3 (Ò7))

π∗−−→ H ∗ (M ) → H ∗ (Gr3 (Ò7)) → · · ·

As k er (π∗) = Im (∪w1 (γ3 (Ò7))) = 〈w1 (γ3 (Ò7))〉, given x ∈ H ∗ (Gr3 (Ò7)), π∗ (x ) = 0 iff x is a multiple

of w1 (γ3 (Ò7)). Now, note that there is a bundle map

TGr +3 (Ò
7) TGr3 (Ò7)

Gr +3 (Ò
7) Gr3 (Ò7)π

implying that π∗w3 (Gr3 (Ò7)) = w3 (M ).

2. w3 (Gr3 (Ò7))2 is not a multiple of w1 (γ3 (Ò7)):

Denote by wi the i -th Stiefel-Whitney class of γ3 → BO (3). To prove 2., we will show that

w3 (Gr3 (Ò7)) = w3 (γ3 (Ò7)) +w1 (γ3 (Ò7))3.

4A proof of this fact can be found in Theorem 12.1 of [Hus94].
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This is sufficient because the inclusion Gr3 (Ò7) ↪→ BO (3) induces an isomorphism in cohomology

of degree 6 andw3 is not a multiple ofw1 and thusw3 (γ3 (Ò7)) is not a multiple ofw1 (γ3 (Ò7)). Hence,

w3 (Gr3 (Ò7)) is also not a multiple of w1 (γ3 (Ò7)).

In the end of page 4 and in page 5 of [Alb], the author shows that w1 (Gr3 (Ò7) = w1 (γ3 (Ò7)) and

w2 (Gr3 (Ò7)) = w2 (γ3 (Ò7)) +w1 (γ3 (Ò7))2. Moreover, by Theorem 5.12 of [MT91], one has

Sq1 (w2) = w3 +w1w2

Sq1 (w1) = w 2
1

where Sq1 denotes the first Steenrod square5 and H ∗ (BO (3),Ú2) = Ú2 [w1,w2,w3]. By naturality of

the Steenrod squares, it follows that

Sq1 (w2 (Gr3 (Ò7))) = w3 (Gr3 (Ò7)) +w1 (Gr3 (Ò7))w2 (Gr3 (Ò7)),

Sq1 (w2 (γ3 (Ò7))) = w3 (γ3 (Ò7)) +w1 (γ3 (Ò7))w2 (γ3 (Ò7)),

Sq1 (w1 (γ3 (Ò7))) = w1 (γ3 (Ò7))2.

Therefore, one has

w3 (Gr3 (Ò7)) = Sq1 (w2 (Gr3 (Ò7))) −w1 (Gr3 (Ò7))w2 (Gr3 (Ò7))

= Sq1 (w2 (γ3 (Ò7)) +w1 (γ3 (Ò7))2) −w1 (γ3 (Ò7)) (w2 (γ3 (Ò7)) +w1 (γ3 (Ò7))2)

= Sq1 (w2 (γ3 (Ò7))) + Sq1 (w1 (γ3 (Ò7))2) −w1 (γ3 (Ò7))w2 (γ3 (Ò7)) −w1 (γ3 (Ò7))3

= w3 (γ3 (Ò7)) +w1 (γ3 (Ò7))w2 (γ3 (Ò7)) −w1 (γ3 (Ò7))w2 (γ3 (Ò7)) −w1 (γ3 (Ò7))3

= w3 (γ3 (Ò7)) +w1 (γ3 (Ò7))3. (Ú2 coefficients)

The first to last equality follows from the fact that Sq1 (w1 (γ3 (Ò7))2) = 0.

�

5See chapter 4.L. of [Hat02] for a definition of Steenrod squares and basic properties.
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Chapter 4

Thom Polynomials of Smooth Maps to

an Almost Symplectic Manifold

4.1 Introduction

In the last chapter, we computed the Poincaré duals of homology classes [(Rk )M ] ∈ H∗ (M ) given by

degeneracy loci of 2-forms. To compute these Poincaré dual classes, we first defined and computed, for

each k ∈ {0, ...m}, certain cohomological obstructions τ∗M ok , whose non-triviality obstructed the existence

of sections which have everywhere rank greater than 2k . Then, we proved that each class τ∗M ok was in

fact the Poincaré dual of [(Rk )M ]. Although the cohomological obstruction τ∗M ok turned out to be equal

to the Poincaré dual of a degeneracy locus, the definition of τ∗M ok was independent of the existence of

[(Rk )M ]. In this chapter, we will consider the following problem: let M be a 2m-manifold, N a 2n-manifold

with 2m ≤ 2n and i : M → N a smooth map. Endow N with an almost symplectic form ω (meaning a

non-degenerate 2-form not necessarily closed). Take the bundle Hom (TM , i ∗T N ) → M 1 and consider

the following sets, for l ∈ {0, ..., 2m} and k ∈ {0, ..., bl /2c}:

S l ,k = {φ : TxM → Ti (x )N | r ank (φ) = l , r ank (φ∗ω) = 2k }

These sets may not give rise to homology classes, but one can nonetheless define and compute,

analogously to chapter 3, cohomological obstructions to the existence of sections of Hom (TM , i ∗T N )

that avoid the sets S l ,k . That is the goal of the present chapter. To do so, we will follow the same methods

as in the previous chapter, starting by studying the typical fibre Hom (Ò2m ,Ò2n ) of the bundle in question.

1Hom (TM , i ∗T N ) → M is the pullback by (i dM , i ) : M → M × N of the bundle Hom (TM ,T N ) → M × N . This bundle in turn is
the one associated to TM ×T N with fibre Hom (Ò2m ,Ò2n ) and action of GL (2n;Ò) ×GL (2m;Ò) given by (A,B) · φ = AφB−1 for all
(A,B) ∈ GL (2n;Ò) ×GL (2m;Ò) and φ ∈ Hom (Ò2m ,Ò2n ).
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4.2 The Homogeneous Spaces S l ,k and their Normal Bundles

Letω be a non-degenerate 2-form onÒ2n and consider the action of Sp (2n)×GL (2m;Ò) onHom (Ò2m ,Ò2n )

given by

(A,B) · φ = A ◦ φ ◦ B−1, (4.1)

for (A,B) ∈ Sp (2n) ×GL (2m;Ò) and φ ∈ Hom (Ò2m ,Ò2n ).

Proposition 4.1. The spaces S l ,k = {φ : Ò2m → Ò2n | r ank (φ) = l , r ank (φ∗ω) = 2k } are the orbits of

this action.

Proof. Take φ ∈ S l ,k and denote the orbit of φ by Oφ . Given (A,B) ∈ Sp (2n) ×GL (2m;Ò), since A and B

are invertible, the action preserves the rank of φ and since A ∈ Sp (2n), (AφB−1)∗ω = (B−1)∗φ∗ω, so the

rank of the pullback form is also preserved. Hence, Oφ ⊂ S l ,k .

On the other hand, given ψ ∈ S l ,k , there is some A ∈ Sp (2n) such that A(Im (φ)) = Im (ψ). This is

proved in Lemma 4.2 below. Since Im (Aφ) = Im (ψ), there exists some change of basis matrix B such

that AφB−1 = ψ. Thus, S l ,k ⊂ Oφ . �

Given a subspace P ⊂ Ò2n , the symplectic complement of P is the vector space

P ω = {u ∈ Ò2n | ω (u,v ) = 0 [v ∈ P }.

Lemma 4.2. Let φ,ψ ∈ S l ,k .

1. The condition r ank (φ∗ω) = 2k is equivalent to d im (Im (φ) ∩ Im (φ)ω) = l − 2k .

2. Since r ank (φ∗ω) = r ank (ψ∗ω), there exists A ∈ Sp (2n) such that A(Im (φ)) = Im (ψ).

Proof.

1. LetW ⊂ Ò2m be a complement to k er (φ) in the kernel of φ∗ω, denoted by r ad (φ∗ω), so

r ad (φ∗ω) =W ⊕ k er (φ).

Note that φ |W is injective and Im (φ) ∩Im (φ)ω = φ (W ), so d im (W ) = d im (Im (φ) ∩Im (φ)ω). Since

r ank (φ) = l , it follows that d im (k er (φ)) = 2m − l and so one has

d im (Im (φ) ∩ Im (φ)ω) = d im (W ) = d im (r ad (φ∗ω)) − (2m − l )

But d im (r ad (φ∗ω)) = 2m − r ank (φ∗ω). Thus, one has

d im (Im (φ) ∩ Im (φ)ω) = 2m − r ank (φ∗ω) − (2m − l ) = l − r ank (φ∗ω).
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2. By Point 1., there exist a basis {u1, ...,u2k ,v1, ...,vl−2k } for Im (φ) such that {v1, ...,vl−2k } is a basis for

Im (φ) ∩Im (φ)ω and suppose that ω restricted to Span ({u1, ...,u2k }) is represented in {u1, ...,u2k } by

the matrix J2k in 3.2. One can extend this basis to {u1, ...,u2k ,v1, ...,v2(n−k ) } a basis of Ò2n such that

ω (ui ,vj ) = 0 and ω restricted to Span ({v1, ...,v2(n−k ) }) is represented in {v1, ...,v2(n−k ) } by a matrix

J2(n−k ) obtained from J2k by replacing k with n − k . In the same way, one can construct a basis

{u ′1, ...,u
′
2k ,v

′
1, ...,v

′
2(n−k ) } of Ò

2n such that {u ′1, ...,u ′2k ,v
′
1, ...,v

′
l−2k } is a basis for Im (ψ), {v ′1, ...,v ′l−2k }

is a basis for Im (ψ) ∩ Im (ψ)ω , ω restricted to Span ({u ′1, ...,u ′2k }) is represented by J2k , ω (u ′i ,v
′
j ) = 0

and ω restricted to Span ({v ′1, ...,v ′l−2k }) is represented by J2(n−k ) . Then, the linear isomorphism A

defined by A(ui ) = u ′i and A(vi ) = v
′
i can be checked to be in Sp (2n) and satisfy A(Im (φ)) = Im (ψ).

�

Remark 4.3. Not all pairs (l , k ) satisfy S l ,k , ∅. In fact, for l ∈ {0, ..., 2m} and k ∈ {0, ..., bl /2c}, S l ,k , ∅ if

and only if n − l +k ≥ 0. If S l ,k , ∅, then take φ ∈ S l ,k . By definition, d im (Im (φ)) = l and, as r ank (φ∗ω) =

2k , it follows that d im (Im (φ) ∩ Im (φ)ω) = l − 2k . Since ω is non-degenerate, d im (Im (φ)ω) = 2n − l .

Hence,

Im (φ) ∩ Im (φ)ω ⊂ Im (φ)ω =⇒ l − 2k ≤ 2n − l ⇔ n − l + k ≥ 0

On the other hand, if n − l + k ≥ 0, then take a basis {f1, ..., f2n } of Ò2n such that

ω (fi , fj ) =


1 for j = i + n,

−1 for i = j + n,

0 otherwise.

Pick also a basis {e1, ..., e2m } of Ò2m and define φ by

φ (e i ) =


fi for i ≤ l − k ,

fi+n−k for l − k + 1 ≤ i ≤ l ,

0 for i > l .

r ank (φ) = l and r ank (φ∗ω) ≥ 2k since ω (φ (e i ),φ (e j )) = 1 for i = l − 2k + 1, ..., l − k and j = i + k .

Because n − l + k ≥ 0, ω (φ (e i ),φ (e j )) = 0 for all i , j ≤ l − k so r ank (φ∗ω) ≤ 2k . It follows that φ ∈ S l ,k ,

so S l ,k , ∅.

Let us define a relation ≥ between pairs (l , k ) and (l ′, k ′):

(l , k ) ≥ (l ′, k ′) ⇔ l ≥ l ′ and k ≥ k ′. (4.2)
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Proposition 4.4. The closure of S l ,k is given by:

S l ,k =
⋃

(l ,k ) ≥(l ′,k ′)
S l ′,k ′ .

Remark 4.11 will show that ≥ is not a total order. This implies that, in contrast with the family {Rk } of

chapter 3, the sets S l ,k are not contained in each other in succession.

Proof. Pick bases for Ò2m and Ò2n . Given φ : Ò2m → Ò2n , denote by M the matrix representing φ in the

chosen bases. Then, r ank (φ) ≤ l iff all l +1× l +1minors ofM are zero. In the same way, r ank (φ∗ω) ≤ 2k

iff all 2k +1×2k +1minors the matrix representing φ∗ω are zero. Hence, ⋃(l ,k ) ≥(l ′,k ′) S l ′,k ′ is closed. It also
contains S l ,k , so S l ,k ⊂

⋃
(l ,k ) ≥(l ′,k ′) S l ′,k ′. To prove the other inclusion, take (l ′, k ′) ≤ (l , k ) and consider

two cases:

1. l ′ − 2k ′ ≤ l − 2k :

Pick a basis {fi }i=1,...,2n of Ò2n such that ω is represented by

J =

©«

J2k ′ 02k ′×2(n−k ′)

02(n−k ′)×2k ′

0 0 I l−2k

0 J2(n−l+k )+2(k−k ′) 0

−I l−2k 0 0

ª®®®®®®®®®®®®®¬
where each J2p is the matrix J2k in (3.2) with k replaced by p. Pick also some basis {e i }i=1,...,2m for

Ò2m and consider the homomorphism ψ ∈ S l ′,k ′ represented in {e i } and {fi } by

©«
I l ′ 0

0 0(2n−l ′)×(2m−l ′)

ª®¬ .
Consider the sequence {ψj }j ∈Î ⊂ Hom (Ò2m ,Ò2n ) where each ψj is represented by

©«

I l ′ 0 0 0 0

0 1
j I (l−2k )−(l ′−2k ′) 0 0 0

0 0 1
j Ik−k ′ 0 0

0 0 0 0(n−l+k )×(k−k ′) 0

0 0 0 1
j Ik−k ′ 0

0 0 0 0 0(n−k )×(2m−l )

ª®®®®®®®®®®®®®¬
.

One can check that r ank (ψ∗j ω) = 2k and r ank (ψj ) = l . Since ψj → ψ, one has ψ ∈ S l ,k .

2. l ′ − 2k ′ > l − 2k :
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Now pick a basis {fi }i=1,...,2n of Ò2n such that ω is represented by

J =

©«

J2k ′ 02k ′×2(n−k ′)

02(n−k ′)×2k ′

0 0 I l ′−2k ′

0 J2(n−l ′+k ′) 0

−I l ′−2k ′ 0 0

ª®®®®®®®®®®®®®¬
Pick also some basis {e i }i=1,...,2m for Ò2m and consider the homomorphism ψ ∈ S l ′,k ′ represented in

{e i } and {fi } by

©«
I l ′ 0

0 0(2n−l ′)×(2m−l ′)

ª®¬ .
Let us suppose, to simplify computations, that l − l ′ is even. The other case is similar. Consider the

sequence {ψj }j ∈Î ⊂ Hom (Ò2m ,Ò2n ) where each ψj is represented by

©«

I2k ′ 0 0 0 0 0

0 I l−2k 0 0 0 0

0 0 Ik−k ′− l−l ′2
0 0 0

0 0 0 Ik−k ′− l−l ′2
0 0

0 0 0 0 1
j I l−l ′2

0

0 0 0 0 0 0n− l+l ′2 +k ′

0 0 0 0 0 1
j I l−l ′2

0 0 0 0 0 0n− l+l ′2 +k ′

0 0 0 1
j Ik−k ′− l−l ′2

0 0

0( l+l ′2 −k−k ′)×(2m−l )

ª®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

One can check that r ank (ψ∗j ω) = 2k and r ank (ψj ) = l . Since ψj → ψ, one has ψ ∈ S l ,k .

In either case, given any other φ ∈ S l ′,k ′, there exists a pair (A,B) ∈ Sp (2n) × GL (2m;Ò) such that

(A,B) · ψ = φ. Thus, (A,B) · ψj is a sequence in S l ,k converging to φ and so φ ∈ S l ,k . �

Lemma 4.5. Given integers l ∈ {0, ..., 2m} and k ∈ {0, ..., bl /2c} and an l -plane P ⊂ Ò2n such that

d im (P ∩ P ω) = l − 2k , let {f1, ..., f2n } be a basis of Ò2n such that

• {f1, ..., fl−2k } is a basis for P ∩ P ω ,

• {f1, ..., fl } is a basis for P , such that ω restricted to Span (fl−2k+1, ..., fl ) is represented by J2k in (3.2),

• {fl+1, ..., f2n−l+2k } is a basis for a complement of P ∩P ω in P ω such that ω restricted to this complement

is represented by J2(n−l+k ) as in (3.2),
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• {f2n−l+2k+1, ..., f2n } is a basis for a complement of P + P ω in Ò2n .

If A ∈ Sp (2n) satisfies A(P ) = P , then it is represented in the basis {fi } by

A =

©«

B1 B2 C1 C2

0 B4 0 C4

0 0 D1 D2

0 0 0 (BT1 )
−1

ª®®®®®®®¬
, (4.3)

where B1 ∈ GL (l −2k ;Ò),B2 ∈ Ml−2k×2k (Ò),B4 ∈ Sp (2k ), D1 ∈ Sp (2(n − l +k )), D2 ∈ M (2(n−l+k ))×l−2k (Ò)

and C1,C4 and C2 satisfy the equations:

C1 = B1D
T
2 J2(n−l+k )D1 (4.4)

C4 = J2k (BT4 )
−1BT2 (B

T
1 )
−1 (4.5)

B−11 C2 − C
T
2 (B

T
1 )
−1 = CT4 J2kC4 + D

T
2 J2(n−l+k )D2. (4.6)

Note that C2 is completely determined by (4.6) and the choice of a l − 2k × l − 2k symmetric matrix.

Proof. In a basis like {fi }, the 2n × 2n matrix J representing ω is of the form

J =
©«
G1 G2

−GT2 G3

ª®¬ (4.7)

where

G1 =
©«
0l−2k 0

0 J2k

ª®¬ , G2 =
©«

0 I l−2k

02k×2(n−l+k ) 0

ª®¬ , G3 =
©«
J2(n−l+k ) 0

0 0l−2k

ª®¬ ,
A transformation A ∈ Sp (2n) satisfying A(P ) = P is represented in {fi } as a matrix A of the form

A =
©«
A1 A2

0 A3

ª®¬
where A1 ∈ Ml×l (Ò) and A3 ∈ M2n−l×2n−l (Ò). Since A ∈ Sp (2n), A satisfies the equation AT JA = J .

Unravelling this equation, one gets

©«
AT1 0

AT2 AT3

ª®¬ ©«
G1 G2

−GT2 G3

ª®¬ ©«
A1 A2

0 A3

ª®¬ = ©«
G1 G2

−GT2 G3

ª®¬
⇔ ©«

AT1G1 AT1G2

AT2G1 − A
T
3G

T
2 AT2G2 + A

T
3G3

ª®¬ ©«
A1 A2

0 A3

ª®¬ = ©«
G1 G2

−GT2 G3

ª®¬
⇔ ©«

AT1G1A1 AT1G1A2 + A
T
1G2A3

−(AT1G1A2 + A
T
1G2A3)

T AT2G1A2 − A
T
3G

T
2 A2 + A

T
2G2A3 + A

T
3G3A3

ª®¬ = ©«
G1 G2

−GT2 G3

ª®¬ .
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So we get three independent equations:

1. AT1G1A1 = G1

2. AT1G1A2 + AT1G2A3 = G2

3. AT2G1A2 − AT3GT2 A2 + AT2G2A3 + AT3G3A3 = G3.

To solve equation (1), let us write A1 in blocks:

A1 =
©«
B1 B2

B3 B4

ª®¬
where B1 ∈ Ml−2k×l−2k (Ò) and B4 ∈ M2k×2k (Ò). Then,

AT1G1A1 = G1 ⇔
©«
BT1 BT3

BT2 BT4

ª®¬ ©«
0 0

0 J2k

ª®¬ ©«
B1 B2

B3 B4

ª®¬ = ©«
0 0

0 J2k

ª®¬⇔ ©«
BT3 J2kB3 BT3 J2kB4

BT4 J2kB3 BT4 J2kB4

ª®¬ = ©«
0 0

0 J2k

ª®¬ (4.8)

Equation (4.8) implies that BT4 J2kB4 = J2k so B4 ∈ Sp (2k ); BT3 J2kB4 = 0 and so B3 = 0 since both

J2k and B4 are non-singular. The other two equations resulting from (4.8) do not give more restrictions.

Therefore, A1 is given by

A1 =
©«
B1 B2

0 B4

ª®¬
with B4 ∈ Sp (2k ), B2 ∈ M (l−2k )×2k (Ò) and because A1 must be non-singular, B1 ∈ GL (l − 2k ;Ò). To

solve equations (2) and (3), let us write

A2 =
©«
C1 C2

C3 C4

ª®¬ , A3 =
©«
D1 D2

D3 D4

ª®¬
whereC1 ∈ M (l−2k )×2(n−l+k ) (Ò), C4 ∈ M2k×(l−2k ) (Ò),D1 ∈ M2(n−l+k )×2(n−l+k ) (Ò), andD4 ∈ M (l−2k )×(l−2k ) (Ò).

Solving (2), one has

AT1G1A2 + A
T
1G2A3 = G2

⇔ ©«
BT1 0

BT2 BT4

ª®¬ ©«©«
0 0

0 J2k

ª®¬ ©«
C1 C2

C3 C4

ª®¬ + ©«
0 I l−2k

0 0

ª®¬ ©«
D1 D2

D3 D4

ª®¬ª®¬ = ©«
0 I l−2k

0 0

ª®¬
⇔ ©«

0 0

BT4 J2kC3 BT4 J2kC4

ª®¬ + ©«
BT1 D3 BT1 D4

BT2 D3 BT2 D4

ª®¬ = ©«
0 I l−2k

0 0

ª®¬
⇔ ©«

BT1 D3 BT1 D4

BT4 J2kC3 + B
T
2 D3 BT4 J2kC4 + B

T
2 D4

ª®¬ = ©«
0 I l−2k

0 0

ª®¬
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which results in the following equations:

D4 = (BT1 )
−1, D3 = C3 = 0,

C4 = J2k (BT4 )
−1BT2 (B

T
1 )
−1 (J−12k = −J2k ). (4.9)

Solving equation (3) in turn yields

AT2G1A2 − A
T
3G

T
2 A2 + A

T
2G2A3 + A

T
3G3A3 = G3

⇔ ©«
0 0

0 CT4 J2kC4

ª®¬ − ©«
0 0

DT4 C1 DT4 C2

ª®¬ + ©«
0 CT1 D4

0 CT2 D4

ª®¬ + ©«
DT1 J2(n−l+k )D1 DT1 J2(n−l+k )D2

DT2 J2(n−l+k )D1 DT2 J2(n−l+k )D2

ª®¬ = ©«
J2(n−l+k ) 0

0 0

ª®¬
⇔ ©«

DT1 J2(n−l+k )D1 CT1 D4 + D
T
1 J2(n−l+k )D2

DT2 J2(n−l+k )D1 − D
T
4 C1 CT4 J2kC4 − D

T
4 C2 + C

T
2 D4 + D

T
2 J2(n−l+k )D2

ª®¬ = ©«
J2(n−l+k ) 0

0 0

ª®¬ ,
which results in the equations

DT1 J2(n−l+k )D1 = J2(n−l+k ) (4.10)

C1 = B1D
T
2 J2(n−l+k )D1 (4.11)

B−11 C2 − C
T
2 (B

T
1 )
−1 = CT4 J2kC4 + D

T
2 J2(n−l+k )D2. (4.12)

Equation (4.10) implies that D1 ∈ Sp (2(n − l +k )); (4.12) implies that C2 is fully determined by C4,D2,B1
and a l − 2k × l − 2k symmetric matrix. Putting it all together, one gets the matrix (4.3). �

Now fix an element φ ∈ S l ,k and denote by I so (l , k ) the isotropy group of φ.

Theorem 4.6.

1. I so (l , k ) � H l ,k n N l ,k , where

H l ,k = GL (l − 2k ;Ò) × Sp (2k ) × Sp (2(n − l + k )) ×GL (2m − l ;Ò)

N l ,k =M (l−2k )×2k (Ò) ×M (2n−2l+2k )×(l−2k ) (Ò) × Sym (l − 2k ;Ò) ×M (2m−l )×l (Ò)

and (B1,B4,D1, F3) ∈ H l ,k acts on (B2,D2, S , F2) ∈ N l ,k by

(B1,B4,D1, F3) · (B2,D2, S , F2) =
©«B1B2B−14 ,D1D2BT1 ,B1SBT1 , F3F2 ©«

B−11 0

0 B−14

ª®¬ª®¬ .
2. S l ,k is an immersed submanifold of Hom (Ò2m ,Ò2n ) of codimension 1

2 ((l − 2k )
2 − (l − 2k )) + (2m −

l ) (2n − l ).
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Proof.

1. Pick a basis {e1, ..., e2m } for Ò2m such that {φ (e1), ...,φ (e l−2k )} is a basis for Im (φ) ∩ Im (φ)ω and

{φ (e1), ...,φ (e l )} is a basis for Im (φ). Take also a basis {f1, ..., f2n } for Ò2n such that

• fi = φ (e i ) for 1 ≤ i ≤ l ;

• {fl+1, ..., f2n−l+2k } forms a basis for a complement of Im (φ) ∩ Im (φ)ω in Im (φ)ω ;

• {f2n−l+2k+1, ..., f2n } forms a basis for a complement of Im (φ) + Im (φ)ω in Ò2n .

Observe that {fi }i=1,...,2n is a basis of the form considered in Lemma 4.5. In the bases {e1, ..., e2m }

and {f1, ..., f2n }, φ is represented by

©«
I l 0

0 0

ª®¬ .
Furthermore, given a pair (A,B) ∈ I so (l , k ), A must fix Im (φ) so A must be of the form in (4.3).

Write also

B =

©«
E1 E2

E3 E4
F1

F2 F3

ª®®®®¬
,

where E1 ∈ Ml−2k×l−2k (Ò), E4 ∈ M2k×2k (Ò) and F3 ∈ M2m−l×2m−l (Ò). Then, (A,B) ∈ I so (l , k ) is

equivalent to

(A,B) · φ = φ ⇔ AφB−1 = φ ⇔ Aφ = φB

⇔

©«

B1 B2 C1 C2

0 B4 0 C4

0 0 D1 D2

0 0 0 (BT1 )
−1

ª®®®®®®®¬
©«
I l 0

0 0

ª®¬ = ©«
I l 0

0 0

ª®¬
©«
E1 E2

E3 E4
F1

F2 F3

ª®®®®¬
⇔

©«
B1 B2

0 B4
0

0 0

ª®®®®¬
=

©«
E1 E2

E3 E4
F1

0 0

ª®®®®¬
.

It follows that E1 = B1, E2 = B2, E3 = 0, E4 = B4 and F1 = 0. Moreover, since B must be non-singular,

F3 must also be non-singular. Therefore,

B =

©«
B1 B2

0 B4
0l×2m−l

F2 F3

ª®®®®¬
(4.13)

with F2 ∈ M2m−l×l (Ò) and F3 ∈ GL (2m − l ;Ò). Thus, any element of I so (l , k ) must be represented

by a pair (A,B) with A as in (4.3) and B as in (4.13). On the other hand, given any pair (A,B) with A
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as in (4.3) and B as in (4.13), it is easily checked that it belongs in I so (l , k ).

One thus has a short exact sequence

0→ N l ,k
f
↪−→ I so (l , k )

g
−→ H l ,k → 0 (4.14)

where

f (B2,D2, S , F2) =

©«

©«

I B2 C1 C2

0 I 0 C4

0 0 I D2

0 0 0 I

ª®®®®®®®¬
,
©«
I 0

F2 0

ª®¬
ª®®®®®®®¬
,

with C1 determined by (4.4), C4 determined by (4.5) and C2 determined by (4.6) and the symmetric

matrix S ;

g (A,B) = (B1,B4,D1, F3),

with A as in (4.3) and B as in (4.13). Moreover, (4.14) splits with right inverse of g given by the

inclusion H l ,k ↪→ I so (l , k ):

(B1,B4,D1, F3) ↦→

©«

©«

B1 0 0 0

0 B4 0 0

0 0 D1 0

0 0 0 (BT1 )
−1

ª®®®®®®®¬
,

©«
B1 0

0 B4
0

0 F3

ª®®®®¬
ª®®®®®®®¬
. (4.15)

One can easily check that the action of H l ,k on N l ,k determined by sequence (4.14) is the one stated

in the theorem.

2. Since S l ,k is an orbit of (4.1), it follows that S l ,k � Sp (2n) × GL (2m;Ò)/I so (l , k ) is an immersed

submanifold of Hom (Ò2m ,Ò2n ) of dimension

d im (S l ,k ) = d im (Sp (2n)) + d im (GL (2m;Ò) − d im (I so (l , k ))

= n (2n + 1) + (2m)2 − ((l − 2k )2 + k (2k + 1)

+ (n − l + k ) (2(n − l + k ) + 1) + (2m − l )2 + 2k (l − 2k )

+ (2n − 2l + 2k ) (l − 2k ) + (2m − l )l + 1
2
(l − 2k ) (l − 2k + 1))

= 2m2n −
(
1

2
((l − 2k )2 − (l − 2k )) + (2m − l ) (2n − l )

)
= d im

(
Hom (Ò2m ,Ò2n )

)
− cod im (S l ,k )

�
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Remark 4.7. I so (l , k )c � O (l − 2k ) × U (k ) × U (n − l + k ) × O (2m − l ). Under this identification, the

inclusion I so (l , k )c ↪→ U (n) ×O (2m) = Sp (2n)c ×GL (2m;Ò)c is given by (4.15).

Since the sets S l ,k are not totally ordered by inclusion, care must be taken when constructing the homo-

topy pushouts. Consider the following order relation for pairs (l , k ) and (l ′, k ′) such that cod im (S l ,k ) ,

cod im (S l ′,k ′):

(l ′, k ′) ≺ (l , k ) ⇔ cod im (S l ′,k ′) > cod im (S l ,k ). (4.16)

There may, however, exist different pairs whose corresponding spaces have the same codimension.

Extend ≺ for such pairs choosing some order for them. This makes ≺ a total order for the pairs (l , k )

defining non-empty strata S l ,k . Denote by � the corresponding non-strict total order.

Proposition 4.8. The order ≺ refines the order <, defined in (4.2).

Proof. The spaces S l ,k are semi-algebraic sets in the sense of Definition 2.1.4 in [BCR98]. Furthermore,

Propositions 2.8.13 and 2.8.14 of [BCR98] imply that if S l ′,k ′ ⊂ S l ,k , then cod im (S l ′,k ′) > cod im (S l ,k ).

Thus, the result follows from Proposition 4.4. �

To simplify notation, write X = Hom (Ò2m ,Ò2n ). Now fix a pair (l , k ) and define Fl ,k ⊂ X to be the set

Fl ,k =
⋃

(l ′,k ′) ≺(l ,k )
S l ′,k ′ .

Lemma 4.9. Fl ,k and Fl ,k ∪ S l ,k are both closed subsets of X .

Proof. If S l ′,k ′ ⊂ Fl ,k then, by Proposition 4.4, S l ′,k ′ ⊂ Fl ,k . Hence, Fl ,k is closed. By the same reasoning,

Fl ,k ∪ S l ,k = Fl ,k ∪ S l ,k so Fl ,k ∪ S l ,k is also closed. �

Pick some U (n) ×O (2m)-invariant metric g on X . Let πk : N S l ,k → S l ,k be the normal bundle of S l ,k in

X \Fl ,k (with respect to g ) and let N S l ,k \S l ,k be the normal bundle minus the zero section.

Proposition 4.10. For each pair (l , k ), the square

N S l ,k \S l ,k X \(Fl ,k ∪ S l ,k )

S l ,k X \Fl ,k

πl ,k

is a homotopy pushout.

Proof. The proof is completely analogous to the proof of Proposition 3.5. One just substitutes in the proof

Rk by S l ,k , NRk by N S l ,k Λ2 (Ò2m )∗ by X , Rk by Fl ,k ∪ S l ,k and Rk−1 by Fl ,k . �

Remark 4.11. It is not obvious which are the strata S l ′,k ′ such that (l ′, k ′) ≺ (l , k ). One could expect, as

was the case with the family {Rk } in chapter 2, that Fl ,k ∪ S l ,k = S l ,k , but this is not always true. To better

understand why, it may be useful to look at some concrete cases. Let m = 2 and n = 3.
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S4,2 0 N S3,0\S3,0

S4,1 1 X \(S2,1 ∪ S3,0)

S3,1 3 S3,0

6 S3,0 S2,1 8 N S2,1\S2,1 X \S2,1

S2,0 9

S1,0 15 S2,1 X \S2,0

S0,0 24

The image on the left shows the non-empty strata connected by arrows expressing the relation ≥, defined

in 4.2. There is an arrow pointing from (l , k ) to (l ′, k ′) if (l , k ) ≥ (l ′, k ′) (not all arrows are displayed, only

the ones going to directly below strata). The numbers on the side represent cod im (S l ,k ). Note that there

is a bifurcation signalling that the spaces S l ,k are not contained in succession. As a consequence, S2,1
has codimension higher than S3,0 but it is not contained in its closure. The image on the right shows the

homotopy pushouts of the spaces starring in the bifurcation. In this case, we first remove the stratum S2,1

and then S3,0. So F2,1 ∪ S2,1 = S2,1 but F3,0 ∪ S3,0 = S2,1 ∪ S3,0 , S3,0

In this example, due to its simplicity, if l > l ′, then cod im (S l ,k ) < cod im (S l ′,k ′), independently of k

and k ′. However, this does not happen in general, as one can see when m = 4 and n = 5. For instance,

in this case, cod im (S4,2) < cod im (S5,0) and cod im (S5,0) = cod im (S4,1) so there are even two different

strata with the same codimension.

Let S c
l ,k
= U (n) ×O (2m)/I so (l , k )c be the orbits of the action (4.1) restricted to the maximal compact

subgroup of Sp (2n) ×GL (2m;Ò). Consider the tangent action of (A,B) ∈ U (n) ×O (2m) on v ∈ TφX . For

(A,B) ∈ U (n) ×O (2m) and v ∈ TφS l ,k , one has (A,B) · v ∈ T(A,B) ·φS l ,k . In particular, if (A,B) ∈ I so (l , k )c ,

then (A,B) · v ∈ TφS l ,k for v ∈ TφS l ,k . Since g is U (n) × O (2m)-invariant, it follows that the normal

space (TφS l ,k )⊥ is also invariant by the tangent action. Therefore, the restriction of the tangent action

to I so (l , k )c induces an action of I so (l , k )c on (TφS l ,k )⊥, making (TφS l ,k )⊥ an I so (l , k )c-representation,

called the orthogonal I so (l , k )c -representation. The restriction N S l ,k
��
S c
l ,k

of the normal bundle to S c
l ,k

can

be described by the orthogonal I so (l , k )c-representation:

Theorem 4.12. LetVl ,k = (TφS l ,k )⊥. Then,

1. There is a diagram

63



(U (n) ×O (2m)) ×I so (l ,k )c Vl ,k N S l ,k
��
S c
l ,k

N S l ,k

S c
l ,k

S l ,k

�

y

'

2. Consider the vector space Λ2 (Òl−2k )∗ ×M (2n−l )×(2m−l ) (Ò) endowed with the action of O (l − 2k ) ×

U (k ) ×U (n − l + k ) ×O (2m − l ) given by

(A1,A2,A3,B1) · (σ,M ) =
©«A∗1σ, ©«

A3 0

0 A1

ª®¬MBT1 ª®¬ (4.17)

for all (A1,A2,A3,B1) ∈ O (l − 2k ) × U (k ) × U (n − l + k ) × O (2m − l ) and (σ,M ) ∈ Λ2 (Òl−2k )∗ ×

M (2n−l )×(2m−l ) (Ò).

Then, under the identification I so (l , k )c � O (l − 2k ) ×U (k ) ×U (n − l + k ) × O (2m − l ), one has

Vl ,k � Λ
2 (Òl−2k )∗ ×M (2n−l )×(2m−l ) (Ò) as I so (l , k )c-representations.

Proof.

1. The homotopy equivalence S c
l ,k
↪→ S l ,k comes from the fact that both inclusions U (n) ×O (2m) ↪→

Sp (2n) ×GL (2m;Ò) and I so (l , k )c ↪→ I so (l , k ) are homotopy equivalences. The 5-lemma applied

to the exact sequences of the bundles I so (l , k )c ↪→ U (n) × O (2m) → S c
l ,k

and I so (l , k ) ↪→

Sp (2n) ×GL (2m;Ò) → S l ,k yields the desired equivalence. Moreover, the map

(U (n) ×O (2m)) ×I so (l ,k )c Vl ,k
f−→ N S l ,k

��
S c
l ,k

[(A,B),v ] ↦→ (A,B) · v

is well defined and restricts to an isomorphism between the fibres since (A,B) ∈ U (n) ×O (2m) is

an isomorphism that maps Vl ,k onto (T(A,B) ·φS l ,k )⊥. It follows that f is an isomorphism between

bundles.

2. Let us firstly compute TφS l ,k = a (sp(2n) × gl(2m)). Given (V1,V2) ∈ sp(2n) × gl(2m),

d

d t

���
t=0
(exp (tV1), exp (tV2)) · φ =

d

d t

���
t=0
exp (tV1)φexp (−tV2) =V1φ − φV2

By picking bases for Ò2m and Ò2n as the ones in the beginning of the proof of Point 1 of Theorem

4.6, we can assume φ =
©«
I l 0

0 0

ª®¬ and that ω is represented by a matrix J of the form in (4.7), but

substituting 2m by l in every block dimension. Write

V1 =
©«
X1 X2

X3 X4

ª®¬ , V2 =
©«
Y1 Y2

Y3 Y4

ª®¬
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with X1 ∈ Ml×l (Ò), X4 ∈ M2n−l×2n−l (Ò),Y1 ∈ Ml×l (Ò) andY4 ∈ M2m−l×2m−l (Ò).

V1φ − φV2 =
©«
X1 0

X3 0

ª®¬ − ©«
Y1 Y2

0 0

ª®¬ = ©«
X1 −Y1 −Y2
X3 0

ª®¬ (4.18)

Since gl(2m) =M2m×2m (Ò), it follows that X1 −Y1 spans all matrices inMl×l (Ò) and −Y2 spans all

matrices in Ml×2m−l (Ò). V1 ∈ sp(2n) = {X ∈ M2n×2n (Ò) | XT J = −JX } so the matrices Xi have

some restrictions imposed on them. To obtain the restrictions imposed on X3, let us expand the

equationVT1 J = −JV1:

©«
XT1 XT3

XT2 XT4

ª®¬ ©«
G1 G2

−GT2 G3

ª®¬ = − ©«
G1 G2

−GT2 G3

ª®¬ ©«
X1 X2

X3 X4

ª®¬
⇔ ©«

XT1 G1 − X
T
3 G

T
2 XT1 G2 + X

T
3 G3

XT2 G1 − X
T
4 G

T
2 XT2 G2 + X

T
4 G3

ª®¬ = − ©«
G1X1 +G2X3 G1X2 +G2X4

−GT2 X1 +G3X3 −GT2 X2 +G3X4
ª®¬ .

Thus, one gets three independent equations:

(a) XT1 G1 − XT3 GT2 = −G1X1 −G2X3;

(b) XT1 G2 + XT3 G3 = −G1X2 −G2X4;

(c) XT2 G2 + XT4 G3 = GT2 X2 −G3X4.

To solve these equations, let us write further the matrices Xi in blocks:

X1 =
©«
A1 A2

A3 A4

ª®¬ , X2 = ©«
B1 B2

B3 B4

ª®¬ , X3 = ©«
C1 C2

C3 C4

ª®¬ , X4 = ©«
D1 D2

D3 D4

ª®¬ ,
whereA1 ∈ Ml−2k×l−2k (Ò), B1 ∈ Ml−2k×2(n−l+k ) (Ò), C1 ∈ M2(n−l+k )×l−2k (Ò) andD1 ∈ M2(n−l+k )×2(n−l+k ) (Ò)

(the dimensions of the other blocks are determined by those of A1, B1, C1 and D1). Equation (2a)

translates to

©«
AT1 AT3

AT2 AT4

ª®¬ ©«
0 0

0 J2k

ª®¬ − ©«
CT1 CT3

CT2 CT4

ª®¬ ©«
0 0

I l−2k 0

ª®¬ = − ©«
0 0

0 J2k

ª®¬ ©«
A1 A2

A3 A4

ª®¬ − ©«
0 I l−2k

0 0

ª®¬ ©«
C1 C2

C3 C4

ª®¬
⇔ ©«

0 AT3 J2k

0 AT4 J2k

ª®¬ − ©«
CT3 0

CT4 0

ª®¬ = − ©«
0 0

J2kA3 J2kA4

ª®¬ − ©«
C3 C4

0 0

ª®¬
⇔ ©«
−CT3 AT3 J2k

−CT4 AT4 J2k

ª®¬ = ©«
−C3 −C4
−J2kA3 −J2kA4

ª®¬ ,
which implies that

C3 = C
T
3 , C4 = −AT3 J2k , J2kA4 = −AT4 J2k .
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Equation (2b) translates to

©«
AT1 AT3

AT2 AT4

ª®¬ ©«
0 I l−2k

0 0

ª®¬ + ©«
CT1 CT3

CT2 CT4

ª®¬ ©«
J2(n−l+k ) 0

0 0

ª®¬ = − ©«
0 0

0 J2k

ª®¬ ©«
B1 B2

B3 B4

ª®¬ − ©«
0 I l−2k

0 0

ª®¬ ©«
D1 D2

D3 D4

ª®¬
⇔ ©«

0 AT1

0 AT2

ª®¬ + ©«
CT1 J2(n−l+k ) 0

CT2 J2(n−l+k ) 0

ª®¬ = ©«
0 0

J2kB3 J2kB4

ª®¬ − ©«
D3 D4

0 0

ª®¬
⇔ ©«

CT1 J2(n−l+k ) AT1

CT2 J2(n−l+k ) AT2

ª®¬ = ©«
−D3 −D4
J2kB3 J2kB4

ª®¬ ,
which implies that

D3 = C
T
1 J2(n−l+k ) , D4 = −AT1 , C2 = J2(n−l+k )B

T
3 J2k , B4 = −J2kAT2 .

Equation (2c) translates to

©«
BT1 BT3

BT2 BT4

ª®¬ ©«
0 I l−2k

0 0

ª®¬ + ©«
DT1 DT3

DT2 DT4

ª®¬ ©«
J2(n−l+k ) 0

0 0

ª®¬ = ©«
0 0

I l−2k 0

ª®¬ ©«
B1 B2

B3 B4

ª®¬ − ©«
J2(n−l+k ) 0

0 0

ª®¬ ©«
D1 D2

D3 D4

ª®¬
⇔ ©«

0 BT1

0 BT2

ª®¬ + ©«
DT1 J2(n−l+k ) 0

DT2 J2(n−l+k ) 0

ª®¬ = ©«
0 0

B1 B2

ª®¬ − ©«
J2(n−l+k )D1 J2(n−l+k )D2

0 0

ª®¬
⇔ ©«

DT1 J2(n−l+k ) BT1

DT2 J2(n−l+k ) BT2

ª®¬ = ©«
−J2(n−l+k )D1 −J2(n−l+k )D2

B1 B2

ª®¬
which implies that

DT1 J2(n−l+k ) = −J2(n−l+k )D1, D2 = J2(n−l+k )B
T
1 , B2 = B

T
2 .

Putting all restrictions together,V1 must be of the form

V1 =

©«

A1 A2 B1 B2

A3 A4 B3 J2kA
T
2

C1 J2(n−l+k )B
T
3 J2k D1 J2(n−l+k )B

T
1

C3 −AT3 J2k −CT1 J2(n−l+k ) −AT1

ª®®®®®®®¬
where

J2kA4 = −AT4 J2k , BT2 = B2, CT3 = C3, DT1 J2(n−l+k ) = −J2(n−l+k )D1.

In particular,

X3 =
©«
C1 −J2(n−l+k )BT3 J2k
C3 AT3 J2k

ª®¬ .
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The matrices C1,B3 and A3 have no restrictions imposed on them, so, by (4.18), the tangent space

at φ is

TφS l ,k = a (sp(2n) × gl(2m)) =


©«

M1 M2

M3 M4

M5 M6

02n−l×2m−l

ª®®®®¬
���� MT

5 = M5


.

with M1 ∈ Ml×l (Ò) and M5 ∈ Ml−2k×l−2k (Ò). Finally, taking a complement,

Vl ,k =


©«

0 0

0 0

Z1 0
Z2

ª®®®®¬
���� ZT1 = −Z1


= Λ2Òl−2k ×M2n−l×2m−l (Ò).

An element (A,B) ∈ I so (l , k )c is written as

A =

©«

A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A1

ª®®®®®®®¬
, B =

©«
A1 0 0

0 A2 0

0 0 B1

ª®®®®¬
with A1 ∈ O (l − 2k ),A2 ∈ U (k ),A3 ∈ U (n − l + k ) and B1 ∈ O (2m − l ) (see (4.15)). The action on

Vl ,k is just

A

©«
0 0

0 0

Z1 0
Z2

ª®®®®¬
B−1 =

©«

A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A1

ª®®®®®®®¬
©«

0 0

0 0

Z1 0
Z2

ª®®®®¬
©«
AT1 0 0

0 A−12 0

0 0 BT1

ª®®®®¬
=

=

©«
0 0
0 0

A1Z1A
T
1 0

©«
A3 0

0 A1

ª®¬ Z2BT1
ª®®®®¬

soVl ,k is indeed isomorphic to Λ2 (Òl−2k )∗ ×M2n−l×2m−l (Ò) with action given by (4.17).

�

Remark 4.13. Note that the Λ2Òl−2k term ofVl ,k is only acted on by O (l − 2k ) andM (2n−l )×(2m−l ) (Ò) is

acted on by O (l − 2k ) ×U (n − l + k ) ×O (2m − l ).

4.3 Cohomological Obstructions

Since N has an almost symplectic form, T N admits a reduction of structure group to Sp (2n). Also,

U (n) is a maximal compact subgroup of Sp (2n), so BSp (2n) ' BU (n).
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Consider the bundle p : Hom (TM ,T N ) → M × N , where

Hom (TM ,T N ) = {(x , y ,φ) | x ∈ M , y ∈ N and φ : TxM → TyN }

and p is the projection on the first two coordinates. In other words, Hom (TM ,T N ) is the bundle with

fibre Hom (Ò2m ,Ò2n ) associated to TM ×T N → M × N , so its classifying map is τM × τN . The following

diagram of bundles then implies that the classifying map of Hom (TM , i ∗T N ) is (τM , τN ◦ i ).

Hom (TM , i ∗T N ) Hom (TM ,T N )

M M × N(i dM ,i )

Let X = Hom (Ò2m ,Ò2n ). We wish to define cohomological obstructions to the existence of a lift g of a

map f as the one given below.

(X \(Fl ,k ∪ S l ,k ))h

Xh

M BU (n) × BO (2m)

ι

(τM ,τN ◦i )

f

g (4.19)

Here, the notation hU (n) ×O (2m) has been reduced to h.

As was the case with (3.8) in chapter 3, the obstructions come from the kernel of ι∗, in the sense that,

for g to exist, f must satisfy equations like (3.9):

f ∗ (x ) = 0 [x ∈ k er (ι∗).

The goal is thus to find generators for k er (ι∗), which we will call the obstruction classes.

Proposition 4.14. ι is a (cod im (S l ,k ) − 1)-equivalence. In particular for degrees < cod im (S l ,k ), ι∗ is

injective.

Proof. The proof is similar to the proof of Proposition 3.10. One first observes that for each pair (l ′, k ′) ≺

(l , k ) (see (4.16)) and for (l , k ) itself, the following square is a homotopy pushout.

(N S l ′,k ′\S l ′,k ′)h (X \(Fl ′,k ′ ∪ S l ′,k ′))h

(S l ′,k ′)h (X \Fl ′,k ′)h

πl ′,k ′ j l ′,k ′
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The map πl ′,k ′ is a (cod im (S l ′,k ′) −1)-equivalence, so j l ′,k ′ is also a (cod im (S l ′,k ′) −1)-equivalence. Since

S l ′,k ′ ⊂ Fl ,k ∪ S l ,k , it follows that j l ′,k ′ is a (cod im (S l ,k ) − 1)-equivalence. Finally, one notes that ι is the

composition of maps j l ′,k ′ for pairs (l ′, k ′) where S l ′,k ′ ⊂ Fl ,k ∪ S l ,k (for instance, in the first example of

Remark 4.11, for (l , k ) = (3, 0), ι = j3,0 ◦ j2,1 ◦ · · · ◦ j0,0). Hence, ι is a (cod im (S l ,k ) − 1)-equivalence. �

Now denote the Euler class of (N S l ,k )h → (S l ,k )h by e l ,k and denote by ψl ,k the inclusions

(S l ,k )h (X \Fl ,k )h

Xh

l l ,k

ψl ,k (4.20)

Theorem 4.15. If for every pair (l ′, k ′) such that (l , k ) � (l ′, k ′) (see (4.16)) one has that e l ′,k ′ is not a

zero-divisor, then in H cod im (S l ,k ) (Xh),

k er (ι∗) =
⋂

(l ,k ) ≺(l ′,k ′)
k er (ψ∗l ′,k ′) (4.21)

Moreover, in degree cod im (S l ,k ), d imÚ2 (k er (ι∗)) = 1, so k er (ι∗) is generated by a single non-zero class

ol ,k .

Proof. The proof follows exactly as in Theorem 3.12. For each pair (l ′, k ′) such that (l , k ) � (l ′, k ′), the

homotopy pushout

(N S l ′,k ′\S l ′,k ′)h (X \(Fl ′,k ′ ∪ S l ′,k ′))h

(S l ′,k ′)h (X \Fl ′,k ′)h

πl ′,k ′

i l ′,k ′

j l ′,k ′

l l ′,k ′

yields a long exact sequence of cohomology:

· · · → H ∗ ((X \Fl ′,k ′)h) )
(l ∗
l ′,k ′ ,j

∗
l ′,k ′ )−−−−−−−−→ H ∗ ((S l ,k )h) ⊕ H ∗ ((X \(Fl ′,k ′ ∪ S l ′,k ′))h) →

π∗
l ′,k ′−i

∗
l ′,k ′−−−−−−−−→ H ∗ ((N S l ′,k ′\S l ′,k ′)h) → · · · (4.22)

The Gysin Sequence

· · · → H ∗−cod im (S l ′,k ′ ) ((S l ′,k ′)h)
∪e l ′,k ′−−−−−→ H ∗ ((S l ′,k ′)h)

π∗
l ′,k ′−−−−→ H ∗ ((N S l ′,k ′\S l ′,k ′)h) →

→ H ∗−cod im (S l ′,k ′ )+1 ((S l ′,k ′)h) → · · · (4.23)

together with the fact that e l ′,k ′ is not a zero divisor, implies that πl ′,k ′ is surjective in degrees ∗ ≥

cod im (S l ′,k ′). Sequence (4.22), together with surjectivness of πl ′,k ′, implies that the pair (l ∗l ′,k ′, j
∗
l ′,k ′)

is injective in degrees ∗ ≥ cod im (S l ′,k ′). In particular, (l ∗l ′,k ′, j
∗
l ′,k ′) is injective in degree cod im (S l ,k ) ≥
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cod im (S l ′,k ′). Let us write (l1, k1) for the smallest pair (with respect to ≺) such that (l , k ) ≺ (l1, k1). Then,

k er (ι∗) = k er (l ∗l1,k1 ◦ ι
∗) ∩ k er (j ∗l1,k1 ◦ ι

∗) = k er (ψ∗l1,k1 ) ∩ k er (j
∗
l1,k1
◦ ι∗).

In the same way, if (l2, k2) is the minimum pair such that (l1, k1) ≺ (l2, k2), then

k er (j ∗l1,k1 ◦ ι
∗) = k er (ψ∗l2,k2 ) ∩ k er (j

∗
l2,k2
◦ j ∗l1,k1 ◦ ι

∗).

Equality (4.21) follows from continuing this reasoning and noting both that (2m,m) is the maximum

with respect to ≺ and j ∗2m,m−1 ◦ · · · ◦ j ∗l1,k1 ◦ ι
∗ = ψ2m,m .

To prove that d imÚ2 (k er (ι∗)) = 1, observe that (4.23) for (l ′, k ′) = (l , k ) implies that k er (πl ,k ) =

Im (〈e l ,k )〉 so d imÚ2 (k er (πl ,k )) = 1. Lemma 3.13 then implies that d imÚ2 (k er (j l ,k )) = d imÚ2 (k er (πl ,k )) =

1 and ι∗ is a composition of j ∗l ,k with j
∗
l ′,k ′ for (l

′, k ′) ≺ (l , k ), which are isomorphisms in degree cod im (S l ,k ).

�

Hence, the problem is reduced to solving the equations ψ∗l ′,k ′x = 0, which are called the restricting

equations (see the discussion immediately before section 3.4). Before solving the restricting equations,

let us show that indeed the Euler classes e l ,k are not zero-divisors.

4.4 The Euler Classes

Lemma 4.16. There is a bundle morphism:

EI so (l , k )c ×I so (l ,k )c Vl ,k (N S l ,k )h

BI so (l , k )c (S l ,k )h'

Proof. This now follows exactly the proof of Lemma 3.14. One first notes that (S c
l ,k
)h ' (S l ,k )h and restricts

the normal bundle to (S c
l ,k
)h . Then, one uses the equivalences(

N S l ,k
��
(S c
l ,k
)

)
h
' EU (n) × EO (2m) ×U (n)×O (2m)

(
U (n) ×O (2m) ×I so (l ,k )c Vl ,k

)
'

' EU (n) × EO (2m) ×I so (k )c Vl ,k ' EI so (k )c ×I so (k )c Vk

(S cl ,k )h ' EU (n) × EO (2m) ×U (n)×O (2m) (U (n) ×O (2m)/I so (l , k )
c) ' BI so (l , k )c

�

Remark 4.17.
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• Let us denote by w , c, d and v the total Stiefel-Whitney (or Chern reduced mod 2) classes in

H ∗ (BO (l − 2k )), H ∗ (BU (k )), H ∗ (BU (n − l + k )) and H ∗ (BO (2m − l )), respectively. For i < 0 or

i > l − 2k , wi = 0 and the same goes for the other classes with the appropriate bounds.

• Denote also by t i the Stiefel-Whitney roots corresponding to w , s i the ones corresponding to v and

u j the Chern roots of d .

• Following Remark 4.7, BI so (l , k )c ' BO (l − 2k ) × BU (k ) × BU (n − l + k ) × BO (2m − l ). Thus, one

has

H ∗ ((S l ,k )h) � Ú2 [w1, ...,wl−2k , c1, ..., ck , d1, ...dn−l+k ,v1, ...,v2m−l ]

Theorem 4.18. The Euler class of (N S l ,k )h is the product

e l ,k = det (wδi−i+j ) l−2ki ,j=1 · det ((wd/v )2n−l−i+j )
2m−l
i ,j=1

where δ = (l − 2k − 1, l − 2k − 2, ..., 1) and the total class wd/v is the one that satisfies v ∪ (wd/v ) = wd .

Note that the first determinant in the product is the Schur polynomial in the variables t1, ..., t l−2k associ-

ated to the partition δ .

Proof. According to Remark 4.13, we may consider the projection of I so (l , k )c onto G l ,k = O (l − 2k ) ×

U (n − l + k ) ×O (2m − l ), inducing

EI so (l , k )c ×I so (l ,k )c Vl ,k EG l ,k ×G l ,k Λ2 (Òl−2k )∗ ⊕M2n−l×2m−l (Ò)

BI so (k )c BG l ,k
π

and compute the Euler class of the bundle on the right. Note that, by the same remark, Λ2 (Òl−2k )∗ ⊕

M2n−l×2m−l (Ò) is the direct sum of two subrepresentations and observe that the action on Λ2 (Òl−2k )∗ is the

same as the action considered in Theorem 3.8 (substituting 2m by l ). Thus, the Euler class of this factor

is sδ (t1, ..., t l−2k ). Focusing on the other factor, observe that it factors itself into two subrepresentations.

Indeed, let (A,B ,C ) ∈ O (l − 2k ) ×U (n − l + k ) × O (2m − l ) and M =
©«
M1

M2

ª®¬ ∈ M2n−l×2m−l (Ò) with M1 a

2(n − l + k ) × 2m − l matrix and M2 a l − 2k × 2m − l matrix. The action on M is then given by

(A,B ,C ) ·M =
©«
B 0

0 A

ª®¬ ©«
M1

M2

ª®¬CT = ©«
BM1C

T

AM2C
T

ª®¬ .
SoM2n−l×2m−l (Ò) = M2(n−l+k )×2m−l (Ò) ⊕ Ml−2k×2m−l (Ò) as a representation. Let us study the classes

coming from the factorM2(n−l+k )×2m−l (Ò). Take the inclusion I l ,k = (S1)n−l+k × (Ú2)2m−l ↪→ G l ,k inducing

the diagram
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EI l ,k ×I l ,k M2(n−l+k )×2m−l (Ò) EG l ,k ×G l ,k M2(n−l+k )×2m−l (Ò)

BI l ,k BG l ,k
j

and observe that j ∗ is an injective map such that j ∗ (di ) and j ∗ (vi ) are the i -th elementary symmetric

polynomials in the variables ui and s i , respectively. As a representation of I l ,k ,M2(n−l+k )×2m−l (Ò) breaks

up into a direct sum of copies of Ã:

M2(n−l+k )×2m−l (Ò) =

i=n−l+k
j=2m−l⊕
i ,j=1

Ãi ,j

where Ãi ,j denotes Ã with I l ,k acting through the projection onto the i -th S1 and j -th Ú2 factors by

(S1 × Ú2) × Ã→ Ã

((e i θ, a), z ) ↦→ ae i θz

Let us fix a copy Ãi ,j . The composition S1 × Ú2
j
↪−→ S1 × S1

p
−→ S1, where p (z ,w ) = zw , induces a bundle

diagram

E S1 × EÚ2 ×S1×Ú2 Ã E S1 ×S1 Ã

BS1 × BÚ2 BS1
Bp◦Bj

where the action of S1 on Ã considered on E S1 ×S1 Ã is (e i θ, z ) ↦→ e i θz . The cohomology of BS1 is

generated by t = c1 (γ1 (Ã)) ∈ H 2 (BS1). It is easy to check that E S1 ×S1 Ã is just the tautological bundle

γ1 (Ã) so the map Bp ◦ Bj pulls back t to the Euler class of the bundle E S1 × EÚ2 ×S1×S1 Ã. We wish now

to write explicitly the map induced in cohomology by Bp ◦ Bj . Let us write

H ∗ (BS1) = Ú2 [t ]

H ∗ (BS1 × BS1) = Ú2 [x1, x2]

H ∗ (BS1 × BÚ2) = Ú2 [u, s] .

By Proposition 2.65, the map induced by Bj : BS1×Ú2 → BS1×BS1 sends x1+x2 ↦→ u+s2. To understand

Bp∗, consider the long exact sequences of the bundles S1 ↪→ E S1 → BS1 and S1 × S1 ↪→ E S1 × E S1 →

BS1 × BS1.

· · · → π2 (E S1) → π2 (BS1) → π1 (S1) → π1 (E S1) → · · ·

· · · → π2 (E S1 × E S1) → π2 (BS1 × BS1) → π1 (S1 × S1) → π1 (E S1 × E S1) → · · ·

From the naturality of the sequences and the fact that E S1 is contractible, there is a commuting square:
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π2 (BS1 × BS1) π1 (S1 × S1)

π2 (BS1) π1 (S1)

Bp∗

�

p∗

�

Since BS1 = ÃÐ∞ is simply connected, the Hurewicz Theorem (Theorem 4.37 of [Hat02]) and naturality

of the Hurewicz map h imply that

π2 (BS1 × BS1) H2 (BS1 × BS1;Ú)

π2 (BS1) H2 (BS1;Ú)

Bp∗

h

�

Bp∗

h

�

It is easy to see that p∗ : π1 (S1 × S1) → π1 (S1) is just (a, b) ↦→ a + b (π1 (S1) = Ú), so the same expression

holds for Bp∗. Reducing the homology coefficients to Ú2 and dualizing, one gets

Bp∗ : H 2 (BS1) → H 2 (BS1 × BS1)

t ↦→ x1 + x2

Hence (Bp ◦ Bι)∗ (t ) = u + s2 and the Euler class of theM2(n−l+k )×2m−l (Ò) factor is

i=n−l+k
j=2m−l∏
i ,j=1

(ui + s2j )

The class of the Ml−2k×2m−l (Ò) factor is obtained in a similar but easier way. One considers first the

bundle diagram induced by the inclusion (Ú2) l−2k × (Ú2)2m−l ↪→ G l ,k , then decomposes the restricted

representation into a direct sum

i=l−2k
j=2m−l⊕
i ,j=1

Òi j

of (l − 2k ) (2m − l ) copies of Ò where R i ,j is acted on by (Ú2) l−2k × (Ú2)2m−l through the projections onto

the i -th and l − 2k + j -th Ú2 factors. The Euler class of Òi ,j is obtained in a similar way and is t i + s j .

Hence, the Euler class of theMl−2k×2m−l (Ò) factor is

i=l−2k
j=2m−l∏
i ,j=1

(t i + s j )

The Euler class of the factorM2n−l×2m−l (Ò) will then be

i=n−l+k
j=2m−l∏
i ,j=1

(ui + s2j )

i=l−2k
j=2m−l∏
i ,j=1

(t i + s j ) (4.24)
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It remains to show that det ((wd/v )2n−l−i+j )2m−li ,j=1 is mapped to (4.24) when replacing w , c and v by their

expansions in terms of the Stiefel-Whitney and Chern roots. A useful notation for w , d and v in terms of

their roots is

w =
l−2k∏
i=1

(1 + t i t ), d =
n−l+k∏
i=1

(1 + ui t 2), v =
2m−l∏
j=1

(1 + s i t ),

where wi and vi are the coefficients of t i and di is the coefficient of t 2i . Let

p (t ) =
2n−l∑
j=0

p j t
j = wd =

l−2k∏
i=1

(1 + t i t )
n−l+k∏
i=1

(1 + ui t 2),

q (t ) =
2m−l∑
j=0

q j t
j = v =

2m−l∏
j=1

(1 + s i t ).

The resultant of q (t ) and p (t ), usually denoted by Res (q (t ), p (t )) is the following determinant:

Res (q (t ), p (t )) = det

©«

1 q1 · · · q2m−l 0 · · · 0

0 1 q1 · · · q2m−l 0 · · · 0
...

...

0 0 · · · 0 1 q1 · · · q2m−l

1 p1 · · · p2n−l 0 · · · 0

0 1 p1 · · · p2n−l 0 · · · 0
...

...

0 0 · · · 0 1 p1 · · · p2n−l

ª®®®®®®®®®®®®®®®®®®®®¬

. (4.25)

One can check using formula (4.25) that if a (t ), b (t ) and c (t ) are polynomials, then Res (a (t )b (t ), c (t )) =

Res (a (t ), c (t ))Res (b (t ), c (t )). And the same happens for the other slot. Thus, Res (q (t ), p (t )) can be

computed by computing the resultants of each pair of factors in the products defining p (t ) and q (t ). For

instance, given some i , j , one sees that

Res (1 + s j t , 1 + t i t ) = det
©«
1 s i

1 t i

ª®¬ = t i + s j .
Doing the same for factors of the form 1 + ui t

2 and 1 + s j t , it follows that Res (q (t ), p (t )) =(4.24).

Now let x (t ) = ∑∞
i=0 xi t

i = 1/q (t ). Then,

X =

©«

1 x1 x2 · · · x2n+2m−2l−1

0 1 x1 · · · x2n+2m−2l−2

0 0 1 · · ·
...

. . .
...

0 0 · · · 1

ª®®®®®®®®®®¬
,
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is a matrix of determinant 1, so multiplying the matrix in (4.25) by X does not affect the determinant.

Following section 2.4 (i) of [Arb+85], one can see that after multiplying by det (X ), one has

Res (q (t ), p (t )) = det

©«

(p/q )2n−l (p/q )2n−l+1 · · · (p/q )2n+2m−2l−1
(p/q )2n−l−1 (p/q )2n−l · · ·

...
...

(p/q )2n−2m+1 · · · (p/q )2n−l

ª®®®®®®®¬
,

where∑∞
i=0 (p/q )i t i = p (t )/q (t ). Note that (p/q )i = (wd/v )i , so this determinant is det ((wd/v )2n−l−i+j )2m−li ,j=1

after replacing w , d and v by their expressions in terms of Stiefel-Whitney and Chern roots. �

Once again, it is obvious that e l ,k is not a zero-divisor so we can move on to computing the cohomological

obstructions.

4.5 Computing the Obstructions

To solve the restricting equations, one must first write a suitable expression for the maps ψl ,k in (4.20).

Lemma 4.19. One has isomorphisms

H ∗ ((S l ,k )h) � Ú2 [w1, ...,wl−2k , c1, ..., ck , d1, ...dn−l+k ,v1, ...,v2m−l ],

H ∗ (Xh) � Ú2 [w1, ...,w2m , c1, ..., cn ] .

Under these identifications, the maps ψ∗l ,k are given by

ψ∗l ,k : Ú2 [w1, ..., cn ] → Ú2 [w1, ...,v2m−l ] (4.26)

w ↦→ wcv

c ↦→ w 2cd

Proof. The first isomorphism was obtained in Remark 4.17, the second comes from the fact that X is

contractible, so Xh ' BU (n) × BO (2m). To prove (4.26), observe that there is a commuting diagram by

Corollary 2.37:

(S l ,k )h Xh

BI so (l , k )c BU (n) × BO (2m)

ψl ,k

' '

j

Thus, under the identifications (S l ,k )h ' BI so (l , k )c , Xh ' BU (n) × BO (2m), ψl ,k is the inclusion

BI so (l , k )c
j
↪−→ BU (n) × BO (2m). Consider the identification

BI so (l , k )c � BO (l − 2k ) × BU (k ) × BU (n − l + k ) × BO (2m − l )
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and denote by π1 : BU (n) × BO (2m) → BU (n) and π2 : B (n) × BO (2m) → BO (2m) the canonical

projections. Then, by Remark 4.7, π1 ◦ j decomposes as

BO (l − 2k ) × BU (k ) × BU (n − l + k ) × BO (2m − l ) BU (n)

BU (l − 2k ) × BU (k ) × BU (n − l + k ) × BO (2m − l ) BU (l − 2k ) × BU (k ) × BU (n − l + k )

π1◦j

a1

p1

b1

where p1 is the projection on the first three factors. By Proposition 2.67, b∗1 (c) = bc̃d , where b, c̃ and d are

the total Chern classes in H ∗ (BU (l −2k )), H ∗ (BU (k )) and H ∗ (BU (n − l +k )), respectively. p∗1 (bc̃d ) = bc̃d

and, by Proposition 2.65, a∗1 (bc̃d ) = w̃ 2c̃d , where w̃ is the total Stiefel-Whitney class in H ∗ (BO (l − 2k )).

In the same way, π2 ◦ j decomposes as

BO (l − 2k ) × BU (k ) × BU (n − l + k ) × BO (2m − l ) BO (2m)

BO (l − 2k ) × BO (2k ) × BU (n − l + k ) × BO (2m − l ) BO (l − 2k ) × BO (2k ) × BO (2m − l )

π2◦j

a2

p2

b2

(4.27)

b∗2 (w ) = w̃ xv , where x and v are the total Stiefel-Whitney classes in H ∗ (BO (2k )) and H ∗ (BO (2m − l )),

respectively. p∗2 (w̃ xv ) = w̃ xv and, by Proposition 2.66, a∗2 (w̃ xv ) = w̃ c̃v . �

Finally, we are ready to compute the obstructions.

Theorem 4.20. Recall the inclusion ι defined in (4.19). For each pair (l , k ), the kernel of ι∗ in degree

cod im (S l ,k ) is generated by

ol ,k = det

©«
{(c/w )2n−l−i+j }i=2m−l ,j=2(m−k )i ,j=1

{wl−2k−2i+j }i ,j=l−2ki=1,j=1−2m+l

ª®®®®¬
(4.28)

Proof. According to Theorem 4.15, one only needs to check that ψ∗l ′,k ′ (ol ,k ) = 0 for all pairs (l
′, k ′) such

that (l , k ) ≺ (l ′, k ′). Moreover, by Proposition 4.8, it suffices to check ψ∗l ′,k ′ (ol ,k ) = 0 in two cases:

1. l ′ > l and

2. l ′ ≤ l , k < k ′.

By the formula in Lemma 4.19,

ψ∗l ′,k ′ (ol ,k ) = det
©«
{(wd/v )2n−l−i+j }i=2m−l ,j=2(m−k )i ,j=1

{(wvc)l−2k−2i+j }i ,j=l−2ki=1,j=1−2m+l

ª®®®®¬
(4.29)

where wi = 0 for i < 0 or i > l ′ − 2k ′, vi = 0 for i < 0 or i > 2m − l ′, di = 0 for i < 0 or i > n − l ′ + k ′ and

ci = 0 for i < 0 or i > k ′.
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1. l ′ > l :

The class wd/v is the only class x ∈ H ∗ ((S l ′,k ′)h) that satisfies the equation vx = wd . Since the

coefficient group for cohomology is Ú2, the i -th component of wd/v is given by

(wd/v )i = (wd )i + v1 (wd/v )i−1 + v2 (wd/v )i−2 + ... + v2m−l ′ (wd/v )i−(2m−l ′) .

In particular, the elements of the first row of the matrix in (4.29) are given by

(wd/v )2n−l−1+j = (wd )2n−l−1+j + (wd/v )2n−l−2+jv1 + ... + (wd/v )2n−l−2m+l ′+jv2m−l ′ .

Note that (wd )i = 0 for i > l ′ − 2k ′ + 2(n − l ′ + k ′) = 2n − l ′. Since 2n − l ′ < 2n − l , it follows that

(wd )2n−l−1+j = 0 for all j . As 2m − l ′ < 2m − l , it follows that the first row is a linear combination of

the 2m − l ′ rows below. Therefore, the determinant in (4.29) is zero.

2. l ′ ≤ l , k < k ′:

Let us call the matrix in (4.29) by M . Firstly, observe that, similarly to (3.19) in the proof of Theorem

3.17, the class c in the lower submatrix of M can be taken out. That is because M is obtained as

the product

M =

©«

I2m−l 0

0

1 c1 · · · c l−2k−1

0 1 · · · c l−2k−2
... · · · . . .

...

0 0 · · · 1

ª®®®®®®®®®®¬

©«
{(wd/v )2n−l−i+j }i=2m−l ,j=2(m−k )i ,j=1

{(wv )l−2k−2i+j }i ,j=l−2ki=1,j=1−2m+l

ª®®®®¬
. (4.30)

The matrix on the left has determinant equal to 1 so, to compute the determinant in (4.29) we may

assume M is the second factor in (4.30). Let us write M in six blocks:

M =

©«
A B

E F

G H

ª®®®®¬
where,

A = {(wd/v )2n−l−i+j }i=2m−l ,j=2m−l
′

i ,j=1 , B = {(wd/v )2n−l−i+j }i=2m−l ,j=2(m−k )i=1,j=2m−l ′+1 , E = {(wv )l−2k−2i+j }i=l−l
′,j=l−l ′

i=1,j=1−2m+l

F = {(wv )l−2k−2i+j }i=l−l
′,j=l−2k

i=1,j=l−l ′+1 , G = {(wv )l−2k−2i+j }i=l−2k ,j=l−l
′

i=l−l ′+1,j=1−2m+l , H = {(wv )l−2k−2i+j }i ,j=l−2ki=l−l ′+1,j=l−l ′+1

Denote also the i -th column of A by ai , the i -th column of B by bi and do the same for the other

blocks. Recall that the i -th component of wd/v is

(wd/v )i = (wd )i + v1 (wd/v )i−1 + ... + v2m−l ′ (wd/v )i−(2m−l ′) .
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All elements of B are of the form (wd/v )i with i ≥ 2n − l − (2m − l )+ (2m − l ′)+1 = 2n − l ′+1 > 2n − l ′.

Since (wd )i = 0 for i > 2n − l ′, an element (wd/v )i of B is written as

(wd/v )i = v1 (wd/v )i−1 + ... + v2m−l ′ (wd/v )i−(2m−l ′) .

Since A has 2m − l ′ columns, it follows that the first column of B is a linear combination of the

columns of A:

b1 = v1a2m−l ′ + v2a2m−l ′−1 + ... + v2m−l ′a1

The other columns of B are also linear combinations of the 2m − l ′ previous columns. For instance,

b2 = v1b1 + v2a2m−l ′ + ... + v2m−l ′a2.

Therefore, multiplying M on the right by

X =

©«

I2m−l ′

0l ′−2k×2m−l ′

v2m−l ′ 0 0 · · · 0

v2m−l ′−1 v2m−l ′ 0 · · · 0
...

...
. . . · · ·

...

v1 v2 · · · · · · vl ′−2k

1 v1 · · · · · · vl ′−2k−1

0 1 v1 · · ·
...

0 0 1 · · ·
...

...
...

...
. . .

...

0 0 · · · · · · 1

ª®®®®®®®®®®®®®®®®®®®®®®®¬
results in a matrix M̃ given by

M̃ =

©«
A 0

E F̃

G H̃

ª®®®®¬
Note that det (X ) = 1 so det (M ) = det (M̃ ). If f̃i denotes the i -th column of F̃ , then observe that

f̃1 = fi + v1e2m−l ′ + v2e2m−l ′−1 + ... + v2m−l ′e1

The other columns of F̃ are, in the same way, linear combinations of the 2m − l ′ previous columns.

For instance,

f̃2 = f2 + v1f1 + v2e2m−l ′−1 + ... + v2m−l ′v2.

78



Likewise, if h̃i denotes the i -th column of H̃ , then

h̃1 = h1 + v1g2m−l ′ + v2g2m−l ′−1 + ... + v2m−l ′g1.

And the other columns of H̃ are, in the same way, linear combinations of the 2m − l ′ previous

columns. By the product formula, one has

(wv 2)i = (wv · v )i = (wv )i + v1 (wv )i−1 + ... + v2m−l ′ (wv )i−(2m−l ′) .

Therefore,

• F̃ = {(wv 2)l−2k−2i+j }i=l−l
′,j=l−2k

i=1,j=l−l ′+1 and

• H̃ = {(wv 2)l−2k−2i+j }i ,j=l−2ki=l−l ′+1,j=l−l ′+1.

Observe that, since coefficients are in Ú2, one has

v 2 = v 21 + v
2
2 + ...

Hence, (v 2)i = 0 for odd i . Thus, one can write M̃ as a product similar to the one obtained in (4.30)

with v 2 playing the role of c:

M̃ =

©«

I2m−l 0

0

1 (v 2)1 · · · (v 2)l−2k−1
0 1 · · · (v 2)l−2k−2
... · · · . . .

...

0 0 · · · 1

ª®®®®®®®®®®¬

©«
A 0

E ′ F ′

G ′ H ′

ª®®®®¬
where now

E ′ = {wl−2k−2i+j }i=l−l
′,j=l−l ′

i=1,j=1−2m+l , F ′ = {wl−2k−2i+j }i=l−l
′,j=l−2k

i=1,j=l−l ′+1

G ′ = {wl−2k−2i+j }i=l−2k ,j=l−l
′

i=l−l ′+1,j=1−2m+l , H ′ = {wl−2k−2i+j }i ,j=l−2ki=l−l ′+1,j=l−l ′+1.

Any element of F ′ is of the form wi with i ≥ l − 2k − 2(l − l ′) + (l − l ′) + 1 = l ′ − 2k + 1 > l ′ − 2k ′

since k ′ > k . As wi = 0 for i > l ′ − 2k ′, F ′ = 0. Moreover, any element of the first column of H ′ is of

the form wi with i ≥ l − 2k − 2(l − l ′ + 1) + (l − l ′ + 1) = l ′ − 2k − 1 = l ′ − 2k ′ + 2(k ′ − k ) − 1 > l ′ − 2k ′

since k ′ − k ≥ 1. Therefore, all elements of the first column of H ′ are zero, thus det (H ′) = 0. This

finishes the proof because

det (M̃ ) = det
©«
A 0

E ′ 0

G ′ H ′

ª®®®®¬
= det

©«
A

E ′
ª®¬ det (H ′) = 0.

�
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We saw that the classifying map of Hom (TM , i ∗T N ) is (τM , τN ◦ i ). Therefore, under the identification

H ∗ (Xh) � H ∗ (BU (n) × BO (2m)), one has f ∗ol ,k = (τ∗M , i ∗τ∗N )ol ,k . Hence, condition f ∗ol ,k = 0 translates

into the following:

Theorem 4.21. Let i : M → N be a smooth map between a 2m-manifoldM and a 2n-manifold N endowed

with an almost symplectic form ω. Then, the following equation is a necessary condition for the existence

of a section s of Hom (TM , i ∗T N ) such that r ank (s (x )) > l and r ank (s (x )∗ω) > 2k for all x ∈ M .

det

©«
{(i ∗c (N )/w (M ))2n−l−i+j }i=2m−l ,j=2(m−k )i ,j=1

{w (M )l−2k−2i+j }i ,j=l−2ki=1,j=1−2m+l

ª®®®®¬
= 0

Remark 4.22. Note that when l = 2m, one has

(τM , τN ◦ i )∗o2m,k = τ∗M ok

where ok is the class in Theorem (3.17). One could also prove this fact using the following results:

• The sets {S2m,k }k=0,...,m form a stratification ofMono (TM , i ∗T N ) - the open sub-bundle ofHom (TM , i ∗T N )

of injective homomorphisms. Moreover, if s : M → Mono (TM , i ∗T N ) is a section transversal to

the spaces S2m,k , then

D ( [s−1 (S l ,k )]) = (τM , τN ◦ i )∗o2m,k .

• The following map is a submersion:

Mono (TM , i ∗T N ) F−→ Λ2T ∗M

φ ↦→ φ∗ω

and F −1 (Rk ) = S2m,k .

It follows that if s : M → Mono (TM , i ∗T N ) is a section transversal to the spaces S2m,k , then F ◦ s is a

section transversal to the spaces Rk . Therefore, one has

(τM , τN ◦ i )∗o2m,k = D ( [(F ◦ s)−1 (S2m,k )]) = D ( [s−1 (Rk )]) = τ∗M ok .

On the other hand, if l = 2k , then

(τM , τN ◦ i )∗ol ,l /2 = det
(
{i ∗c (N )/w (M )}i ,j=2m−l

i ,j=1

)
is the Giambelli-Thom-Porteous class of the degeneracy locus of points x ∈ M where r ank ((d i )x ) ≤ l

(see (1.1)).

80



Bibliography

[Alb] Michael Albanese. Which Grassmannians are Spin/Spinc? http://cirget.math.uqam.ca/

~albanese/notes/grass_spin.pdf. [Online; accessed 27-October-2021].

[Arb+85] E. Arbarello et al. Geometry of Algebraic Curves. Springer, New York, NY, 1985. isbn: 978-0-

387-90997-4.

[Ark11] M. Arkowitz. Introduction to Homotopy Theory. Springer-Verlag New York, 2011. isbn: 978-1-

4419-7328-3.

[BCR98] J. Bochnak, M. Coste, and M. Roy. Real Algebraic Geometry. Springer, Berlin, Heidelberg,

1998. isbn: 978-3-540-64663-1.

[Bre72] Glen E. Bredon. Introduction to Compact Transformation Groups. Academic Press Inc., 1972.

isbn: 9780121288501.

[Dol63] A. Dold. “Partitions of Unity in the Theory of Fibrations”. In: Annals of Mathematics 78 (1963),

pp. 223–255. doi: https://doi.org/10.2307/1970341.

[FNR05] L. M. Fehér, A. Némethi, and R. Rimányi. “Degeneracy of 2-Forms and 3-Forms”. In: Canad.

Math. Bull. 48 (2005), pp. 547–560. doi: https://doi.org/10.4153/CMB-2005-050-9.

[FR04] L. Fehér and R. Rimányi. “Calculation of Thom polynomials and other cohomological Ob-

structions for Group Actions”. In: Real and Complex Singularities (São Carlos 2002). Ed. by

T. Gaffney and M. Ruas. Vol. 354. Contemp. Math. Amer. Math. Soc.,Providence, RI, June

2004, pp. 69–93.

[Ful97] W. Fulton. Young tableaux : With Applications to Representation Theory and Geometry. Cam-

bridge University Press, 1997. isbn: 0521561442.

[Gor78] M. Goresky. “Triangulation of Stratified Objects”. In: Proceedings of the American Mathematical

Society 72 (1978), pp. 193–200. doi: https://doi.org/10.1090/S0002-9939-1978-0500991-

2.

[gri] darij grinberg. Express symmetric polynomial ∏i l t ;j (Xi + Xj ) in terms of elementary symmetric

functions. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/2403583

(version: 2019-02-07). eprint: https://math.stackexchange.com/q/2403583. url: https:

//math.stackexchange.com/q/2403583.

[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. isbn: 0521795400.

81

http://cirget.math.uqam.ca/~albanese/notes/grass_spin.pdf
http://cirget.math.uqam.ca/~albanese/notes/grass_spin.pdf
https://doi.org/https://doi.org/10.2307/1970341
https://doi.org/https://doi.org/10.4153/CMB-2005-050-9
https://doi.org/https://doi.org/10.1090/S0002-9939-1978-0500991-2
https://doi.org/https://doi.org/10.1090/S0002-9939-1978-0500991-2
https://math.stackexchange.com/q/2403583
https://math.stackexchange.com/q/2403583
https://math.stackexchange.com/q/2403583


[Hir76] Morris W. Hirsch. Differential Topology. Springer-Verlag New York, 1976. isbn: 978-0-387-

90148-0.

[Hum72] J. Humphreys. Introduction to Lie Algebras and Representation Theory. Springer-Verlag New

York, 1972. isbn: 978-0-387-90053-7.

[Hus94] D. Husemoller. Fibre Bundles. Springer, New York, NY, 1994. isbn: 978-0-387-94087-8.

[Kaz06] M. E. Kazarian. “Thom polynomials”. In: Proc. sympo. “Singularity Theory and its application”.

Vol. 43. Adv. Stud. Pure Math., 2006, pp. 85–136.

[Mac99] I.G. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press, 1999.

isbn: 9780198504504.

[Mat12] J. Mather. “Notes on Topological Stability”. In: Bulletin of the American Mathematical Society

49(4) (2012), pp. 475–506.

[Mos49] G. D. Mostow. “A new proof of E. Cartan’s theorem on the topology of semi-simple groups”. In:

Bull. Amer. Math. Soc. 55 (1949), pp. 969–980. doi: https://doi.org/10.1090/S0002-9904-

1949-09325-4.

[MS74] John Milnor and James Stasheff. Characteristic Classes. Princeton University Press, 1974.

isbn: 9780691081229.

[MT91] Mamoru Mimura and Hirosi Toda. Topology of Lie Groups I and II. American Mathematical

Society, 1991. isbn: 978-0-8218-1342-3.

[Por71] I. R. Porteous. “Simple Singularities of Maps”. In: Lecture Notes in Mathematics. Vol. 192. Proc.

Liverpool Singularities Symposium I, 1971, pp. 286–307.

[Spa66] Edwin H. Spanier. Algebraic Topology. Springer-Verlag New York, 1966. isbn: 978-0-387-

94426-5.

[Ste51] Norman Steenrod. The Topology of Fibre Bundles. Princeton University Press, 1951. isbn:

9780691080550.

[Tho57] R. Thom. Les ensembles singuliers d’une application differentiate et lews proprietes ho-

mologiques. Séminaire de Topologie de Strasbourg, Dec. 1957.

82

https://doi.org/https://doi.org/10.1090/S0002-9904-1949-09325-4
https://doi.org/https://doi.org/10.1090/S0002-9904-1949-09325-4


Th
om

Po
ly
no

m
ia
ls

fo
rD

eg
en

er
ac

y
Lo

ci
of

2-
fo
rm

s
an

d
M
ap

s
to

an
A
lm

os
tS

ym
pl
ec

tic
M
an

ifo
ld

Pe
dr
o
M
ig
ue

lM
en

es
es

M
ag

al
hã

es


	Contents
	Introduction
	Preliminaries
	Fibre Bundles
	First Definitions
	Construction of Bundles
	Principal and Associated Bundles

	Classifying Spaces
	Classification Problem
	Classifying Spaces
	Milnor Construction
	Properties of classifying spaces

	Characteristic Classes
	Stiefel-Whitney Classes
	Euler Class
	Chern Classes

	Schur Polynomials
	Homotopy Pushouts
	Locally Trivial Stratifications

	Degeneracy Loci of 2-forms
	Introduction
	The Homogeneous Spaces Rk and their Normal Bundles
	Cohomology of Degeneracy Loci
	The Euler classes
	Computing the Obstructions
	An Example

	Thom Polynomials of Smooth Maps to an Almost Symplectic Manifold
	Introduction
	The Homogeneous Spaces Sl,k and their Normal Bundles
	Cohomological Obstructions
	The Euler Classes
	Computing the Obstructions

	Bibliography

