
Retail Store Visual Structure-from-Motion

Valter André Ribeiro dos Santos Piedade

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor: Dr. Pedro Daniel dos Santos Miraldo

Examination Committee
Chairperson: Prof. João Fernando Cardoso Silva Sequeira

Supervisor: Dr. Pedro Daniel dos Santos Miraldo
Member of the Committee: Prof. Alexandre José Malheiro Bernardino

October, 2021

Declaration:

I declare that this document is an original work of my own authorship and that it ful-
fills all the requirements of the Code of Conduct and Good Practices of the Universidade
de Lisboa.

Declaração:

Declaro que o presente documento é um trabalho original da minha autoria e que
cumpre todos os requisitos do Código de Conduta e Boas Práticas da Universidade de
Lisboa.

iii

Instituto Superior Técnico

Retail Store Visual Structure-from-Motion

Valter André Ribeiro dos Santos Piedade

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervision team:
Dr. Pedro Daniel dos Santos Miraldo

Msc. Gonçalo José Dias Pais
Msc. André Gonçalves Mateus

October, 2021

Abstract

3D mapping technologies have received increasing attention over the last few years.
Among these technologies are Simultaneous Localization and Mapping (SLAM) and
Structure-from-Motion (SfM) systems. One of the many applications of these systems
is found in retail stores where robots are used to, e.g. , autonomously navigate through
the store to stock the shelves or detect missing products. In this thesis a SfM system
to work in a retail store was implemented from scratch in C++, using the structure of
the well-known ORB-SLAM2, proposed in [35], as a baseline for the developed method.
The system receives images from a moving stereo camera and uses them to estimate
visual odometry and to build a map of the traveled region. The pipeline is modular so
that various feature detectors and several methods of visual odometry estimation can be
used. Two hybrid methods for visual odometry estimation are further proposed in this
thesis. One of them aims at exploiting the typical geometric structure of retail stores.
Results of the developed system were obtained using acquired datasets from a retail
store and the KITTI dataset, and show some ablation studies for each module of the
pipeline.

Keywords: Structure-from-Motion, visual odometry, mapping, keyframe, keypoint.

iii

iv

Resumo

Ao longo dos últimos anos, tecnologias de mapeamento 3D têm vindo a receber uma
crescente atenção. Entre estas tecnologias estão sistemas de Simultaneous Localization
and Mapping (SLAM) e de Structure-from-Motion (SfM). Uma das diversas utilizações
deste tipo de sistemas encontra-se em supermercados onde robots são utilizados para,
p.e., navegar autonomamente pela loja para repôr produtos nas prateleiras ou verificar
quando estes se encontram em falta. Nesta tese foi implementado um sistema de SfM de
raiz em C++ que será utilizado em supermercados. A estrutura do conhecido sistema
ORB-SLAM2, proposto em [35], foi utilizada como base para o método desenvolvido. O
sistema recebe imagens de uma câmara stereo em movimento e utiliza-as para estimar o
movimento da câmara e construir um mapa da região percorrida. A estrutura do sistema
é modular de forma a permitir a utilização de vários tipos de detetores de pontos-chave
e diversos tipos de métodos para estimação da odometria visual. São ainda propostos
nesta tese dois métodos híbridos de estimação de odometria visual, tendo um deles
como objetivo utilizar a estrutura geométrica típica dos supermercados. Foram obtidos
resultados para o sistema desenvolvido utilizando conjuntos de dados adquiridos em
supermercados e o conjunto de dados do KITTI, com os quais se realizaram estudos dos
resultados obtidos para cada modulo do sistema.

Palavras-chave: Structure-from-Motion, odometria visual, mapeamento, keyframe,
ponto-chave.

v

vi

Acknowledgements

I would like to thank first of all my supervisor Dr. Pedro Miraldo, as well as his Ph.D.
students André Mateus and Gonçalo Pais for all the help, availability, and knowledge
they provided me during this 1-year project of which they were also part. A word of
thanks also to my colleague Luis Lopes who joined the project at a later stage.

A word of appreciation to all the friends I made during the five years of university,
with whom I accomplished many projects, had good experiences, and thanks to them I
had a great time since the first day of this journey.

To my girlfriend, a special word of thanks for all the motivation she has given me
and for always believing in my capabilities.

Last but not least, I would like to thank my family. It was through their efforts that
I started this journey and it is also thanks to their help that I am completing it.

vii

viii

Contents

List of Figures x

List of Tables xii

Acronyms 1

1 Introduction 3
1.1 Motivation . 4
1.2 Objectives . 5
1.3 Thesis Outline . 6

2 Background 7
2.1 Sensor Comparison . 8
2.2 Visual Odometry . 10

2.2.1 Featureless Registration . 10
2.2.2 Feature-based Registration . 12
2.2.3 Deep Learning Registration . 16

2.3 Mapping . 18
2.4 Baseline Visual SLAM System . 20
2.5 Summary . 22

3 2-step Visual Odomety 23
3.1 Rotation Estimation . 23

3.1.1 Essential Matrix Estimation . 23
3.1.2 Vanishing Points Estimation . 25

3.2 Translation Estimation . 26

ix

4 Structure-from-Motion Pipeline 29
4.1 Tracking . 30

4.1.1 Process Image Input . 31
4.1.2 Create Frame . 32
4.1.3 Pose Estimation . 36
4.1.4 New Keyframe Decision and Creation 37

4.2 Local Mapping . 38
4.2.1 Map . 39
4.2.2 Map Creation and Update . 39
4.2.3 Local Map Optimization . 39

4.3 Loop Closure . 41
4.3.1 Loop Detection . 42
4.3.2 Map Fusion . 43
4.3.3 Loop Correction . 43
4.3.4 Full Map Optimization . 45

5 Experiments and Results 47
5.1 Tracking . 49
5.2 Local Mapping . 53
5.3 Loop Closure . 55

6 Conclusions 59

A Example of a retail store dataset 67

x

List of Figures

1.1 Operating scheme of a Structure-from-Motion system. Source: theia-
sfm.org. 4

2.1 Example of odometry correction and mapping using a LiDAR sensor.
Source: [58]. 8

2.2 Representation of two minimal solvers strategies: (a) 1 line intersection
and 2 plane correspondences; (b) 3 line intersections and 1 plane corre-
spondence. Source: [43]. 16

2.3 Trajectory optimization effect with loop closure. Source: [24]. 19

2.4 ORB-SLAM2 and ORB-SLAM3 frameworks. Sources: [35], [10]. 21

3.1 Vanishing points estimation: (a) Relationship between the image plane
and the equivalent sphere; (b) Procedure of generating orthogonal van-
ishing points. Source: [30]. 25

4.1 Developed SfM system pipeline. 30

4.2 Tracking module pipeline. 31

4.3 Example of possible system inputs: (a) Fisheye image; (b) Fisheye image
with distortion removed. 32

4.4 Example of detection of keypoints on a fisheye image using different types
of features: (a) ORB features; (b) SIFT features, (c) AKAZE features. . 33

4.5 Example of a mask created to delimit the region to search for keypoints:
(a) Keypoints detected with stereo correspondence; (b) Mask created
based on the keypoints with stereo correspondence. 33

xi

4.6 Example of the matches detected for each stage of their estimation: (a) Matches
estimated using a brute-force descriptor matcher with k = 2; (b) Matches
after removing outlier matches according to Lowe’s ratio test; (c) Final
matches, obtained by removing outlier matches from the matches obtained
in (b) using a RANSAC algorithm. 35

4.7 Depth estimation in parallel cameras. Source: https://docs.opencv.org. . 36
4.8 Example of the stereo matches (blue) and frame-to-frame matches (red)

needed for relative motion estimation between consecutive frames. 37
4.9 Local Mapping module pipeline. 38
4.10 Scheme of the graph created to perform bundle adjustment. 40
4.11 Loop Closure module pipeline. 42
4.12 Scheme of the graph created to perform keyframe optimization. 44

5.1 Store environment datasets description: (a) Project’s robot setup; (b) Stereo
camera Intel R© RealSenseTM T265. Source: https://www.intelrealsense.com.;
(c) Example image of the store environment. 48

5.2 KITTI dataset description: (a) Vehicle sensor setup; (b) Example image
of KITTI sequence 00. Source: http://www.cvlibs.net/datasets/kitti. . . 48

5.3 Tracking module results on STORE1 dataset: (a) Using SIFT features;
(b) Using AKAZE features; (c) Detected lines and estimated vanishing
points using VP-R method. 51

5.4 Tracking module results on KITTI00 dataset: (a) Using SIFT features;
(b) Using AKAZE features; (c) Using ORB features. 52

5.5 Local Mapping module results: (a) Dataset KITTI00; (b) Dataset STORE1;
(c) Dataset KITTI07; (d) Dataset STORE2. 54

5.6 Loop Closure module results: (a) Comparison of loop error distribution
methods on the STORE2 dataset; (b) Tracking, Local Mapping and Loop
Closure results on the STORE2 dataset; (c) Comparison of loop error dis-
tribution methods on the KITTI07 dataset; (d) Tracking, Local Mapping
and Loop Closure results on the KITTI07 dataset. 57

A.1 Example images from STORE1 dataset. 68

xii

List of Tables

2.1 Advantages and disadvantages of stereo cameras, RGB-D cameras, monoc-
ular cameras, and LiDAR sensors. 9

5.1 Distance traveled in each dataset. 49
5.2 Rotation and translation errors obtained on the KITTI00 dataset, using

only the Tracking module. 53
5.3 Rotation and translation errors obtained on the KITTI00 and KITTI07

datasets using both Tracking and Local Mapping modules. 55
5.4 Rotation and translation errors obtained on the KITTI07 dataset using

Tracking, Local Mapping, and Loop Closure modules. 56

xiii

xiv

Acronyms

BA Bundle Adjustment. 18, 20, 39, 41, 43, 45

BoW Bag-of-words. 41, 42, 55

FPS Frames per second. 38, 47

GPS Global Positioning System. 3, 10

IMU Inertial Measurement Unit. 3, 10, 21, 59

LiDAR Light Detection and Ranging. xi, xiii, 3, 7, 8, 9, 16

RANSAC Random sample consensus. xi, 13, 14, 15, 17, 24, 26, 34, 49

SfM Structure-from-Motion. iii, v, xi, 3, 5, 6, 7, 18, 21, 29, 59

SLAM Simultaneous Localization and Mapping. iii, v, 3, 4, 5, 6, 7, 19, 21, 59

1

2

Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) and Structure-from-Motion (SfM)
have received increasing attention over the last years due to their applications in several
industries like robotics, autonomous vehicles, mapping, security, and more.

SLAM systems have the goal of estimating the position of a robot and its trajectory,
while simultaneously building a map of the traveled region. To achieve this, sensors
such as cameras, LiDAR, sonar, GPS, IMU, among others are used. Although it can be
used offline, the main focus of this type of system is its use in real-time. SfM systems,
on the other hand, aim to reconstruct the 3D environment from a series of 2D images
taken from different positions. Unlike SLAM systems, these systems work offline, so it is
necessary to get the data and only then solve the problem. In some situations, SfM and
SLAM systems work similarly, namely when both use cameras and when the different
camera positions in the region are captured by a robot moving on a particular trajectory.
In this case, the estimation of the robot’s trajectory is necessary for the construction of
the map. There are therefore concepts and methods common to both systems, such as
odometry estimation, which is the estimation of the motion of the camera, and bundle
adjustment (that is used to correct the position of points on the map).

Figure 1.1 exemplifies the operation of an SfM system. Throughout the movement
made by the camera, images are captured. In these images, keypoints are detected and
a search for these points is made throughout the various images to find common points
between images taken from different positions. With this information, it is possible to
estimate the camera movement between images, compute 3D points and also correct the
map based on multiple views of the same point from different positions.

3

1.1. MOTIVATION

Figure 1.1: Operating scheme of a Structure-from-Motion system. Source: theia-sfm.org.

One particular use of these two types of systems can occur in retail store. This
use has been increasingly adopted to have robots that can, e.g. , store, pick up, or
detect products on the shelves. It is, therefore, crucial to have a correct map of the
store so that the robot knows its location in the environment so that it can efficiently
perform its function. A particular characteristic of these types of environments is their
geometric structure. Retail stores have a lot of boxes and shelves, and are composed
mostly of corridors, so it can be assumed that the environment can be characterized
by having three orthogonal vanishing directions (Manhattan World assumption). These
characteristics can thus be exploited for better environment-specific results.

1.1 Motivation

The work carried out in this dissertation is included in a research project that aims
at developing and implementing a vision-based SLAM module for an autonomous mobile
robot in a retail store environment. The research project working plan is divided into
three stages. Stage I is the development and implementation of algorithms for the
localization of an autonomous mobile robot working in the salesroom of a retail store.
Stage II is the development of algorithms for map update and simultaneous location and
mapping for the autonomous mobile robot described above, using the same set of sensors

4

CHAPTER 1. INTRODUCTION

as in Stage I. Lastly, Stage III are tests, adaptation, and integration of the system on
the robot platform built as part of the project. The system must be designed to operate
in the sales store of a retail store and the constructed map have to enable the robot
to identify its location based on the images of the robot’s operating space. The map
format will allow its use in motion execution and planning systems that will be created
in parallel.

After reviewing the literature and testing some state-of-the-art SLAM and SfM meth-
ods using a typical sequence of images (e.g. KITTI dataset [18]) and images from a retail
store environment, it was decided to use as reference ORB-SLAM2, proposed in [35].
However, since the project is intended for commercial purposes and the scripts available
from ORB-SLAM2 are under a license that does not allow such uses, the entire pipeline
had to be implemented from scratch. We took this opportunity to make significant
changes in the original pipeline, including making it more modular, i.e., it allow us to
run proper ablation studies and is open to future research.

This dissertation fits in Stages I and II of the project’s work plan and is the work that
has been done so far in each of the stages. The work results in an SfM system that differs
from the SLAM system by not having, mainly, a re-localization module nor running in
real-time. The developed system is capable of, based on images captured by a stereo
camera, estimating the movement of the camera along its trajectory, while creating a
map of the region based on the 3D points computed along the path and adjusting their
positions using bundle adjustment. The system was also developed to be modular in
several aspects, such as the type of image features to extract and odometry estimation
methods to use.

1.2 Objectives

The goals to be achieved with this thesis are:

• Implement a Structure-from-Motion pipeline in C++, based on a known pipeline;

• Integrate the use of several types of keypoint extractors and several conventional
odometry estimation methods;

• Create an odometry estimation method that takes advantage of the structured
retail store environment.

5

1.3. THESIS OUTLINE

The desired result is to obtain a map of the environment in which the robot has
traveled, together with its trajectory.

1.3 Thesis Outline

This report is divided into six chapters. Chapter 2 presents SfM systems and the con-
ditions in which they resemble SLAM systems, thus dividing these systems into odometry
estimation and mapping. For odometry estimation, featureless, feature-based, and deep
learning methodologies are discussed. For mapping some methodologies are also dis-
cussed, namely bundle adjustment when loop closure occurs. Finally, the ORB-SLAM2
system is described, whose framework served as the basis for the development of the pro-
posed SfM system. Chapter 3 presents the two proposed methods for odometry estima-
tion that combine a rotation-only and a translation-only estimation method. Chapter 4
describes the developed SfM pipeline, highlighting each module and its functionalities.
Chapter 5 reports the experimental results obtained throughout the evolution of the
pipeline. Initially, results are presented only for the Tracking module, followed by the
addition of Local Mapping and finally the addition of Loop Closure. Results of using
various types of keypoint detectors and odometry estimation methods are also presented.
Finally, in Chapter 6, a conclusion is made about the work accomplished and the results
obtained, and whether they met the proposed objectives. Some future improvements to
be made are also mentioned.

6

Chapter 2

Background

In recent years, 3D mapping technologies like Simultaneous Localization and Map-
ping (SLAM) or Structure-from-Motion (SfM) have received increased attention in sev-
eral areas such as robotics, autonomous vehicles, and others. While SfM systems work
offline and use only images from monocular, stereo, or RGB-D cameras to make a 3D
reconstruction of the environment, SLAM systems operate in real-time and use sensors
such as LiDAR or sonar in addition to cameras. The large number of applications of
these technologies is partly due to the wide variety of sensors that can be used. This
variety is important since each sensor has advantages and disadvantages depending on
the type of use.

SfM systems require several observations of the same region to reconstruct the en-
vironment. For this, they can use either several static cameras pointing at the same
area or moving cameras. When the camera is in motion, the functioning of this system
resembles that of SLAM systems, since it is required to estimate the position of the cam-
era along its path. Two steps can then be considered in the operation of these systems,
odometry estimation, and mapping.

Odometry estimation, or ego-motion, consists of estimating the motion of the camera.
This movement is described by a rotation and a translation typically between consecutive
frames, which is used to convert the referential of each received image into a global
referential common to the whole map. It is common to have errors in the estimation of
odometry, which causes the estimated trajectory and map to deviate from the ground
truth data. The greater the distance traveled, the greater the accumulated error. The
mapping step consists of correcting the accumulated map error. This can be done by

7

2.1. SENSOR COMPARISON

Figure 2.1: Example of odometry correction and mapping using a LiDAR sensor.
Source: [58].

performing local optimizations based, e.g. , on points that are common to multiple
consecutive frames. The most common process is loop closure detection, in which it is
detected that the camera has returned to a known position, so it is possible to estimate
the accumulated error and optimize the whole map based on that error and on common
points between the images in which the loop was detected.

Figure 2.1 shows an example of the effect of the odometry estimation and mapping
steps. On the left side of the figure are shown two point clouds from consecutive frames
that are misaligned. By estimating the odometry between the two point clouds, it is
possible to align them by transforming them into the same referential. By executing
this process of estimating the movement along a region, a map of the region is created,
as shown on the right side of the figure.

The following sections analyze the different types of sensors and approaches that
can be used to solve the odometry estimation problem. These approaches are divided
into featureless, feature-based, and deep learning registration methods. Some common
techniques used for mapping and the well known ORB-SLAM2 system will also be
analyzed.

2.1 Sensor Comparison

From the various types of cameras (stereo, RGB-D, monocular) to laser sensors, there
are lots of scientific instruments available that can be used to perform 3D odometry

8

CHAPTER 2. BACKGROUND

Sensors Advantages Disadvantages

Stereo Camera

Color information;
Depth computed based on only
one stereo pair;
Images with low noise and
typically easier to process;

Rely on the environment
lighting conditions;

RGB-D Camera

Color information;
Depth information;
Images with low noise and
typically easier to process;

Rely on the environment
lighting conditions;
Rely on having depth
available;

Monocular Camera
Color information;
Images with low noise and
typically easier to process;

Rely on the environment
lighting conditions;
At least two images are
needed to compute depth.

LiDAR Sensor
High range measurements;
Aren’t affected by the lighting
conditions;

Data sparse and noisy;
No color information;

Table 2.1: Advantages and disadvantages of stereo cameras, RGB-D cameras, monocular
cameras, and LiDAR sensors.

estimation and mapping. The most common are stereo cameras, RGB-D cameras, and
Light Detection and Ranging (LiDAR) sensors.

Stereo cameras as used in [35, 23, 38, 15] can provide images that are easier to treat
than large 3D sparse point clouds. However, they heavily rely on the environmental
lighting conditions, since their methods use visual features that became unavailable in
low light conditions. Methods that only use LiDAR sensors, [58, 16, 8, 36], are also com-
mon since LiDAR sensors can perform range measurements at a high frequency and can
reach great distances. They also ensure that measurement errors do not depend on the
measured distance and aren’t affected by the lighting conditions of the environment. As
used in [28], since each LiDAR scan is taken from a single viewpoint, the 3D point cloud
obtained can be converted into a 2D image without loss of information. This property of
LiDAR sensors increases the amount of use given to LiDAR sensors data. Overall, the
major downside is that the data received from these sensors is typically sparse and noisy
and that we do not have color information. To balance the disadvantages of LiDAR
sensors and cameras, methods like V-LOAM [59] use a combination of both a LiDAR
and a monocular camera. Some methods using RGB-D cameras, [35, 25, 56, 24], are

9

2.2. VISUAL ODOMETRY

also able to accomplish good results. However, they only utilize visual images from areas
that have depth available, which often limits the number of images that these methods
use. Table 2.1 shows the advantages and disadvantages of each of these sensors.

In addition to the previous sensors, sensors such as Global Positioning System (GPS)
and Inertial Measurement Unit (IMU) can be used as a complement to improve mapping
accuracy as shown in, for example, [36]. These sensors are capable of measuring the
orientation, position, velocity, and acceleration of a moving object, which can be used
directly or as an initial estimation when estimating sensor motion.

2.2 Visual Odometry

Visual odometry is the process of estimating the position and orientation of a camera
along its trajectory, based on the sequence of acquired images. This is a crucial step
to achieving a good result since the better the odometry estimation, the smaller the
error accumulated along the path. Several approaches have been developed to solve the
problem of visual odometry. These approaches either use 2D points, 3D points, or a
combination of both.

In the following subsections, three different approaches to obtain a solution to the
visual odometry problem will be seen. These approaches are divided into methods that
use visual features (feature-based), methods that do not use visual features (featureless),
and deep learning methods.

2.2.1 Featureless Registration

Concerning 3D registration methods without resorting to feature points, the Iterative
Closest Point (ICP), [6], and its variants (some of them are presented in [12, 50, 51]) are
the standard approach. These methods, however, have some disadvantages, the main one
being the convergence in local minimums. To solve this problem, more ICP variations
were developed, [39, 57], in an attempt to obtain a solution that guarantees global
optimality. Another method that does not require feature points is the NDT, [7], which
computes a normal distribution of the data from the received scans and estimates the
best transformation based on an estimated score value from the computed distributions.

The standard Iterative Closest Point (ICP) algorithm estimates a rotationR ∈ SO(3)

10

CHAPTER 2. BACKGROUND

and a translation t ∈ R3 that minimize

E(R, t) =
M∑
i=1

‖Rxi + t− yj∗‖2, (2.1)

where E(R, t) corresponds to a l2 error and yj∗ to the best match for xi. The best
match corresponds to the point closest to xi after the transformation, i.e.

j∗ = argmin ‖Rxi + t− yj‖2. (2.2)

The algorithm iteratively varies between estimating the transformation and searching
for the nearest points. In the solution proposed in [6] the sets of points are selected in
a point-to-point manner, while in [12], the sets of points are selected in a point-to-plane
manner. The main problem with ICP is that it does not guarantee an optimal global
solution, often generating solutions that are only local minimal. To try to reach the
global maximum, it is necessary to provide a good initial estimate of the transformation,
which is not always possible. Another important problem is that this algorithm is greatly
affected by the presence of outliers.

Generalized-ICP (GICP), [50], combines the previous methods in a probabilistic
framework. This method analyzes flat local surfaces in both received sets of data which
allows using both sets to obtain correspondences, while in the previous methods, it was
taken only one data set and tried to fit in the other. This way, the method can be
considered as doing plane-to-plane matching. Using this approach, the simplicity and
speed of the previous methods are maintained and the accuracy increases.

Normal Distributions Transform (NDT), [7], can be seen as a variant of the ICP
applied to laser data. It uses data received from a 2D laser sensor and converts each
received scan (that corresponds to a 2D plane) into cells of constant size. For each
cell, a normal distribution is calculated which expresses the probability of evaluating a
sample. This way, it is obtained a probability density of the points received, which is
differentiable and piece-wise continuous. To perform the correspondence, it is used the
2D transformation T defined by

T :

[
x′

y′

]
=

[
cosφ -sinφ
sinφ cosφ

] [
x
y

]
+

[
tx
ty

]
, (2.3)

that describes the rotation φ and translation
[
tx ty

]Tbetween the two scans. To perform
scan alignment first it is calculated an NDT of the initial scan. Then, using initial values

11

2.2. VISUAL ODOMETRY

for T, the second scan is mapped to the coordinates of the first scan. A score is assigned
to the result obtained with T by adding the NDT values of the initial and the mapped
scans. Using Newton’s algorithm, new parameters for T are estimated to improve the
score obtained until a certain convergence criterion is reached.

Although the previous ICP variants increase the performance of the original method,
they still do not guarantee that the global minimum will be obtained. To solve this prob-
lem, Globally Optimal ICP (Go-ICP), [57], proposed the first global optimum solution
for Euclidean registration. It uses a nested branch and bound (BnB) structure, in which
there is an outer BnB that performs a search in the rotation space SO(3), which is as-
sociated with an inner BnB that gives the optimal translation. Using this combination,
it is possible to jump over the local minimal, thus generating only the optimal global
solution. Despite guaranteeing, in any case, the optimal solution, this method is mainly
useful in cases in which real-time performance is not the most important.

2.2.2 Feature-based Registration

Feature-based registration methods require the use of visual features extracted from
images and their correspondence between different images. This type of method is di-
vided into several steps. The first is to extract keypoints from the two images. These
points usually correspond to edges, corners, blobs, or ridges. Next, it is necessary to find
matches between the keypoints of the two images. To do so, descriptors are extracted
for each detected keypoint. The descriptors characterize the region in the image from
which the keypoint was extracted and it is by comparing the descriptors that the corre-
spondences between the points are found. The correspondences indicate that the same
point is seen from two different perspectives. The last step is to compute the rotation
and translation between the two cameras, based on the points they have in common.

Feature types

Feature extraction can be done from both 2D images and 3D point clouds. For
2D images, methods like [29, 5, 45, 20, 4, 3] are among the most common. Scale-
Invariant Feature Transform (SIFT), [29], can extract invariant features from images
that describe their local structure. It uses a Gaussian function to detect candidate
locations from where feature points will be extracted. Through the local structure of a

12

CHAPTER 2. BACKGROUND

feature, it becomes easier to perform matching of the features since they are more robust
to translation, rotation, scaling, distortion, and light changes. Speeded Up Robust
Features (SURF), [5], is both a feature detector and a descriptor, and partially inspired
by SIFT. It relies on a Hessian matrix to detect blobs on an image. Oriented FAST and
Rotated BRIEF (ORB), [45], consists of a FAST key-point detector, [44], and a BRIEF
descriptor, [9], and is an efficient alternative to both SIFT and SURF. Unlike SIFT and
SURF features, which exploit the Gaussian scale space, KAZE ([3]) features exploit the
non-linear scale space by using non-linear diffusion filtering. To speed up the detection
of features, AKAZE ([4]) features were created based on KAZE using a more efficient
algorithm. For applications where specific features like edges or corners are important,
Harris Corner Detector, [20], can be an alternative.

Although the methods of extracting 2D image features can be applied to point clouds
if they are converted to 2D images, there are methods such as Fast Point Feature His-
tograms (FPFH), [46], which is a fast variant of Point Feature Histograms (PFH) pro-
posed in [48, 47] that characterize the geometry of local feature 3D points, and can thus
be used to match the same position in two different point clouds.

Registration methods

After having the feature points of both point clouds, the next step is to find matches
between them. Many feature matching methods use brute force in this process and then
use an outlier removal method to eliminate the bad matches (outliers) and estimate
the best transformation based on the inliers. One popular solution to perform outlier
removal is RANdom SAmple Consensus (RANSAC), [17]. RANSAC is an iterative
method that selects random subsets of features, fits a model to the selected subset,
and classifies the remaining points in inliers and outliers, according to a predetermined
threshold. This process is repeated for a specific number of iterations to find the set of
points that better suit the model. In its use to estimate odometry, this method selects
sets of matches and uses methods like [49, 53] to estimate the transformation parameters
between the matched points, and based on the error obtained, the points are classified
as outliers and inliers. In the end, the set of inliers that produced the least error in the
transformation is obtained.

The main problems of RANSAC are that it cannot yield good results in cases with a
high percentage of outliers and that it does not guarantee optimal convergence. However,

13

2.2. VISUAL ODOMETRY

due to its capacity to tolerate outliers and its simplicity of implementation, RANSAC
is a common technique.

Over the years, variants of RANSAC have emerged that have adapted it to match
points and lines, or a combination of both, and further improve its robustness and
adaptability for real-time uses. Some of these variants are analyzed in [42].

One of the referred methods that is capable of estimating the transformation pa-
rameters (rotation and translation matrices) between sets of points is the Orthogonal
Procrustes problem, [49]. This method solves a least-squares problem that estimates a
orthogonal rotation R ∈ SO(3) by

A = BR+ E (2.4)

RRT = RTR = I (2.5)

min tr(ETE) = min
∑
‖A−BR‖frob, (2.6)

where matrices A and B have the matching feature points between the point clouds and
E is the residual matrix. ‖.‖frob denotes the matrix’s Frobenius norm. The translation
can be removed from the transformation by considering that the reference frame of each
set of points is placed on the average distribution point. This way there is only rotation
between the two sets of points.

Other solution to align the data is the proposed by Umeyama in [53]. His solution is
also a least squares estimation of the transformation parameters between two provided
point patterns A and B. The transformation is just a rotation R ∈ SO(3), and the
estimation of the parameters are defined by

min
R
‖A−BR‖frob = ‖A‖frob + ‖B‖frob − 2 · tr(DS), (2.7)

where
S = diag(1, 1, det(ABT)). (2.8)

An alternative to using RANSAC is Fast Global Registration, [60]. It aims at mini-
mizing a rigid transformation T that aligns points from the point sets P and Q, using
correspondences between their points. The objective function for this problem is defined
by

E(T) =
∑

(p,q)∈K

ρ(‖p−Tq‖2), (2.9)

14

CHAPTER 2. BACKGROUND

where ρ is a robust loss function, p ∈ P , q ∈ Q and K = (p,q) is the set of corre-
spondences between points of P and Q, obtained using Fast Point Feature Histogram,
[46].

This method of registration thus corresponds to a direct approach, in which only
one process is performed (single-stage), which corresponds to the minimization of the
objective function. Unlike other methods, it does not require an initial estimate nor in-
volve model fitting or local refinement which are iterative and computationally expensive
processes, and it is also able of aligning surfaces with partial noise.

4PCS, [2], presents a solution more focused on data geometry by extracting all co-
planar sets of 4-points that are roughly congruent. Congruent sets of points are related by
a rigid transformation and are used since some ratios between points maintain invariant
under this transformation. This method does not require any assumption over the
initial transformation parameters and is robust even to data contaminated with outliers.
Super4PCS, [32], is a fast registration algorithm that reduces the quadratic complexity
of 4PCS to a linear complexity, that is more suitable to real-world application. Even
with the reduced complexity, it maintains robustness to outliers and effectiveness in low
overlap scans.

Finally, another type of solution-focused on data geometry is proposed in [43, 31].
These methods use minimal solver approaches combining different types of constraints
over line intersections, point matches, and plane matches to align point clouds.

In [43] the following combinations between constraints are proposed: the intersection
of a line and the correspondence of two planes, and the intersection of three lines and the
correspondence of a plane, as shown in the Figure 2.2. [31], in addition to the combina-
tions of constraints presented in [43], also present combinations between the intersection
of three lines and the correspondence of one point, the intersection of one line and cor-
respondence of two points, and, finally, the intersection of a line and the correspondence
of a point and a plane. This type of approach using geometry constraints is better to
deal with sparse 3D point cloud than methods using only point correspondences since
specific feature points can disappear between scans, thus losing correspondences.

Both methods referred to use RANSAC frameworks to estimate, from the different
combinations of match points, line intersections, or match planes, the pose variation
between the two scans.

15

2.2. VISUAL ODOMETRY

(a) (b)

Figure 2.2: Representation of two minimal solvers strategies: (a) 1 line intersection and 2
plane correspondences; (b) 3 line intersections and 1 plane correspondence. Source: [43].

2.2.3 Deep Learning Registration

Due to the recent increase in studies involving machine learning, namely the study of
CNN (Convolutional Neural Networks), several signs of progress have been achieved in
the area of odometry and mapping estimation. These new learning-based methods can
surpass or complement the classical methods and achieve state-of-the-art results. The
versatility of neural networks enabled the creation of deep learning methods that solve
problems such as feature extraction ([14]), feature matching ([28]), registration of point
clouds ([40, 54]) and estimation of odometry ([27, 13]).

LO-Net, [27], is considered to be the first successful method to perform learning-
based LiDAR odometry. It uses the fitting ability of CNN to determine in an end-to-
end manner the relative motion between a given pair of consecutive scans. This novel
LiDAR odometry estimation network stands out for estimating the normal and a mask,
which improves feature learning in dynamic regions, without using geometric constraints.
This learned information is used in a mapping module to improve the accuracy of the
estimation. It is also included in the network a geometry consistency constraint to
regularize the learning. This network, however, is trained using ground truth data,
becoming likely to overfitting, and it cannot take complete advantage of the geometric
constraints of the data.

16

CHAPTER 2. BACKGROUND

Traditional feature-based methods suffer to obtain high matching accuracy since
obtaining accurate correspondences between points in sparse and noisy LiDAR data
continues challenging. An alternative to these traditional methods is Deep Matching
LiDAR Odometry (DMLO), [28], which is a learning-based framework to perform feature
matching in the estimation of odometry tasks. DMLO is divided into two components.
First, it uses a learning-based network to provide accurate matches between points from
two scans. Before using the network to find matches, the data from the LiDAR scans
are encoded into 2D images. Then, the network uses CNN to extract features and
compare similarities between both images in local regions. For each pair of matches,
it is calculated a confidence level to facilitate the final selection of matches. Finally,
using Singular Value Decomposition (SVD) the distances between the matched pairs are
minimized to obtain motion estimation.

In the registration of 3D scans, the main problem is often related to the consistency
of outlier removal. 3DRegNet, [40], offers a deep learning solution that classifies matched
points from consecutive scans in inliers or outliers and uses the inliers to do a regression
of the motion parameters that aligns both scans. There are presented two approaches
for the regression. The first approach uses a Deep Neural Network (DNN) and the
second solves the Procrustes problem using SVD. It is shown that despite the run time
being lower by solving the Procrustes problem, the difference is small and the DNN
compensates by achieving higher accuracy. To improve the accuracy results it is also
proposed the inclusion of a refinement network corresponding to a smaller 3DRegNet
that will improve even further the initial registration.

Another method related to 3D point cloud registration is Deep Closest Point (DCP),
[54]. DCP was created to solve the problems of the ICP method. Similar to other
learning-based registration methods, it receives two point clouds and estimates the mo-
tion between them in the form of a rigid transformation. The method is divided into
three parts. The first find correspondences between points using DGCNN, [55], that
capture local geometric features. DGCNN was compared to PointNet, [41], which learns
a global descriptor of the entire point cloud, however, DGCNN provided more consis-
tent results. The second part finds matches between the point clouds, and the final part
computes the desired rigid transformation through a layer that uses SVD.

Finally, when it comes to feature extraction, Fully Convolutional Geometric Features
(FCGF), [14], can compute geometric features from a 3D point cloud by using a fully

17

2.3. MAPPING

convolutional network that quickly extracts features. These features are compact, ob-
tained even in large scenes, and are used mainly to find correspondences between points,
using, e.g. , a method like RANSAC.

2.3 Mapping

The 3D mapping problem consists of joining several sets of point clouds acquired at
different times and in different positions, either by several static sensors looking over the
same region or by sensors moving along a path, thus creating a map of a region. In any
case, to ensure that there is no distortion in the final map, it is necessary to estimate the
transformations between the coordinates systems where the point clouds are obtained
and the reference coordinate system in which the map is being made. The odometry
estimation problem is thus part of the mapping problem as it helps to estimate these
transformations between the different scans acquired over time in different positions.
Various methods allow these transformations to be computed not only in the case where
there is movement but also in cases where it is intended to reconstruct a map from several
static sensors that have different perspectives from the same region. The methods to be
analyzed are Bundle Adjustment and Rotation Averaging.

Bundle Adjustment (BA) is an essential component in solving SfM problems, as
shown in [1] and explained in survey [52]. It is capable of making an optimal visual
reconstruction of a 3D structure and estimating the position of the camera or its cal-
ibration parameters using feature points and their correspondences. To obtain an op-
timal solution, the problem is defined as an optimization problem that minimizes the
difference between a given point and its 3D projection on the image plane. This min-
imization is usually done using the l2 norm, and the problem is typically solved by
Levenberg–Marquardt’s algorithm. This method, however, requires a good initialization
of its parameters and has a long execution time for large data sets. To ensure a correct
mapping using bundle adjustment, it is also necessary to consider loop closure. This
way, the map is coherent even when it returns to a known position. An example of the
effect of considering loop closure is shown in Figure 2.3. In red, the estimated odometry
is represented, and in pink, the optimized trajectory using loop closure (represented in
blue). The optimized trajectory is much closer to the ground truth than the trajectory
using only the odometry estimation.

18

CHAPTER 2. BACKGROUND

Figure 2.3: Trajectory optimization effect with loop closure. Source: [24].

Rotation averaging is a common alternative to bundle adjustment that has multiple
strands as explained in the survey [21]. One of the strands is the problem of single
rotation averaging, in which the same rotation R is calculated with data from various
measurements, the final result being the average of the estimated rotations. If there are
noise measurements that cause wrong rotations, some of the effects of these rotations
will be removed when averaging. Another strand corresponds to Conjugate Rotation
Averaging, which estimates a rotation between two pairs of rotations that have two
different coordinate frames. The final strand is Multiple Rotation Averaging which takes
several relative rotations Rij and estimates the rotation Ri which satisfies RijRi = Rj,
where the rotation matrices belong to the closed group SO(3). This solution is the most
common in SfM systems.

As shown in [19], if the rotations belong to the SO(3) group, it is possible to use
them in averaging relative motion estimates methods, since it is easier to join data from
different sensors. This method can calculate the overall rotation of all sensors efficiently
using the l2 norm. However, this solution is not robust since it estimates wrong rotations
in the presence of outliers. Using a methodology similar to [19], in [11] the l1 norm is
used instead of l2. This way the method becomes less susceptible to outliers since the
data is not squared. To try to further reduce the effect of these, a weight to the l1 norm
is inserted iteratively. The result produced by this approach is thus efficient, accurate,
and scalable for larger problems.

19

2.4. BASELINE VISUAL SLAM SYSTEM

2.4 Baseline Visual SLAM System

ORB-SLAM was first proposed in [34] and is a real-time visual SLAM system based
on ORB features. This system has been developed and improved over the years from
ORB-SLAM to ORB-SLAM2 [35] and more recently to ORB-SLAM3 [10].

The initial ORB-SLAM only works with monocular cameras. The advantages of
using a monocular camera are that they are cheaper than other alternatives (e.g. stereo
and RGB-D cameras) and have smaller dimensions (which facilitates its integration in
robots). However, they have disadvantages, one of them being that it is not possible to
estimate depth values based on a single frame, which does not allow the triangulation
of 3D points. The initialization of the map thus requires several frames with a view of
the same area to be used. Furthermore, odometry estimation is more prone to failure
and the map scale to drift.

Despite some good results with ORB-SLAM, it was the introduction of ORB-SLAM2
that made this method well known and able to be used in different environments. ORB-
SLAM2 maintains the basic structure of the first method but adds the use of stereo
and RGB-D cameras in addition to monocular. Using stereo cameras takes advantage
of both stereo and monocular points for more accurate results. Improvements have also
been made to trajectory optimization, relocation, and other pipeline components.

The system ORB-SLAM2 is divided into four modules: tracking, local mapping, loop
closure, and re-localization. The pipeline is shown in Figure 2.4(a). Tracking estimates
the position of the camera along its trajectory using correspondences between image
points of consecutive frames. Local mapping builds the map along the trajectory, man-
ages its dimension, and locally optimizes the generated keyframes to reduce the odometry
estimation error. Loop closing reduces the error of the entire map by performing a full
BA when the camera returns to a previously mapped position. The relocation operates
alternately to the construction of the map. It works as an extra module that is only
used after the map has been built. For that, it uses Bag of Words to create an image
database which is used to compare new images with the already processed images. This
is used to detect areas being revisited or to assist the loop closure.

The main processes of this system like pose estimation, local BA optimization, and
full BA optimization are performed using graph optimization. In the case of pose estima-
tion, points with correspondences between consecutive frames are inserted in the graph

20

CHAPTER 2. BACKGROUND

(a) ORB-SLAM2 (b) ORB-SLAM3

Figure 2.4: ORB-SLAM2 and ORB-SLAM3 frameworks. Sources: [35], [10].

with fixed positions and only the positions of the frames are optimized, from which the
movement between frames is estimated. In the case of BA, the positions of keyframes
and 3D points are optimized based on the points that the keyframes have in common.
For the local BA, only the keyframes and their respective points close to the current
keyframe are used, while in the full BA all keyframes and 3D points are used. These
procedures have been shown to yield good results, however, they require correct tracking
of points over several frames.

Recently, ORB-SLAM3 has further expanded ORB-SLAM2 by introducing a multi-
map structure, the use of fisheye cameras, and the integration of IMU sensors. Fig-
ure 2.4(b) shows the ORB-SLAM3 framework. IMU integration assists not only in
odometry estimation but can also be used in situations where there are few points or
few correspondences between frames. The multi-map is intended to hold several maps
simultaneously that may or may not be linked. In ORB-SLAM2 when there were failures
in the estimation, the system would enter the relocation module, and would only map
again when an already mapped zone was found, thus losing the information of the zones
navigated during those instants. With a multi-map, when the robot track is lost, a new
map is created and when it is verified that two maps come to the same zone, the maps
are joined, not losing information.

21

2.5. SUMMARY

2.5 Summary

This chapter first described SfM systems, its resemblance to SLAM systems, and
the various types of sensors that are typically used in both systems. Next, the systems
were divided into odometry estimation and mapping. For odometry estimation, both
traditional and more recent methods were seen. The methods seen are divided into
featureless, feature-based, and deep learning. For mapping, two typically used meth-
ods were seen and the loop closure problem was described. Finally, the ORB-SLAM
system and its versions were described according to their structure, functionalities, and
improvements between versions.

22

Chapter 3

2-step Visual Odomety

As an alternative to the methods presented in Section 2.2 for odometry estimation,
two hybrid methods are proposed. The methods are hybrids since they combine two
different methods, one for rotation estimation and one for translation estimation. Each
hybrid approach has its method for rotation estimation but they share the method for
translation estimation.

In the following sections, the two rotation estimation methods and the translation
estimation method will be described.

3.1 Rotation Estimation

The two proposed methods for estimating the rotation are presented in this section.
The first method uses 2D-2D correspondences to estimate the essential matrix. By
decomposing this matrix using SVD the rotation and translation at less than a scale
factor are obtained. The second method uses lines detected in the image, instead of
keypoints. From the detected lines, three vanishing points are estimated with which
the orientation of the camera is obtained. This method aims to exploit the structured
environment of retail stores.

3.1.1 Essential Matrix Estimation

The first method used for estimating the rotation between two consecutive frames
uses the essential matrix. The essential matrix represents the geometrical relationship
between matching points of two images. Its estimation uses the detected keypoints (2D

23

3.1. ROTATION ESTIMATION

points of the image coordinates), instead of 3D points. The desired rotation can be
estimated by decomposition of the essential matrix.

The estimation of the essential matrix requires two sets of points that have corre-
spondences with each other. The relation between the sets of points is given by

x′
T
Ex′′ = 0, (3.1)

as used in [22], where x′ is the set of points of the current frame, x′′ is the set of points of
the previous frame, and E is the essential matrix. (3.1) defines the coplanarity constraint
between the two sets of points.

The essential matrix is then computed from (3.1) based on the five-point algorithm
solver described in [37], that uses a RANSAC framework to remove outliers from the
estimation. The matrix obtained from this algorithm has the following format

E =

e11 e12 e13
e21 e22 e23
e31 e32 e33

 . (3.2)

Having the essential matrix, the rotation and translation are obtained by decompos-
ing it using SVD according to

E = USVT , (3.3)

where U and V are 3× 3 orthogonal matrices with the singular vectors of E and S is a
3 × 3 diagonal matrix with the singular values of E. With the matrices obtained from
the decomposition, the rotation matrix R and the translation vector [t]× are computed
by

R = U

 0 ±1 0
±1 0 0
0 0 1

VT (3.4)

[t]× = U

 0 ±1 0
±1 0 0
0 0 0

SVT . (3.5)

This process gives four solutions, but only one of them places the points in front
of both cameras, being that the desired solution. Only the rotation matrix R is used
since the translation is obtained at less than a scale factor, so only information about
its direction is available.

24

CHAPTER 3. 2-STEP VISUAL ODOMETY

(a) (b)

Figure 3.1: Vanishing points estimation: (a) Relationship between the image plane
and the equivalent sphere; (b) Procedure of generating orthogonal vanishing points.
Source: [30].

3.1.2 Vanishing Points Estimation

The second method used to estimate a rotation matrix between two images of consec-
utive frames requires the estimation of vanishing points. For this the method presented
in [30] was used. This method uses lines detected in the images to estimate vanishing
points, assuming the environment is under the Manhattan World assumption. This as-
sumption states that all surfaces in the environment are aligned along three dominant
directions. Each dominant direction is thus described by one vanishing point. This
method only works with images taken by pinhole cameras.

In order to be efficient for real-time applications, a polar grid is created by expanding
the unit vectors on the equivalent sphere to intersect the image plane. This will be used
to store the response of each line segments. Figure 3.1(a) shows the relationship between
the image plane and the equivalent sphere. A point (x, y)T on the image is converted to
a 3D point P = (X, Y, Z)T on the equivalent sphere according to

X = x− x0
Y = y − y0
Z = f

, (3.6)

where (x0, y0) are the principal point and f is the focal length. The longitude and

25

3.2. TRANSLATION ESTIMATION

latitude is further computed using{
φ = acos(Z/

√
X2 + Y 2 + Z2)

λ = atan2(X, Y) + π
, (3.7)

The first vanishing point v1 = (X1, Y1, Z1)
T is computed iteratively by randomly

choosing two line segments and computing their intersection point (step 1 of Figure 3.1(b)).
Since the three vanishing points are orthogonal, the second vanishing point will belong to
the great circle of v1 (step 2 of Figure 3.1(b)). The circle is divided into fractions of 360◦

(1% accuracy), and for each fraction a vanishing point v2 = (X2, Y2, Z2) is computed
according to

X2 = sin(φ) sin(λ)
Y2 = sin(φ) cos(λ)
Z2 = cos(φ)

, (3.8)

and
X1 X2 + Y1 Y2 + Z1 Z2 = 0, (3.9)

where φ is the latitude and λ is the longitude. Finally, the third vanishing point v3 is
the cross product of v1 and v2

v3 = v1 × v2, (3.10)

since the three vanishing points must be orthogonal to each other (step 3 of Fig-
ure 3.1(b)).

Several hypotheses are thus produced for the set of the three vanishing points, so it
is necessary to validate and choose the best set. The validation is done by computing
the response of the detected line segments to each hypothesis, and the vanishing points
that produce the best response are selected.

Once the vanishing points are estimated, they are combined to get the rotation matrix
that describes the rotation of the image. With this approach, however, it is not possible
to estimate the translation.

3.2 Translation Estimation

Using the rotations obtained with each of the methods in the previous section, a trans-
lation estimation method is proposed that combines RANSAC for outlier removal and

26

CHAPTER 3. 2-STEP VISUAL ODOMETY

the least-squares method for translation estimation. As seen in Section 2.2.2, RANSAC
is an iterative method that estimates from a random set of points the model that best
fits the given dataset. The best model is selected as the model that best fits the dataset,
i.e. has the most inliers. Points that are considered outliers are removed from the dataset
and are not used to estimate the movement between consecutive frames.

Having correspondences between points, to estimate the rotation and translation
that align a point lp = [lx,l y,l z]T in the last frame and a point cp = [cx,c y,c z]T in the
current frame, at least 3 sets of matching points are required. Since the rotation has
already been estimated using the methods described in Section 3.1.1 or Section 3.1.2,
instead of needing a minimum of 3 sets of matching points, only 1 set is needed. A point
is then chosen randomly, with which the translation is computed. Having the rotation
and translation, the number of inliers is computed based on the squared error e between
the point in the current frame and the point in the previous frame transformed to the
current frame as follows

e = ‖cp− (R ·l p+ t)‖2. (3.11)

The choice between inliers and outliers is established based on a predefined threshold
value.

This process of randomly choosing a point, computing the error according to (3.11),
and counting the number of inliers is done iteratively over a fixed number of iterations.
In the end, the inliers of the iteration that produced the most inliers are obtained.

Since this is an iterative method, it will always perform the predefined number of
iterations. And since the choice of points is random, it is necessary to choose a value
that is not too low to ensure a good estimation. However, for real-time estimation cases
increasing the number of iterations in order to guarantee a good estimation may increase
in some cases the computation time unnecessarily. Therefore, a stopping criterion was
defined that calculates the number of iterations needed to be performed based on the
best result obtained so far. The number of iterations k is given by

k =
log(1− p)
log(1− wn)

, (3.12)

where p is the desired probability of getting a useful result, n is the number of randomly
chosen points and w is the probability of selecting an inlier point in the data set and is

27

3.2. TRANSLATION ESTIMATION

given by

w =
number of inliers in the selected model

total number of points
. (3.13)

Using the inlier points obtained, the translation is estimated using the least squares
method. The residual ri of a point i ∈ {1...N} is defined as the difference between the
value of the point i in the current frame cpi = [cxi,

c yi,
c zi]

T with the value of the point
i in the previous frame lpi = [lxi,

l yi,
l zi]

T transformed to the referential of the current
frame, according to

ri =
c pi − (R ·l pi + t), (3.14)

where R is the previously estimated 3×3 relative rotation matrix and t is a 3×1 column
vector corresponding to the desired translation.

The goal is to obtain the optimal value of the parameter t = [tx, ty, tz]
T that mini-

mizes the square sum of the residuals S, according to

S =
N∑
i=1

‖ri‖2 =
N∑
i=1

‖cpi − (R ·l pi + t)‖2. (3.15)

Solving this problem results in

∂S

∂t
= 0⇒ t =

∑N
i=1

cpi −R ·l pi

N
. (3.16)

28

Chapter 4

Structure-from-Motion Pipeline

The developed Structure-from-Motion (SfM) system is inspired on the ORB-SLAM2
pipeline (Figure 2.4(a)), being divided into three modules: Tracking, Local Mapping,
and Loop Closure. Based on a sequence of images received, the Tracking extracts impor-
tant features from the images, finds matches between consecutive frames, and estimates
the position of the camera along with its movement (visual odometry). It also creates
keyframes (detection of important camera positions based on the available features over
time). Local Mapping aims to optimize the position of new keyframes and their respec-
tive map points, taking into account the existing keyframes (and respective map points)
close to the new keyframe. The final module, Loop Closure, optimizes the entire map
when a loop is detected. That is when the camera returns to a position already known
on the map. Figure 4.1 shows how the three modules are combined to create the SfM
system.

The pipeline was implemented in C++, from scratch and the following external li-
braries were used: OpenCV1, Point Cloud Library2, g2o [26], and DBoW3 [33]. OpenCV
was used for image processing, notably feature extraction and matching using descrip-
tors, among others. Point Cloud Library was used for visualization and for registering
3D point clouds from the 3D points estimated in each frame. The g2o library was used
to perform graph-based optimizations such as local and full bundle adjustment and pose
optimization. The DBoW3 library is used for place recognition, and was mainly used
for loop closure detection.

1https://opencv.org
2https://pointclouds.org

29

4.1. TRACKING

Figure 4.1: Developed SfM system pipeline.

In the following sections, each of the three implemented modules will be explained,
respectively.

4.1 Tracking

The developed Tracking module, shown in Figure 4.2, is divided into four sub-
modules. The module starts by receiving the stereo camera images captured at a certain
time and processes them. The images can come from either a fisheye or a pinhole camera
and are assumed to be rectified and their calibration is also assumed to be available. If
not, they can be easily calibrated or rectified using calibration toolboxes. For every pair
of stereo images received, a frame is created. For each frame, keypoints are detected
and descriptors are extracted using several alternatives (e.g. SIFT, ORB, or AKAZE
features). With the descriptors, the keypoints of the left and right images are matched,
which allows the triangulation of 3D points. Using the computed 3D points or the 2D

30

CHAPTER 4. STRUCTURE-FROM-MOTION PIPELINE

Figure 4.2: Tracking module pipeline.

keypoints with matches in consecutive frames, it is estimated the relative motion be-
tween the consecutive frames, using 3D-3D or 2D-2D correspondences. For that, it is
required a new matching of the descriptors between the current and previous frames.
The motion estimated is accumulated over time to obtain the camera movement from
the current frame to the world reference frame. The final step of the Tracking module
is the creation of keyframes. Keyframes represent similar sets of frames and prevent
repeated information from being inserted into the map, which would only increase its
size unnecessarily. New keyframes have the same information as the frame that created
it and are created according to the conditions defined in Section 4.1.4.

4.1.1 Process Image Input

The Tracking module input is the pairs of images taken by a stereo camera. Images
from two different types of cameras can be processed: pinhole and fisheye. Both types
of images can be processed directly, however in fisheye images, the distortion can be
removed thus converting the image to the pinhole model, as shown in Figure 4.3. Al-
though this remapping removes the distortion, which is useful in certain applications,
the edges of the image get blur, which affects feature detection in those areas.

The images also need to be rectified, i.e. the images from the two cameras need to
be parallel (virtually create fronto parallel cameras). As this is not always the case it is
necessary to estimate a transformation that remaps the right image so that corresponding
points have the same y-coordinate in both images. This must be the case since the
method of computing 3D points and the optimizations made in the Local Mapping and
Loop closure modules depends on this characteristic.

31

4.1. TRACKING

(a) (b)

Figure 4.3: Example of possible system inputs: (a) Fisheye image; (b) Fisheye image
with distortion removed.

4.1.2 Create Frame

Frames describe each stereo image pair received. It contains all the information
extracted from the images. This information is keypoints, descriptors, correspondences
between keypoints and 3D points.

Keypoint detection and Descriptor extraction

Keypoints are points on the image that are differentiated either by color, intensity,
texture, among others. Their differentiation is important to allow an easier match with
other similar keypoints. Descriptors are calculated for each detected keypoint. The
descriptors contain information about the region around the keypoint in the compact
form of a vector and are used to determine whether two keypoints are similar.

Three different types of features were used: ORB, SIFT, and AKAZE. Figure 4.4
shows the keypoints detected for each of these types of features for the same image from
a fisheye camera.

To reduce the computation time for keypoint detection, a mask for the image is
created. This mask corresponds to a binary matrix with the dimension of the image and
indicates in which regions of the image to look for keypoints. The mask is constructed by
selecting a circular region with a diameter of 20 pixels and a center on the keypoint for all
keypoints that have a stereo match, in the previous image. This mask is reconstructed

32

CHAPTER 4. STRUCTURE-FROM-MOTION PIPELINE

(a) (b) (c)

Figure 4.4: Example of detection of keypoints on a fisheye image using different types
of features: (a) ORB features; (b) SIFT features, (c) AKAZE features.

(a) (b)

Figure 4.5: Example of a mask created to delimit the region to search for keypoints:
(a) Keypoints detected with stereo correspondence; (b) Mask created based on the key-
points with stereo correspondence.

whenever a new keyframe is created.
Figure 4.5 shows the left image of the stereo pair with the detected keypoints that

have a match in the other image of the stereo pair and the respective mask created
for that image. For all frames that belong to the keyframe created by this image, this
mask is used to detect feature points. Only keypoints in the masked region are detected.
This process, besides helping computationally since a search is made in a smaller area of
the image, also removes potential outliers while allowing tracking of points over several
frames.

33

4.1. TRACKING

Descriptor matching

The matching of keypoints between the stereo image pair is done based on the de-
scriptors extracted for each keypoint of each image. The matching is done using a
brute-force descriptor matcher that searches for k best matches of the right image for
each descriptor of the left image. The best matches are those with the smallest distance,
which are computed using the l2 norm.

The default value used for k is 2. For values of k ≥ 2 the two keypoints of the
right image with the smallest distance to the keypoint of the left image may have close
distances. In this case, Lowe’s ratio test is applied, where the match is only valid if

d1stclosest > 0.75 · d2ndclosest, (4.1)

where d1stclosest and d2ndclosest are the distances computed for the closest and second closest
match, respectively.

To further eliminate bad matches, the fundamental matrix is estimated. This es-
timation uses a RANSAC algorithm, which allows the exclusion of matches that are
classified as outliers in the matrix estimation.

Figure 4.6 shows the initially estimated matches, the results after removing oulier
matches using the Lowe’s ratio test, and the final result that uses the Lowe’s ratio test
followed by a RANSAC algorithm to remove outliers.

3D points computation

The use of stereo cameras allows 3D points to be easily computed using only the
images of a single frame. Since the images are rectified, both belong to the same plane,
and there is only a translation on the X axis between the left and right images, which
corresponds to the baseline of the camera as shown in Figure 4.7. The baseline value is
a known input parameter since the cameras are calibrated.

34

CHAPTER 4. STRUCTURE-FROM-MOTION PIPELINE

(a) (b)

(c)

Figure 4.6: Example of the matches detected for each stage of their estimation:
(a) Matches estimated using a brute-force descriptor matcher with k = 2; (b) Matches
after removing outlier matches according to Lowe’s ratio test; (c) Final matches, ob-
tained by removing outlier matches from the matches obtained in (b) using a RANSAC
algorithm.

A 3D point X = [x, y, z]T in the left camera reference is estimated using

d = xleft − xright (4.2)

z =
b · fx
d

, (4.3)

x =
xleft · z
fx

(4.4)

y =
yleft · z
fy

, (4.5)

where d is the disparity between the cameras, b is the stereo baseline and f = (fx, fy) is
the focal length of the left camera.

35

4.1. TRACKING

Figure 4.7: Depth estimation in parallel cameras. Source: https://docs.opencv.org.

4.1.3 Pose Estimation

The pose estimation sub-module aims at estimating the trajectory of the camera
along its path in the world reference frame. The world reference is defined as being the
reference of the first keyframe.

The movement of the current frame i in the world reference frame WTi is computed as
the accumulation of the relative transformations between consecutive frames according
to

WTi =
W T1 ·1 T2 · ... ·i−1 Ti, (4.6)

where i is the current frame.

The relative transformations between frames i−1Ti can be estimated using different
methods. The two hybrid methods proposed in Chapter 3 can be used, as well as other
known methods such as Umeyama, seen in Section 2.2.2.

Since the methods are based on 2D-2D or 3D-3D correspondences between frames, it
is necessary to have a match between the keypoints of the left images of two consecutive
frames. Only keypoints for which there is a stereo match, i.e. for which there is an
estimated 3D point, are used. This is especially important for the case of pose estimation
using 3D-3D correspondences.

Figure 4.8 shows in blue the computed stereo matches and in red the computed
frame-to-frame matches between the left images of consecutive frames.

36

CHAPTER 4. STRUCTURE-FROM-MOTION PIPELINE

Figure 4.8: Example of the stereo matches (blue) and frame-to-frame matches (red)
needed for relative motion estimation between consecutive frames.

4.1.4 New Keyframe Decision and Creation

The last task done in the Tracking module is the decision of creating new keyframes,
and their creation when that decision is favorable.

A keyframe is defined as a frame that represents similar frames of a certain region.
Due to the high frequencies of images captured by the cameras, consecutive images
are often similar to each other, especially when the movement speed of the camera is
reduced or when the camera is moving in straight lines. Although this high frequency
of image capture guarantees a better tracking of features and consequently a better
estimation of the camera movement, if all frames and their respective 3D points are sent
to the local mapping module to be inserted into the map, the system would have a high
computational cost both in terms of execution speed and memory usage. The importance
of creating keyframes is thus related to the complexity that the map will have. It is,
therefore, necessary to ensure that frames with new features of the environment will be
given to the map, at the same time that frames that will only add features already in
the map are only used to estimate the trajectory.

Two conditions were defined to decide when a new keyframe is created:

1. The current keyframe tracks less than 30% of the points of the current keyframe.

This condition ensures that new information about the environment is not lost by group-

37

4.2. LOCAL MAPPING

Figure 4.9: Local Mapping module pipeline.

ing frames that represent different areas of the environment. For this, a match between
the keypoints of the current frame and the current keyframe is made. A keyframe is
thus created when the current keyframe tracks less than 30% of the points of the current
keyframe.

2. Each keyframe can only represent, at maximum, 30 frames.

A maximum limit of frames for each keyframe is set so that the complexity of the map
is kept reduced while creating enough keyframes to guarantee a correct mapping. The
default maximum number of frames is set to 30 because that is the amount of FPS of
the used camera. This value can be changed via the input configuration file.

4.2 Local Mapping

The Local Mapping module is responsible for creating and managing the map. The
map consists of the keyframes created in the Tracking module and the corresponding
3D points (map points). The creation and management of the map are divided into two
sub-modules, as shown in Figure 4.9. When creating or adding data to the map, the
module is responsible for adding keyframes and map points. However, since different
keyframes can see the same map points, it is necessary to evaluate when to insert new
map points or update existing map points. The second sub-module optimizes the poses
of the current keyframe and the keyframes connected to it, as well as the map points
belonging to those keyframes. This process aims to reduce the impact of trajectory
estimation errors on the Tracking module.

In this section, the composition of the map will be described, as well as the sub-
modules showed in Figure 4.9.

38

CHAPTER 4. STRUCTURE-FROM-MOTION PIPELINE

4.2.1 Map

The map has two types of data, keyframes and map points. Keyframes, as seen
in Section 4.1, represent sets of similar consecutive frames and map points are the 3D
points seen by the keyframes. The map thus has the keyframes created and the map
points associated with each keyframe. Map points can belong to several keyframes and
keyframes have connections between each other based on the map points they have in
common, creating a co-visibility graph.

4.2.2 Map Creation and Update

The first step in Local Mapping is to add new keyframes to the existing keyframe
map. This is a simple process since each keyframe is unique, so there is no risk of having
two repeated keyframes in the map.

After inserting the new keyframe, the map points seen by it are inserted into the
map. Unlike the keyframes, for the map points, it is necessary to check if those points
already exist on the map (seen by other keyframes) or if they are new points. For that,
matching is made between the map points seen by the new keyframe and by the previous
keyframe. This matching, similarly to what is done in Tracking, is done based on the
descriptors of the keypoints with which the map points were computed. Based on the
matches, the points that did not have a match are considered new and are inserted in
the map. The ones that had a match are not inserted, and the new observations for
those points are added to the respective map points.

Finally, co-visibility connections are made between the keyframes. These connections
are established based on the number of map points that the keyframes have in common.
The value chosen for the minimum number of points in common can be chosen from an
initial configuration file. The default value used is at least 10 points in common. These
co-visibility connections are important for the optimization processes in the next section
and in the loop closure module.

4.2.3 Local Map Optimization

To correct some of the drift that is inevitably obtained in this type of system, due
to the continuous integration of odometry estimation errors, a local BA is performed.

39

4.2. LOCAL MAPPING

Figure 4.10: Scheme of the graph created to perform bundle adjustment.

This optimization will adjust the position of the current keyframe, the position of
the keyframes connected to it according to the co-visibility graph, and the 3D points of
all these keyframes, based on the points seen by each keyframe (observations). The ob-
servations correspond to the coordinates of the keypoints that originated the 3D points.

The optimization is done using the Levenberg–Marquardt method and aims to min-
imize the reprojection error between 3D points seen by multiple keyframes, according
to observations o = [uL, vL, uR]

T , where (uL, vL) are the keypoint coordinates of the left
image and uR is the keypoint horizontal coordinate of the right image.

Let K = {k1, ...,kn} be the set of keyframes that includes the current keyframe
and the keyframes connected to it by co-visibility connections, and defining Xki

=

{xi
1, ...,x

i
m} as the set of 3D points that are seen by the keyframe ki ∈ K, the cost

function to minimize is

n∑
i=1

m∑
j=1

ρ(‖oi
j − π(Rki

xi
j + tki

)‖2), (4.7)

where ρ is the robust Huber cost function, Rk ∈ SO(3) and tk ∈ R3 are the orientation
and position of the keyframe k, respectively, and π is the function that projects the 3D

40

CHAPTER 4. STRUCTURE-FROM-MOTION PIPELINE

points onto the image, according to

π

XY
Z

 =

 fx
X
Z
+ cx

fy
Y
Z
+ cy

fx
X−b
Z

+ cx

 , (4.8)

where f = (fx, fy) is the left camera focal length, c = (cx, cy) is the left camera principal
point and b is the stereo camera baseline.

In the optimization process, initially, only 5 iterations are performed, after which
outlier observations are removed according to an established threshold value. After the
outliers are removed, 10 iterations are performed and the positions of the keyframes and
map points are updated according to the new optimized positions.

Figure 4.10 exemplifies the optimization process by showing the positions of three
keyframesKn+i, i ∈ {0, 1, 2} and eight 3D points pj, j ∈ {1, ..., 8}. ChoosingKn+2 as the
current keyframe, it has co-visibility connections only with Kn+1 because it has points
in common (which is not the case with Kn). The optimization thus uses the keyframes
Kn+2 and Kn+1 and their 3D points p3, p4, p5, p6, p7 and p8. The observations of the
points for each keyframe are shown in Figure 4.10 as O(Kn+i,pj). The optimization
is therefore based on the several 3D points seen by multiple keyframes from different
observations.

4.3 Loop Closure

Loop closure aims to detect when the camera returns to a previously visited position
that is already mapped. Throughout the motion, it is common for the trajectory error to
increase mainly due to the accumulation of several small motion estimation errors. By
returning to an already known position it is possible to eliminate some of that error so
that it does not grow infinitely. Figure 4.11 shows the implemented module and its four
sub-modules: loop detection, map fusion, loop correction and full map optimization.

Loop detection uses bag-of-words (BoW) to estimate similarities between images
that are used to detect loop candidates and performs feature matching to validate the
detected candidate keyframes. Map fusion joins the current and candidate keyframes
by updating the observations of the map points seen by both keyframes and by creating
connections in the co-visibility graph. Loop correction aims to distribute the loop closing

41

4.3. LOOP CLOSURE

Figure 4.11: Loop Closure module pipeline.

error along the trajectory. Finally, the full map optimization performs a BA on all map
points and keyframes. In the following sections, each of the modules will be described.

4.3.1 Loop Detection

The first step in correcting the loop closure error is to detect when the loop is closed.
To do so, two procedures are performed. The first detects loop candidates and the
second checks whether any of the candidates are valid.

The first step of loop candidate detection uses BoW place recognition. For this,
whenever a new keyframe is created in the Tracking module, the left stereo image of
the created keyframe is converted into a BoW word. This word is created based on the
keyframes and descriptors detected in the image and acts as a frequency histogram of
the features in the image. After creating the word, it is inserted into a database that
associates the word with the id of its keyframe. In the loop closure module, a comparison
of the word created for the current keyframe is made with the words in the database to
compute a similarity score between the keyframes. The score is computed using the l1
norm (here denoted as |.|) according to

s(w1,w2) = 1− 1

2

∣∣∣∣ w1

|w1|
− w2

|w2|

∣∣∣∣ , (4.9)

where w1 and w2 are the words of two different keyframes. The values of the scores are
between [0, 1]. The keyframes that have a score greater than 0.9 times the maximum
score among the keyframes connected to the current keyframe are considered candidates
for loop closure.

The second step is to validate the detected candidates. Although BoW is a good
solution that allows fast matches between all keyframes, perceptual aliasing can occur.
When this occurs, images from different places originate similar words, which can cause
false loop candidates. To avoid such situations, a validation of the geometric consistency

42

CHAPTER 4. STRUCTURE-FROM-MOTION PIPELINE

between the candidate and the current keyframes is performed through feature matches.
For each candidate, a match is made between the descriptors of the candidate and
current keyframe points. The candidates are only valid if at least 30% of the points of
the current keyframe have matches in the candidate keyframe.

Since the optimizations performed to correct loop errors can be computationally high,
new loops are only detected 10 keyframes after the last loop was detected.

4.3.2 Map Fusion

After validating the detection of a new loop closure, it is necessary to pass that
information to the map. To do so, an update of the observations of the points that
the current keyframe and the loop keyframe (keyframe where the loop was detected)
have in common must be done. It is also necessary to create co-visibility connections
between these keyframes and possibly other keyframes that share observations for the
same points.

Similar to the process done in Section 4.2.2, the update of the observations of the
map points that the current keyframe and the loop keyframe have in common is done
based on the descriptor matching done in the previous section to validate the loop. Only
the points seen by both keyframes are thus updated. As the points are updated, the
number of points that the current keyframe has in common with other keyframes are
counted. This count is necessary since other keyframes may observe the same points that
the current keyframe and the loop keyframe have in common. Based on the number of
points the keyframes have in common new co-visibility connections are established.

4.3.3 Loop Correction

Before performing the final step of optimizing the total map, an adjustment is made
to the positions of the keyframes in order to distribute the loop closure error over the
entire trajectory. Two ways of performing the error distribution have been implemented.
The first is keyframe optimization and the second is transformation averaging. In both,
it is necessary to first estimate the correct position of the current keyframe. Initially,
an attempt was made to estimate odometry between the current keyframe and the
keyframe that completes the loop, however, the estimation was not correct. Therefore,
the position of the current keyframe was estimated by doing an optimization identical

43

4.3. LOOP CLOSURE

Figure 4.12: Scheme of the graph created to perform keyframe optimization.

to the one in Section 4.2.3. Note that after the fusion of the map the set of keyframes
connected to the current one now has the keyframe where the loop closure was detected.
The difference with the BA performed in Section 4.2.3 is that in this case the optimized
positions are not kept, but are only used to estimate the relative transformation between
the keyframes forming the loop.

Having the correct position for the current frame, one of two methods is applied:
keyframe optimization or transformation averaging. The keyframe optimization cor-
responds to the optimization of a pose-graph that has as vertices the position of the
keyframes and as edges between the keyframes the relative position between them. There
are only edges between keyframes connected by the co-visibility graph. The relative posi-
tion between keyframes is computed based on the positions of the keyframes in the world
referential, with the exception of the edge that connects the loop where the previously
estimated position is used. A scheme of the created graph is presented in Figure 4.12.

Let K = {K1, ...,Kn} be the set with all keyframes positions and using the Leven-
berg– Marquardt method, the goal is to minimize the position error between keyframes
according to the cost function

n∑
i=0,j=0,i 6=j

‖Ki −i TjKj‖frob, (4.10)

44

CHAPTER 4. STRUCTURE-FROM-MOTION PIPELINE

where Ki and Kj correspond to the position of the keyframes i and j, respectively, and
iTj is the relative position from keyframe j to keyframe i.

The second method implemented, transformation averaging, corresponds to the dis-
tribution of the average loop error over the keyframes. Based on the computed correct
position for the current keyframe and its position with accumulated error, the loop error
is estimated. From this error, the translation error and the rotation error are obtained
separately and divided by the total number of keyframes. The obtained value is assumed
to be the average accumulated error between each keyframe and is therefore distributed
over all the keyframes.

4.3.4 Full Map Optimization

To complete the loop closure, all keyframes and map points are optimized. This is
done with a BA similar to the one in Section 4.2.3, the difference being that all keyframes
and map points are used instead of just the current keyframe and those connected to it
with co-visibility connections and their 3D points.

45

4.3. LOOP CLOSURE

46

Chapter 5

Experiments and Results

This chapter aim to highlight the experiments and the results obtained throughout
the implementation of the pipeline. The results are divided into three sections: Tracking,
Local Mapping and Loop Closure. The first section will present results of using different
feature types and different visual odometry estimation methods, using only the Tracking
module. The second section compares the Tracking results before integration of the Local
Mapping module with the results after integration. Finally, the third section compares
the results obtained with the Tracking module only, with Tracking and Local Mapping
modules, and with Tracking, Local Mapping and Loop Closure modules.

The datasets used to test the pipeline belong to two different environments using
cameras with different models. The first type of data was acquired for the project and
belongs to a retail store environment, which is the main environment in which the sys-
tem will operate. The setup of the robot used for the project is shown in Figure 5.1(a).
The camera used is the Intel R© RealSenseTM T265 fisheye stereo camera shown in Fig-
ure 5.1(b), which has an image capture rate of 30 FPS. Figure 5.1(c) shows a typical
image of this type of environment captured with the described setup.

The second type of data is data from the KITTI dataset ([18]), which has several
outdoor sequences obtained from a moving vehicle that has two pinhole cameras Point
Grey Flea 2 (FL2-14S3M-C) arranged in parallel, forming a stereo pair. The setup of
the car together with the cameras is shown in Figure 5.2(a), where the two cameras
used are Cam 0 and Cam 1. The cameras capture new images at a rate of 10 FPS. An
example image of sequence 00 from this dataset is shown in Figure 5.2(b).

Although one of the main objectives is to have a system that works in the indoor

47

(a) (b) (c)

Figure 5.1: Store environment datasets description: (a) Project’s robot setup; (b) Stereo
camera Intel R© RealSenseTM T265. Source: https://www.intelrealsense.com.; (c) Exam-
ple image of the store environment.

(a) (b)

Figure 5.2: KITTI dataset description: (a) Vehicle sensor setup; (b) Example image of
KITTI sequence 00. Source: http://www.cvlibs.net/datasets/kitti.

environment of a store, the KITTI dataset was chosen because it has ground-truth
information that is useful for evaluating the error in the results obtained. The store
datasets, despite being from the environment in which the system will work, have no
ground-truth information available. Furthermore, one benefit of using two datasets from
different environments and that have images from two different camera models is that it
allows us to analyze the behavior of the different types of features and methods in each
situation, which is one of the goals of the thesis.

Two datasets from the store environment and two datasets from KITTI are used.
From the store environment, the two datasets will be referred to as STORE1 and
STORE2 (example images of the STORE1 sequence are shown in Appendix A). From

48

CHAPTER 5. EXPERIMENTS AND RESULTS

Dataset Distance [m]
STORE1 21.91
STORE2 34.23
KITTI00 217.06
KITTI07 694.70

Table 5.1: Distance traveled in each dataset.

the KITTI datasets the sequences 00 (only the first 300 images) and 07 are used, which
will be referred to as KITTI00 and KITTI07. Table 5.1 shows the distance traveled in
each of the datasets.

For error metrics, two were used, one for rotation errors and one for translation
errors. The metrics are as follows:

eR(R) = acos
(
trace(R−1RGT)− 1

2

)
(5.1)

et(t) = ‖t− tGT‖2, (5.2)

where RGT is the ground-truth rotation and tGT is the ground-truth translation.
Using (5.1) and (5.2) both relative and absolute errors were estimated. The relative

errors are computed between consecutive frames and express the error obtained in the
estimation of the movement between consecutive frames. The absolute error is computed
with the last frame of the sequence and expresses the total error of the trajectory.

5.1 Tracking

In this section the results obtained for the Tracking module alone will be shown
and discussed. Being tracking only, the trajectories are just related to the quality of
odometry estimation.

The results to be shown belong to the datasets STORE1 and KITTI00. For each
dataset the three types of implemented features (SIFT, AKAZE, and ORB) were tested,
as well as each of the following methods of odometry estimation methods:

• Method EM-R: Essential Matrix for rotation and 1-Point RANSAC for translation;

• Method VP-R: Vanishing Points for rotation and 1-Point RANSAC for translation;

• Method R-Um: 3-Point RANSAC and Umeyama;

49

5.1. TRACKING

• Method Um: Umeyama.

EM-R and VP-R are the two methods proposed in Chapter 3.

Figures 5.3(a) and 5.3(b) show the results obtained using various odometry estima-
tion methods in the STORE1 dataset, using SIFT and AKAZE features, respectively.
Since this is a dataset from a structured environment Method VP-R is used. As there
is no ground truth available for this dataset, the results are only evaluated qualitatively
and the result produced by ORB-SLAM3 for this dataset is given as reference. For this
dataset the points on the map refer to the trajectory with the EM-R method.

Figures 5.4(a) and 5.4(b) also show the results obtained using various odometry
estimation methods, but for Dataset KITTI00 using SIFT and AKAZE features, respec-
tively. For this dataset the Method VP-R for odometry estimation is not used since it
requires a structured environment, which is not the case for this outdoor dataset. The
points on the map refer to the trajectory with Method EM-R. Since ground truth in-
formation is available, the relative and absolute errors of rotation and translation were
computed. The relative error indicates the amount of error that is inserted in the map at
each odometry estimation, and the absolute error indicates the total error between the
ground truth and the method used at the end of the trajectory. The results obtained are
presented in Table 5.2 and show both the mean value of the error (µ) and the standard
deviation (σ). Figure 5.4(c) shows the results of using ORB features on this dataset
with the EM-R method. As the trajectory results did not match the ground truth at
all and had high errors from the beginning of the trajectory, this type of feature was no
longer used.

Analyzing the results obtained for the KITTI00 dataset using SIFT features, it can
be seen that the results using method Um have the largest amount of error, and that by
using an outlier removal method like RANSAC (method R-Um) it is possible to reduce
some of this error and improve the results. However this result still has a substantial
error in the trajectory. The proposed method EM-R is thus the one that produces the
best result among the three methods for SIFT features. For AKAZE features there is
also an improvement when introducing outlier removal by switching from the Um to the
R-Um method. However, for these features, the proposed EM-R method is not the best
among the three methods, coming second. One reason for this has to do with the amount
of keypoints detected when using each feature type, where using SIFT produces more

50

CHAPTER 5. EXPERIMENTS AND RESULTS

(a) STORE1 - SIFT features (b) STORE1 - AKAZE features

(c) STORE1 - Vanishing Points

Figure 5.3: Tracking module results on STORE1 dataset: (a) Using SIFT features;
(b) Using AKAZE features; (c) Detected lines and estimated vanishing points using
VP-R method.

keypoints. In this dataset, it also occurs that in the right side of the images there are
few points, which is noticeable when looking at the 3D points, which inevitably causes
errors in odometry estimation. Overall, for this dataset, the method that gave the best
results was EM-R using SIFT features.

The results obtained with the STORE1 dataset are somewhat in line with what

51

5.1. TRACKING

(a) KITTI00 - SIFT features (b) KITTI00 - AKAZE features

(c) KITTI00 - ORB features

Figure 5.4: Tracking module results on KITTI00 dataset: (a) Using SIFT features;
(b) Using AKAZE features; (c) Using ORB features.

was observed for the KITTI00 dataset. In both feature types, an improvement is seen
when switching from the Um to the R-Um method, and the proposed EM-R method
obtains equal or slightly better results than the R-UM. This dataset introduces the

52

CHAPTER 5. EXPERIMENTS AND RESULTS

Features Method
Relative Error Absolute Error

Rot [rad] Trans [m] Rot [rad] Trans [m]
µ σ µ σ µ σ

SIFT
EM-R 0.0065 0.0081 0.099 0.14 0.12 6.85
R-Um 0.0032 0.0034 0.069 0.090 0.19 12.89
Um 0.0059 0.0054 0.15 0.19 0.29 22.15

AKAZE
EM-R 0.028 0.038 0.45 0.78 0.26 22.61
R-Um 0.0060 0.0063 0.14 0.20 0.21 16.03
Um 0.0096 0.0078 0.24 0.29 0.47 43.76

Table 5.2: Rotation and translation errors obtained on the KITTI00 dataset, using only
the Tracking module.

VP-R method that was proposed specifically for the structured type environment of
this dataset. Figure 5.3(c) shows the detected lines and the estimated vanishing point
in the direction of camera movement (the remaining two vanishing points are outside
the image). The results of this method are not, however, vastly superior to that of the
EM-R and R-Um methods. This can be due to two factors. The first is that the method
used for vanishing points estimation is for pinhole camera images, so it is necessary
to remove distortion from the fisheye images of this dataset, which introduces motion
blur. Another factor that was found is that in some parts of the store environment the
vanishing points were not estimated correctly for several consecutive frames, which lead
to incorrect estimates. This causes errors in the trajectory, as is the case of zone A
marked in Figure 5.3(a).

5.2 Local Mapping

This section will take the best results from the previous section and add the Local
Mapping module. The goal is to analyze if there are improvements in the trajectory
by locally optimizing the positions of the keyframes and map points, which as seen in
Section 4.2, has the objective of reducing and correcting odometry estimation errors.
Therefore, only SIFT features and the methods EM-R and VP-R defined in the previous
section will be used.

Figures 5.5(a), 5.5(b), 5.5(c), and 5.5(d) show the results obtained only for the
Tracking module and for the Tracking module followed by Local Mapping for the four

53

5.2. LOCAL MAPPING

(a) KITTI00 (b) STORE1

(c) KITTI07 (d) STORE2

Figure 5.5: Local Mapping module results: (a) Dataset KITTI00; (b) Dataset STORE1;
(c) Dataset KITTI07; (d) Dataset STORE2.

datasets used. In all of them, the map points refer to the trajectory obtained with
the local mapping module included (for Figure 5.5(b) with Local Mapping and the
EM-R method). Table 5.3 shows the results obtained for the relative and absolute error
values for the KITTI00 and KITTI07 datasets, for both configurations (Tracking with

54

CHAPTER 5. EXPERIMENTS AND RESULTS

Dataset Setup
Relative Error Absolute Error

Rot [rad] Trans [m] Rot [rad] Trans [m]
µ σ µ σ

KITTI00 Tracking 0.0065 0.0081 0.099 0.14 0.12 6.85
Local

Mapping 0.0014 0.00095 0.030 0.041 0.045 3.26

KITTI07 Tracking 0.012 0.019 0.17 0.29 0.27 33.95
Local

Mapping 0.0022 0.0064 0.067 0.19 0.21 18.23

Table 5.3: Rotation and translation errors obtained on the KITTI00 and KITTI07
datasets using both Tracking and Local Mapping modules.

or without Local Mapping).

Analyzing the estimated values for the trajectory error and the trajectories obtained
from the KITTI00 and KITTI07 datasets, it can be seen that the Local Mapping mod-
ule considerably improves the results. Not only does the error decrease, but also the
trajectory is smoother, with no abrupt variations caused by bad odometry estimates.

The results obtained for the STORE1 and STORE2 datasets are also in line with
the results obtained for the other datasets. In STORE1 when using the EM-R method
the trajectory is very close to the one obtained with ORB-SLAM3. When using the
VP-R method, although the abrupt variation in the trajectory is corrected, it still has a
considerable variation with those obtained with the EM-R and ORB-SLAM3 methods.
For the STORE2 dataset, only the EM-R method was used since it is the one that
produces the best results and there is a close proximity to the ORB-SLAM3 trajectory.
It is thus verified that the inclusion of the Local Mapping module improved the Tracking
results.

5.3 Loop Closure

The last set of experiments aims to evaluate the two implemented types of methods
for error distribution along the trajectory (keyframe optimization and transformation
averaging) and also make a final analysis of the evolution of the results obtained along
the pipeline with the implementation of each module.

Before conducting the experiments it was necessary to build a BoW vocabulary.

55

5.3. LOOP CLOSURE

Setup
Relative Error Absolute Error

Rot [rad] Trans [m] Rot [rad] Trans [m]
µ σ µ σ

Tracking 0.012 0.019 0.17 0.29 0.27 33.95
Local Mapping 0.0022 0.0064 0.067 0.19 0.21 18.23
Loop Closure

(Transformation Averaging)
0.0031 0.016 0.081 0.30 0.19 23.76

Loop Closure
(Keyframe Optimization)

0.0027 0.0099 0.075 0.22 0.069 21.07

Table 5.4: Rotation and translation errors obtained on the KITTI07 dataset using Track-
ing, Local Mapping, and Loop Closure modules.

The vocabulary is used for loop detection and serves as a reference for building words
of the received images. The vocabulary used in the KITTI07 dataset was built from
KITT00 and the vocabulary used in the STORE2 dataset was built from the dataset
itself. Although the vocabularies created were quite specific to the datasets used, after
adjustment of detection-related parameters, the detections were correct for both datasets
and for other similar datasets.

Figures 5.6(a) and 5.6(c) show a comparison of the results obtained for the two
implemented methods of error distribution along the trajectory for the STORE2 and
KITTI07 datasets, respectively, and Table 5.4 shows the error values obtained with
these methods for the KITTI07 dataset.

For the STORE2 dataset result (Figure 5.6(a)) the transformation averaging method
was able to close the loop correctly. This result is due to the trajectory not having sharp
variations, so it is correct to assume for this case that the accumulated error is constant
along the keyframes. For the keyframe optimization method, keyframes close to the loop
are corrected correctly, however keyframes far from the loop are adjusted incorrectly.
This may be due to optimization parameters but may also be related to point tracking
and to the connection of keyframes in the co-visibility graph, where points may be lost
along the frames and therefore slightly distant keyframes have few points in common.

For the KITTI07 dataset result (Figure 5.6(c)), it can be seen that neither method
was able to correctly correct the loop error. In the case of the transformation averaging
method, this is mainly due to the error accumulated along the trajectory not being
approximately constant, which is seen in a region of the image where there is a sudden

56

CHAPTER 5. EXPERIMENTS AND RESULTS

(a) (b)

(c) (d)

Figure 5.6: Loop Closure module results: (a) Comparison of loop error distribution
methods on the STORE2 dataset; (b) Tracking, Local Mapping and Loop Closure results
on the STORE2 dataset; (c) Comparison of loop error distribution methods on the
KITTI07 dataset; (d) Tracking, Local Mapping and Loop Closure results on the KITTI07
dataset.

deviation in the trajectory. However, it may also be related to the estimation of the
correct position of the current keyframe in the loop. For the keyframe optimization
method there was also no correct loop correction. Although the absolute rotation error
improved over Local Mapping and the transformation averaging method, the translation

57

5.3. LOOP CLOSURE

only improved over transformation averaging and the error was higher than for Local
Mapping. The keyframe optimization method is thus only able to correct the rotation of
the trajectory. This may also be related to the estimation of the correct position of the
current keyframe, which may be incorrect because there are too few established points
between the keyframes in the loop, so the estimation does not produce a good result, or
because the accumulated error is too large to be corrected in this way.

Figures 5.6(b) and 5.6(d) show a comparison of the results obtained from the Track-
ing module implementation only, to the Local Mapping module implementation, and
finally to the Loop Closure implementation for the STORE2 and KITTI07 datasets,
respectively. Table 5.4 also shows the values obtained for the Tracking and Local Map-
ping errors, in addition to the Loop Closure errors, for the KITTI07 dataset. A clear
evolution is observed in both datasets from the results obtained with only Tracking to
the Local Mapping. From Local Mapping to Loop Closure, this evolution is notable
only in the STORE2 dataset, since the loop was not closed correctly in the KITTI07
dataset.

58

Chapter 6

Conclusions

The developed SfM system is able, based on stereo images from pinhole or fisheye
cameras, to estimate the trajectory traveled by the camera while creating a map of
the traveled region. In the tracking module, several feature types and odometry es-
timation methods were tested that can be easily chosen based on a configuration file.
Hence, regarding the goal of developing a modular pipeline that allows different types
of configurations, it can be concluded that the goal has been achieved. Concerning the
exploration of the structure of retail stores environments, the developed method showed
potential, however, because it does not work for fisheye images and because in certain
regions it cannot correctly estimate vanishing points, it was not able to produce the
desired results. As an alternative, another method was proposed, which, despite not
exploiting the store structure, was able to produce good results. However, regarding the
goal of exploring the geometrical structure of the store, the goal was incomplete. The
last objective of creating an SfM pipeline based on a known SLAM system was mostly
fulfilled, with some work still missing on the loop closure module since there was no
correct loop closure in all the datasets tested, especially the larger ones.

Future work can be done throughout the pipeline, from improving or changing cer-
tain methods to testing parameters related to optimization, feature extraction, feature
matching, and more. Regarding the Tracking module, one aspect that could improve
the results is the integration of information from other sensors, such as IMU or encoders.
This type of sensor gives information about the robot’s motion which can be used as
the initial estimate of the visual odometry estimate or as the motion value when the
visual odometry does not produce a correct estimate (e.g. by detecting few keypoints).

59

Another improvement to be made involves all modules and consists of having better
tracking of keypoints over several frames. Currently, this tracking is only done at the
level of keyframes, which causes some detected points to be lost. By having a better
tracking of the keypoints there will be more map points to be seen by several keyframes
which consequently creates more connections between keyframes and improve the bun-
dle adjustment optimization process. Overall, the whole system implemented should be
optimized so that in the future it runs in real-time and a localization module should also
be implemented to transition from the implemented SfM system to a SLAM system as
intended for the project in which this work is included.

60

Bibliography

[1] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment in the
large. In European Conf. Computer Vision (ECCV), pages 29–42, 2010. 18

[2] D. Aiger, N. J. Mitra, and D. Cohen-Or. 4-points congruent sets for robust pairwise
surface registration. In ACM SIGGRAPH, pages 1–10, 2008. 15

[3] P. F. Alcantarilla, A. Bartoli, and A. J. Davison. Kaze features. In European Conf.
Computer Vision (ECCV), pages 214–227, 2012. 12, 13

[4] P. F. Alcantarilla and T. Solutions. Fast explicit diffusion for accelerated features
in nonlinear scale spaces. IEEE Trans. Pattern Analysis and Machine Intelligence
(T-PAMI), 34(7):1281–1298, 2011. 12, 13

[5] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
European Conf. Computer Vision (ECCV), pages 404–417, 2006. 12, 13

[6] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In Sensor fusion
IV: control paradigms and data structures, volume 1611, pages 586–606, 1992. 10,
11

[7] P. Biber and W. Straßer. The normal distributions transform: A new approach
to laser scan matching. In IEEE/RSJ Int’l Conf. Intelligent Robots and Systems
(IROS), volume 3, pages 2743–2748, 2003. 10, 11

[8] M. Bosse and R. Zlot. Continuous 3d scan-matching with a spinning 2d laser. In
IEEE Int’l Conf. Robotics and Automation (ICRA), pages 4312–4319, 2009. 9

[9] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent

61

BIBLIOGRAPHY

elementary features. In European Conf. Computer Vision (ECCV), pages 778–792,
2010. 13

[10] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós. Orb-
slam3: An accurate open-source library for visual, visual–inertial, and multimap
slam. IEEE Trans. Robotics (T-RO), 2021. xi, 20, 21

[11] A. Chatterjee and V. Madhav Govindu. Efficient and robust large-scale rotation
averaging. In European Conf. Computer Vision (ECCV), pages 521–528, 2013. 19

[12] Y. Chen and G. G. Medioni. Object modeling by registration of multiple range
images. Image and Vision Computing (IVC), 10(3):145–155, 1992. 10, 11

[13] Y. Cho, G. Kim, and A. Kim. Deeplo: Geometry-aware deep lidar odometry. arXiv
preprint arXiv:1902.10562, 2019. 16

[14] C. Choy, J. Park, and V. Koltun. Fully convolutional geometric features. In IEEE
Int’l Conf. Computer Vision (ICCV), pages 8958–8966, 2019. 16, 17

[15] I. Cvišić, J. Ćesić, I. Marković, and I. Petrović. Soft-slam: Computationally efficient
stereo visual simultaneous localization and mapping for autonomous unmanned
aerial vehicles. Journal of Field Robotics, 35(4):578–595, 2018. 9

[16] J.-E. Deschaud. Imls-slam: scan-to-model matching based on 3d data. In IEEE
Int’l Conf. Robotics and Automation (ICRA), pages 2480–2485, 2018. 9

[17] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM, 24(6):381–395, 1981. 13

[18] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2012. 5, 47

[19] V. M. Govindu. Lie-algebraic averaging for globally consistent motion estimation.
In IEEE Conf. Computer Vision and Pattern Recognition (CVPR), volume 1, pages
I–I, 2004. 19

62

BIBLIOGRAPHY

[20] C. G. Harris, M. Stephens, et al. A combined corner and edge detector. In Alvey
Vision Conference, volume 15, pages 10–5244, 1988. 12, 13

[21] R. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation averaging. Int’l J. Computer
Vision (IJCV), 103(3):267–305, 2013. 19

[22] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004. 24

[23] A. Howard. Real-time stereo visual odometry for autonomous ground vehicles. In
IEEE/RSJ Int’l Conf. Intelligent Robots and Systems (IROS), pages 3946–3952,
2008. 9

[24] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In
IEEE/RSJ Int’l Conf. Intelligent Robots and Systems (IROS), pages 2100–2106,
2013. xi, 9, 19

[25] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for rgb-d cameras.
In IEEE Int’l Conf. Robotics and Automation (ICRA), pages 3748–3754, 2013. 9

[26] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g 2 o:
A general framework for graph optimization. In IEEE Int’l Conf. Robotics and
Automation (ICRA), pages 3607–3613, 2011. 29

[27] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li. Lo-net: Deep
real-time lidar odometry. In IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pages 8473–8482, 2019. 16

[28] Z. Li and N. Wang. Dmlo: Deep matching lidar odometry. In IEEE/RSJ Int’l
Conf. Intelligent Robots and Systems (IROS), pages 6010–6017, 2020. 9, 16, 17

[29] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004. 12

[30] X. Lu, J. Yaoy, H. Li, Y. Liu, and X. Zhang. 2-line exhaustive searching for real-
time vanishing point estimation in manhattan world. In IEEE Winter Conf. on
Applications of Computer Vision (WACV), pages 345–353, 2017. xi, 25

63

BIBLIOGRAPHY

[31] A. Mateus, S. Ramalingam, and P. Miraldo. Minimal solvers for 3d scan align-
ment with pairs of intersecting lines. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 7234–7244, 2020. 15

[32] N. Mellado, D. Aiger, and N. J. Mitra. Super 4pcs fast global pointcloud registration
via smart indexing. In Computer Graphics Forum, volume 33, pages 205–215, 2014.
15

[33] R. Muñoz-Salinas. Dbow3. URL: https://github. com/rmsalinas/DBow3, 2017. 29

[34] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile and
accurate monocular slam system. IEEE Trans. Robotics (T-RO), 31(5):1147–1163,
2015. 20

[35] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system for monoc-
ular, stereo, and rgb-d cameras. IEEE Trans. Robotics (T-RO), 33(5):1255–1262,
2017. iii, v, xi, 5, 9, 20, 21

[36] F. Neuhaus, T. Koß, R. Kohnen, and D. Paulus. Mc2slam: Real-time inertial
lidar odometry using two-scan motion compensation. In German Conf. on Pattern
Recognition, pages 60–72, 2018. 9, 10

[37] D. Nister. An efficient solution to the five-point relative pose problem. IEEE Trans.
Pattern Analysis and Machine Intelligence (T-PAMI), 26(6):756–770, 2004. 24

[38] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), volume 1, pages I–I, 2004. 9

[39] C. Olsson, F. Kahl, and M. Oskarsson. Branch-and-bound methods for euclidean
registration problems. IEEE Trans. Pattern Analysis and Machine Intelligence (T-
PAMI), 31(5):783–794, 2008. 10

[40] G. D. Pais, S. Ramalingam, V. M. Govindu, J. C. Nascimento, R. Chellappa, and
P. Miraldo. 3dregnet: A deep neural network for 3d point registration. In IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), pages 7193–7203, 2020.
16, 17

64

BIBLIOGRAPHY

[41] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), July 2017. 17

[42] R. Raguram, J.-M. Frahm, and M. Pollefeys. A comparative analysis of ransac
techniques leading to adaptive real-time random sample consensus. In European
Conf. Computer Vision (ECCV), pages 500–513, 2008. 14

[43] S. Ranade, X. Yu, S. Kakkar, P. Miraldo, and S. Ramalingam. Can generalised rela-
tive pose estimation solve sparse 3d registration? arXiv preprint arXiv:1906.05888,
2019. xi, 15, 16

[44] E. Rosten and T. Drummond. Machine learning for high-speed corner detection.
In European Conf. Computer Vision (ECCV), pages 430–443, 2006. 13

[45] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative
to sift or surf. In IEEE Int’l Conf. Computer Vision (ICCV), pages 2564–2571,
2011. 12, 13

[46] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (fpfh) for 3d
registration. In IEEE Int’l Conf. Robotics and Automation (ICRA), pages 3212–
3217, 2009. 13, 15

[47] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz. Learning informative point
classes for the acquisition of object model maps. In IEEE Int’l Conf. on Control,
Automation, Robotics and Vision, pages 643–650, 2008. 13

[48] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz. Towards 3d point
cloud based object maps for household environments. Robotics and Autonomous
Systems (RAS), 56(11):927–941, 2008. 13

[49] P. H. Schönemann. A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31(1):1–10, 1966. 13, 14

[50] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Robotics: Science and
Systems (RSS), volume 2, page 435, 2009. 10, 11

65

BIBLIOGRAPHY

[51] J. Serafin and G. Grisetti. Nicp: Dense normal based point cloud registration. In
IEEE/RSJ Int’l Conf. Intelligent Robots and Systems (IROS), pages 742–749, 2015.
10

[52] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle adjust-
ment - a modern synthesis. In International Workshop on Vision Algorithms, pages
298–372, 1999. 18

[53] S. Umeyama. Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Analysis and Machine Intelligence (T-PAMI),
pages 376–380, 1991. 13, 14

[54] Y. Wang and J. M. Solomon. Deep closest point: Learning representations for point
cloud registration. In IEEE Int’l Conf. Computer Vision (ICCV), pages 3523–3532,
2019. 16, 17

[55] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon.
Dynamic graph cnn for learning on point clouds. ACM Trans. Graphics, 38(5):1–
12, 2019. 17

[56] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald. Robust
real-time visual odometry for dense rgb-d mapping. In IEEE Int’l Conf. Robotics
and Automation (ICRA), pages 5724–5731, 2013. 9

[57] J. Yang, H. Li, and Y. Jia. Go-icp: Solving 3d registration efficiently and globally
optimally. In IEEE Int’l Conf. Computer Vision (ICCV), December 2013. 10, 12

[58] J. Zhang and S. Singh. Loam: Lidar odometry and mapping in real-time. In
Robotics: Science and Systems (RSS), volume 2, 2014. xi, 8, 9

[59] J. Zhang and S. Singh. Visual-lidar odometry and mapping: Low-drift, robust, and
fast. In IEEE Int’l Conf. Robotics and Automation (ICRA), pages 2174–2181, 2015.
9

[60] Q.-Y. Zhou, J. Park, and V. Koltun. Fast global registration. In European Conf.
Computer Vision (ECCV), pages 766–782, 2016. 14

66

Appendix A

Example of a retail store dataset

The datasets of the store environments were obtained using the robot whose setup was
shown in Figure 5.1(a), which uses the fisheye stereo camera Intel R© RealSenseTM T265
shown in Figure 5.1(b). To better understand the results obtained from the STORE1
and STORE2 datasets presented in Chapter 5, Figure A.1 shows parts of the image
sequence from the STORE1 dataset.

67

Figure A.1: Example images from STORE1 dataset.

68

