
DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 1

Retail Store Visual Structure-from-Motion
Valter André Ribeiro dos Santos Piedade

Instituto Superior Técnico, Lisboa
valter.piedade@tecnico.ulisboa.pt

Abstract—3D mapping technologies have received increasing
attention over the last few years. Among these technologies are
Simultaneous Localization and Mapping (SLAM) and Structure-
from-Motion (SfM) systems. One of the many applications of
these systems is found in retail stores where robots are used to,
e.g. , autonomously navigate through the store to stock the shelves
or detect missing products. In this thesis a SfM system to work in
a retail store was implemented from scratch in C++, using the
structure of the well-known ORB-SLAM2, proposed in [1], as a
baseline for the developed method. The system receives images
from a moving stereo camera and uses them to estimate visual
odometry and to build a map of the traveled region. The pipeline
is modular so that various feature detectors and several methods
of visual odometry estimation can be used. Two hybrid methods
for visual odometry estimation are further proposed in this thesis.
One of them aims at exploiting the typical geometric structure of
retail stores. Results of the developed system were obtained using
acquired datasets from a retail store and the KITTI dataset, and
show some ablation studies for each module of the pipeline.

Index Terms—Structure-from-Motion, visual odometry, map-
ping, keyframe, keypoint.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) and
Structure-from-Motion (SfM) have received increasing atten-
tion over the last years due to their applications in several
industries like robotics, autonomous vehicles, mapping, secu-
rity, and more.

One particular use of these two types of systems can occur
in a retail store. This use has been increasingly adopted to have
robots that can, e.g. , store, pick up, or detect products on the
shelves. It is, therefore, crucial to have a correct map of the
store so that the robot knows its location in the environment
so that it can efficiently perform its function.

The work carried out in this dissertation is included in a
research project that aims at developing and implementing a
vision-based SLAM module for an autonomous mobile robot
in a retail store environment. The research project working
plan is divided into three stages. Stage I is the development
and implementation of algorithms for the localization of an
autonomous mobile robot working in the salesroom of a retail
store. Stage II is the development of algorithms for map update
and simultaneous location and mapping for the autonomous
mobile robot described above, using the same set of sensors
as in Stage I. Lastly, Stage III are tests, adaptation, and
integration of the system on the robot platform built as part
of the project.

The work presented in this dissertation fits in Stages I and
II of the work plan and is an SfM system that differs from
the SLAM system proposed for the project by not having,

Fig. 1: Operating scheme of a Structure from Motion system.
Source: theia-sfm.org.

mainly, a re-localization module nor being optimized for real-
time. The developed system is capable of, based on images
captured by a stereo camera, estimating the movement of the
camera along its trajectory, while creating a map of the region
based on the 3D points computed along the path and adjusting
their positions using bundle adjustment. The system was also
developed to be modular in several aspects, such as the type
of image features to extract and odometry estimation methods
to use.

Since the system will operate mainly in a retail store
environment, which is characterized by a geometric structure
with many orthogonal components, this geometric structure
can be exploited for better environment-specific results by,
e.g. , assuming a Manhattan World structure.

The goals to be achieved with this thesis are:
• Implement a Structure-from-Motion pipeline in C++,

based on a known pipeline;
• Integrate the use of several types of keypoint extractors

and several conventional odometry estimation methods;
• Create an odometry estimation method that takes advan-

tage of the structured retail store environment.
The desired result is to obtain a map of the environment in
which the robot has traveled, together with its trajectory.

II. BACKGROUND

SLAM systems have the goal of estimating the position
of a robot and its trajectory, while simultaneously building
a map of the traveled region. To achieve this, sensors such as
cameras, LiDAR, sonar, GPS, IMU, among others are used.
Although it can be used offline, the main focus of this type
of system is its use in real-time. SfM systems, on the other
hand, aim to reconstruct the 3D environment from a series
of 2D images taken from different positions, as illustrated in
Figure 1. Unlike SLAM systems, these systems work offline.



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 2

In some situations, SfM and SLAM systems work similarly,
namely when both use cameras and when the different camera
positions in the region are captured by a robot moving on a
particular trajectory. In this case, the estimation of the robot’s
trajectory is necessary for the construction of the map. Two
steps can then be considered in the operation of these systems,
odometry estimation, and mapping.

A. Visual Odometry

Odometry estimation, or ego-motion, consists of estimating
the motion of the camera. This movement is described by
a rotation and a translation typically between consecutive
frames, which is used to convert the referential of each
received image into a global referential common to the whole
map. Several approaches have been developed to solve the
problem of visual odometry. These approaches either use 2D
points, 3D points, or a combination of both, and can be divided
into featureless, feature-based, or deep learning methods.

1) Featureless Registration: Featureless methods perform
3D registration without resorting to keypoints extracted from
the images. For this type of method, the Iterative Closest
Point (ICP), [2], and its variants are the standard approach.
These methods create correspondences between points based
on their proximity. They have, however, some disadvantages,
the main one being the convergence in local minimums,
therefore requiring a good initial estimation.

2) Feature-based Registration: Feature-based registration
methods require the use of visual features extracted from
images and their correspondence between different images.
This type of method is divided into several steps. The first
is to extract keypoints from the two images. These points
usually correspond to edges, corners, blobs, or ridges. Next, it
is necessary to find matches between the keypoints of the two
images. To do so, descriptors are extracted for each detected
keypoint. The descriptors characterize the region in the image
from which the keypoint was extracted and it is by comparing
the descriptors that the correspondences between the points
are found. The correspondences indicate that the same point
is seen from two different perspectives. The last step is to
compute the rotation and translation between the two cameras,
based on the points they have in common.

For feature detection, several methods can be used, such as
SIFT, SURF, ORB, and AKAZE, proposed in [3]–[6].

Based on the keypoints detected in consecutive images,
correspondences between them are detected. Many keypoint
matching methods use brute force in this process and then use
an outlier removal method to eliminate outliers and estimate
the best transformation based on the inliers. One popular
solution to perform outlier removal is RANSAC, proposed
in [7], which iteratively randomly selects sets of points and
classifies them into outliers and inliers depending on whether
they fit the desired model. The trade-offs of this method are
that it does not guarantee the optimal solution and fails in case
there are too many outliers.

Having the correspondences between points, the Orthogonal
Procrustes method ([8]) or the solution proposed by Umeyama
in [9] can be used.

3) Deep Learning Registration: Due to the recent increase
in studies involving machine learning, namely the study
of CNN (Convolutional Neural Networks), several signs of
progress have been achieved in the area of odometry esti-
mation. These new learning-based methods can surpass or
complement the classical methods and achieve state-of-the-art
results. The versatility of neural networks enabled the creation
of deep learning methods that solve the problems of feature
extraction ([10]), feature matching ([11]), registration of point
clouds ([12]), among others.

B. Mapping

The 3D mapping problem consists of joining several sets
of point clouds acquired at different times and in different
positions, either by several static sensors looking over the
same region or by sensors moving along a path, thus creating
a map of a region. To create a map in which all these point
clouds are correctly aligned, it is necessary to transform them
all to the same referential using the positions calculated in
the odometry estimation. The odometry estimation problem
is thus part of the mapping problem. Various methods allow
these transformations to be computed not only in the case
where there is movement but also in cases where it is intended
to reconstruct a map from several static sensors that have
different perspectives from the same region. The methods to
be analyzed are Bundle Adjustment and Rotation Averaging.

Bundle Adjustment (BA) is an essential component in solv-
ing SfM problems, as shown in [13]. It is capable of making an
optimal visual reconstruction of a 3D structure and estimating
the position of the camera or its calibration parameters using
feature points and their correspondences. To obtain an optimal
solution, the problem is defined as an optimization problem
that minimizes the difference between a given point and its 3D
projection on the image plane. This minimization is usually
done using the l2 norm, and the problem is typically solved
by Levenberg–Marquardt’s algorithm. This method, however,
requires a good initialization of its parameters and has a long
execution time for large data sets. To ensure a correct mapping
using bundle adjustment, it is also necessary to consider loop
closure. This way, the map is coherent even when it returns
to a known position.

Rotation averaging is a common alternative to bundle adjust-
ment that has multiple strands as explained in the survey [14].
One of the strands is the problem of single rotation averaging,
in which the same rotation R is calculated with data from
various measurements, the final result being the average of
the estimated rotations. If there are noise measurements that
cause wrong rotations, some of the effects of these rotations
will be removed when averaging.

C. Baseline Visual SLAM System

The system used as the baseline for the proposed SfM
system was the ORB-SLAM2, proposed in [1]. ORB-SLAM2
is a real-time SLAM system based on ORB features and
is divided into four modules: tracking, local mapping, loop
closure, and re-localization. The pipeline is shown in Fig-
ure 2. Tracking estimates the position of the camera along



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 3

Fig. 2: ORB-SLAM2 framework. Source: [1].

its trajectory using correspondences between keypoints of
consecutive frames. Local mapping builds the map along the
trajectory, and locally optimizes the position of the keyframes
to reduce the odometry estimation error. Loop closing reduces
the error of the entire map by performing a full BA when the
camera returns to a previously mapped position. The relocation
operates alternately to the construction of the map and works
as an extra module that is only used after the map has been
built. For that, it uses Bag of Words to create an image
database which is used to efficiently compare new images with
already processed images.

The main processes of this system like pose estimation,
local BA optimization, and full BA optimization are performed
using graph optimization. In the case of pose estimation, points
with correspondences between consecutive frames are inserted
in the graph with fixed positions and only the positions of
the frames are optimized, from which the movement between
frames is estimated. In the case of BA, the positions of
keyframes and 3D points are optimized based on the points
that the keyframes have in common. For the local BA, only
the keyframes and their respective points close to the current
keyframe are used, while in the full BA all keyframes and 3D
points are used. These procedures have been shown to yield
good results, however, they require correct tracking of points
over several frames.

III. 2-STEP VISUAL ODOMETY

As an alternative to the methods presented in Section II-A2
for odometry estimation, two hybrid methods are proposed.
The methods are hybrids since they combine two different
methods, one for rotation estimation and one for translation
estimation. Each hybrid method has its method for rotation
estimation but they share the method for translation estimation.

A. Rotation Estimation

The two proposed methods for estimating the rotation are
presented in this subsection. The first method uses 2D-2D
correspondences to estimate the essential matrix. By decom-
posing this matrix using SVD the rotation and translation at
less than a scale factor are obtained. The second method uses
lines detected in the image, instead of keypoints. From the
detected lines, three vanishing points are estimated with which
the orientation of the camera is obtained. This method aims
to exploit the structured environment of retail stores.

1) Essential Matrix Estimation: The first method used for
estimating the rotation between two consecutive frames uses
the essential matrix. The essential matrix represents the geo-
metrical relationship between matching points of two images.
Its estimation uses the detected keypoints (2D points of the
image coordinates), instead of 3D points. The desired rotation
can be estimated by decomposition of the essential matrix.

The estimation of the essential matrix requires two sets of
points that have correspondences with each other. The relation
between the sets of points is given by

x′
T
Ex′′ = 0, (1)

as used in [15], where x′ is the set of points of the current
frame, x′′ is the set of points of the previous frame, and E
is the essential matrix. (1) defines the coplanarity constraint
between the two sets of points.

The essential matrix is then computed from (1) based on
the five-point algorithm solver described in [16], that uses a
RANSAC framework to remove outliers from the estimation.
The matrix obtained from this algorithm has the following
format

E =

e11 e12 e13
e21 e22 e23
e31 e32 e33

 . (2)

Having the essential matrix, the rotation and translation are
obtained by decomposing it using SVD according to

E = USVT , (3)

where U and V are 3×3 orthogonal matrices with the singular
vectors of E and S is a 3 × 3 diagonal matrix with the
singular values of E. With the matrices obtained from the
decomposition, the rotation matrix R and the translation vector
[t]× are computed by

R = U

 0 ±1 0
±1 0 0
0 0 1

VT (4)

[t]× = U

 0 ±1 0
±1 0 0
0 0 0

SVT . (5)

This process gives four solutions, but only one of them
places the points in front of both cameras, being that the
desired solution. Only the rotation matrix R is used since
the translation is obtained at less than a scale factor, so only
information about its direction is available.

2) Vanishing Points Estimation: The second method used to
estimate a rotation matrix between two images of consecutive
frames requires the estimation of vanishing points. For this,
the method presented in [17] was used. This method uses lines
detected in the images to estimate vanishing points, assuming
the environment is under the Manhattan World assumption.
This assumption states that all surfaces in the environment are
aligned along with three dominant directions. Each dominant
direction is thus described by one vanishing point. This method
only works with images taken by pinhole cameras.

In order to be efficient for real-time applications, a polar
grid is created by expanding the unit vectors on the equivalent



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 4

(a) (b)

Fig. 3: Vanishing points estimation: (a) Relationship between
the image plane and the equivalent sphere; (b) Procedure of
generating orthogonal vanishing points. Source: [17].

sphere to intersect the image plane. This will be used to
store the response of each line segments. Figure 3(a) shows
the relationship between the image plane and the equivalent
sphere. A point (x, y)T on the image is converted to a 3D
point P = (X,Y, Z)T on the equivalent sphere according to

X = x− x0
Y = y − y0
Z = f

, (6)

where (x0, y0) are the principal point and f is the focal length.
The longitude and latitude is further computed using{

φ = acos(Z/
√
X2 + Y 2 + Z2)

λ = atan2(X,Y ) + π
, (7)

The first vanishing point v1 = (X1, Y1, Z1)
T is com-

puted iteratively by randomly choosing two line segments and
computing their intersection point (step 1 of Figure 3(b)).
Since the three vanishing points are orthogonal, the second
vanishing point will belong to the great circle of v1 (step
2 of Figure 3(b)). The circle is divided into fractions of
360◦ (1% accuracy), and for each fraction a vanishing point
v2 = (X2, Y2, Z2) is computed according to

X2 = sin(φ) sin(λ)
Y2 = sin(φ) cos(λ)
Z2 = cos(φ)

, (8)

and
X1 X2 + Y1 Y2 + Z1 Z2 = 0, (9)

where φ is the latitude and λ is the longitude. Finally, the third
vanishing point v3 is the cross product of v1 and v2

v3 = v1 × v2, (10)

since the three vanishing points must be orthogonal to each
other (step 3 of Figure 3(b)).

Several hypotheses are thus produced for the set of the three
vanishing points, so it is necessary to validate and choose the
best set. The validation is done by computing the response
of the detected line segments to each hypothesis, and the
vanishing points that produce the best response are selected.

Once the vanishing points are estimated, they are combined
to get the rotation matrix that describes the rotation of the

image. With this approach, however, it is not possible to
estimate the translation.

B. Translation Estimation

Using the rotations obtained with each of the methods in
the previous subsection, a translation estimation method is
proposed that combines RANSAC for outlier removal and the
least-squares method for translation estimation.

Having correspondences between points, to estimate the
rotation and translation that align a point lp = [lx,l y,l z]T

in the last frame and a point cp = [cx,c y,c z]T in the current
frame, at least 3 sets of matching points are required. Since
the rotation has already been estimated, instead of needing a
minimum of 3 sets of matching points, only 1 set is needed.
A point is then chosen randomly, with which the translation
is computed. Having the rotation and translation, the number
of inliers is computed based on the squared error e between
the point in the current frame and the point in the previous
frame transformed to the current frame as follows

e = ‖cp− (R ·l p+ t)‖2. (11)

The choice between inliers and outliers is established based
on a predefined threshold value.

This process of randomly choosing a point, computing the
error according to (11), and counting the number of inliers is
done iteratively over a fixed number of iterations. In the end,
the inliers of the iteration that produced the most inliers are
obtained.

Using the inlier points obtained, the translation is estimated
using the least squares method. The residual ri of a point
i ∈ {0, 1...N} is defined as the difference between the value of
the point i in the current frame cpi = [cxi,

c yi,
c zi]

T with the
value of the point i in the previous frame lpi = [lxi,

l yi,
l zi]

T

transformed to the referential of the current frame, according
to

ri =
c pi − (R ·l pi + t), (12)

where R is the previously estimated 3 × 3 relative rotation
matrix and t is a 3 × 1 column vector corresponding to the
desired translation.

The goal is to obtain the optimal value of the parameter
t = [tx, ty, tz]

T that minimizes the square sum of the residuals
S, according to

S =

N∑
i=1

‖ri‖2 =

N∑
i=1

‖cpi − (R ·l pi + t)‖2. (13)

Solving this problem results in

∂S

∂t
= 0⇒ t =

∑N
i=1

cpi −R ·l pi

N
. (14)

IV. STRUCTURE FROM MOTION PIPELINE

The developed Structure from Motion (SfM) system is
based on the ORB-SLAM2 pipeline, being divided into three
modules: Tracking, Local Mapping, and Loop Closure. Based
on a sequence of images received, Tracking extracts important
features from the images, finds matches between consecutive
frames, and estimates the position of the camera along with



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 5

Fig. 4: Developed SfM system pipeline.

its movement (visual odometry). It also creates keyframes
(detection of important camera positions based on the available
features over time). Local Mapping aims to optimize the
position of new keyframes and their respective map points,
taking into account the existing keyframes (and respective map
points) close to the new keyframe. The final module, Loop
Closure, optimizes the entire map when a loop is detected.
That is when the camera returns to a position already known on
the map. Figure 4 shows how the three modules are combined
to create the SfM system.

A. Tracking

The Tracking module starts by receiving a pair of images
from a stereo camera. The images can come from either a
fisheye or a pinhole camera and are assumed to be rectified and
their calibration is also assumed to be available. For every pair
of stereo images received, a frame is created. In each frame,
keypoints are detected and descriptors are extracted using
various alternatives for the type of features (e.g. SIFT, ORB,
or AKAZE features). With the descriptors, the keypoints of the
left and right images are matched, which allows the estimation
of 3D points. Using the computed 3D points or the 2D
keypoints with matches in consecutive frames, it is estimated
the relative motion between the consecutive frames, using
3D-3D or 2D-2D correspondences. The motion estimated is
accumulated over time to obtain the camera movement from
the current frame to the world reference frame. The final
step of Tracking is creating keyframes. Keyframes represent
similar sets of frames and prevent repeated information from
being inserted into the map. New keyframes have the same
information as the frame that created it and are created
according to the conditions defined in Section IV-A4.

1) Process Image Input: The Tracking module input is
the pairs of images taken by a stereo camera. Images from
two different types of cameras can be processed: pinhole
and fisheye. Both types of images can be processed directly,
however in fisheye images, the distortion can be removed
thus converting the image to the pinhole model. Although this
remapping removes the distortion, the edges of the image get
motion blur, which mainly affects feature detection in those
areas.

The images also need to be rectified, i.e. the images from
the two cameras need to be parallel. As this is not always the
case it is necessary to estimate a transformation that remaps
the right image so that corresponding points have the same
y-coordinate in both images. This must be the case since the
method of computing 3D points and the optimizations made
in the Local Mapping and Loop closure modules depends on
this characteristic.

2) Create Frame: Frames describe each stereo image pair
received. It contains all the information extracted from the
images. This information is keypoints, descriptors, correspon-
dences between keypoints and 3D points.

Keypoints are points on the image that are differenti-
ated either by color, intensity, texture, among others. Their
differentiation is important to allow an easier match with
other similar keypoints. Descriptors are calculated for each
detected keypoint. The descriptors contain information about
the region around the keypoint in the compact form of a
vector and are used to determine whether two keypoints are
similar. Three different types of features were implemented:
ORB, SIFT, and AKAZE. To reduce the computation time
for keypoint detection, a mask for the image is created. This
mask corresponds to a binary matrix with the dimension of
the image and indicates in which regions of the image to look
for keypoints. The mask is constructed by selecting a circular
region around all keypoints that have a stereo match. This
mask is reconstructed whenever a new keyframe is created.

The matching of keypoints between the stereo image pair
is done based on the descriptors extracted for each keypoint
of each image. The matching is done using a brute-force
descriptor matcher that searches for k best matches of the right
image for each descriptor of the left image. The best matches
are those with the smallest distance, which are computed using
the l2 norm. The default value used for k is 2. For values of
k ≥ 2 the two keypoints of the right image with the smallest
distance to the keypoint of the left image may have close
distances. In this case, Lowe’s ratio test is applied. To further
eliminate bad matches, the fundamental matrix is estimated.
This estimation uses a RANSAC algorithm, which allows the
exclusion of matches that are classified as outliers in the matrix
estimation.

The use of stereo cameras allows 3D points to be easily
computed using only the images of a single frame. Since the
images are rectified, both belong to the same plane, and there
is only a translation on the X axis between the left and right
images, which corresponds to the baseline of the camera. The
baseline value is a known input parameter since the cameras
are calibrated.

A 3D point X = [x, y, z]T in the left camera reference is
estimated using

d = xleft − xright (15)

z =
b · fx
d

, (16)

x =
xleft · z
fx

(17)

y =
yleft · z
fy

, (18)



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 6

where d is the disparity between the cameras, b is the stereo
baseline and f = (fx, fy) is the focal length of the left camera.

3) Pose Estimation: The pose estimation sub-module aims
at estimating the trajectory of the camera along its path in
the world reference frame. The world reference is defined as
being the reference of the first keyframe.

The movement of the current frame i in the world reference
frame WTi is computed as the accumulation of the relative
transformations between consecutive frames according to

WTi =
W T1 ·1 T2 · ... ·i−1 Ti, (19)

where i is the current frame.
The relative transformations between frames i−1Ti can be

estimated using different methods. The two hybrid methods
proposed can be used, as well as other known methods such
as Umeyama. Since these methods use 2D-2D or 3D-3D cor-
respondences between frames, it is necessary to find matches
between the keypoints of the left images of the consecutive
frames. Only keypoints for which there is an estimated 3D
point, are used.

4) New Keyframe Decision and Creation: The last task
done in the Tracking module is the decision of creating new
keyframes, and their creation when that decision is favorable.
A keyframe is defined as a frame that represents similar frames
of a certain region. The importance of creating keyframes
is related to the complexity of the map. It is necessary to
ensure that frames with new features of the environment will
be given to the map, at the same time that frames that will
only add features already in the map are only used to estimate
the trajectory.

Two conditions were defined to decide when a new
keyframe is created:

1) The current keyframe tracks less than 30% of the points
of the current keyframe.

2) Each keyframe can only represent, at maximum, 30
frames.

The first condition ensures that new information about the
environment is not lost by grouping frames that represent
different areas of the environment and the second condition
guarantees that the complexity of the map is kept reduced
while creating enough keyframes to guarantee a correct map-
ping.

B. Local Mapping

The Local Mapping module is responsible for creating and
managing the map. The map consists of the keyframes created
in the Tracking module and the corresponding 3D points
(map points). When creating or adding data to the map, the
module is responsible for adding keyframes and map points.
However, since different keyframes can see the same map
points, it is necessary to evaluate when to insert new map
points or update existing map points. After the new data
has been inserted into the map the positions of the current
keyframe, the keyframes connected to it, and the map points
belonging to those keyframes are optimized. This optimization
aims to reduce the impact of trajectory estimation errors on
the Tracking module.

1) Map: The map has two types of data, keyframes and
map points. Keyframes represent sets of similar consecu-
tive frames and map points are the 3D points seen by the
keyframes. The map thus has the keyframes created and the
map points associated with each keyframe. Map points can
belong to several keyframes and keyframes have connections
between each other based on the map points they have in
common, creating a co-visibility graph.

2) Map Creation and Update: The first step in Local
Mapping is to add new keyframes to the existing keyframe
map. This is a simple process since each keyframe is unique,
so there is no risk of having two repeated keyframes in the
map.

The second step is to insert the new keyframe map points
into the map. Unlike the keyframes, for the map points, it is
necessary to check if those points already exist on the map
(seen by other keyframes) or if they are new points. For that,
matching is made between the map points seen by the new
keyframe and by the previous keyframe. Based on the matches,
the points that did not have a match are considered new and
are inserted in the map. The ones that had a match are not
inserted, and the new observations for those points are added
to the respective map points.

Finally, co-visibility connections are made between the
keyframes. These connections are established based on the
number of map points that the keyframes have in common.

3) Local Map Optimization: To correct some of the drift
that is inevitably obtained in this type of system, due to the
continuous integration of odometry estimation errors, a local
BA is performed. This optimization will adjust the position of
the current keyframe, the position of the keyframes connected
to it according to the co-visibility graph, and the 3D points of
all these keyframes, based on the points seen by each keyframe
(observations). The observations correspond to the coordinates
of the keypoints that originated the 3D points.

The optimization is done using the Levenberg–Marquardt
method and aims to minimize the reprojection error between
3D points seen by multiple keyframes, according to obser-
vations o = [uL, vL, uR]

T , where (uL, vL) are the keypoint
coordinates of the left image and uR is the keypoint horizontal
coordinate of the right image.

Let K = {k1, ...,kn} be the set of keyframes that includes
the current keyframe and the keyframes connected to it by
co-visibility connections, and defining Xki

= {xi
1, ...,x

i
m} as

the set of 3D points that are seen by the keyframe ki ∈ K,
the cost function to minimize is

n∑
i=1

m∑
j=1

ρ(‖oi
j − π(Rkix

i
j + tki)‖2), (20)

where ρ is the robust Huber cost function, Rk ∈ SO(3) and
tk ∈ R3 are the orientation and position of the keyframe k,
respectively, and π is the function that projects the 3D points
onto the image, according to

π

XY
Z

 =

 fx
X
Z + cx

fy
Y
Z + cy

fx
X−b
Z + cx

 , (21)



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 7

where f = (fx, fy) is the left camera focal length, c = (cx, cy)
is the left camera principal point and b is the stereo camera
baseline.

C. Loop Closure

Loop closure aims to detect when the camera returns to a
previously visited position that is already mapped. Throughout
the motion, it is common for the trajectory error to increase
mainly due to the accumulation of several small motion
estimation errors. By returning to an already known position
it is possible to eliminate some of that error so that it does
not grow infinitely.

1) Loop Detection: The first step in correcting the loop
closure error is to detect when the loop is closed. To do so, two
procedures are performed. The first detects loop candidates and
the second checks whether any of the candidates are valid.

The first step of loop candidate detection uses Bag of Words
(BoW) place recognition. Whenever a new keyframe is created
in the Tracking module, the left stereo image of the created
keyframe is converted into a BoW word. This word is created
based on the keyframes and descriptors detected in the image
and acts as a frequency histogram of the features in the image.
After creating the word, it is inserted into a database that
associates the word with the ID of its keyframe. In the loop
closure module, a comparison of the word created for the
current keyframe is made with the words in the database to
compute a similarity score between the keyframes using the
l1 norm. The values of the scores obtained are between [0, 1]
and the keyframes that have a score greater than 0.9 times the
maximum score among the keyframes connected to the current
keyframe are considered candidates for loop closure.

The second step is to validate the detected candidates.
Although BoW is a good solution that allows fast matches
between all keyframes, perceptual aliasing can occur. To avoid
such situations, a validation of the geometric consistency
between the candidate and the current keyframes is performed
through feature matching. For each candidate, a match is made
between the descriptors of the candidate and current keyframe
keypoints. The candidates are only valid if at least 30% of the
points of the current keyframe have matches in the candidate
keyframe.

Since the optimizations performed to correct loop closure
can be computationally high, new loops are only detected 10
keyframes after the last loop was detected.

2) Map Fusion: After validating the detection of a new
loop closure, it is necessary to pass that information to the
map. To do so, an update to the map point observations of the
points that the current keyframe and the loop keyframe have
in common must be done. It is also necessary to create co-
visibility connections between these keyframes and possibly
other keyframes that share observations for the same points.

Similar to the process done in Section IV-B2, the update of
the observations of the map points that the current keyframe
and the loop keyframe have in common is done based on the
descriptor matching done in the previous section to validate
the loop. Only the points seen by both keyframes are thus
updated. As the points are updated, the number of points that

the current keyframe has in common with other keyframes are
counted. This count is necessary since other keyframes may
observe the same points that the current keyframe and the loop
keyframe have in common. Based on the number of points the
keyframes have in common new co-visibility connections are
established.

3) Loop Correction: Before performing the final step of op-
timizing the total map, an adjustment is made to the positions
of the keyframes to distribute the loop closure error over the
entire trajectory. Two ways of performing the error distribution
have been implemented. The first is keyframe optimization and
the second is transformation averaging. In both, it is necessary
to first estimate the correct position of the current keyframe.
Initially, an attempt was made to estimate odometry between
the current keyframe and the keyframe that completes the loop
with the same method used in the Tracking module, however,
the estimation was not correct. Therefore, the position of
the current keyframe was estimated by doing an optimization
identical to the one in Section IV-B3. Note that after the fusion
of the map the set of keyframes connected to the current one
now has the keyframe where the loop closure was detected.
The difference with the BA performed in Section IV-B3 is
that in this case the optimized positions are not kept, but are
only used to estimate the relative transformation between the
keyframes forming the loop.

The difference with the local BA is that the positions of the
keyframes and map points are not optimized, obtaining only
the optimized position of the current keyframe.

Having the correct position for the current frame, one of
two methods is applied: keyframe optimization or transfor-
mation averaging. The keyframe optimization corresponds to
the optimization of a pose-graph that has as vertices the
position of the keyframes and as edges between the keyframes
the relative position between them. There are only edges
between keyframes connected by the co-visibility graph. The
relative position between keyframes is computed based on the
positions of the keyframes in the world referential, except for
the edge that connects the loop where the previously estimated
position is used.

Let K = {K1, ...,Kn} be the set with all keyframes
positions and using the Levenberg–Marquardt method, the goal
is to minimize the position error between keyframes according
to the cost function

n∑
i=0,j=0,i6=j

‖Ki −i TjKj‖frob, (22)

where Ki and Kj correspond to the position of the keyframes
i and j, respectively, and iTj is the relative position from
keyframe j to keyframe i. ‖.‖frob denotes the matrix’s Frobe-
nius norm.

The second method implemented, transformation averaging,
corresponds to the distribution of the average loop error over
the keyframes. Based on the computed correct position for the
current keyframe and its position with accumulated error, the
loop error is estimated. From this error, the translation error
and the rotation error are obtained separately and divided by
the total number of keyframes. The obtained value is assumed



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 8

Dataset Distance [m]
STORE1 21.91
STORE2 34.23
KITTI00 217.06
KITTI07 694.70

TABLE I: Distance traveled in each dataset.

to be the average accumulated error between each keyframe
and is therefore distributed over all the keyframes.

4) Full Map Optimization: To complete the loop closure,
all keyframes and map points are optimized. This is done with
a BA similar to the one in Section IV-B3, the difference being
that all keyframes and map points are used instead of just the
current keyframe and those connected to it with co-visibility
connections and their 3D points.

V. EXPERIMENTS AND RESULTS

The experimental results performed have been divided into
three sections: Tracking, Local Mapping, and Loop Closure.
The first section presents the results of using different feature
types and different visual odometry estimation methods, using
only the Tracking module. The second section compares the
Tracking results before integration of the Local Mapping
module with the results after integration. Finally, the third sec-
tion compares the results obtained with the Tracking module
only, with Tracking and Local Mapping modules, and with
Tracking, Local Mapping, and Loop Closure modules.

The datasets used to test the pipeline belong to two different
environments using cameras with different models. The first
type of data was acquired for the project and belongs to
a retail store environment, which is the main environment
in which the system will operate. The camera used is the
Intel R© RealSenseTM T265 fisheye stereo camera, which has
an image capture rate of 30 FPS. The second type of data
is data from the KITTI dataset, which has several outdoor
sequences obtained from a moving vehicle that has two
pinhole cameras Point Grey Flea 2 (FL2-14S3M-C) arranged
in parallel, forming a stereo pair. The cameras capture new
images at a rate of 10 FPS.

Two datasets from the store environment and two datasets
from KITTI are used. From the store environment, the two
datasets will be referred to as STORE1 and STORE2. From
the KITTI datasets, sequences 00 (only the first 300 images)
and 07 are used, which will be referred to as KITTI00 and
KITTI07. Table I shows the distance traveled in each of the
datasets.

For error metrics, two were used, one for rotation errors and
one for translation errors. The metrics are as follows:

eR(R) = acos
(

trace(R−1RGT)− 1

2

)
(23)

et(t) = ‖t− tGT‖2, (24)

where RGT is the ground-truth rotation and tGT is the ground-
truth translation.

Using (23) and (24) both relative and absolute errors were
estimated. The relative errors are computed between consecu-
tive frames and express the error obtained in the estimation of

the movement between consecutive frames. The absolute error
is computed with the last frame of the sequence and expresses
the total error of the trajectory.

A. Tracking

In this section, the results obtained for the Tracking module
alone will be discussed. Being tracking only, the trajectories
are just related to the quality of odometry estimation. The
results to be shown belong to the datasets KITTI00 and
STORE1. For each dataset the three types of implemented
features (SIFT, AKAZE, and ORB) were tested, as well
as each of the following methods of odometry estimation
methods:

• Method EM-R: Essential Matrix for rotation and 1-Point
RANSAC for translation (described in Section III);

• Method VP-R: Vanishing Points for rotation and 1-Point
RANSAC for translation (described in Section III);

• Method R-Um: 3-Point RANSAC and Umeyama;
• Method Um: Umeyama.

Figures 5(a) and 5(b) show the results obtained using
various odometry estimation methods in the STORE1 and
KITTI00 datasets, respectively, using SIFT features. Since the
method VP-R needs structured environments, it is only used
in the STORE1 dataset. As there is no ground truth available
for the STORE1 dataset, the results are only evaluated qualita-
tively and the result produced by ORB-SLAM3 for this dataset
is given as reference.

As for features, SIFT features were the best performers,
followed by AKAZE features. ORB features were the worst
since they caused large errors in a few frames. The major
difference is that SIFT features can produce a larger number
of keypoints, which gives more frame matches and therefore
better estimation.

Regarding the odometry estimation methods, EM-R was the
best in both datasets. VP-R on the STORE1 dataset seems
to be able to produce good results, but it is not robust
and in certain areas of the store it gave poor estimates. In
both datasets, the introduction of an outlier removal method
improved the results a lot, as can be seen by comparing the
results of the Um and R-Um methods.

B. Local Mapping

This section will take the best results from the previous
section and add the Local Mapping module. The goal is to
analyze if there are improvements in the trajectory by locally
optimizing the positions of the keyframes and map points.
Therefore, only SIFT features and the methods EM-R and VP-
R defined in the previous section will be used.

Figures 5(c), 5(d), 5(e), and 5(f) show the results obtained
for the four datasets used. All four results show that the
trajectory obtained by using the Local Mapping module im-
proved the Tracking module results by reducing the error of
the trajectory and smoothing it when there are sudden position
variations caused by estimation errors (zone A in Figure 5(a)
ceases to exist in Figure Figure 5(c)).



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 9

(a) Tracking - STORE1 (b) Tracking - KITTI00 (c) Local Mapping - STORE1 (d) Local Mapping - KITTI00

(e) Local Mapping - STORE2 (f) Local Mapping - KITTI07 (g) Loop Closure - STORE2 (h) Loop Closure - KITTI07

Fig. 5: Experimental results: (a) and (b) present results using only the Tracking module with SIFT features; (c), (d), (e) and
(f) present comparative results of the Tracking module with and without the Local Mapping module; (g) and (h) present
comparative results of the Tracking module, the Tracking module with Local Mapping, and the Tracking module with Local
Mapping and Loop Closure.

C. Loop Closure

The last set of experiments aims to evaluate the two im-
plemented types of methods for error distribution along the
trajectory (keyframe optimization and transformation averag-
ing) and also make a final analysis of the evolution of the
results obtained along the pipeline with the implementation of
each module.

For the STORE2 dataset result in Figure 5(g), the transfor-
mation averaging method was able to close the loop correctly.
This result is due to the trajectory not having sharp variations,
so it is correct to assume for this case that the accumulated
error is constant along with the keyframes. For the keyframe
optimization method, keyframes close to the loop are corrected
correctly, however, keyframes far from the loop are adjusted
incorrectly.

Table II shows the error values obtained in the KITTI07
dataset for the Tracking module, Local Mapping module, and
Loop Closure module using either keyframe optimization or
transformation averaging for loop correction, and Figure 5(h)
show the trajectories obtained using each of the modules
(for the loop closure it is used keyframe optimization for
loop correction). It can be seen that neither method was
able to correctly correct the loop error. In the case of the
transformation averaging method, this is mainly due to the
error accumulated along the trajectory not being approximately

constant or to the estimation of the correct position of the
current keyframe in the loop. For the keyframe optimization
method, there was also no correct loop correction. Although
the absolute rotation error improved, the translation still has
a high error. This may also be related to the estimation of
the correct position of the current keyframe, which may be
incorrect because there are too few established points between
the keyframes in the loop, so the estimation does not produce
a good result, or because the accumulated error is too large to
be corrected in this way.

Overall, a clear evolution in the results is observed from
using just Tracking to Local Mapping and Loop Closure.

VI. CONCLUSION

The developed SfM system is able, based on stereo images
from pinhole or fisheye cameras, to estimate the trajectory
traveled by the camera while creating a map of the traveled
region. In the tracking module, several feature detectors and
visual odometry estimation methods were tested. Hence, re-
garding the goal of developing a modular pipeline, it can be
concluded that the goal has been achieved. Concerning the
exploration of the structure of retail stores environments, the
developed method showed potential, however, because it does
not work for fisheye images and because in certain regions it
cannot correctly estimate vanishing points, it was not able to



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 10

Setup
Relative Error Absolute Error

Rot [rad] Trans [m] Rot [rad] Trans [m]
µ σ µ σ

Tracking 0.012 0.019 0.17 0.29 0.27 33.95
Local Mapping 0.0022 0.0064 0.067 0.19 0.21 18.23
Loop Closure

(Transformation Averaging) 0.0031 0.016 0.081 0.30 0.19 23.76

Loop Closure
(Keyframe Optimization) 0.0027 0.0099 0.075 0.22 0.069 21.07

TABLE II: Rotation and translation errors obtained on the KITTI07 dataset using Tracking, Local Mapping, and Loop Closure
modules.

produce the desired results. As an alternative, another method
was proposed, which, despite not exploiting the store structure,
was able to produce good results. However, regarding the goal
of exploring the geometrical structure of the store, the goal
was incomplete. The last objective of creating an SfM pipeline
based on a known SLAM system was mostly fulfilled, with
some work still missing on the loop closure module since there
was no correct loop closure in all the datasets tested, especially
the larger ones.

Future work can be done throughout the pipeline, from
improving or changing certain methods to testing parameters
related to optimization, feature extraction, feature matching,
and more. Regarding the Tracking module, one aspect that
could improve the results is the integration of information
from other sensors, such as IMU or encoders. This type of
sensor can be used to give initial estimates int the visual
odometry estimatation or used as the motion value when
the visual odometry does not produce a correct estimate
(e.g. by detecting few keypoints). Another improvement to
be made involves all modules and consists of having better
tracking of keypoints over several frames. By having a better
tracking of the keypoints there will be more map points to
be seen by several keyframes which consequently creates
more connections between keyframes and improve the bundle
adjustment optimization process. Overall, the whole system
implemented should be optimized so that it runs in real-
time and a localization module should also be implemented
to transition from the implemented SfM system to a SLAM
system.

REFERENCES

[1] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras,” IEEE Trans. Robotics (T-RO),
vol. 33, no. 5, pp. 1255–1262, 2017. 1, 2, 3

[2] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611,
1992, pp. 586–606. 2

[3] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004. 2

[4] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European Conf. Computer Vision (ECCV), 2006, pp. 404–
417. 2

[5] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in IEEE Int’l Conf. Computer Vision (ICCV),
2011, pp. 2564–2571. 2

[6] P. F. Alcantarilla and T. Solutions, “Fast explicit diffusion for accelerated
features in nonlinear scale spaces,” IEEE Trans. Pattern Analysis and
Machine Intelligence (T-PAMI), vol. 34, no. 7, pp. 1281–1298, 2011. 2

[7] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981. 2

[8] P. H. Schönemann, “A generalized solution of the orthogonal procrustes
problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966. 2

[9] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Trans. Pattern Analysis and Machine
Intelligence (T-PAMI), pp. 376–380, 1991. 2

[10] C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric fea-
tures,” in IEEE Int’l Conf. Computer Vision (ICCV), 2019, pp. 8958–
8966. 2

[11] Z. Li and N. Wang, “Dmlo: Deep matching lidar odometry,” in IEEE/RSJ
Int’l Conf. Intelligent Robots and Systems (IROS), 2020, pp. 6010–6017.
2

[12] G. D. Pais, S. Ramalingam, V. M. Govindu, J. C. Nascimento, R. Chel-
lappa, and P. Miraldo, “3dregnet: A deep neural network for 3d point
registration,” in IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 7193–7203. 2

[13] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle adjustment
in the large,” in European Conf. Computer Vision (ECCV), 2010, pp.
29–42. 2

[14] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,” Int’l J.
Computer Vision (IJCV), vol. 103, no. 3, pp. 267–305, 2013. 2

[15] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.
3

[16] D. Nister, “An efficient solution to the five-point relative pose prob-
lem,” IEEE Trans. Pattern Analysis and Machine Intelligence (T-PAMI),
vol. 26, no. 6, pp. 756–770, 2004. 3

[17] X. Lu, J. Yaoy, H. Li, Y. Liu, and X. Zhang, “2-line exhaustive searching
for real-time vanishing point estimation in manhattan world,” in IEEE
Winter Conf. on Applications of Computer Vision (WACV), 2017, pp.
345–353. 3, 4


