
Implementation of an arbitrary-order Finite-Volume
Least-Squares WENO for inviscid Euler equations

Rafael Castro Mota

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisor(s): Dr. Duarte Manuel Salvador Freire Silva de Albuquerque

Examination Committee

Chairperson: Prof. Fernando Lau
Supervisor:Dr. Duarte Manuel Salvador Freire Silva de Albuquerque

Member of the Committee: Prof. José Manuel Da Silva Chaves Ribeiro Pereira

August 2021

i



ii



Dedicated to my friends and family.

iii



iv



Acknowledgments

I would like to thank the personnel at LASEF, in particular Prof. José Carlos Pereira, for the opportunity

to develop my skills in computational fluid dynamics and expand my overall knowledge. I would also like

to thank my supervisor Dr. Duarte Albuquerque for the help and guidance given throughout this Thesis

and my colleagues, and friends, Élio Pereira and Liliana Sousa for the time spent reviewing a major part

of the content of this work.

For my friends André Oliveira and José Rocha a warm salute is due. They made my days at college

more enjoyable.

Finally, i would like to thank my close family for providing the monetary, social and emotional means

that allowed for my academic education.

v



vi



Resumo

Nesta tese é implementado e testado um esquema WENO de ordem de convergência arbitrária para

a formulação de uma e duas dimensões das equações de Euler. As malhas usadas serão regulares e

triangulares. Os esquemas WENO funcionam através de múltiplos conjuntos de dados para o mesmo

ponto de interesse. A regressão distinta de cada um deles é feita através de um modelo polinomial. Os

polinómios resultantes são depois combinados em um único. Como as oscilações não harmónicas

da malha devem ser evitadas, cada polinómio recebe um peso decorrente do quanto oscilam nas

imediações do ponto de interesse. Daı́ o nome WENO (Weighted Essentially Non-Oscillatory). Na

construção destes polinómios será utilizado o método dos mı́nimos quadrados pois providencia flexibili-

dade para aplicações futuras. Nos capı́tulos introdutórios é dado um contexto para a importância desta

linha de esquemas de alta ordem (1) e a base teórica necessária para a compreensão do conteúdo da

Tese (2). São seguidos de um capı́tulo dedicado à implementação e discussão de resultados obtidos

para o caso uni-dimensional (3) e outro de igual estrutura para o caso bi-dimensional (4). Na conclusão

(5), é dada uma visão geral sobre as limitações e vantagens do esquema implementado.

Palavras-chave: WENO, Euler, Runge-Kutta, Riemann, Least-Squares, Shocks

vii



viii



Abstract

In this thesis, an arbitrary order Least-Squares-WENO (LS-WENO) scheme will be applied for both the

one-dimensional and two-dimensional finite volume formulation of the Euler equations. WENO schemes

work by defyning several data sets (stencils) for the same point of interest and then combining the

resulting polynomial models into a single final polynomial. As spurious oscillations are to be avoided

near discontinuities and shocks, each polynomial model receives a weight dependent on their oscillating

behaviour, hence the name WENO (Weighted Essentially Non-Oscillatory). The regression method

used will be the Least-Squares Method as it provides flexibility with unstructured grids. The introductory

chapters give a context for this line of high-order schemes (1) as well as the necessary theoretical

background (2). These are followed up by a chapter showcasing the implementation of the scheme

developed for the uni-dimensional case and the discussion of several test cases. (3) and another, with

the same structure, regarding the two-dimensional scenario (4. The concluding chapter (5) discusses

the advantages and drawbacks of the developed scheme.

Keywords: WENO, Euler, Runge-Kutta, Riemann, Least-Squares, Shock

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

2 Background 3

2.1 Gibbs phenomenom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Least-Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Compressible Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Compressible One-Dimensional Euler Equations . . . . . . . . . . . . . . . . . . . 6

2.3.3 Compressible Two-Dimensional Euler Equations . . . . . . . . . . . . . . . . . . . 9

2.4 Riemman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Shock Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Sod’s Shock Tube Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Approximate Riemann Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Harten Lax Van-Leer (HLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Harten Lax-van Leer Contact (HLLC) . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Wave Speed Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.4 Riemann Solver of Roe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Explicit Runge-Kutta Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 MUSCL scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Godunov scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 1D WENO - Implementation and Results 33

3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Polynomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Stencil Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



3.1.3 Least-Squares Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 WENO Polynomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.5 Flux Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.6 Comparing Approximated Riemann Solvers . . . . . . . . . . . . . . . . . . . . . . 39

3.1.7 Flux limiting for the 1D-WENO scheme . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.8 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Diffusion Equation and Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Burguers Equation and Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Sod’s Shock Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 2D WENO - Implementation and Results 52

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Polynomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Stencil Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Least-Square Problem for Characteristic Variables . . . . . . . . . . . . . . . . . . 57

4.1.4 WENO Polynomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.5 Face Flux Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.6 Flux limiting for the 2D-WENO scheme . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.7 CWENO, triangular meshes and shocks . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.8 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 2D Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Diffusive Flux Reconstruction on Gaussian Function . . . . . . . . . . . . . . . . . 66

4.2.2 2D Sod’s Shock Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Sedov Blast Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.4 Supersonic Forward Facing Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Conclusions 79

5.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 81

A Secondary Results 83

B MATLAB Code 85

xii



List of Figures

2.1 One dimensional domain discretized with equal lenght cells . . . . . . . . . . . . . . . . . 6

2.2 A four-sided two-dimensional target cell (Si). . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Shock Tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Initial supposition for the configuration of the wave structures in SST. . . . . . . . . . . . . 13

2.5 Z3 characteristic curves from states three (fine solid line) and four (fine intermittent line)

intersecting on the shock wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Final configuration for the wave structures in SST. . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Waves structures, including the expansion fan, development in x coordinate with time (t). 18

2.8 Detail over the discretization of the inner region of the expansion fan with Nβ = 3 number

of waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Possible configuration for the wave structures in the HLL approximate Riemann solver. . . 20

2.10 Configuration for the wave structures for a HLL approximate Riemann solver in case of

(left) left-going supersonic flow and (right) right-going supersonic flow. . . . . . . . . . . . 21

2.11 Two possible configurations for the wave structure in the HLLC Riemann solver. . . . . . . 22

2.12 Wave structures configurations for (left) right-going supersonic flow and (right) right-going

supersonic flow in the HLLC Riemann solver. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.13 Characteristic curves for a given quantity Z in the approximated problem with the discon-

tinuity between the two states highlighted by a thicker black line . . . . . . . . . . . . . . . 26

2.14 Procedure for for a first-order of accuracy Runke-Kutta method. . . . . . . . . . . . . . . . 28

2.15 Procedure for a second-order of accuracy Runge Kutta method . . . . . . . . . . . . . . . 29

3.1 Mapping a random target cell Si (left) to the one dimensional standard one-dimensional

cell Sst (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Right (stars), left (circles) and central (triangles) biased stencils for a given target cell

(black dot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 L2 norm of the errors in cell average density at t = 0.2s as a function of (a) average cell

size (dref ) and (b) solver run-time (SRT). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 L2 norm of the errors in cell average density at t = 0.2s as a function of (a) average cell

size (dref ) and (b) solver run-time (SRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 L2 norm of the errors in quantity U as a function of mesh reference size (dref ) for (a)

Central and (b) WENO schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



3.6 (a) - Condition number (κ) of the P matrices versus mesh reference size (dref ). (b) - Cell

averaged values of U obtained from the seventh-order WENO scheme at t = 1s. . . . . . 43

3.7 U cell averaged values as a function of x coordinate for (a) third-order WENO and (b)

fourth-order WENO schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 U cell averaged values as a function of x coordinate for (a) fifth-order WENO and (b)

seventh-order WENO schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 L2 norm for the error in cell averaged density at t = 0.2s as a function of (a) average cell

size (dref ) and (b) solver run-time (SRT ) (without flux limiting). . . . . . . . . . . . . . . . 47

3.10 Density as a function of the x-coordinate for the Godunov and MUSCL schemes at t = 0.2s

with (b) detail over the contact discontinuity and shock wave. . . . . . . . . . . . . . . . . 47

3.11 Density as a function of the x-coordinate for the third and fourth-order WENO schemes at

t = 0.2s with (b) detail over the contact discontinuity and shock wave (without flux limiting). 48

3.12 Density as a function of the x-coordinate for the fifth and seventh-order WENO schemes

at t = 0.2s with (b) detail over the contact discontinuity and shock wave (without flux limiting). 48

3.13 L2 norm for the error in cell averaged density at t = 0.2s as a function of (a) average cell

size (dref ) and (b) solver run-time (SRT ) (with flux limiting). . . . . . . . . . . . . . . . . . 49

3.14 Density as a function of the x-coordinate for the third and fourth-order WENO schemes at

t = 0.2s with (b) detail over the contact discontinuity and shock wave (with flux limiting). . 50

3.15 Density as a function of the x-coordinate for the fifth and seventh-order WENO schemes

at t = 0.2s with (b) detail over the contact discontinuity and shock wave (with flux limiting). 50

3.16 Results in density at t = 0.2s obtained from the sevent-order WENO scheme for the four

levels of mesh refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.17 (a) Original and (b) local characteristic variables for the SOD test case at t = 0.2s. . . . . 51

4.1 Mapping a random target cell (Si) into the standard triangle (Sst). . . . . . . . . . . . . . . 54

4.2 Mapping a random square target cell (Si) into the standard square (Sst). . . . . . . . . . . 55

4.3 Stencil search areas for a square (left) cell and a triangular cell (right). . . . . . . . . . . . 55

4.4 Diretional stencils for a square cell (left) and a triangular cell (right). . . . . . . . . . . . . 56

4.5 Central stencil for a square cell (left) and a triangular cell (right). . . . . . . . . . . . . . . 56

4.6 Stencils near boundaries for a square cell (left) and a triangular cell (right). . . . . . . . . 57

4.7 Mapping the unitary retangle triangle (left) and respetive GLQ points (black dots) into a

random triangle (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Mapping the unitary retangle triangle (left) and respetive GLQ points (black dots) into one

of two triangles that compose a square cell (right). . . . . . . . . . . . . . . . . . . . . . . 59

4.9 Parametrization for the faces of standard square (left) and triangle (right). . . . . . . . . . 62

4.10 Projection of GLQ points (black circles) into the faces for the standard square (left) and

triangle (right) cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.11 Behaviour of the stencil search areas for a triangular cell when in proximity of a shock. . . 65

xiv



4.12 Face integration points (black dots) for up to seventh-order WENO for (a) square and (b)

triangular meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 x derivatives - L2 norm of the error in the spatial derivatives in x as a function of average

cell size (dref ) for (a) square and (b) triangular meshes. . . . . . . . . . . . . . . . . . . . 67

4.14 Diffusive face fluxes - L2 norm of the error in the diffusive flux for the (a) square and (b)

triangular meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.15 Average condition number of P matrices (dref ) for the (a) square meshes and (b) triangu-

lar meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.16 Example of a (a) square and (b) triangular mesh used for the test case with the cells

coincident with the xx axis highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.17 Square meshes - L2 norm of the error in density as a function of average cell size (dref )

at t = 0.1s (without flux limiting) with (b) detail over the WENO schemes. . . . . . . . . . . 70

4.18 Square meshes - L2 norm of the error in density as a function of solver run-time (SRT, in

seconds) at t = 0.1s (without flux limiting) with (b) detail over the WENO schemes. . . . . 70

4.19 Square meshes - Density as a function of the x-coordinate for the third and fourth-order

WENO schemes at t = 0.1s (without flux limiting). . . . . . . . . . . . . . . . . . . . . . . . 71

4.20 Regular meshes - Density as a function of the x-coordinate for the fifth and seventh-order

WENO schemes at t = 0.1s (without flux limiting). . . . . . . . . . . . . . . . . . . . . . . . 71

4.21 Square meshes - L2 norm of the error in density as a function of average cell size (dref )

at t = 0.1s (with flux limiting) with (b) detail over the WENO schemes. . . . . . . . . . . . 72

4.22 Square meshes - L2 norm of the error in density as a function of solver run-time (SRT) at

t = 0.1s (with flux limiting) with (b) detail over the WENO schemes. . . . . . . . . . . . . . 72

4.23 Square meshes - Density as a function of the x-coordinate for the third and fourth-order

WENO schemes at t = 0.1s (with flux limiting). . . . . . . . . . . . . . . . . . . . . . . . . 73

4.24 Square meshes - Density as a function of the x-coordinate for the fifth and seventh-order

WENO schemes at t = 0.1s (with flux limiting). . . . . . . . . . . . . . . . . . . . . . . . . 73

4.25 Triangular meshes - L2 norm of the error in density as function of average cell size (dref )

at t = 0.1s (with flux limiting) with (b) detail over the WENO schemes . . . . . . . . . . . . 74

4.26 Triangular meshes - L2 norm of the error in density as function of solver run-time(SRT) at

t = 0.1s (with flux limiting) with (b) detail over the WENO schemes. . . . . . . . . . . . . . 74

4.27 Example of meshes for (a) square and (b) triangular cells with the diagonal and adjacent

cells highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.28 ||e|| metric of the error in density along the diagonal as function of mesh reference size

(dref ) for (a) square and (b) triangular meshes. . . . . . . . . . . . . . . . . . . . . . . . . 76

4.29 ||e|| metric of the error in density along the diagonal as function of solver run-time (SRT )

for (a) square and (b) triangular meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.30 Density cell averaged values given as a function of radial distance to the origin (cells in

the diagonal) for (a) square and (b) triangular meshes. . . . . . . . . . . . . . . . . . . . . 77

xv



4.31 Density contours for the SFFS test case at t = 0.5s for the reference solution (top left

corncer), (a) Godunov, (b) MUSCL and (c) fourth-order WENO. . . . . . . . . . . . . . . . 78

A.1 Fluxes on the boundaries of the square mesh- (a) L2 norm of the error versus the average

reference size (dref ) for the third-order and seventh-order CWENO schemes. (b) L2 norm

of the error versus the average reference size (dref ) for the fourth-order and fifth-order

CWENO schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Fluxes on the boundaries of the triangular mesh- (a) L2 norm of the error versus the

average reference size (dref ) for the third-order and seventh-order CWENO schemes. (b)

L2 norm of the error versus the average reference size (dref ) for the fourth-order and

fifth-order CWENO schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3 Triangular meshes - Density as a function of the x-coordinate for the Godunov and MUSCL

schemes at t = 0.1s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.4 Triangular meshes - Density as a function of the x-coordinate for the third and fourth-order

WENO schemes at t = 0.1s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xvi



Nomenclature

Greek symbols

β A set of wave fronts that discretizes the inner region of an expansion fan.

δ, ζ Components in the coordinate system for the retangle triangle.

ε, η Components in the auxiliary coordinate system.

γ Specific heat ratio.

κ Relative condition number.

Λ Eigenvalues diagonal matrix.

ν Eigenvector.

κ Average relative condition number.

ρ Density (Kg ·m−3).

Roman symbols

A Flux jacobian matrix for the Euler equations.

H Total number of terms in a polynomial model.

J Vector with the Riemann invariants of interest

X Eigenvector matrix.

A(Si) Area of a two-dimensional target cell (m2).

d(Si) Lenght of a one-dimensional target cell (m).

dref Reference dimension for the cells in a mesh (m).

E Total energy density (J ·m−3).

H Total specific enthalpy (KJ ·Kg−1).

J Jacobian of a linear transformation.

L Legendre polynomials.

xvii



M Mach number.

N Number of cells used to discretize a domain of interest.

Nβ Number of waves used to discretize the expansion fan.

NS Number of stencils used for each cell.

p Pressure (Pa).

Q Vector with the dependent variables of the Euler equations.

R Specific gas constant (J · kg−1 ·K−1).

r Degree of accuracy.

S Wave propagation speed (m · s−1).

Sij A specific face of a target cell.

si Path along the boundary of a target cell.

T Temperature of the fluid (K).

a Speed of sound (m · s−1).

℘ Degree of a polynomial.

SI Smoothness indicator.

u Particle velocity (m · s−1).

ux, uy Velocity cartesian components (m · s−1).

w Linear weight attributed to each stencils.

Subscripts

S Related to stencils.

C Compression.

c Centroid of a cell.

CD Contact discontinuity.

D Diagonal.

d Computational index for the cells that discretize a domain.

E Expansion.

g Computational index for the Gauss-Legendre points used.

h Computational index for a particular basis function of a polynomial model.

xviii



i Computational index for a particular target cell in the mesh.

j Computational index for a particular face of a cell in the mesh.

k Computational index for a particular entry on a dependent variables vector.

L Left.

m Computational index for a particular stencil for a given cell in the mesh.

n Computational index for a particular entry of a given stencil.

R Right.

ref Reference.

u Computational index for a particular step in a Runge Kutta method.

x, y Cartesian components.

Superscripts

* Star region in HLLC Riemann solver.

-1 Inverse.

4→ 3 State 4 to state 3.

CW WENO with use of characteristic variables.

GL Gauss-Legendre.

LS Least-squares.

n Normal component.

nv Normal-tangential coordinate system.

T Transpose.

v Tangential component.

Acronyms

CFD Computational Fluid Dynamics.

GLQ Gauss-Legendre Quadrature.

HLL Harten Lax Leer.

HLLC Harten Lax Leer Contact.

RS Riemann Solver.

SFFS Supersonic Forward Facing Step.

SST Sod’s Shock Tube.

xix



xx



Chapter 1

Introduction

Traditional numerical schemes for supersonic applications are tipically lower-order schemes.These schemes

are easy to implement and very robust but they do, however, require very fine meshes to capture small

details in the flow. High-order accuracy schemes allow for adequate discretization of finer smooth flow

structures in coarser meshes. In the presence of sharp gradients gradients, discontinuities and shocks,

however, typical polynomial regressing methods fail to produce coherent results. Important proper-

ties, such as monotonicity and positivity, are not preserved and the Gibbs phenomenon and associated

unphysical oscillatory behaviour appear in any polynomial model that approximates data with such nui-

sances. These challenges normally limit commercial CFD code to second-order TVD schemes.

ENO (Essentialy Non-Oscillatory) schemes were the first attempt to bring high-order accuracy to

discontinuity-ridden domains [1]. The scheme does this by choosing the smoothest set of data closest

to the point of interest, avoiding sharp gradient discontinuities and shocks. The methodology of choosing

the smoothest data set, altough effective, is time consuming, computationally inefficient and, therefore,

limits the applicability of the scheme. In the year of nineteen-ninety-four (1994), the first WENO scheme

was developed by Liu, Chan and Osher [2], as an attempt to improve the efficiency of ENO schemes.

In this Thesis, an arbitrary order Weighted-ENO scheme was applied for both the one-dimensional

and two-dimensional finite volume formulation of the Euler equations. WENO schemes allow for high-

order of accuracy in smooth regions of the domain while maintaing positivity and monotonicity near

sharp gradients, discontinuities and shocks. They work by defining several data sets, called stencils,

for the same point of interest and then combining the resulting approximated polynomial models. As

spurious oscillations are to be avoided, each polynomial model receives a weight dependent on their

oscillatory behaviour, hence the name WENO (Weighted Essentially Non-Oscillatory). As the underlying

architecture does not need complicated algorithm for choice of data, stencils are only chosen once at the

pre-processing stage of the CFD code. The methodologies for the one and two-dimensional schemes

and respective numerical testing are presented in sections 3 and 4. Section 2 provides the necessary

theoretical background for comprehension of the developed schemes.

The presented WENO scheme and respective developed code, some of which presented in appendix

B, aim to serve as a basis for future work regarding high order methods capable of good performance

1



in transient and supersonic flow regimes. For future flexibility, the regression method used will be the

Weighted-Least-Squares Method. All numerical coding was done in MATLAB R© as it provides a user-

friendly coding environment to develop and test new numerical techniques. Results for several test cases

(Diffusion of a Gaussian, Sod’s Shock tube, Sedovs cylindric Blast Wave, Supersonic Forward Facing

Step ) are presented and compared to traditional numerical schemes made to deal with discontinuities

and shocks.

2



Chapter 2

Background

2.1 Gibbs phenomenom

The Gibbs phenomenon translates an inherent difficulty of approximating discontinuous functions by a

sum of continuous ones. The phenomena was first reported for the Fourier series of a square wave.

Overshoots and undershoots appear in the vicinity of a discontinuity and increasing the number of terms

of the Fourier Series does not make the spurious oscillations disappear.

In CFD, high-order approximations of fluxes or other properties require polynomial regression and the

Gibbs phenomena represents a major hindrance in maintaining physical coherency near discontinuities.

Difficulty in assuring monotonicity preservation, and positivity of density or pressure, for example, is a

major limiting factor in high-order schemes.

.

2.2 Least-Squares Method

The Least-Squares Method (LS) is a classic tool in regression analysis useful for approximating a re-

gression model to a set of data (Y (X), X). The core reasoning behind the method is the minimization

of the square of the error in the data points (residuals) through control of the coefficients in the regres-

sion model. Having a set of basis functions Φh, the regression model with H number of terms can be

described by equation 2.1.

H∑
h=1

ChΦh = C1Φ1 + C2Φ2 + ...+ CHΦH (2.1)

In each data point (Y (Xn), Xn), the respective residual is computed by using equation 2.2.

rn = Y (Xn)−
H∑
h=1

ChΦh(Xn) (2.2)

If the data set has NS number of data points, one can present the residuals in matrix form, as shown

3



in the equations contained in 2.3.

r = Y LS −DLSCf

r =


r1

r2

...

rNS

 ;DLS =


Φ1(X1) Φ1(X1) ... ΦH(X1)

Φ1(X2) Φ1(X2) ... ΦH(X2)

...

Φ1(XNS ) Φ1(XNS ) ... ΦH(XNS )

 ;Cf =


C1

C2

..

CH

 ;Y LS =


Y (X1)

Y (X2)

...

Y (XNS )


(2.3)

It is very important to state that in a typical least squares method application the number of points to

be interpolated is greater than the number of coefficients (NS > H) making the system of equations in

2.4 overdetermined.


Φ1(X1) Φ1(X1) ... ΦH(X1)

Φ1(X2) Φ1(X2) ... ΦH(X2)

...

Φ1(XNS ) Φ1(XNS ) ... ΦH(XNS )




C1

C2

..

CH

 =


Y (X1)

Y (X2)

..

Y (XNS )

 (2.4)

Having more data points than coefficients provides robustness and flexibility as the resulting model

is not as susceptible to learning noise of a single data point (error in the value) and the number of points

does not dictate the number of degrees of freedom. The typical Least Squares problem presents itself

as shown in equation 2.5.

min(

K∑
n=1

(rn)2) w.r.t Cf (2.5)

In CFD, the model is only locally pertinent as it is normally used for approximating numerical fluxes

and flow properties for a target cell. Consequently, the model should be more accurate for points closer

to the area of interest.To provide this feature on the regression, the Weighted-Least-Square Problem,

presented in equation 2.6, is used.

min(

K∑
n=1

WLS
n (rn)2) w.r.t Cf (2.6)

Based on [3], the weight function in equation 2.7 will be one used for a pth degree polynomial model

centered on a generic point with coordinate vector X0.

WLS
n =

1

d(Xn)
p with d =

√
(X1 −X0)2 (2.7)

The weight function also has a reducing effect on the condition number of the matrices calculated

(see [4]).

In matrix form, the problem in equation 2.6 can be described by equation 2.8.

4



min(rT ·WLS · r) w.r.t Cf (2.8)

Equation 2.8 can be further simplified into equation 2.9.

min((Y LS −DCf )
T
WLS(Y LS −DCf )) w.r.t Cf (2.9)

Matrix WLS is a diagonal matrix with the respective weight for the residual of each data point. The

configuration of WLS is shown in equation 2.10.

WLS =


WLS

1

. . .

WLS
NLS

 (2.10)

As the residuals depend linearly on the model coefficients, the minimum of the weighted squared

residuals can be found by derivating with respect to Cf and equalling to zero, as depicted in equation

2.11.

d(rT ·WLS · r)
dCf

= 0 (2.11)

Equation 2.11 can be expressed as equation 2.12.

(DLST ·WLS ·DLS) · Cf = (DLS ·WLS) · Ys (2.12)

In equation 2.13, the terms that only depend on the independent variables of the data set are be

compiled into a single matrix (P ).

PLS = (DLST ·WLS ·DLS)
−1

·DLS ·WLS (2.13)

Equation 2.13 can be used to transform 2.12 into equation 2.14.

Cf = PLS · Ys (2.14)

Again, it should be noted that matrix P is only dependent on the independent variables (Xn) of the

data set.

2.3 Euler Equations

2.3.1 Compressible Euler Equations

Regarding fluid dynamics, the Euler equations govern compressible, adiabatic and inviscid flow. The

equations for G number of dimensional spatial components have the following form described in equa-

5



tions 2.15, 2.16 and 2.17.
∂ρ

∂t
+

G∑
j=1

∂ρui
∂xi

= 0, (i = 1, ..., G) (2.15)

∂ρui
∂t

+

G∑
j=1

uj
∂ρui
∂xj

=
∂p

∂xi
, (i = 1, ..., G) (2.16)

∂E

∂t
+

G∑
j=1

∂uj(E + p)

∂xj
= 0, (i = 1, ..., G) (2.17)

2.3.2 Compressible One-Dimensional Euler Equations

In equation 2.18, the conservative form for the one-dimensional compressible Euler equations is shown.

∂Q

∂t
+
∂F

dx
= 0. (2.18)

The dependent Euler variables vector (Q) and flux vector (F ) are described in equation 2.19.

Q =


ρ

ρux

E

 F (x) =


ρux

ρux
2 + p

ux(E + p)

 (2.19)

Finite Volume Formulation for the Compressible 1D Euler Equations

A one dimensional domain can be discretized by N equal lenght cells and immersed in a field of depen-

dent variables Q, as illustrated by figure 2.1.

Figure 2.1: One dimensional domain discretized with equal lenght cells

Integrating the set of equations in 2.18 along the random target cell Si, one gets equation 2.20

∫ x(Si2)

x(Si1)

(
∂Q

∂t
+
∂Fx
∂x

) ∂x = 0 (2.20)

Apllying the second theorem of calculus to the temporal term in equation 2.20 results in the mathematical

expression in 2.21.

∫ x(Si2)

x(Si1)

∂Q

∂t
∂x =

∂

∂t

∫ x(Si2)

x(Si1)

Q ∂x (2.21)

6



The cell averaged quantities in the target cell (Q(Si) can be defined as demonstrated in equation

2.22.

Q(Si) =
1

d(Si)

∫ x(Si2)

x(Si1)

Q ∂x (2.22)

Using equations 2.21 and 2.22, the integral in 2.20 can be expressed by equation 2.23.

d(Si)
∂Q

∂t
+

∫ x(Si2)

(Si1)

∂Fx
∂x

∂x = 0 (2.23)

The former equation (2.23) can be further developed into equation 2.24.

d(Si)
∂Q

∂t
= −(F (x

(
Si2))− F (x

(
Si1))) (2.24)

The time derivative of the cell averaged quantities (∂Q∂t ) can then, consequently, be expressed as the

sum of left and right fluxes , known as residual of the cell (R(i, t)), at that instance of time divided by the

lenght of the cell (d(Si)). The mathematical form of the previous phrase is shown in equation 2.25.

∂Q

∂t
= − 1

d(Si)
R(Si, t) (2.25)

Characteristic Form for the Compressible 1D Euler Equations

Understanding the decoupled formulation of the Euler one-dimensional equations is useful for the correct

comprehension of the use of characteristic variables in the implemented WENO schemes. Therefore, it

will be explored in this section.

For decoupling the Euler one-dimensional equations, a Flux Jacobian (A = ∂F
∂Q ) must be computed.

The complete form for this matrix as a function of Euler dependent variables (Qk) is shown in 2.26.

∂F

∂Q
=


0 1 0

1
2 (γ − 3)(Q2

Q1
)
2

(3− γ)Q2

Q1
γ − 1

−γQ2Q3

Q1
+ (γ − 1)(Q2

Q1
)
3

γQ3

Q1
− 3

2 (γ − 1)(Q2

Q1
)
2

γQ2

Q1

 (2.26)

In the effort of further simplifying equation 2.26, the total specific enthalpy (H) can be expressed by

equation 2.27.

H =
(E + p)

ρ
=

a2

γ − 1
+

1

2
u2 (2.27)

Thus, using equation 2.27, the Flux Jacobian Matrix can be expressed as equation 2.28.

∂F

∂Q
=


0 1 0

1
2 (γ − 3)u2 (3− γ)u γ − 1

1
2 (γ − 1)u3 −Hu H − (γ − 1)u2 γu

 (2.28)

By using eingenvalue decomposition, the Flux Jacobian Matrix can also be decomposed into the

product of three matrices, as shown in equation 2.29.

7



∂F

∂Q
= XR · Λ · XR−1 (2.29)

Equations in 2.30 show how matrix XR is composed by the right eigenvectors arranged in columns

and matrix Λ by the respective eingenvalues set on the diagonal.

XR =


1 1 1

u− a u u+ a

H − ua 1
2V

2 H + ua

 ; Λ =


u− a 0 0

0 u 0

0 0 u+ a

 (2.30)

Using equation 2.29, the spatial derivative of the Flux vector (∂F∂x ) can be transformed into equation

2.31.

∂F

∂x
=
∂F

∂Q

∂Q

∂x
= (XR · Λ · XR−1)

∂Q

∂x
(2.31)

The former equation (2.31) can be used to rewrite the one-dimensional Euler system of equations as

2.32.

∂Q

∂t
+ (XR · Λ ·XR

−1)
∂Q

∂x
= 0 (2.32)

Multiplying the left eigenvalue matrix (X−1
R ) on the left of each side of equation 2.32, one can obtain

equation 2.33.

XR−1 · ∂Q
∂t

+ XR−1(XR · Λ · XR−1)
∂Q

∂x
= 0⇒ XR−1 · ∂Q

∂t
+ Λ · XR−1 · ∂Q

∂x
= 0 (2.33)

To this point, the Euler equations are still not in full decoupled form and will continue to not truly be

as correct decoupling is only possible if the left eigenvector matrix (XR
−1) was deemed constant across

the domain and time. In such a hypotethical scenario, the formulation in 2.34 would be mathematically

correct.

∂(XR−1Q)

∂t
+ Λ · ∂(XR−1Q)

∂x
= 0 (2.34)

To circumvent the variation along time and space for the left eigenvectors, an approximated set of

equations is used. A constant local approximation of the Jacobian Matrix is employed, as expressed in

equation 2.35.

∂F

∂Q
≈ Ã = X̃R · Λ̃ · X̃−1

R (2.35)

With the enployment of the locally approximated Flux Jacobian matrix, equation 2.33 can be decou-

pled , taking the form of equation 2.36.

∂(X̃−1
R Q)

∂t
+ Λ ·

∂(X̃−1
R Q)

∂x
= 0⇒ ∂Z

∂t
+ Λ · ∂Z

∂x
= 0 (2.36)

8



Each individual characteristic quantity in the set of local characteristic variables (Z = X̃R
−1
Q) re-

mains constant along their respective characteristic curve. This concept is translated mathematically by

2.37.

∂x
∂t = u− a→ Z1 = cte ∂x

∂t = u→ Z2 = cte ∂x
∂t = u+ a→ Z3 = cte (2.37)

The Z quantities are each related to two Riemman invariants of the one-dimensional Euler equa-

tions and, as they do not change along the characteristic curves, the relations in equation 2.37 can be

established.

Z1 = cte⇒ J1 = u− 2·a
γ−1 = cte, s = cte;

Z2 = cte⇒ J2 = u = cte, P = cte;

Z3 = cte⇒ J3 = u+ 2·a
γ−1 = cte, s = cte

(2.38)

2.3.3 Compressible Two-Dimensional Euler Equations

In conservative form, the Compressible one-dimensional Euler equations take the configuration of 2.39.

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= 0. (2.39)

The Euler dependent variables vector (Q), the flux vector for the xx axis direction (F ) and yy axis

direction (G) are described in equation 2.40.

Q =


ρ

ρux

ρuy

E(x)

 F =


ρux

ρux
2 + p

ρuxuy

ux(E + p)

 G =


ρux

ρuxuy

ρuy
2 + p

uy(E + p)

 (2.40)

Finite Volume Formulation for the Compressible 2D Euler Equations

A two-dimensional domain, immersed in a field of properties Q, may be discretized by N number of

two-dimensional cells, such as the four-sided one in figure 2.2.

9



Figure 2.2: A four-sided two-dimensional target cell (Si).

Integrating equation 2.39 on the target two-dimensional cell (Si), one gets equation 2.41.

∫∫
Si

(
∂Q

∂t
+
∂F

∂x
+
∂G

∂y
)∂Si = 0 (2.41)

Equation 2.41 can be further simplified into equation 2.42.

∫∫
Si

(
∂Q

∂t
+
∂F

∂x
+
∂G

∂y
)∂x∂y = 0⇒

∫∫
Si

∂Q

∂t
∂x∂y +

∫∫
Si

(
∂F

∂x
+
∂G

∂y
)∂x∂y = 0 (2.42)

In equation 2.43, the Green theorem is presented, with arbitrary functions L(x, y) and M(x, y) pos-

sessing continuous partial derivatives on S.

∫∫
S

(
∂M

∂x
− ∂L

∂y
)∂x∂y =

∮
s

M∂y + L∂x (2.43)

The Green theorem (equation 2.43) can be used to transform the integral of the fluxes in equation

2.42 into equation 2.44.

∫∫
S

(
∂F

∂x
+
∂G

∂y
)∂x∂y =

∮
si

F∂y −G∂x (2.44)

If the outter boundary (si) of the target cell is traversed in anti-clockwise fashion, as represented in

figure 2.2 (for face j), the tangent to that path (−→v ) can be described by equation 2.45.

−→v = (vx, vy) = (−ny, nx) (2.45)

Equations in 2.46 are useful for further progress.

∂x = vx · ∂C = −ny · ∂si ∂y = vy · ∂si = nx · ∂si (2.46)

The same equations (equations in 2.46) can then be used to modify equation 2.44 into equation 2.47.

10



∮
si

F∂y −G∂x =

∮
si

F · nx · ∂si −G · (−ny) · ∂si =

∮
si

(F · nx +G · ny)∂si (2.47)

The time derivative for the Euler variables (∂Q∂t ) for equation 2.42 can be treated using the process

previously described in equations 2.21 and 2.22 (section 2.3.2), resulting in equation 2.48.

∫∫
Si

(
∂Q

∂t
)∂S =

1

A(Si)

∂Q

∂t
(2.48)

An integral around the boundary of the target cell can be described as a sum of the integral in each

face. Therefore, it is possible to express equation 2.47 as equation 2.49

∮
si

(F · nx +G · ny)∂si =

4∑
j=1

(

∫
sij

F · nx +G · ny)∂sij = R(Si, t) (2.49)

Finally, the time derivative of the cell averaged properties can be expressed by the negative of the

residual for the target cell at that given instance of time divided by the area of said cell (A(Si)). Equation

2.50 reflects the final form of a finit volume formulation for the two-dimensional Euler equations.

∂Q

∂t
= − 1

A(Si)
·R(Si, t) (2.50)

Characteristic Form for the Compressible 2D Euler Equations

Although it is not possible to decouple the original two-dimensional Euler equations in the way demon-

strated in section 2.3.2, a different set of differential equations can be derived for each face. By projecting

the Euler equations onto an axis system based on the normal (~n) and tangent directions (~v) for a said

face, the formulation in equation 2.51 is possible.

∂Qnv

∂t
+
∂Fn

∂n
+
∂F v

∂v
= 0 (2.51)

The vector for the projected Euler dependent variables (Qnv) and the flux vectors for the tangent (F v)

and normal (Fn) directions are shown in equation 2.52.

Qnv =


ρ

ρun

ρuv

E

 Fn =


ρ

ρun
2 + p

ρunuv

un(E + p)

 F v =


ρ

ρunuv

ρuv
2 + p

uv(E + p)

 (2.52)

As a local approximation, considering the Qnv quantities to not change along the tangent direction

allows the previous system of equations 2.51 to be re-written as equation 2.53.

∂Qnt

∂t
+
∂Fn

∂n
= 0 (2.53)

To the previous equation (2.53) one can apply a similar method to that of section 2.3.2.

The Flux Jacobian, for this case, is computed in equation 2.54.

11



∂Fn

∂Qnv
=


0 1 0 0

(γ − 1)H − un2 − a2 (3− γ)un (1− γ)uv γ − 1

unuv uv un 0

1
2un((γ − 3)H − a2) H − (γ − 1)un

2 (1− γ)unuv γun

 (2.54)

The formula for the total specific enthalpy (H) is shown in equation 2.55.

H = (E+p)
ρ = a2

γ−1 + 1
2V

2 V 2 = u2
n + u2

v
(2.55)

In equation 2.56, the Flux Jacobian is expressed as a product of three matrices (eigenvalue decom-

position).

∂Fn

∂Qn
= XR · Λ · XR−1 (2.56)

As in section 2.3.2, matrixXR represents the right eigenvectors for the Flux Jacobian matrix arranged

in columns and matrix Λ the diagonal matrix of the respective eingevalues (equation 2.57).

XR =


1 1 0 1

u− a u 0 u+ a

uv uv 1 uv

H − ua 1
2V

2 uv H + ua

 Λ =


un − a 0 0

0 un 0 0

0 0 un 0

0 0 0 un + a

 (2.57)

Following an analogous procedure to that of section 2.3.2, equation 2.58 can be achieved.

∂(X̃−1
R Qn)

∂t
+ Γ ·

∂(X̃−1
R Qn)

∂n
= 0⇒ ∂Zn

∂t
+ Γ · ∂Z

n

∂n
= 0 (2.58)

2.4 Riemman Problem

A Riemman Problem normally is comprised of an initial value problem with piece-wise constant data

separated initially by a single discontinuity in data and ruled by some sort of conservation equation.

2.4.1 Shock Tube

A shock tube, illustrated in Figure 2.3, is characterized by a tube initially filled with gases at different

conditions, normally one with higher pressure than the other and separated by a diaphragma. At t = 0

the diaphragma is broken.

12



Figure 2.3: Shock Tube.

The setup is of importance to the development of low-cost supersonic testing and thus deserves

some interest. This problem is tipically modelled by a Riemann problem governed by the one-dimensional

Euler equations (see 2.3.2).

2.4.2 Sod’s Shock Tube Problem

The initial left and right initial data can vary greatly but one common configuration is that of Sod’s shock

sube (SST) problem. The data setup is described by equation 2.59.

Q1 =


1.0

0

2.5

 Q4 =


0.125

0

0.25

 (2.59)

Looking at the data, by intuition, the fluid to the right should compress and the fluid to the left should

expand. Altough the fluids should reach the same pressure (P2 and P3), the density after this expansion

is not necessarily the same and thus some sort of discontinuity in this quantity will certainly exist. One

can theorise, at first, that a single wave of infinitesimal thickness for compression (compression shock)

and another for expansion (expansion shock ) will travel along the respective fluid, with respective con-

stant speeds (SC and SE). Figure 2.4 serves as illustration for this wave configuration.

Figure 2.4: Initial supposition for the configuration of the wave structures in SST.

Compression Shock Relations

For the compression shock, one can apply a balance of mass, momentum and energy, tipycally refered

to as Rankine-Hugoniot jump conditions, in a coordinate system moving with the shock. The velocities

13



for this coordinate system are denoted by a circumflex accent. The system of equations is presented in

equation 2.60

ρ3û3 = ρ4û4; p3 + ρ3û
2
3 = p4 + ρ4û

2
4; û3(E3 + p3) = û4(E4 + p4) (2.60)

In equation 2.61, the velocities in the coordinate system moving with the compression shock (û4 and

û4) are expressed as a function of the particle velocities (u3 and u4) and the compression shock velocity

(SC) in the stationary coordinate system.

û3 = (u3 − SC) û4 = (u4 − SC) (2.61)

Using the relations in equation 2.61 and knowing that the particle velocity in region four of the shock

tube is null, the relations in equation 2.60 can be simplified, respectively, into the ones in equation 2.62.

ρ3(u3 − SC) = −ρ4SC ; p3 + ρ3(u3 − SC)2 = p4 + ρ4SC
2; (u3 − SC)(Ê3 + p3) = −SC(Ê4 + p4)

(2.62)

Altough it is not still assured if the passage from state four to state two is isentropic or not, the

isentropic relation in equation 2.27 can be applied to each side of the shock wave. The ratio of specific

heats can also be assumed constant and the same for both gases. With further algebraic maipulation,

the relations in equation 2.62 can be further developed into the ones in equation 2.63.

(u3 − SC) = −(ρ4ρ3 )SC ; ρ4S
2
C(ρ4ρ3 − 1) = p4 − p3; (u3 − SC)( γp3γ−1 + ρ3(u3−SC)2

2 ) = −SC( γp4γ−1 +
ρ4S

2
C

2 )

(2.63)

Concerning only the second relation in equation 2.63, dividing both sides by γP4 and using the

algebraic expressions for mach number (M = u/a) and speed of sound in an ideal gas (a =
√
γp/ρ)

results in equation 2.64.

M2
C(
ρ4

ρ3
− 1) =

1

γ
(1− p3

p4
) (2.64)

Considering that there are no heat losses to the walls of the shock tube, adiabatic gas law, stated in

equation 2.65, can be applied.

ρ3

ρ4
= (

p3

p4
)

1
γ (2.65)

Combining equation 2.65 into equation 2.64 results in equation 2.66

M2
C =

1

γ
· (1− p3

p4
) · ((p3

p4
)
− 1
γ − 1)

−1

(2.66)

Using the definition of Mach number and equation 2.66, shock speed can be expressed by equation

2.67.

14



SC = a4 ·
1

γ
1
2

· (1− p3

p4
)

1
2 · ((p3

p4
)
− 1
γ − 1)

− 1
2

(2.67)

Equation 2.67 and the first relation from equation 2.63 can be used to obtain an expression, shown

in equation 2.68, for the particle velocity in the upstream of the shock.

u3 = a4 · (1−
p3

p4

− 1
γ

) · 1

γ
1
2

· (1− p3

p4
)

1
2 · ((p3

p4
)
− 1
γ − 1)

1
2

(2.68)

The use of adiabatic gas law in equation 2.65 and the definition of sound speed in an ideal gas allows

for equation 2.69.

a4

a3
=

√
(
P4

P3
)

γ−1
γ

(2.69)

With employment of equation 2.69 into equation 2.68, the Mach number (M3 = u3/a3) for the fluid in

the upstream of the moving shock can be expressed as equation 2.70.

M3 = (
P3

P4
)

1−γ
2γ

· (1− P3

P4

− 1
γ

) · 1

γ
1
2

· (1− P3

P4
)

1
2

· ((P3

P4
)
− 1
γ

− 1)

− 1
2

(2.70)

Compression Shock Hypothesis

Before one goes further and applies the previously computed relations between states 3 and 4, the

compression shock hypothesis should be put to the test.

The Second Law of Thermodynamics states that the total entropy of an isolated system (such as the

shock tube) can never decrease with time. Assuming a perfect gas, equation 2.71 expresses the change

in entrophy from the passage of state 3 into state 4 ((∆s)4→3).

(∆s)4→3 = R · ln (
p3

p4

1
γ−1 · ρ3

ρ4

γ
γ−1

) (2.71)

Assuming that there is no heat transfer on the walls of the shock tube, the adiabatic gas law in

equation 2.65 can be used to simplify equation 2.71 into equation 2.72.

(∆s)4→3 = R · ln (
p3

p4

2
γ−1

) (2.72)

Knowing that pressure downstream of the moving shock is inferior to the one upstream (p4 > p3), it

becomes apparent, when looking at equation 2.72, that entropy increases from state 4 to state 3 and

that the compression shock hypothesis does not violate the Second Law of Thermodynamics. A moving

shock configuration for compression is further strenghtened by the intersection of characteristic curves

associated with the Z3 quantity in the vicinity of the shock wave, as illustrated in Figure 2.5.

15



Figure 2.5: Z3 characteristic curves from states three (fine solid line) and four (fine intermittent line)
intersecting on the shock wave.

The local characteristic quantity Z3 from each side (states 3 and 4) travels along a constant charac-

teristic curve, as explained in section 2.3.2 and again stated by equation 2.73.

dx

dt
= u+ a⇒ Z3 = constant (2.73)

Through the relations obtained in section 2.4.2, it can be proved that the information for the Z3

characteristic quantity travels faster downstream of the moving shock. Equation 2.74 translates this

statement mathematically.

u3 + a3 > u4 + a4 (2.74)

In consequence of equation 2.74, the upstream and downstream Riemman invariants associated

with the Z3 would intersect in the vicinity of the moving shock. One of these intersections, stated in

equation 2.75, directly translates to a discontinuity in the Euler dependent variables.

Z3 = cte⇒ u+
2 · a
γ − 1

= cte (2.75)

The counter-proposition of a single moving shock would be that of a series of infinetisimal isentropic

compression waves (p3p4 −→ 1). That hypothesis gets easily shunned as the compression waves would

all coalesce due to the sound speed increasing with each successive adiabatic compression. Conse-

quently, equation 2.67 forces the propagation speed for each wave front to be greater than that of the

one downstream to it.

Relations for the contact discontinuity

Applying the Rankine-Hugoniot jump conditions to the contact discontinuity on a solidary axis coordinate

system, one gets the system described by eqaution 2.76.

16



ρ2û2 = ρ3û3; p2 + ρ2û
2
2 = p3 + ρ3û

2
3; û2(Ê2 + p2) = û3(Ê3 + p3) (2.76)

The fact that the particle velocities in the coordinate system moving with shock can be described

as a function of the ones in the stationary one along with the speed of the contact discontinuity (û2 =

(u2−SCD) and û3 = (u3−SCD)) allows for some algebraic manipulation that combined with the equality

in downstream and upstream pressures (p2 = p3) results in the simplification of the system in equation

2.76 into the relations in equation 2.77.

u2 = u3; u3 = SCD (2.77)

Impossibility of an expansion shock

In analogy with equation 2.72, the entropy change for an adiabatic and inviscid flow in the expansion

shock can be described by equation 2.78.

(∆s)1→2 = R · ln [
p2

p1

2
γ−1

] (2.78)

When looking at equation 2.78, it becomes clear that as pressure in the downstream of the expansion

shock is greater than that in the upstream (p1 > p2), the change in entropy is forcefully negative. This

conclusion violates the Second Law of Thermodynamics and, thus, serves as proof that modelling an

expansion wave as a moving shock physically is incoherent and that an expansion process must be

isentropic. Furthermore, when looking at equation 2.79, obtained by the same process required for

equation 2.66, the shock speed mach number (ME for the expansion ) tends to zero as the the ratio

between upstream and downstream pressures tends to one (P2/P1 → 0) and turns negative to any

ratio lower than one. This impossibility leads to the conclusion that a moving shock wave for the Euler

equations can only compress.

M2
C =

1

γ
· (1− p3

p4
) · ((p3

p4
)
− 1
γ − 1)

−1

(2.79)

Another wave configuration must be sought for the expansion process. An expansion fan with in-

finetisimal pressure jumps would respect the isentropy condition as the ratio between pressure would

tend to one. Figure 2.6 illustrates the new proposed wave structure configuration.

Figure 2.6: Final configuration for the wave structures in SST.

17



Relations for the expansion wave

As the expansion process is isentropic, one can use isentropic flow equations to establish dependence

between the states one and two. Equation 2.80 takes into account the quiescence of the fluid in state

one and develops an expression for the mach number upstream of the expansion fan (M2).

u1 = M1 = 0⇒ p2

p1
= (1 +

γ + 1

2
M2

2 )
− γ
γ−1

⇒M2 = (
2

γ + 1
)

1
2

((
p2

p1
)

1−γ
γ − 1)

1
2

(2.80)

The relation between sound speeds in equation 2.69 can be used along equation 2.80 to achieve an

expression for particle speed in state two (u2). This process is demonstrated by equation 2.81.

a2 = a1 ·
a2

a1
= a1 · (

p2

p1
)
γ−1
2γ ⇒ u2 = a1 · (

p2

p1
)
γ−1
2γ

(
2

γ + 1
)

1
2

((
p2

p1
)

1−γ
γ − 1)

1
2

(2.81)

Altough not mathematically proven here (see [5]), the multiple infinitesimal expansion waves coincide

with local Z1 characteristic curves and their propagation speed is the same (u−a). As the speed of sound

(a) decreases and velocity (u) increases along the expansion fan (from state four to state one), the

infinitesimal wave speed should decrease, giving a diverging character to the expansion fan, illustrated

by figure 2.7.

Figure 2.7: Waves structures, including the expansion fan, development in x coordinate with time (t).

As the particle velocity in state 1 is null, the front of the expansion fan propagates at the local sound

speed (a1).

Pressure in States 2 and 3

The pressures in states two and three have been proven in section 2.4.2 to be equal and can be calcu-

lated trough the use of previous obtained relations for the moving shock (section 2.4.2) and expansion

fan (section 2.4.2). Equation 2.82 is obtained by using equations 2.68 and 2.81 and taking into ac-

count the relation in equation 2.77 that states the equality of the particle velocities at the upstream and

downstream of the contact discontinuity (u2 = u3).

a1 · (
p2

P1
)
γ−1
2γ

(
2

γ + 1
)

1
2

((
P2

P1
)

1−γ
γ

− 1)

1
2

= a4 · (1−
P2

P4

− 1
γ

) · 1

γ
1
2

(1− P2

P4
)

1
2

((P2

P4
)
− 1
γ − 1)

1
2

; (2.82)

18



Equation 2.82 can be solved iteratively for p2, which can then be used to compute all other required

quantities in states two and three.

Quantities across the expansion fan

The expansion fan can be approximately discretized by a finite number of expansion waves that exist

inside the expansion fan region with propagation speeds between those of the expansion front and the

back (SFrontE > SE(β) > SBackE ). By equally dividing the range of propagation speed into Nβ number of

waves speeds, one gets the model illustrated in figure 2.8.

Figure 2.8: Detail over the discretization of the inner region of the expansion fan with Nβ = 3 number of
waves.

As stated in [5], through the expansion fan, the J3 Riemann invariant remains constant, although

its characteristic curve gets altered. Therefore, for some point (x, t
′
) inside the expansion wave, the J3

Riemann invariant is the same as the one in state four. Equation 2.83 translates this equality.

J3 = a4 +
2 · u4

γ − 1
= a(x

′
, t
′
) +

2 · u(x
′
, t
′
)

γ − 1
(2.83)

As each discrete infinetisimal expansion wave (β) propagates a J1 Riemann invariant and intersects

the same J3 Riemann invariant throughout its path, the relation in equation 2.84 may be established.

a(β) + 2·u(β)
γ−1 = cte

a(β)− 2·u(β)
γ−1 = cte

⇒ u(β) = cte; a(β) = cte (2.84)

The propagation speed of a infinetisimal expansion wave is the same as the characteristic speed

of the Riemann invariant that it propagates (u
′ − a′ ). Therefore, for a prescribed constant propagation

speed of a given discrete infinitesimal expansion wave (SE(β)), the system in equation 2.85 serves to

discover the values of particle speed and local sound speed along that wave’s path.

a(β) + 2·u(β)
γ−1 = a4; u(β)− a(β) = SE(β) (2.85)

If one wishes to discover the local sound and particle speed at a given point and time, he can use

equation 2.86 to discover the propagation speed of the discrete expansion wave that intersects it and

19



the system in equation 2.85 for the wanted quantities.

x
′

= x0 + SE(B) · t
′

(2.86)

From the local sound and particle speed, all other quantities can be calculated by resorting to insen-

tropic relations.

The reflection of shock and expansion waves on the walls of the shock tube will not be covered as

the work done throughout the thesis does not require it.

2.5 Approximate Riemann Solvers

Computing analytical solutions of Riemann problems is often too strenuous to provide sufficient com-

putacional efficiency in numerical schemes that require an adequate solution. As such, approximate

solvers are used instead. In this section, three types of approximate Riemman Solvers will be discussed

and then compared on section 3.1.6 to decide on which to use for the proposed WENO scheme.

2.5.1 Harten Lax Van-Leer (HLL)

In the HLL Riemann solver, the complicated wave structure of the Sod-like configuration is substituted by

two travelling waves: one for representing the front of the expansion fan and the other the shock wave.

Both are treated mathematically as shock waves. These two waves separate an averaged state (QHLL)

in the middle from the left and right initial states.The cell interface is represented at x = 0, so the flux of

interest is the one that crosses the t-axis.

Figure 2.9: Possible configuration for the wave structures in the HLL approximate Riemann solver.

The intermediate state (QHLL), represented in equation 2.87, is a spatial average of the analytic

solution (Q(x, t)) at any given time, between the two waves.

QHLL =
1

t(SR − SL)

∫ tSR

tSL

Q(x, t)∂x (2.87)

A balance of mass, momentum and energy (Rankine-Hugoniot) at the wave-fronts gives the relations

in equation 2.88.

FHLL = FR + SR(QHLL −QR) ; FHLL = FL + SL(QHLL −QL) (2.88)

20



From the previous two relations in 2.88, equation 2.89 can be obtained.

QHLL =
(FR − FL) + SLQL − SRQR

SL − SR
(2.89)

Substituing the previous expression for QHLL (2.89) in any of the relations in equation 2.88 results

in equation 2.90.

FHLL =
FLSR − FRSL + SLSR(QR −QL)

SR − SL
(2.90)

It is not ensured that the flux at the t-axis, which is the one of interest, will be the HLL one. For

example, if either one the left or right state is supersonic, the configuration for the wave structure differs

from the one in figure 2.9. Figure 2.10 illustrates the two other possible wave configurations of interest.

Figure 2.10: Configuration for the wave structures for a HLL approximate Riemann solver in case of
(left) left-going supersonic flow and (right) right-going supersonic flow.

With the proper upwinding, the complete HLL flux is defined by equation 2.91.

F (Si+j) =


FL , SL ≥ 0

FHLL = FRSL−FLSR−SLSR(QL−QR)
SR−SL , SL ≤ 0 ∩ SR ≥ 0

FR , SR ≤ 0

(2.91)

It is important to note that, as stated in equation 2.92, for this approximated Riemann Solver, the

flux computed at the t-axis is not equivalent to the one computed directly using the averaged state Euler

variables (QHLL).

FHLL 6= F (QHLL) (2.92)

Other important characteristics of this approximate Riemann solver are that the entropy condition is

not respected because expansion fans are substitued by a single shock and, therefore, entropy can di-

minish (violating the second law of thermodynamics). The contact discontinuity is not taken into account

resulting in difusive behaviour for this wave structure, when applied to numerical schemes.

2.5.2 Harten Lax-van Leer Contact (HLLC)

The HLLC approximate Riemann solver is an improvement of the HLL as the contact discontinuity is

restored by adding a third party to the wave structure, shown in figure 2.11.

21



Figure 2.11: Two possible configurations for the wave structure in the HLLC Riemann solver.

Similarly to the HLL Riemann solver, the Q∗R and Q∗L states are a spatial average of the analytic

solution between their respective waves. The integral form for the two states is shown in equation 2.93.

Q∗R = 1
t(SR−SCD)

∫ tSR
tSCD

Q(x, t)∂x ; Q∗L = 1
t(SCD−SL)

∫ tSR
tSCD

Q(x, t)∂x (2.93)

Knowing that all previous equations from the HLL Riemann Solver still hold true, one can rewrite

QHLL as a function of the Q∗R and Q∗L averaged states. In equation 2.94, the integral of the exact

solution (Q(x, t)) between the left and right shocks (SL and SR) is decomposed into a sum of integrals

between the left shock and contact discontinuity and the contact discontinuity and the right shock.

∫ tSR

tSL

Q(x, t) ∂x =

∫ tSCD

tSL

Q(x, t) ∂x+

∫ tSR

tSCD

Q(x, t)∂x (2.94)

Comparing equations 2.94, 2.87 and the ones in 2.93, one can obtain equation 2.95

QHLL =
(SCD − SL)

(SR − SL)
·Q∗L +

(SR − SCD)

(SR − SL)
·Q∗L (2.95)

Equations 2.95 and 2.89 can be used to obtain equation 2.96.

(SCD − SL)Q∗L + (SR − SCD)Q∗R = (FL − FR) + SRQR − SLQL (2.96)

By applying Rankine-Hugoniot jump-conditions on the different waves, the consistency relations in

equation 2.97 are computed.

F ∗R = FR + SR · (Q∗R −QR) ; F ∗L = F ∗R + SCD · (Q∗L −Q∗R) ; F ∗L = FL + SL · (Q∗L −QL) (2.97)

From Rankine-Hugoniot conditions at the contact discontinuity (SCD) (second relation in equation

2.97), which has equal left and right pressure, the relations in equation 2.98 can be obtained.

p∗L = p∗R u∗L = u∗R SCD = u∗R (2.98)

The first equalities in equation 2.98 can be used in conjunction with momentum conservation in the

consistency relations (2.97) to define the contact discontinuity wave speed (SCD) as a function of left

22



and right undisturbed state quantities (QL and QR), which are prescribed. Equation 2.99 shows the final

relation between the forementioned quantities.

SCD =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)
(2.99)

Using equations 2.97, 2.98 and 2.96, one can define the averaged states that exist between the shock

wave and the expansion wave front. Taken from [5], equation 2.100 gives a mathematical expression for

these averaged states.

Q∗K = ρK
SK − uk
SK − SCD


1

SCD

QK(:)

EK
ρK

+ (SCD − uK)[SCD + pK
ρK(SK−uK) ]

 (2.100)

The index K in equation 2.100 can represent either the state either between the shock wave and the

contact discontinuity (K = R) or between the contact discontinuity and the expansion front (K = L). The

third matrix entry (QK(:)) represents a random passive scalar quantity. For two dimensional schemes,

tangential velocity at the face is often treated like a passive scalar.

The fluxes in the star region can be completely defined by using equation 2.100 along with the first

and third relations for the consistency conditions in equation 2.97. These relations are repeated in

equation 2.101.

F ∗L = FL + SL(Q∗L −QL) ; F ∗R = FR + SR(Q∗R −QR) (2.101)

As with the HLL Riemann solver, the flux of interest is the one on the t-axis. The wave structure can

have different configurations, and therefore, the solver needs to again take into account some different

scenarios. It should be stated, however, that neither the HLL and HLLC Riemann solvers are equipped

from default to deal with any random wave configuration Figure 2.12 illustrates the two remaining wave

configurations, not shown in figure 2.11, that are encompassed in a typical HLLC Riemann solver.

Figure 2.12: Wave structures configurations for (left) right-going supersonic flow and (right) right-going
supersonic flow in the HLLC Riemann solver.

23



The the HLLC flux is defined in equation 2.102.

F (Sij) =



FL , SL ≥ 0

F ∗L , SL ≤ 0 ∩ SCD ≥ 0

F ∗R , SR ≥ 0 ∩ SCD ≤ 0

FR , SR ≤ 0

(2.102)

As with the HLL solver, the HLLC solver does not, by default, preserve entropy across expansion

regions.

2.5.3 Wave Speed Estimates

As the correct wave speeds are impossible to calculate without the analytical solution. Wave speed

estimates are required for both the HLL and HLLC approximate Riemann solvers. The simplest form of

wave estimates comprise of the eingenvalues of the characteristic form of the euler equations in the left

and right states:

SL = min(uL − aL, uR − aR)

SR = max(uL + aL, uR + aR)
(2.103)

The estimate used in this thesis will be pressure based as it is found by [5] to be sufficiently accurate

while preserving simplicity.

Pressure-Based Speed Estimates

In this kind of wave speed estimates, an approximation for the pressure in the star region is first given

and then the wave speeds are calculated. The method here described is the same as that of Toro (see

[5]).

p∗R = p∗L =
1

2
(pL + pR)− 1

2
(uR − uL)ρa (2.104)

ρ = 1
2 (ρL + ρR) a = 1

2 (aL + aR) (2.105)

The wave speed estimates are given by:

SL = uL − aLqL SR = uR − aRqR (2.106)

qK =

 1 , p∗ ≤ pK
[1 + γ+1

γ (p∗/pK − 1)]
1
2 , p∗ > pK

(2.107)

The parameter qK is set on basis of checking if the wave front tries to emulate a rarefaction fan front

or a shock wave. If the pressure on the star region (p∗) is less than that of said side (pK), the wave

emulates the front of a rarefaction fan and will propagate with a speed of uL − aL.On the other hand,

if the pressure in the star region is greater than that of said side, a shock wave will be present. In this

scenario, Rankine-Hugoniot jump conditions along with the pressure estimate can be used to determine

the shock-wave propagation speed, summarized in the above expression.

24



2.5.4 Riemann Solver of Roe

The Roe approach for solving a Riemann problem for the Euler equations consists of substituting the

one-dimensional set of equations by an approximate linearized version, presented in section 2.3.2, and

then solving the approximated problem exactly. Equation 2.108 defines this methodology.


∂Q
∂t + ∂F

∂x = 0

Q(x, 0) = QL , x < 0

Q(x, 0) = QR , x ≥ 0

≈


∂Q
∂t + A∂Q

∂x = 0

Q(x, 0) = QL , x < 0

Q(x, 0) = QR , x ≥ 0

(2.108)

Matrix Ã(QL, QR) in equation 2.108 is an approximation for the exact Flux Jacobian (J = ∂F
∂Q ), and

must respect a set of conditions:

• The system must remain hyperbolic. This means that matrix Ã(QL, QR) must have only real eigen-

values (λ̃1 ≤ ... ≤ λ̃m ∈ R) and a complete set of linearly independent eigenvectors (ν̃1, ν̃2, ..., ν̃m).

• Matrix Ã must have consistency with the exact flux jacobian (Ã(Q,Q) = J(Q)).

• Conservation across discontinuities must be preserved (F (QR)− F (QL) = Ã(QR −QL)).

For the complete Roe solver all these criteria were fulfilled through the use of Roe averaged values (for

more details see [5]). The complete form for the approximated Flux Jacobian is shown in equation 2.109.

˜̂A =


0 1 0

1
2 (γ − 3)ũ2 (3− γ)ũ γ − 1

1
2 (γ − 1)ũ3 − H̃ũ H̃ − (γ − 1)ũ2 γũ

 (2.109)

The necessary Roe averaged quantities, denoted by a tilde, are computed with the right (QR) and

left (QL) states, as shown in equation 2.110.

ũ = ρLuL+ρRuR
ρL+ρR

H̃ = ρLHL+ρRHR
ρL+ρR

ã = ((γ − 1)(H̃ − 1
2 ũ

2))
1
2 (2.110)

Using the same methodology as section 2.3.2, the characteristic form for the new differential equa-

tion can be obtained. This process requires calculating the right eigenvectors and eigenvalues for the

approximated Flux Jacobian (Ã). Equation 2.111 displays the right eigenvectors arranged in columns, in

matrix R̃), and the respective eigenvalues in a diagonal matrix (Γ̃).

R̃ =


1 1 1

ũ− ã ũ ũ+ ã

H̃ − ũã 1
2 Ṽ

2 H̃ + ũã

 Γ̃ =


ũ− ã 0 0

0 ũ 0

0 0 ũ+ ã

 (2.111)

The fully decoupled form for the approximated set of equations is shown in 2.112.

∂(R̃−1Q)
∂t + Γ · ∂(R̃−1Q)

∂x = 0 ≡ ∂Z̃
∂t + Λ̃ · ∂Z̃∂x (2.112)

25



Each initial value of Z is then propagated with a speed equal to the respective eigenvalue. As the left

and right states of a given quantity Z are different but propagate at the same speed, the discontinuity

between both side propagates at that same speed. Figure 2.13 illustrates the concept.

Figure 2.13: Characteristic curves for a given quantity Z in the approximated problem with the disconti-
nuity between the two states highlighted by a thicker black line

The values for the characteristic variables at the cell interface can be easily known and are completely

defined by equation 2.113.

Z̃1(0, t) =

 Z̃L1
, ũ− ã ≥ 0

Z̃R1 , ũ− ã < 0
; Z̃2(0, t) =

 Z̃L2
, ũ ≥ 0

Z̃R2 , ũ < 0
; Z̃3(0, t) =

 Z̃L3
, ũ+ ã ≥ 0

Z̃R3 , ũ+ ã < 0
(2.113)

The original variables at the face of interest (x = 0) can then be obtained, by converting the computed

characteristic quantities back to the original Euler variables, as done in equation 2.114:

Q̃(0, t) = R̃Z̃(0, t) (2.114)

The intercell flux cannot be directly calculated from these quantities (equation 2.114), as propper up-

winding is not ensured. For example, if the left state is supersonic, the eigenvalues of the approximated

problem are not guaranteed to all be positive. A consistency condition must then be used. A possible

choice for the exact solution is presented in equation 2.115.

∫ TSR

0

Q(x, t) ∂x = T (F (0, t)− FR + SRQR) (2.115)

The computed flux (T (F̃ (Sij)) from the approximate problem should also respect the similar consis-

tency condition in equation 2.116.

∫ TSR

0

Q̃(x, t)∂x = T (F̃i+ 1
2
− FR + SRQR) (2.116)

One can use the solution for the approximated problem in equation 2.113 and establish the useful

26



approximation shown in equation 2.117.

∫ TSR

0

Q(x, t)∂x ≈
∫ TSR

0

Q̃(x, t)∂x (2.117)

Using equations 2.117, 2.116 and 2.114 the intercell flux from the original Riemman problem can be

expressed as equation 2.118.

F (Si+ 1
2
) = FR − Ã(QR − Q̃i+ 1

2
) (2.118)

A more computationally-friendly approach is present in [5].

2.6 Explicit Runge-Kutta Time Integration

The Runge-Kutta family of explicit methods are commonly used for temporal discretization in ordinary

diferential equations such as the finite volume formulation of the Euler equations. Equation 2.119 states

the typical formulation for the time of the averaged quantities in a target cell (Si) as a function of the cell

averaged quantities of the other cells discretizing the domain.

dQ(Si)

dt
=

1

A(Si)
·Ri(Q(S1, t), Q(S2, t).., Q(SN , t)) (2.119)

The exact residual (R) term is usually substituted by an approximation (R̃) using a particular flux

scheme such as Godunov or WENO.

In CFD, it is important to know the cell averaged quantities in discrete instances of time and proper

time integration of the residual term is required. As exact analytical integration of the residual is often

strenuous or impossible, some sort of approximated explicit time integration can be used.

It is also of interest to state that one seeks appropriate aproximate integration of the finite volume

formulation with the aproximated residual function (R̃) and not that of the original FV formulation (R).

In the case of the flux scheme gathering the necessary conditions (monotonocity,convergence,stability,

etc.) the approximate residual should match the exact residual, as the spatial discretization gets finer.

For simplicity, the averaged quantities of the cells discretizing the domain at a given time will be

represented by the term Qt, as defined in equation 2.120.

Q(t) = Q(S1, t), Q(S2, t), . . . , Q(SN , t) (2.120)

Given an initial field of quantities (Q(x, t0)) and respective cell averaged values Q(t0), the next time-

step cell averaged quantities for a given target cell (Q(Si, t0 + ∆t)) can be expressed by equation 2.121.

Q(Si, t0 + ∆t) = Q(Si, t0) +

∫ t0+∆t

t0

dQ(Si, t)

dt
∂t ≈ Q(Si, t0) +

1

A(Si)

∫ t0+∆t

t0

R̃i(Q(t0)) ∂t (2.121)

Runge-Kutta methods of a given order of accuracy (RKr) allow for approximate integration with com-

27



putational applicability. Equation 2.122 shows the approximation of time integration of the approximate

residual by such methods.

∫ t0+∆t

t0

R̃i(Q(t0)) ∂t ≈ RKr(Q(t),∆t) (2.122)

The simplest form of explicit time integration is the Euler Method, equivalent to the first-order Runge

Kutta Method. This variant uses only the information of the time derivative at the initial state and assumes

it as constant throughout the time step. An order of accuracy for this method can be obtained by deriving

an expression for the the exact and approximate values of the averaged property for a given target cell in

the next time iteration (Q(Si, t0 + ∆t)). In the context of this process, the exact value can be expressed

through a Taylor expansion over the previous time iteration (t0), as expressed by equation 2.123.

Q(Si, t0 + ∆t) = Q(Si, t0) +
1

A(Si)
(
dQ(Si, t0)

dt
·∆t+O(∆t2)) (2.123)

The Euler method approximates the forementioned cell averaged quantities (Q(Si, t0 + ∆t)) by the

expression in equation 2.124.

Q(Si, t0 + ∆t) ≈ Q(Si, t0) +
1

A(Si)
(Ri(Q(t0)) ·∆t) (2.124)

In equation 2.125, the expression in equation 2.124 is subtracted from that of equation 2.123 so the

truncation error (τ ), and, thus, the order of accuracy of the Euler method can be known.

τ =
1

A(Si)
O(∆t2) (2.125)

Figure 2.14 illustrates the procedure of a first-order Runge Kutta method.

Figure 2.14: Procedure for for a first-order of accuracy Runke-Kutta method.

More sophisticated Runge Kutta methods include intermediate consecutive data points (Q, t0 +β∆t)

in which the approximated residual function is evaluated . Each data point is chosen using information

from all other previous data points. A linear combination of the residual at each data point is then used

for an estimate of the next time-step cell averaged quantities for the target cell (Q(Si, t0 + ∆t)).

28



In a generic way, a Runge Kutta method with r number of data points has the structure expressed in

equation 2.126.

Q(Si, t0) + ∆t)
RKr

= Q(Si, t0) +
∆t

A(Si)
·

p∑
u=1

bu ·Kiu

Ki1 = Ri(Q(t0))⇒ k1 = [ K11

A(S1) ,
K21

A(S2) , . . . ,
KN1

SN
];

Ki2 = Ri(Q(t0) + β2 ·∆t · (α21 · k1))⇒ k2 = [ K12

A(S1) ,
K22

A(S2) , . . . ,
KN2

A(SN ) ];

Ki3 = Ri(Q(t0) + β3 ·∆t · (α31 · k1 + α32 · k2))⇒ k3 = [ K13

A(S1) ,
K23

A(S2) , . . . ,
KN3

A(SN ) ];

. . .

Kp = Ri(Q(t0) + βp ·∆t · (αp1 · k1 + αp2 · k2 + ...+ αp(p−1) · kp−1))

(2.126)

The values of the different control parameters α, β and b can be computed in order to reduce the trun-

cation error of the scheme. A second-order Runge-Kutta is derived in order to exemplify the procedure.

Equation 2.127 translates the method mathematically.

Q(Si, t0 + ∆t)
RK2

= Q(Si, t0) +
∆t

A(Si)
·

2∑
u=1

bu ·Kiu

Ki1 = Ri(Qt0))⇒ k1 = [ K11

A(S1) ,
K21

A(S2) , ...,
KN1

A(SN ) ];

Ki2 = Ri(Qt0 + β2 ·∆t · (α21 · k1))

(2.127)

Figure 2.15 illustrates the procedure for the second-order of accuracy Runge Kutta method.

Figure 2.15: Procedure for a second-order of accuracy Runge Kutta method

To acess the dependence of the truncation error on the above mentioned parameters (α and β, etc),

29



one should compare the exact value of the target cell averaged quantities in the next tiem iteration and

the approxiamtion given by the second-order Runge Kutta scheme. For that purpose, we need to state

the two values in comparable terms.

One can write Ki2 as a Taylor expansion over Ri(Qt0) and construct equation 2.128.

Ki2 = Ri(Q(t0)) + β2 ·∆t · α21 · k1d ·
∂Ri(Q(t0))

∂Q(Sd)
+ β2 ·∆t ·

∂Ri(Q(t0))

∂t
+ Ψ(∆t2) (2.128)

The approximated value of the next time-step cell averaged property can be expressed by equation

2.129.

Q(Si, t0 + ∆t)
RK2

= Q(Si, t0) +
∆t

A(Si)
· (bi1 ·Ki1 + bi2 ·Ki2) (2.129)

Using the equations in 2.128 and 2.127, one can further expand equation 2.129 into equation 2.130.

Q(Si, t0 + ∆t)
RK2

= Q(Si, t0) + ∆t
A(Si)

· (bi1 + bi2) ·Ri(Q(t0)) + . . .

· · ·+ ∆t2 · bi2 · β2 · (α21 · k1d · ∂Ri(Q(t0))

∂Q(Sd)
+ ·∂Ri(Q(t0))

∂t ) + Ω(∆t3)

(2.130)

The exact value of Q(Si, t0 + ∆t) can, again, be expressed as a Taylor expansion over Q(Si, t0), as

shown in equation 2.131.

Q(Si, t0 + ∆t) = Q(Si, t0) + ∆t · dQ(Si, t0)

dt
+

1

2
·∆t2 · d

2Q(Si, t0)

dt2
+ Θ(∆t3) (2.131)

Using equation 2.131, the time derivative in equation 2.131 can be substituted and equation 2.132

obtained.

Q(Si, t0 + ∆t) = Q(Si, t0) +
∆t

A(Si)
·Ri(Q(t0)) +

1

2
· ∆t2

A(Si)
· dRi(Q(t0))

dt
+ Θ(∆t3) (2.132)

The full time derivative of the residual in equation 2.132 (dRi(Q(t0)
dt ), can be expressed by a summation

of partial derivatives. The process is described in equation 2.133.

dRi
dt

=
∂Ri
∂t

+
dQ(Sd)

dt
· ∂Ri

∂Q(Sd)
=
∂Ri
∂t

+Rd ·
∂Ri

∂Q(Sd)
=
∂Ri
∂t

+ k1d ·
∂Ri

∂Q(Sd)
(2.133)

Equation 2.133 allows equation 2.132 to developed into equation 2.134.

Q(Si, t0 +∆t) = Q(Si, t0)+
∆t

A(Si)
·Ri(Qt0)+

1

2
· ∆2

A(Si)
·(∂Ri(Q(t0))

∂t
+k1d ·

∂Ri(Qt0)

∂Q(Sd)
)+Θ(∆t3) (2.134)

Subtracting the approximated next-iteration target cell averaged quantites, as expressed by equation

2.130, from the exact values, expressed by equation 2.134, the dependence of the truncation error on

30



the control parameters can be obtained. Equation 2.135 shows the forementioned process.

τ = Q(Si, t0 + ∆t)−Q(Si, t0 + ∆t)
RK2 ⇒

⇒ τ = ∆t
A(Si)

(1− bi1 − bi2) ·Ri(Qt0) + ∆2

A(Si)
· ( 1

2 − bi2 · α21 · β2) · k1d ·
∂Ri(Qt0 )

∂Q(Sd)
) + (Θ(∆t3)− Ω(∆t3))

(2.135)

The truncation error can therefore be diminuished by eliminating terms in equation 2.135. The system

in equation 2.136 can be used.

1− b1 − b2 = 0, 1
2 − b2 · α21 · β2 = 0 (2.136)

One solution, among infinite choices, to the system in equation 2.136 is shown in equation 2.137.

α21 = β2 = 1 b1 = b2 = 1
2

(2.137)

The Runge Kutta method used troughout this thesis is the third-order Runge Kutta, which can be

derived by a similar procedure. The mathematical structure is shown in equation 2.138 and is derived

from equation 2.126.

Q(Si, t0 + ∆t) = Q(Si, t0) + ∆t
A(Si)

· 1
6 (Ki1 + 4Ki2 + 1Ki3) (2.138)

2.7 MUSCL scheme

The Monotonic Upstream-centred Scheme for Conservation Laws is a second-order scheme that uses

second-order TVD schemes for computing left and right states in the interface of neighbouring cells.

The second order piece-wise approximation for the field in each cell comes from the use of downwind

slopes:

u2ndorder
i (x) = ui +

x− xi
x1+i − xi

(ui+1 − ui) (2.139)

The first order piece-wise approximation for the field in each cell comes from a first-order cell centred

approximation:

u1storder
i (x) = ui (2.140)

The monotone scheme with the flux limiter is, therefore:

u2ndorderTV D
i (x) = ui + Φ(ri)

x− xi
x1+i − xi

(ui+1 − ui) (2.141)

For a regular one dimensional mesh, the left and right piece-wise approximations are used to extrap-

31



olate a right and left state at each interface in the following manner:

uL
i+ 1

2

= ui + 0.5Φ(ri)(ui+1 − ui); uR
i+ 1

2

= ui+1 − 0.5Φ(ri)(ui+2 − ui+1);

uL
i− 1

2

= ui−1 + 0.5Φ(ri)(ui−1 − ui−2); uR
i− 1

2

= ui − 0.5Φ(ri)(ui+1 − ui);

(2.142)

The extrapolated states can then be introduced into an approximate Rieman-Solver or used in Riemann-

Solver-Free schemes.

2.8 Godunov scheme

The Godunov scheme is a first-order scheme that preserves monotonicity near discontinuities while

providing better results near shocks and other flow structures by employing an approximated Riemman

solver in each FV cell interface. Using as left and right states the average cell values of the two adjacent

cells, a Riemann problem is set and the intercell flux calculated (see [5]):

QL = Qi

QR = Qi+1

⇒ Fi+ 1
2

= RS(QL, QR) (2.143)

The original Godunov scheme (see [5]), uses first-order time integration. For motives of equal com-

parition with other schemes, this thesis will use the term to describe any scheme that uses similar flux

calculation to the one in 2.143 along with an arbitrary explicit time integration.

32



Chapter 3

1D WENO - Implementation and

Results

.

3.1 Implementation

In this chapter, a proposed architecture for a WENO scheme is dissected and ultimately used to ap-

proximate the residual function of each target cell. The residual for the finite volume formulation of the

one-dimensional Euler equations is presented in section 2.3.2.

Computing the next-iteration cell averaged quantities implies knowing the numerical fluxes for each

target cell. An approppriate approximation of adequate flow variables is, thereby, required. For an

arbitrary order of accuracy (r), a ℘th-degree polynomial model can be used to approximate an useful

quantity. By consequence, a data set and a regression method are needed. The polynomial model used

for the proposed one-dimensional WENO scheme is presented in section 3.1.1. Near discontinuities and

shock waves, proper useful regression tends to be unsuccessfull as the resulting polynomials exhibit the

Gibbs phenomenon (see section 2.1). For this reason, WENO schemes use directionally biased data

sets, called stencils, for each target cell. Stencil creation methodology scheme is presented in section

3.1.2. The polynomial model used for regressing usefull quantities is a convex combination of the models

obtained for each stencil. The weight given to each polynomial is dependent on how much they oscillate

and thus a much greater importance is given for smoother data sets. This process filters out polynomials

that present non-coherent oscillations. The regression method used was the Least-Squares method

(section 2.2) with the process for seting up the required matrices being explained in section 3.1.3. The

process of computing the full WENO ploynomial for a said quantity is described in section 3.1.4

For the interface between the one-dimensional cells, the necessary quantities receive two different

values: one coming from the target cell WENO polynomial and the other from the one for the face neigh-

bouring cell. A Riemann solver is used to solve this discrepancy while maintaining physical coherence.

33



3.1.1 Polynomial Model

In section 2.2, the polynomial model for use in the Least-Squares Method was defined as a linear

combination of basis functions. For the proposed one-dimensional WENO, the Legendre polynomial

functions (Lh) were chosen as the basis functions. The first three polynomials are given in equation 3.1.

L0(x) = 1; L1(x) = x; L2(x) = 1
2 (3x2 − 1); L3(x) = 1

2 (5x3 − 3x) (3.1)

Legendre polynomials are orthogonal over the [-1,1] interval, respecting the relation in equation 3.2.

∫ 1

−1

La(x)Lb(x)dx =
1

2b+ 1
· δab; δab =

δab = 0, a 6= b

δab = 1, a = b

(3.2)

The property expressed in equation 3.2 dictates that, when multiplied by L0, every other function has

a null integration value in the [−1, 1] interval. As such, the resulting polynomial models can easily benefit

from having the same cell averaged value as the target cell. The linear mapping in equation 3.3 can

be applied to ensure that, in a new transformed space (ε), the target cell extends from ε = −1 to ε = 1

(standard cell Sst). The new coordinate system has its origin in the center of the transformed target cell

and the rest of the domain is also passed to this auxiliary coordinate system.

ε = J · x− xc(Si); J =
1

2 · d(Si)
(3.3)

Figure 3.1 illustrates the process of mapping a random target cell (Si) to the standard cell (Sst).

Figure 3.1: Mapping a random target cell Si (left) to the one dimensional standard one-dimensional cell
Sst (right).

The usage of an auxiliary system ensures that, for the one-dimensional regular case, the condition

number of the matrices used in the Least-Squares Methos is independent on the size of the original

mesh. This property is demonstrated in section 3.2.1.

It is also important to note that linear mapping respects equation 3.4 and does not change cell

averaged values.

Q =
1

d(Si)
·
∫
Si

Q(x) ∂x =
1

2

∫ 1

−1

Q(ε) ∂ε (3.4)

The ℘th-degree regression model for a generic quantity U(ε) is represented by equation 3.5 with the

constants C serving as the control variables of the polynomial model.

34



U(ε) = U(Si) +

p∑
h=1

ChLh(ε) (3.5)

3.1.2 Stencil Creation

Section (2.1) states that large jumps in data values may provoke oscillations in approximating polyno-

mials. Unlike ENO schemes, which find the smoothest data closest to the target cell, WENO schemes

work with different stencils and a combination of the respective resulting polynomial models. A typical

one-dimensional WENO scheme uses three different stencils (Sm) for each target cell: a left biased

stencil, a central biased stencil and a right biased stencil. Figure 3.2 illustrates a possible configuration

for the three different stencils.

Figure 3.2: Right (stars), left (circles) and central (triangles) biased stencils for a given target cell (black
dot).

In the context of this thesis and in accordance with [6], to each stencil was given a number of data

equal to the amount of degrees of freedom (Ch) of the polynomial model used plus one. Equation 3.6

expresses this choice.

NS = p+ 1 (3.6)

The computacional implementation of stencils for the one-dimensional case is fairly simple as Bound-

ary conditions were not used as data. Consequently, the creation of data stencils is independent on the

type of data used. This approach was chosen because the gain in accuracy from using boundary con-

ditions as data was found to be diminute when compared to the extra computational strain. For the

creation of right-biased stencils, a sucessive use of right neighbours forms the basis of the procedure.

The left-biased stencil is created analogously. The process is repeated until each stencil has sufficient

data points. The central stencil is created using the left and right stencils and filtering out the data

farthest to the target cell.

If either a right or a left stencil fails to be completed, as is the case when close to domain borders, it is

simply discarded. This choice to avoid completing the stencil with discontinuous data, hence introducing

more oscillations into the final WENO polynomial model.

3.1.3 Least-Squares Problem

The Least-Squares Method and the necessary matrices used are presented and discussed in section

2.2. This section concerns the setup of the necessary matrices for an appropriate Least-Squares Prob-

lem.

35



DLS Matrix

For this thesis, the polynomial models were made to approximate the cell averaged values contained in

a stencil. As such, the DLS matrix was setup with the cell averaged values of the basis function in each

entry of said stencil (Lh(Simn)). Equation 3.7 shows how each basis function is analitically integrated.

The integration is done in the auxilliary coordinate system of the given target cell, where each cell as a

lenght of two.

Lh(Simn) =
1

2

∫
Simn

Lih(ε)∂ε (3.7)

The DLS matrix can be constructed as described in equation 3.8.

DLS
im =



L1(Sim1) L2(Sim1) ... L℘(Sim1)

L1(Sim2) L2(Sim2) ... L℘(Sim2)

L1(Sim3) L2(Sim3) ... L℘(Sim3)

... ... ... ...

L1(SimNS ) L2(SimNS ) ... L℘(SimNS )


(3.8)

Each DLS matrix may be computed only once at t = 0, since it only depends on the independent

variables of the set. The same goes for the diagonal weight matrix WLS and, consequently, for the PLS

matrix (see section 2.2).

YLS Vector

The ultimate goal of a polynomial reconstruction in a WENO scheme is to be used to extrapolate useful

quantities. There are two main currents of what data should a WENO scheme regress: some use the

original Euler variables (Q) or similar quantities, while others use local characteristic variables (Z) for an

approximate decoupled version of the one-dimensional Euler equations (see section 2.3.2). The main

advantage in the use of characteristic variables lies in the smoother data that it provides, resulting in less

osscilating polynomials. It is, however, a far more computationally strenuous alternative as it requires

added processes.

Original Euler Variables

For some original Euler dependent variable (k), the Y LS vector is decribed in equation 3.9.

Y LSimk =
[
Qk(Sim1)−Qk(Si) ... Qk(SimNs)−Qk(Si)

]T
(3.9)

Characteristic Euler Variables

36



For each interface of a cell, a local approximated decoupled formulation of the 1D Euler equations is

set, as shown in equation 3.10. The detailed process of decoupling the one-dimensional Euler equations

is described in section 2.3.2.

∂(X̃−1
R Q)

∂t
+ Λ̃ ·

∂(X̃−1
R Q)

∂x
= 0 (3.10)

The approximated right eigenvectors matrix (X̃R) and eigenvalue diagonal matrix (Λ̃) used in equation

3.10 are detailed in equation 3.11 and calculated trough the use of Roe averaged values (denoted by a

tilde).

X̃−1
R ij =


1 1 1

ũ− ã ũ ũ+ ã

H̃ − ũã 1
2 ũ

2 H̃ + ũã

 Λ̃ij =


ũ− ã 0 0

0 ũ 0

0 0 ũ+ ã

 (3.11)

The Roe averaged quantities of interest are calculated with the use of the target cell averaged quan-

tities (QL) and those of the face neighbouring cell (QR). Equation 3.12 demonstrates how the Roe

averaged values are computed.

ũij = ρLuL+ρRuR
ρL+ρR

H̃ij = ρLHL+ρRHR
ρL+ρR

ãij = ((γ − 1)(H̃ − 1
2 ũ

2))
1
2 (3.12)

After obtaining the locally coherent decoupled equations, the data contained in a given stencil for the

said target cell must be converted to characteristic variables, as shown in equation 3.13.

Z(Simn) = R̃ijQ(Simn) (3.13)

For the use of local characteristic varaibles, the dependent variables vector (Y LS) of the Least-Square

Problem consists on the difference between the cell averaged value of a given characteristic variable in

a given stencil entry and that of the target cell. Equation 3.14 translates the previous phrase mathemat-

ically.

Y LSimjk =
[
Z1(Sim1)− Z1(Si) ... Z3(SimNs)− Z3(Si)

]T
(3.14)

The extra index (j) is present to alert to the fact that, differently to the original WENO, each interface

produces different polynomial models. With the use of the original Euler variables, a polynomial model

suffices for the entire target cell. Each interface has a different right eigenvalue matrix and different

characteristic variables and, thus, needs a specific polynomial model.

Weight Diagonal Matrix (WLS)

A weight function is required for maintaining a well-conditioned Least-Square Problem (see section 2.2)

and to emphasize data closer to the target cell. The weight function for the one-dimensional WENO

scheme is shown in equation 3.15 and is used in [3] and [4].

37



WLS
imnn = ( 1

|ε(Simn)| )
℘ (3.15)

The WLS matrix is presented in equation 3.16.

WLS
im =


( 1
|ε(Sim1)| )

℘

. . .

( 1
|ε(SimNS )| )

℘

 (3.16)

3.1.4 WENO Polynomial Model

For a said target cell, polynomial models for each stencil and quantity are obtained and, as some stencils

may intersect discontinuites and/or shocks, the Gibbs phenomenon may occur in the respective approx-

imated polynomial models. The WENO methodology uses a convex combination of polynomial models

obtained for each stencil in which a larger consideration is given to less oscillating polynomials. Thus,

filtering-out unwanted polynomial models.

In equation 3.17, the WENO full polynomial model for a characteristic local variable (MCW ) is ex-

pressed as convex combination of polynomial models for said face (j), stencil (m) and local characteristic

variable (k).

MCW
ijmk = WCW

ij1k ·MC
ij2k +WCW

ij2k ·MC
ij2k + ... (3.17)

If the quantities approximated by the polynomials models are the original Euler variables, index j

may be omitted as the WENO polynomial models is valid for the entire target cell and not just for a

determined cell face.

The weight function, presented in equation 3.18, gives higher importance to polynomial models that

present less oscillations within the target cell.

WCW = Γ∑3
e=1 Γe

; Γ = w
(ι+SI)r

(3.18)

A linear weight (w) is used as an additional control parameter. Central stencils are usually given a higher

value ( w = 103) as they are more accurate in smoother areas of the domain (see [4]) and the directional

stencils given a lower value (w = 1). The smoothness indicator of the polynomial model (SI), given in

equation 3.19, serves as metric for how much a certain polynomial model oscillates in the confines of

the target cell.

SI =

p∑
i=1

∫
Sst

(
di

dxt
i
·M(ε, η))

2

∂Sst (3.19)

The value of ι in equation 3.18 is usually very small and is used to avoid divison by zero.

38



3.1.5 Flux Calculation

The computation of numerical fluxes directly implies knowing the dependent variables or equivalent on

the interfaces. Equation 3.20 shows how these can be extrapolated using the polynomial models that

approximated the original Euler variables (M ).

Q(ε(Sij)) ≈
[
Mij1(ε(Sij)) ... Mij3(ε(Sij))

]T
(3.20)

As show in equation 3.21, the use of WENO polynomials that regressed local characteristic variables

(MC) is also a viable option.

Z(ε(Sij)) ≈
[
MCW
ij1 (ε(Sij)) ... MCW

ij3 (ε(Sij))
]

(3.21)

The use of said models (equation 3.21) implies that, on the points of interest, the characteristic

variables must be converted to original Euler variables. Equation 3.22 explains the process of convertion.

Q(ε(s), η(s)) ≈ R̃ij · Z((ε(s), η(s))) (3.22)

For the same face, two different sets for the same quantities are calculated. One data set is extrap-

olated from polynomials associated with the target cell (QL) and the other from those of the respective

face neighbouring cell (QR). Equation 3.23 demonstrates how a Riemann problem can be setup and an

approximate solver used to resolve this artificial discontinuity while maintaing physical coherency..

F (ε(Si± 1
2
)) ≈ RS(QL, QR) (3.23)

On section 3.1.6, benchmark testing will be used to choose from amongst three popular approxi-

mated Riemann solvers (Riemann Solver of Roe, HLL and HLLC).

The residual for each cell on the current time-step is then calculated, as given by equation 3.24.

Ri = (F (x
(
Si+ 1

2

)
)− F (x

(
Si− 1

2

)
) = (F (ε

(
Si+ 1

2

)
)− F (ε

(
Si− 1

2

)
) (3.24)

3.1.6 Comparing Approximated Riemann Solvers

In the intent of choosing an appropriate riemann solver, a comparison in terms of acuracy and computa-

tional efficiency between the three solvers presented in section 2.5 was made. The Godunov first-order

scheme in conjunction with the respective Riemann solvers was used to solve the SST problem at

t = 0.2s. The L2 norm, defined in equation 3.25, of the errors in cell averaged density was used for

comparing the three.

||e||2 =

√
1

N
· ||e|| =

√√√√ 1

N
·
N∑
i=1

|ei − eexacti | (3.25)

39



Figure 3.3 shows the values of the L2 norm of the errors in cell averaged density at t = 0.2s for four

levels of mesh refinement and respective solver run-time.

Figure 3.3: L2 norm of the errors in cell average density at t = 0.2s as a function of (a) average cell size
(dref ) and (b) solver run-time (SRT).

The Solver of Roe and HLLC have similar performance in terms of accuracy and computational

efficiency .The HLL solver has comparable computational efficiency to the other two, but accuracy-wise

it suffers from not being able to solve the left and right states of the contact discontinuity. Figure 3.4

illustrates the slighlty more diffusive behaviour of the HLL riemann solver in the vicinity of the contact

discontinuity. All three Riemann solvers have similar performance in the other parts of the domain,

including the shock wave.

Figure 3.4: L2 norm of the errors in cell average density at t = 0.2s as a function of (a) average cell size
(dref ) and (b) solver run-time (SRT)

Given this data, the decision was made to follow [4] and choose the HLLC Riemman solver. The

choice of wavespeeds is pressure-based, presented in section 2.5.3, which is described in [5] to be

sufficiently robust.

40



3.1.7 Flux limiting for the 1D-WENO scheme

For some test cases, the proximity of discontinuities and shocks did not allow the WENO methodology

to properly work, as all stencils, for a given target cell, intersected these flow structures. The use of

local characteristic variables mitigates the non-solution-coherent oscillations that appear, but do not

completely get rid of them. As such, a flux limiting strategy similar to [7] was implemented for the

one-dimensional WENO schemes. The quantities extrapolated on the face from the WENO models are

checked for positivity (pressure, density and energy) and for monotonicity (the value on the face must be

between the left and right cell values). If the previous conditions are not fulfilled, all the quantities on the

face (QL and QR) are then extrapolated using a MUSCL scheme with a min-mod flux limiter (Φmin−mod).

The structure of the full flux scheme is given by equation 3.26, in which a function (tw) is used to toggle

between WENO and MUSCL procedures.

Q = (1− tw) ·QMUSCL + tw ·QWENO (3.26)

3.1.8 Time integration

The time integration method used is the third-order Runge Kutta method described in section 2.6 . The

next time iteration averaged values (Q(Si, t0+)) were calculated as expressed by 3.27

Q(Si, t0+) = Q(Si, t0) +
∆t

d(Si)
· 1

6
(Ki1 + 4Ki2 + 1Ki3) (3.27)

The terms Ki1, Ki2 and Ki3 in equation 3.27 are defined in equation 3.28:

Ki1 = Ri(Qt0) Ki2 = Ri(Qt0 + 0.5 · k1 ·∆t) Ki3 = Ri(Qt0 + 0.5 · k2 ·∆t) (3.28)

In accordance with [4], the time step (∆t), expressed in equation 3.29, was calculated in such a way

that preserved the stability of the temporal scheme.

∆t = µ
min(d(Si))

2 ·max |λ|
(3.29)

The CFL number was given the value of 0.4. In the one dimensional case, the term d(Si) is com-

puted as the real lenght of a one-dimensional cell. The term max |λ|, in equation 3.29, is the fastest

characteristic speed in all the domain, at that particular time-iteration.

3.2 Test Cases

3.2.1 Diffusion Equation and Gaussian

In order to prove that the proposed WENO schemes produced arbitrary high order of accuracy when in

presence of smooth quantities, a test case present in [7] was implemented. The linear diffusion equation

41



with unitary diffusivity and a Gaussian source term, as shown in equation 3.30, was used as the ruling

differential equation. This test case also served to study the conditioning of the matrices used.

∂U
∂t = ∂2U

∂2t + Sce(x) Sce(x) = ∂2

∂2 (5 · e−x2

) (3.30)

The steady-state analytical solution of equation 3.30 is presented in equation 3.31.

U(x,∞) = 5 · e−x
2

(3.31)

The cell averaged steady state solution was injected into a one-dimensional domain discretized by

N one-dimensional cells. Appropriate code was developed and left to iterate untill it converged. The

achieved steady-state solution was then compared with the steady-state analytical solution using the L2

error norm described in 3.1.6. The time integration method was a first-order Runge-Kutta and the time

step was set in such a way that time integration played a diminute part in overall error (∆t = 1.25 ·10−04s,

8000 iterations). Following the directives in [7], a null flux was imposed on the boundaries .

To ensure that the use of the Least-Squares Method in the numerical scheme gave the proposed

order of accuracy, the derivative of the poynomial models resultant from only the central stencils were

used to calculate the intercell fluxes. The error metrics decay with mesh refinement is presented in figure

3.5 (subfigure (a)). The WENO combination of the three different polynomial models can be subjected

to the same procedure. The order of accuracy for the full WENO one-dimensional polynomials was

evaluated. The results are show in figure 3.5 (subfigure (b)).

Figure 3.5: L2 norm of the errors in quantity U as a function of mesh reference size (dref ) for (a) Central
and (b) WENO schemes.

From the graphs in image 3.5, one can come to the conclusion that the WENO scheme behaves

very similarly to the Central scheme, suggesting that, in regions of smooth quantities, the developed

WENO scheme correctly favours the central polynomial models, as advertised in 3.1.3. The WENO and

Central schemes retained the desired order of accuracy and no mentionable penalty could be observed

42



for this test case. All schemes followed or exceeded the proposed order of accuracy. Strangely, the

fourth-order Central and WENO schemes (third-order for the first derivative) gave a better performance

than the expected error decay. The correct functioning of the code developed for application of the

Least-Squares Method was, therefore, corroborated.

To evaluate if the P matrices used were properly conditioned, an average condition number (κ) was

computed for each scheme and mesh used throughout this section. Subfigure (a) in 3.6 showns the

average condition number of the matrices used as a function of average cell size (dref ).

Figure 3.6: (a) - Condition number (κ) of the P matrices versus mesh reference size (dref ). (b) - Cell
averaged values of U obtained from the seventh-order WENO scheme at t = 1s.

From figure 3.6, the prediction made in section 3.1.1 was confirmed. It stated that, with the use of trans-

formed space, the condition number of the P matrices would be independent on the mesh used. Another

important conclusion is that the average condition number increases exponentially with the desired or-

der of accuracy (r) of the WENO scheme. For higher order interpolations some added measures might

need to be taken to prevent degradation of the results. The P matrices were found to be sufficiently

conditioned for the error range of the test cases carried out in this Thesis.

The results given by the seventh-order WENO scheme (WENO7) are shown in subfigure (b) in 3.6

to serve as an illustration of the several results obtained.

3.2.2 Burguers Equation and Shocks

One of the important functions of the proposed one-dimensional WENO scheme is proper attribution of

weights to the obtained polynomial models. As such, a test case for the Burguers equation was taken

from [7]. The governing differential equation is expressed in equation 3.32) with use of a variable U .

∂U

∂t
+ U

∂U

∂t
= 0 (3.32)

The initial point-wise values of property U are stated in equation 3.33 and the initial cell averaged values

of U were computed using a mid-point rule integration with a thousand points in each cell.

43



U(x, 0) =

max[0, (x− 2.5)(−x+ 3.5)] if x− 2.5 ≥ 0

max[0, (x− 2.5)(x− 1.5)] if x− 2.5 < 0

(3.33)

The boundaries received a null Neumann boundary condition. The time integration method used was

an explicit Euler (first order Runge Kutta, see section 2.6) with an appropriate time-step (∆t = 0.0025s,

8000 iterations) that ensured that time discretization errors were of a much lower order of magnitude

than those of spatial discretization. The reference solution used as the exact one is resultant from a

first-order upwind scheme with a domain discretized by ten thousand cells.

For this particular test case, the main characteristic that should be evaluated is the absence or

presence of oscillations near discontinuities. These confirm or discredit the appropriate choice of smooth

polynomials in the WENO scheme. Four WENO schemes of different target order of accuracy (third,

fourth, fifth and seventh) were used to compute the solution at t = 0.25s. The results obtained for each

with a discretized domain of four hundred cells are presented in figures 3.7 and 3.8. The error metrics

for this test case are not shown as the smooth region of the initial conditions is only a quadratic function.

Figure 3.7: U cell averaged values as a function of x coordinate for (a) third-order WENO and (b)
fourth-order WENO schemes.

44



Figure 3.8: U cell averaged values as a function of x coordinate for (a) fifth-order WENO and (b)
seventh-order WENO schemes.

All four WENO schemes showed no spurious oscillations and followed the exact solution very well.

From the results, the code responsible for the full WENO polynomials was validated as it succesfully

filtered-out polynomial models that exhibited the Gibbs phenomenon.

3.2.3 Sod’s Shock Tube

As the developed WENO scheme needs to be sufficiently robust for handling shock waves, the Sod’s

Shock Tube test case, presented in section 2.4.2 was implemented. Very demanding in nature as there

are always various descontinuities in proximity, it gives a very good screen. The low values used present

another dificulty as any minor wiggles in the polynomial models may cause non-positivity of pressure,

energy and density. These, in turn, can cause a failure in the HLLC Rieman solver as these quanti-

ties appear square-rooted (see section 2.5.2). The results and conclusions presented in this section

impacted the implementation of the two-dimensional version of the WENO scheme. The accuracy and

computacional efficiency of the schemes were also compared to wide-spread schemes used for dealing

with shock waves and discontinuities, such as the one-dimensional Godunov and MUSCL schemes.

The ruling differential equations are the Euler set presented in 2.3.2 with the initial (t = 0s) point-wise

values of the Euler variables defined in equation 3.34.

Q(x, y) =
[
ρ, ρu, E

]
=



[
1, 0, 2.5

]
, x ≤ 0.5

[
0.1, 0, 0.125

]
, x > 0.5

(3.34)

The initial cell-averaged values of the Euler variables were set by directly prescribing the respective

states to the cells at either the left or right side of the initial discontinuity (diaphragama). The time-step

was set for each level of mesh refinement by achieving temporal convergence with the Godunov scheme.

The temporal scheme used was the third-order Runge-Kutta time scheme described in 2.6. The left and

45



right boundaries were given Neumann boundary conditions. The two methodologies for approximated

quantities, described in 3.1.3, were implemented.

WENO - Original Euler Variables

Results for the component-wise WENO scheme were not computed as the aproximated polynomials

contained too much oscillations. The close proximity of large jumps in Euler variables did not allow

for proper functioning of the scheme. Positivity was not preserved for density, energy and pressure

face values and, as a result, the Riemann Solver could not compute propper numerical fluxes. Altough

several attempts were made, including given a higher weight to smoother interpolations, the Gibbs

phenomenon was not sufficiently mitigated and, eventually, there would be one polynomial that failed to

produce adequate values and ruin the solution.

WENO - Characteristic Euler Variables

The WENO scheme in conjunction with the use of local characteristic variables was used to solve the

SOD test case at t = 0.2s and evaluate if the proposed WENO scheme could maintain positivity and

monotonicity and provide advantageous levels of accuracy. The third, fourth, fifth and seventh-order

schemes were implemented and compared with a first-order Godunov and a MUSCL scheme with a

min-mod slope limiter. Both were taken from [5]. The min-mod slope/flux limiter is described in equation

3.35).

Φmin−mod(ri) = max[0,min(1, ri)]; lim
ri→∞

Φmin−mod(ri) = 1 (3.35)

As a means of comparing the accuracy and computational efficiency of the proposed WENO schemes

to the MUSCL and Godunov schemes, the L2 norm (see section 3.1.6) for the error in cell averaged den-

sity at t = 0.2s was calculated for four different levels of mesh refinement. The exact solution for density

at t = 0.2s was taken from [5] and the cell averaged density values computed using the midpoint rule

with ten thousand sample points in each cell. As a way to evalue both accuracy and computational

efficiency, figure 3.9 presents the L2 norm for the error in cell averaged density at t = 0.2s as a function

of average cell size (dref ) and solver run-time (SRT).

From subfigure (a) in 3.9 several comments can be drawn. The first ones may be that all the WENO

schemes provided remarkably better accuracy than the more popular schemes and that the MUSCL

scheme provided better accuracy than the Godunov scheme. For the three lowest levels of refinement,

higher order translated into better accuracy. However, the same statement is not valid for the high-

est level of refinement, in which the seventh-order WENO produced the worst accuracy of the WENO

schemes. The reason for this event becomes clear when looking at the density plots in figures 3.10,3.11

and 3.12. Computed for the highest level of refinement, these figures appear to indicate that the oscil-

latory behaviour of the WENO schemes drastically increases with the order of accuracy. Higher order

polynomials require added sufficient physical separation between shocks and discontinuities in order to

work properly. If all stencils encounter discontinuities, WENO methodology does not properly ensure

46



Figure 3.9: L2 norm for the error in cell averaged density at t = 0.2s as a function of (a) average cell size
(dref ) and (b) solver run-time (SRT ) (without flux limiting).

monotonicity. The oscillatory behaviour of WENO schemes can also increase with mesh refinement, as

discontinuities and shocks produce sharper edges in cell averaged values. Figure 3.16 illustrates this

previous remark.

In terms of computational performance, one can understand why second-order TVD schemes are

more widely used than high-order schemes for supersonic inviscid flow as, for the same magnitude of

error, the MUSCL scheme takes far less time to provide a solution. Between WENO schemes, the

fourth-order CWENO gave a better computational efficiency than the other three. All schemes provided

better overall performance than the Godunov scheme.

Figure 3.10: Density as a function of the x-coordinate for the Godunov and MUSCL schemes at t = 0.2s
with (b) detail over the contact discontinuity and shock wave.

47



Figure 3.11: Density as a function of the x-coordinate for the third and fourth-order WENO schemes at
t = 0.2s with (b) detail over the contact discontinuity and shock wave (without flux limiting).

Figure 3.12: Density as a function of the x-coordinate for the fifth and seventh-order WENO schemes at
t = 0.2s with (b) detail over the contact discontinuity and shock wave (without flux limiting).

The two previous figures suggest that the third-order WENO scheme had the least amount of non-

solution-coherent oscillations but, as all other WENO schemes, could not preserve the monotononicity

of the exact solution near the shock and contact discontinuity. In spite of the oscillatory behaviour,

the third, fourth and fifth-order WENO schemes managed to provide sharper jumps in cell averaged

quantities near the shock and contact discontinuity. Predictably, they also offered substancially better

discretization of the expansion wave. The seventh-order WENO provided a oscillation ridden solution

near the the shock and contact discontinuity. The MUSCL scheme provided satisfatory performance

near the contact discontinuity and shock, as the surrounding area is of low complexity, and maintained

the monotonocity of the exact solution throughout the domain. It should be noted that this test case

favoured the MUSCL scheme from the start as it has multiple close discontinuities in quantities and an

expansion fan that is almost a straight line with respect to ρ(x). The Godunov scheme provided the

worst overall results.

In order to satisfy the monotonicity preserving condition, the proposed WENO schemes were given

appropriate flux limiting. The flux limiting methodology for the one-dimensional WENO schemes is

48



described in 3.1.7. For the WENO schemes with flux limiting, the L2 norm for the error in cell averaged

density at t = 0.2s as a function of average cell size (dref ) and as a function of solver run-time (SRT) is

shown in figure 3.13.

Figure 3.13: L2 norm for the error in cell averaged density at t = 0.2s as a function of (a) average cell
size (dref ) and (b) solver run-time (SRT ) (with flux limiting).

For the results in figure 3.13, it can be stated that the overall accuracy of the WENO schemes de-

creased with use of flux limiting, indicating that forcing monotonicity came at a trade-off in acuracy.

The fifth and seventh-order WENO schemes, which showed greater non-solution-coherent oscillatory

behaviour, suffered the most, with larger portions of the domain reverting to second and first-order accu-

racy. All WENO schemes provided better accuracy than the MUSCL and Godunov schemes. The fourth-

order WENO scheme provided the best overall accuracy, followed by the third-order WENO scheme.

As accuracy for the WENO schemes suffered from the flux limiting strategy, and the time to compute

the necessary polynomials, either they were used or not, was mostly the same, the computational effi-

ciency of the WENO schemes also decreased. The Godunov scheme surpassed all but the fourth-order

WENO scheme. The MUSCL scheme provided the best computational efficiency.

The non-oscillattory behaviour of the computed cell averaged density at t = 0.2s for the WENO

schemes can be seen in figures 3.14 and 3.17.

49



Figure 3.14: Density as a function of the x-coordinate for the third and fourth-order WENO schemes at
t = 0.2s with (b) detail over the contact discontinuity and shock wave (with flux limiting).

Figure 3.15: Density as a function of the x-coordinate for the fifth and seventh-order WENO schemes at
t = 0.2s with (b) detail over the contact discontinuity and shock wave (with flux limiting).

Figure 3.16: Results in density at t = 0.2s obtained from the sevent-order WENO scheme for the four
levels of mesh refinement.

The reason why characteristic quantities provide smoother polynomial regression is evident when

50



comparing values of Z1 and Z2 (Z3 is equal to Z1 across the domain) to density, momentum and energy

(original Euler quantities) values across the domain. Figure 3.17 illustrates this comparison.

Figure 3.17: (a) Original and (b) local characteristic variables for the SOD test case at t = 0.2s.

In every wave structure, the jumps in local characteristic quantities are much lower than those of the

original Euler varaiables. Consequently, approximating these quantities results in smoother polynomials.

51



Chapter 4

2D WENO - Implementation and

Results

4.1 Implementation

Throughout this chapter, a proposed version of a WENO scheme for a two-dimensional finite-volume

formulation of the Euler equations is presented and its inner-workings explained. The scheme is used

to approximate the residual of the finite-volume formulation, present in section 2.3.3, of a given target

cell (Si) on a domain discretized by N number of cells. In regions of the discretized domain where data

is smooth, the scheme provides high-order of accuracy while maintaining monotonicity and positivity

around shocks and discontinuities.

The polynomial model used is presented in section 4.1.1 of this chapter. The regression method

used is the Least-Squares Method which is explained with detail in section 2.2 .

For a given target cell, several polynomials of equal degree, each one resultant from a different

collection of data (stencils), are computed. The procedure of stencil creation is explained in section

4.1.2 of this chapter.

The setup of the Least-Squares Problem in the presented WENO scheme is discussed in section

4.1.3 of this chapter.

A final polynomial for a given target cell (WENO polynomial) is calculated using a combination of the

polynomials resultant from each stencil. As the Gibbs phenomenon is to be mitigated in this final poly-

nomial, more emphasis is given to polynomials that present less oscillations. This procedure forms the

basis of the proposed non-oscillatory behaviour of WENO schemes as the scheme filters out computed

polynomials that do not present monotonic cell face values. The procedure is detailed in section 4.1.4

The resulting polynomials for certain types of data (be it pressure, density, etc.) are used to extrap-

olate adequate quantities on the cells faces. A Riemann solver is then used to resolve the numerical

inter-cell fluxes given the two intersecting extrapolated values: one from the polynomial models centred

on the target cell, the others from the polynomial models centred on the neighbouring cell (see section

4.1.5)

52



4.1.1 Polynomial Model

The polynomial model is introduced in section 2.2 as a linear combination of basis functions. For the

proposed two-dimensional WENO methodology, the basis function were chosen to be modified orthog-

onal Taylor functions of up to ℘th degree. The standard form for the chosen basis functions is shown in

equation 4.1.

a, b ∈ N; a+ b ≤ ℘ : B(x, y) = xayb + Cte (4.1)

As previously (see section 3.1.1), the basis functions are required to have a null integration value in

the target cell (Si). This can be achieved by defining the constant Cte by the process in equation 4.2.

Cte = −
∫
Si

xayb ∂Si (4.2)

If left alone, the previous requirement would imply different basis functions , as happens in [4], for

every target cell and subsequent integration of every binomial in each cell. A strenuous route that

dwindles applicability of an already demanding scheme. Having in mind that this thesis only aims to

apply WENO schemes to regular and triangular meshes, a computationally friendlier way of ensuring

that the integration value is null is through the usage of auxiliary coordinate systems (ε, η). Each cell is

tranformed into a standard cell (Sst), and the rest of the mesh is linearly mapped. In their respective

auxiliary coordinate system, all cells have the same basis functions. This procedure can also be useful

for minimizing scalling effects, as stated in [4]. The complete form for the basis functions is described in

equation 4.3.

B(ε, η) = εnηm −
∫
Sst

εaηb ∂Sst (4.3)

By making the auxiliary coordinate system origin coincide with the centroid of the standard cell,

the polynomial model is also cell-centred. Analytic integration of the binomials in the standard cell

is straight-forward and does not require quadrature methods. The complete polynomial model for an

arbitrary quantity U in a auxiliary coordinate system is expressed in equation 2.107.

M(ε, η) = U(Si) +

1
2 (℘+1)(℘+2)−1∑

h=1

ChBh(ε, η) (4.4)

Once again, linear mapping ensures that a random cell averaged quantity (U ) remains the same for

both the original and auxiliary coordinate systems and, thus, respects the property in equation 4.5.

U(Si) =
1

A(Si)

∫
Si

U(x, y, t) ∂Si =
1

A(Sst)

∫
Sst

U(ε, η, t) ∂Sst (4.5)

53



Auxiliary Coord. Transformation for Triangular Elements

Each triangular target cell gets subjected to the linear transformation in equation 4.6 and mapped into

an equilateral triangle with unitary side.x
y

 = J

ε
η

+

xc
yc

 , J =

2x1 − 3xc + x3

√
3(x3 − xc)

2y1 − 3yc + y3

√
3(y3 − yc)

 (4.6)

Figure 4.1 illustrates a random target cell getting mapped into the standard triangle along with the vertex

coordinates that are used to define the jacobian (J in equation 4.6) of the linear transformation.

Figure 4.1: Mapping a random target cell (Si) into the standard triangle (Sst).

Auxiliary Coord. Transformation for Square Elements

Each square target cell gets subjected to the linear transformation in equation 4.7 and mapped into

square with unitary side. x
y

 = J

ε
η

+

xc
yc

 , J =

|x2 − x1| 0

0 |y2 − y1|

 (4.7)

Figure 4.2 illustrates a random target cell getting mapped into the standard square along with the vertex

coordinates that are used to define the jacobian (J in equation 4.7) of the linear transformation.

54



Figure 4.2: Mapping a random square target cell (Si) into the standard square (Sst).

4.1.2 Stencil Creation

Each target cell must have a collection of data from which to regress the polynomial model. With this

purpose, stencils (S) are defined for each target cell. In the context of this thesis, a stencil is a collection

of cells from which the required data is taken, as given by equation 4.8.

Sim =

NS⋃
n=1

Sn (4.8)

As aforementioned, WENO schemes require various polynomial regressions for propper functioning

around discontinuities. A central and various directional stencils are for this reason used. It is also

important that the data present in one diretional stencil is not present in the others as to minimize the

probability of a discontinuity or shock intersecting various stencils. In this thesis, the methodology in [4]

is followed and stencil search areas are defined through the angle formed by the center of the target cell

and two of its vertices (see figure 4.3).

Figure 4.3: Stencil search areas for a square (left) cell and a triangular cell (right).

The number of stencils that each target cell has is dependent on its number of faces. A triangular cell

has four stencils: one central and three directionals. A square cell has five stencils: one central and four

55



directionals. For the construction of the directional stencils, each neighbouring cell of the target cell is

added to the stencil concerning the search area in which they are located. The neighbouring cells of the

most recently added cells that are not already in a stencil receive the same treatment. The procedure is

done until the desired number of cells in each stencil is reached (see figures 4.4).

Figure 4.4: Diretional stencils for a square cell (left) and a triangular cell (right).

The number of cells (data) used in each stencil will be double the number of degrees of freedom in the

polynomial model, as stated in [4] and [8]. This alternative was chosen as it provides flexible and robust

behaviour for general meshes. Altough this thesis only concerns triangular and square meshes, it aims

to expose the drawbacks and advantages of WENO schemes in general CFD supersonic applications.

In equation 4.9 the number of data in each stencil (NS) is given as a function of the the degree of the

polynomial model used (p).

NS = (℘+ 1)(℘+ 2)− 2 (4.9)

The central stencil is made up of the closest cells to the target cell taken from the various diretional

stencils (see figure 4.5).

Figure 4.5: Central stencil for a square cell (left) and a triangular cell (right).

56



Stencil Creation Near To Boundaries

Next to boundaries, if a diretional stencil fails to be completed it is simply discarded (see figure 4.6).

This option was chosen over completing the failed stencil with data from other stencils. Usage of data

from other stencils may ensue in giving more weight to polynomial models resulting from intersection

with discontinuties and shocks.

Figure 4.6: Stencils near boundaries for a square cell (left) and a triangular cell (right).

4.1.3 Least-Square Problem for Characteristic Variables

Having the necessary data sets (cells in central and diretional stencil) for a given cell and quantity, the

Least-Squares Method can be used to approximate the polynomial model in section 4.1.1 to each one.

A Least-Squares Problem and the respetive matrices must be setup. The procedure is described in this

section.

DLS Matrix

The Least-Square Problem is set up by approximating the average value of the polyomial model in each

stencil cell (Simn) to that of the stencil cell itself. As the average value of the polynomial model is the sum

of cell average of each basis functions (Bh(Simn)) multiplied by the respective coefficient (Ch), the DLS

matrix can be constructed using the averaged value of each basis function in the stencil cells. Equation

4.10 mathematically translates the process.

Bh(Simn) =
1

A(Simn)

∫
Simn

Bh ∂ Simn (4.10)

Integration can be done in either the physical coordinate system or the auxiliary coordinate system,

as linear mapping does not change cell averages.

The computation of the integral in equation 4.10 for triangular and square cells is described in the

next two respective portions of this section.

57



DLS Matrix - Integration in triangular cells: Integration in triangular cells is done through the use of

a Gauss-Legendre quadrature (GLQ). The integration points (δg, ζg) and weights (WGL) are defined for

a unitary rectangle triangle (Sret) and are taken from [9]. One can linearly map those same points into

the corresponding ones in any cell in the stencil and fhe values of the basis functions at those points

known (Bh(ε, η)). The mathematical procedure is described in equations 4.11, 4.12 and 4.13.

Bh(Simn) =
1

A(Simn)

∫
Simn

Bh(εg, ηg) ∂Simn =
1

0.5

∫
Sret

Bh(δg, ζg) ∂Sret (4.11)

⇒ 1

0.5

∫
Sret

Bh(δg, ζg) ∂Sret =
1

0.5

4∑
g=1

WGL
g ·Bh(δg, ζg) (4.12)

⇒ 1

0.5

4∑
g=1

WGL
g ·Bh(δg, ζg) =

1

A(Simn)

4∑
g=1

WGL
g ·Bh(εg, ηg) (4.13)

For this thesis, the Gauss-Legendre quadrature points are passed from the unitary rectangle triangle

to the auxiliary coordinate system and not to the original coordinate system. For a random triangular

cell in the target cells stencil, the Gauss-Legendre integration points for the unitary rectangle triangle

are subjected to the linear transformation described in equation 4.14.

δg
ζg

 =

ε3 − ε1 ε2 − ε1
η3 − η1 η2 − η1

εg
ηg

+

ε1
η1

 (4.14)

Figure 4.7 illustrates the process of tranforming the unitary retangle triangle into a random triangle

on a given stencil. The integration points are, thereby, passed onto this random triangle.

Figure 4.7: Mapping the unitary retangle triangle (left) and respetive GLQ points (black dots) into a
random triangle (right).

DLS Matrix - Integration in square cells: Altough integration in square elements within uniform

meshes can be done analytically (as expressed in equation 4.15), for futher flexibility of the developed

58



code, the square cells are divided onto two triangles (St1 and St2) and then each one subjected to the

integration method previously described.

Bh(Simn) =
1

A(Sn)

∫
Sn

Bh(εg, ηg) ∂Sn =

∫ yc+
1
2

yc− 1
2

∫ xc+
1
2

xc− 1
2

Bh(εg, ηg) ∂x∂y (4.15)

Figure 4.8 illustrates the process of tranforming the unitary retangle triangle into one of the two

triangles that compose a random square cell on a given stencil. The integration points are, thereby,

passed onto this random triangle.

Figure 4.8: Mapping the unitary retangle triangle (left) and respetive GLQ points (black dots) into one
of two triangles that compose a square cell (right).

After having the average of each triangle (St1 and St2) that composes the square cell (Sn), the average

of a given basis function Bh can be given by equation 4.16.

Bh(Simn) =
1

A(Simn)
(

∫
Sn

Bh(εg, ηg) ∂St1 +

∫
Sn

Bh(εg, ηg) ∂St2) (4.16)

DLS Matrix - Final form: Finally, matrix DLS can be constructed with the integrals of the basis func-

tions on the stencil cells. The structure of the matrix is given by equation 4.17.

DLS
im =



B1(Sim1) B2(Sim1) ... BK(Sim1)

B1(Sim2) B2(Sim2) ... BK(Sim2)

B1(Sim3) B2(Sim3) ... BK(Sim3)

... ... ... ...

B1(SimNS ) B2(SimNS ) ... BK(SimNS )


(4.17)

YLS Vector

As discussed in section 3.2.3, characteristic quantities provide smoother polynomials and, as such,

are now used as the dependent variables of the data set. In each interface of a cell, the approximated

59



formulation of the two-dimensional Euler equations (discussed in section 2.3.3) is used. These equations

are again shown in equation 4.18.

∂Qnij

∂t
+
∂Fnij

∂nij
= 0 (4.18)

An approximated decoupled version of these equations, detailed in equation 4.19, is set on each

face.

∂(X̃−1
R Qn)

∂t
+ Λ̃ ·

∂(X̃−1
R Qn)

∂n
= 0 (4.19)

The approximated right eigenvectors matrix (X̃R) and eigenvalue diagonal matrix (Λ̃) are calculated

through the use of Roe averaged quantities (denoted by a tilde). The structure of these matrices is

shown in equation 4.20.

X̃Rij =


1 1 0 1

ũn − ã ũn 0 ũn + ã

ũv ũv 1 ũv

H̃ − ũã 1
2 Ṽ

2 ũv H̃ + ũnã

 Λ̃ij =


ũn − ã 0 0 0

0 ũn 0 0

0 0 ũn 0

0 0 0 ũn + ã

 (4.20)

The Roe averaged quantities are, in turn, calculated with data from the target cell averaged quantities

(QL) and those of the neighbouring cell (QR) that shares the common interface through the process in

equation 4.21.

ũij = ρLuL+ρRuR
ρL+ρR

; H̃ij = ρLHL+ρRHR
ρL+ρR

; ãij = ((γ − 1)(H̃ − 1
2 ũ

2))
1
2 ; Ṽ 2

ij = ũ2
n + ũ2

v
(4.21)

For each interface, the data contained in each stencil must be converted to characteristic variables,

according to the established approximate decoupled equations in equation 4.20. The methodology is

shown in equation 4.20)).

Z(Simn) = R̃ijQ(Simn) (4.22)

The dependent variables vector (Y LS) of the Least-Square Problem will be the difference between

the cell average of a given characteristic variable (index k ) in a given stencil entry and that of the target

cell (see equation 4.23).

Y LSimjk =
[
Zk(Sim1)− Zk(Si) ... Zk(SimNs)− Zk(Si)

]T
(4.23)

The process here described is also used in [4].

60



Weight Diagonal Matrix (WLS)

The use of a weight diagonal matrix is justified in [4], [3] and in section 2.2. The weight function used for

the two dimensional is a version of the one present in the one-dimensional case (see section 3.1.3) and

is described by equation 4.24.

WLS
imnn =

1

(ε(Simn)
2

+ η(Simn)
2
)

℘
2

(4.24)

The formulation of the WLS matrix is expresssed in equation 4.25.

WLS
im =


1

(ε(Sim1)2+η(Sim1)2)

℘
2

. . .
1

(ε(SimNS )2+η(SimNS )2)

℘
2

 (4.25)

4.1.4 WENO Polynomial Model

After obtaining the different polynomial models for a certain characteristic variable, the complete poly-

nomial model in the respective cell and face results from a convex combination of the coefficients of

those same models. As WENO schemes aim to avoid polynomials that exhibit the Gibbs phenomen,

the weight given to each polynomial model is a function of how much they oscillate. The CWENO full

polynomial model (MCW ) can be expressed as by equation 4.26.

MCW
ijk = WCW

ijk1 ·Mijk1 +WCW
ijk2 ·Mijk2 + ... (4.26)

The non-linear weight function (WCW ) is defined in equation equation 4.27.

WCW = Γ∑4||5
m=1 Γe

; Γ = w
(ι+SI)r (4.27)

Concerning equation 4.27, w is the linear weight of the stencil. Central stencils are normally given a

higher value (for this thesis the value used is 103) as they are more accurate in smoother areas of the

domain (see [4]). For the directional stencils it takes the value of unity (w = 1). SI is the smoothness

indicator of the polynomial (see [4]) and is computed in accordance with equation 4.28.

SI =

℘∑
i=1

∫
Sst

(
di

dxt
i
·M(ε, η))

2

∂Sst (4.28)

The value of ι is usually very small (ι = 10−5) and is used to avoid divison by zero.

4.1.5 Face Flux Calculation

After obtaining the complete WENO polynomial models for a said face, the residual of each target cell

may be computed. As such, numerical flux integration in every face is required. Knowing that integration

in transformed spaces obeys to the property in equation 4.5, the process can be done on the auxiliary

61



coordinate system of said target cell and then passed to the original coordinate system. Equation 4.29

translates this process.

1

d(Sij(x, y))

∫
Sij

F (x, y) · nx +G(x, y) · ny ∂Sij =
1

d(Sij(ε, η))

∫
Sij

F (ε, η) · nε +G(ε, η) · nη ∂Sij (4.29)

As all target cells get their faces tranformed into the ones in the standard cells, it is possible to,

without too much effort, analytically compute the line integral in equation 4.29. However, as the use of

GLQ methods provides code that is both simpler and more flexible, this route was chosen. A bijective

parametrization (qj ) of the faces in the standard cells in question is then required. The format for this

parametrization is exposed in equation 4.30.

qj : [0, 1]→ lj ⇒
ε(s) = aεjsj + bεj

η(s) = aηj sj + bηj

(4.30)

Figure 4.9 illustrates how each face (curve/path) can be expressed in terms of sj .

Figure 4.9: Parametrization for the faces of standard square (left) and triangle (right).

One can express the numerical fluxes normal to a face as Fn for simplicity, as established in section

2.3.3 and again stated in equation 4.31.

Fn(ε, η) = F (ε, η) · nx +G(ε, η) · ny (4.31)

Using the bijective parametrization in equation 4.30, the integration in equation 4.29 may be devel-

oped into equation 4.32.

∫
Sij

Fn(ε, η) ∂Sij =

∫ 1

0

Fn(ε(s), η(s)) · |q
′

j(s)| ∂s (4.32)

The term |q′(s)| in equation 4.32 conects the lenght of ∂s to the one of ∂Sij and is expressed by equation

4.33.

62



|q′(s)| =
√(dε(s)

ds

)2

+
(dη(s)

ds

)2

(4.33)

In equation 4.34, the line integral in equation 4.33 is substituted by a Gauss-Legendre quadrature

with points (sg) and weights (WGL
g ) for the [0, 1] interval, taken from [9]).

∫ 1

0

FN(ε(s), η(s)) · |q
′

j(s)| ∂s =

4∑
g=1

WGL
g · |q

′

j(s)| · FN(ε(sg), η(sg)) (4.34)

Figure 4.10 illustrates how the GLQ points (sg) get transfered into each face (curve/path), by using

the bijective parametrization in 4.30.

Figure 4.10: Projection of GLQ points (black circles) into the faces for the standard square (left) and
triangle (right) cells.

Computation of the flux integral in 4.34 depends on knowing the original euler variables (Q) at the

GLQ points. Consequently, the full WENO polynomials for the characteristic quantities (Z) are used to

approximate the actual characterictic quantities at those same points, as demonstrated in equation 4.35.

Z(ε(sg), η(sg)) ≈
[
MCW
ij1 (ε(sg), η(sg)) ... MCW

ij4 (ε(sg), η(sg))
]T

(4.35)

The approximate characteristic quantities can then be used to calculate the original Euler quantities,

through equation 4.36.

Q(ε(s), η(s)) ≈ R̃ij · Z((ε(s), η(s))) (4.36)

For the same GLQ point, two different values for the same quantity are calculated: one coming from

the WENO polynomial for the target cell (QL) and the other from that of the neighbouring cell (QR) that

shares the face in question. A Riemann problem is set in each integration point with the left state using

the values from the target cell (QL) and the right state those of the neighbouring cell (QR). As expressed

in equation 4.37, the HLLC approximate Riemann solver is used to calculate the flux on each integration

point.

63



Fn(ε(sg), η(sg)) ≈ HLLC(QL, QR) (4.37)

The resultant flux can then passed to the original coordinate system using the equality in equation

4.29. The residual for each cell on the current time-step can then calculated with equation 4.38.

Ri =

3||4∑
j=1

∫
Sij

Fn(ε, η) ∂Sij (4.38)

4.1.6 Flux limiting for the 2D-WENO scheme

In some test cases, neither having different directional stencils nor approximating local characteristic

variables was enough to ensure that the resulting WENO polynomial did not exhibit the Gibbs phe-

nomenon. Due to the fact that all stencils may encounter discontinuities, either by close proximity of two

or more discontinuities, or by deficiencies in the search areas, positivity may not be ensured and simu-

lations fail completely. A single cell is enough to ruin hours of simulation. A simple flux limiting strategy

similar to MOOD [10] (Multidimensional Optimal Order Detection) WENO schemes, which alternates

between different orders of spatial accuracy, was implemented on this thesis. The quantities extrapo-

lated on the face are checked for positivity (pressure, density and energy) and for monotonicity. If the

previous properties are not respected, all the quantities on the face (QL and QR) are extrapolated using

a first-order cell-centred approximation, present in equation 4.39, which is unconditionally monotonicity

preserving.

QL(ε(sg), η(sg)) = QL QR(ε(sg), η(sg)) = QR (4.39)

The full flux scheme assumes a structure similar to that of a traditional TVD scheme, in which the

high order approximation is used only when it complies with the necessary requirements. A simple

toggle function (tw) is used to turn on and off the high-order scheme, as evident in equation 4.40.

Q = QGodunov + tw(QWENO −QGodunov) (4.40)

4.1.7 CWENO, triangular meshes and shocks

As was found while developing code and running test cases for the scheme presented in this section, the

combination of CWENO schemes and triangular meshes is very ill-equiped to deal with shock proximity.

This major hindrance comes from the fact that the directional stencils for a triangular element tend to

all intersect a shock in the vicinity. As normal WENO schemes mantain monotonicity and positivity

by having at least one stencil with sufficiently smooth data, a triangular mesh, altough an adequate

choice for complex geometries, maybe not the best choice for use along with the numerical scheme

presented in this chapter. Figure 4.11 illustrates the behaviour of stencil search areas near shocks and

discontinuities.

64



Figure 4.11: Behaviour of the stencil search areas for a triangular cell when in proximity of a shock.

4.1.8 Time integration

As evident in equation 4.41, the time integration method is the same as that of the one-dimensional

WENO scheme developed in this thesis.

Q(Si, t0+) = Q(Si, t0) +
∆t

A(Si)
· 1

6
(Ki1 + 4Ki2 +Ki3) (4.41)

The terms Ki1, Ki2 and Ki3 in equation 4.41 are defined by equation 4.42.

Ki1 = Ri(Qt0) Ki2 = Ri(Qt0 + 0.5 · k1 ·∆t) Ki3 = Ri(Qt0 + 0.5 · k2 ·∆t) (4.42)

In equation 4.43, the time step (∆t) is calculated in such a way that preserves stability of the temporal

scheme. The configuration for the time step was taken from [4].

∆t = µ
min(d(Si))

2 ·max |λ|
(4.43)

The Courant–Friedrichs–Lewy number provides control over the size of the time-step, emphasizing

either stability or computational expense. In the two dimentional case, the term d(Si) is computed as an

hidraulic diameter, as given by equation 4.44.

d(Si) =
4 ·A(Si)∑3||4
j=1 d(Sij)

(4.44)

The term max |λ| is the fastest characteristic speed in all the domain, at that particular time iteration.

65



4.2 2D Test Cases

4.2.1 Diffusive Flux Reconstruction on Gaussian Function

A two-dimensional Gaussian function was injected on a domain discretized with either square or trian-

gular cells. The point-wise values are set as shown in equation 4.46.

U(x, y) = e−
(x−0.5)2+(y−0.5)2

0.0175 (4.45)

Taken from [11], the two-dimensional linear diffusion equation in 4.46 served as the governing equa-

tion for quantity U .

∂U

∂t
+
∂2U

∂x2
+
∂2U

∂y2
= 0 (4.46)

To evaluate the order of error decay of the full WENO reconstructions, the spatial derivative in x at

initial time was evaluated in the face GLQ integration points (see figure 4.12). These same values were

compared with the analytic values, and the point-wise errors calculated. The y spatial derivative is equal

to the x spatial derivative when rotated ninety degrees so it was ignored.

Figure 4.12: Face integration points (black dots) for up to seventh-order WENO for (a) square and (b)
triangular meshes.

Figure 4.13 shows the L2 norm for the error in spatial derivatives in the GLQ integration points as

a function of average mesh size (dref ), for both square and triangular meshes. It should be noted that,

as the WENO polynomials were derivated with respect to the x-coordinate, the order of accuracy for the

extrapolated quantities lowers. Consequently, the order of accuracy for the required derivatives is equal

to that of the WENO scheme minus unity.

66



Figure 4.13: x derivatives - L2 norm of the error in the spatial derivatives in x as a function of average
cell size (dref ) for (a) square and (b) triangular meshes.

In both triangular and square meshes, almost all WENO reconstructions followed the expected order

of error decay. Only the seventh-order WENO in the square mesh presented a slight deviation from the

reference (intermittent line). With the passage from coarser meshes to finer ones, the average number

of sucessfull stencils for each cell increases, giving a boost in accuracy beyond that of the reduction in

truncation error. The triangular mesh presented slightly worse overall results.

To evaluate the face flux integration method used, the L2 norm of the error in flux for the non-

boundary face fluxes was calculated for different levels of mesh refinement. As the absolute value of

the integration on the face depends on the extrapolated point values multiplied by the face lenght, the

expected order for the decay of the L2 error norm is equal to that of the order of accuracy of the scheme.

The results are shown in figure 4.14.

Figure 4.14: Diffusive face fluxes - L2 norm of the error in the diffusive flux for the (a) square and (b)
triangular meshes.

As may be seen in figure 4.14, for the square mesh, the fifth and seventh-order WENO schemes

surpassed the predicted order of accuracy. The third and fifth-order WENO schemes provided slightly

less error decay than expected. For the triangular mesh, all schemes followed the expected order very

closely.

67



Analysing the results, one can state that the combination of the flux integration method and inter-

polating method sucessfully provided results similar to those promised by the numerical method design

(see [4]).

For the domain boundary fluxes, the scheme also provided the expected order of error decay. The

decay of L2 norm of the error in the fluxes at the boundary for both triangular and regular meshes is

presented in appendix A (A).

The average condition number of all P matrices used (κ) dependency on mesh reference size (dref )

was sudied to provide information on the overall conditioning of the flux scheme (figure 4.15). The

correct functioning of auxilliary coordinate systems was evaluated.

Figure 4.15: Average condition number of P matrices (dref ) for the (a) square meshes and (b) triangular
meshes.

The results in figure 4.15 show that the average condition number did almost not change with the

different levels of mesh refinement. This is due to both the use of same-size triangular and square cells,

and the correct functioning of the code responsible for passage of the mesh onto the sugested auxilliary

coordinate system (see 4.1.1), in which the P matrices are computed. For the range of error displayed

in the test cases, the matrices used were found to be sufficiently conditioned.

68



4.2.2 2D Sod’s Shock Tube

The SST test case, discussed in 2.4.2 and also present in section 3, was implemented for a two-

dimensional domain (x ∈ [0, 1], y ∈ [0, 25]) discretized with either square or triangular cells. The

two-dimensional Euler equations (see section 2.3.3) acted as the governing equations. Null Neumann

boundary conditions were applied to all the boundaries. Figure 4.16 illustrates how the meshes were

created for this particular case.

Figure 4.16: Example of a (a) square and (b) triangular mesh used for the test case with the cells
coincident with the xx axis highlighted.

The Euler quantities at initial time were set in a similar way to the one-dimentional counterpart.

Equation 4.47 shows how the point-wise value were set.

Q(x, y) =
[
ρ, ρu, ρv, E

]
=


[
1, 0, 0, 2.5

]
, x ≤ 0.5[

0.1, 0, 0, 0.125

]
, x > 0.5

(4.47)

The test case served as a stepping stone for applying the developed WENO scheme for more com-

plex two-dimensional wave structures. Having only discontinuities and shocks perpendicular to the xx

direction, the inter-cell fluxes were calculated for the line of cells that intersect with the xx symmetry axis

(see figure 4.16) and assumed constant along yy. However, the functions used were coded for the two-

dimensional version of the Euler equations (2.3.3). The two-dimensional WENO scheme was compared

with other popular schemes, such as a two-dimensional version of the Godunov and MUSCL schemes.

The used MUSCL scheme for triangular and square cells are distinct, with the MUSCL scheme for the

regular mesh being taken from [5] and the MUSCL scheme for the triangular mesh taken from [12]), a

version based on the use of the Least-Squares method for gradient reconstruction. The code was left

to run until it reached t = 0.1s. The Courant–Friedrichs–Lewy number was set by comparing the order

of magnitude of the temporal discretization errors to those of spatial discretization and ensuring that

the latter were of a higher order of magnitude. A value of zero point three (CFL=0.3) was found to be

sufficient.

The accuracy of the schemes used was acessed by arranging the L2 norm of the error for the cell

averaged density at t = 0.1s as a function of the average cell size (dref ). These results are shown in

figure 4.17. The computational efficiency of the numerical schemes is evaluated by exposing the same

L2 norm as a function of solver run-time (SRT), as illustrated in figure 4.18.

69



Figure 4.17: Square meshes - L2 norm of the error in density as a function of average cell size (dref ) at
t = 0.1s (without flux limiting) with (b) detail over the WENO schemes.

Figure 4.18: Square meshes - L2 norm of the error in density as a function of solver run-time (SRT, in
seconds) at t = 0.1s (without flux limiting) with (b) detail over the WENO schemes.

The results in figure 4.17 show that the WENO schemes successfully surpassed the popular schemes

(Godunov and MUSCL), providing better overall accuracy. The Godunov scheme, once again, provided

the worst accuracy. It should be reported that, from the fifth order WENO onward, small wiggles inten-

sify and contaminate the solution. These wiggles (presented in figures 4.19 and 4.20) introduce error,

limiting the error decay of higher order schemes (fifth and seventh). As such, of all the schemes, the

fourth-order scheme provided the best results. As flow structures progress from the initial discontinu-

ities, WENO schemes may not be forced to deal with limited physical separation from discontinuities and

shock waves leading to intersection with data discontinuities and all the stencils. From figures (figures

4.19 and 4.20), it becomes apparent that the oscillatory behaviour increases with stencil size and, con-

sequently, with the promised degree of accuracy of the WENO scheme. Comparing these results with

the ones for the test case in section 3.2.3, which was run to t = 0.2s, it can be noted that added separa-

tion between the shock wave and contact discontinuity and a more developed expansion benefited the

higher-order schemes. Those conditions allowed them to function with less osccillatory behaviour and

better surpass the lower-order schemes.

70



Figure 4.18 suggests that, for this range of error, the MUSCL scheme provided the greatest com-

putational efficiency. For the WENO schemes, the fourth-order WENO provided the best computational

efficiency. All schemes provided better computational efficiency than the Godunov scheme. It should

be noted that this test case favoured the MUSCL scheme as it presents a fairly linear expansion wave

and a domain dominated by a contact discontinuity and a shock wave with limited spatial separation.

The WENO schemes are, as stated before, far more computationally intensive than the Godunov and

MUSCL schemes.

Figure 4.19: Square meshes - Density as a function of the x-coordinate for the third and fourth-order
WENO schemes at t = 0.1s (without flux limiting).

Figure 4.20: Regular meshes - Density as a function of the x-coordinate for the fifth and seventh-order
WENO schemes at t = 0.1s (without flux limiting).

As an attempt to reduce oscilattory behaviour in the WENO schemes, the flux limiting strategy

present in section 4.1.6 was implemented. The results for the regular mesh combined with the use

of flux limiting are present in figures 4.21, 4.22, 4.23 and 4.24. Figure 4.21 concerns the L2 norm of the

error in density at t = 0.1s as a function of cell average size (dref ) and figure 4.22 concerns the same

L2 error norm as a function of solver run time (SRT).

71



Figure 4.21: Square meshes - L2 norm of the error in density as a function of average cell size (dref ) at
t = 0.1s (with flux limiting) with (b) detail over the WENO schemes.

Figure 4.22: Square meshes - L2 norm of the error in density as a function of solver run-time (SRT) at
t = 0.1s (with flux limiting) with (b) detail over the WENO schemes.

Despite killing the wiggles, the flux limiter also highly reduced the accuracy of the WENO schemes.

The computational efficiency, consequently, also suffered. The overall accuracy of the WENO schemes

closely resembled that of the MUSCL scheme with the latter surpassing that of almost all the WENO

schemes for the finer mesh. With higher mesh refinement, the discontinuities in the cell averaged quan-

tities get sharper and, to a certain extent, increase oscillatory behaviour. Another plausible justification

for this scenario is that, as the mesh gets more refined, small wiggles have a higher chance of triggering

the flux limiting, thus, reverting the scheme to a first-order accurate scheme. The source of these wig-

gles can be due to intersection of discontinuities and shocks by the stencils or even, in a much lesser

scale, due to insufficient conditioning of the matrices. As the test case present in 4.2.1 proved that, for

smooth domains, the WENO schemes followed the desired order of decay in lower ranges of error, this

last explanation may be discarted. Mesh refinement provided better accuracy in smoother regions of the

domain and the fifth-order WENO scheme was able to out-perform all other schemes in the finest mesh

used here.

For the flux limited WENO schemes, the third-order WENO provided the best computational effi-

72



ciency followed by the fourth-order WENO. The MUSCL schemes, unsurprisingly, provided the best

computational efficiency. The Godunov scheme provided the worst computational efficiency.

The non-oscillatory behaviour of the flux limited WENO schemes can be viewed in figures 4.23 and

4.24 where density is displayed as a function of the x -coordinate.

Figure 4.23: Square meshes - Density as a function of the x-coordinate for the third and fourth-order
WENO schemes at t = 0.1s (with flux limiting).

Figure 4.24: Square meshes - Density as a function of the x-coordinate for the fifth and seventh-order
WENO schemes at t = 0.1s (with flux limiting).

For the triangular meshes, the WENO schemes only worked in conjunction with flux limiting, as the

deficiency in stencil search areas described in 4.1.7 resulted in total failure of the computed solutions.

73



Figure 4.25: Triangular meshes - L2 norm of the error in density as function of average cell size (dref )
at t = 0.1s (with flux limiting) with (b) detail over the WENO schemes

Figure 4.26: Triangular meshes - L2 norm of the error in density as function of solver run-time(SRT) at
t = 0.1s (with flux limiting) with (b) detail over the WENO schemes.

From figure 4.25, the fourth-order WENO exhibited the least amount of error for the different degrees

of mesh refinement. All other schemes provided less error than the Godunov scheme but the discrep-

ancy is not as big as the one found when using regular meshes. This can be explained by the scheme

reverting to first-order accuracy when the previously described deficiency in the triangle search areas

contributed to producing wiggle ridden polynomials. The accuracy of the popular schemes also suffered

from the use of trianuglar cells.

Figure 4.26 provides the information that the Godunov scheme exhibited the best computational

efficiency. The MUSCL scheme provided better computational efficiency than the WENO schemes. The

fourth-order and third-order WENO schemes provided the best computational efficiency of the WENO

schemes.

In figures A.3 and A.4 of appendix A (A), density is given as a function of the x-coordinate for the

MUSCL, Godunov, third and fourth WENO scheme. The fifth and seventh-order WENO schemes gave

results very similar to those of the previous two WENO schmes and, thus, are not shown.

74



4.2.3 Sedov Blast Wave

A cylindric symmetric blast wave test case was implemented on a square domain ([0, 0.5] × [0, 0.5]).

In the typical setup [13], a discrete amount of energy (EBlast) is distribuited by the cell(s) that contain

an initial blast region propagating radially from the center of the domain. However, in the prospect of

giving the proposed WENO scheme some leverage, the exact solution for t = 0.05 was injected into the

domain to serve as the initial conditions. This choice provided a larger area of smooth quantities and

reduced overall computational time. The exact solution was taken from [13] and then compared to [14]

to establish the needed experimental parameters. Because of the symmetry in the xx and yy axis, only

a quarter of the blast wave is considered. The left and bottom boundaries received symmetry boundary

conditions and the upper and right boundaries freeflow boundary conditions. The code was left to iterate

until it reached t = 0.06. The time-step was set by achieving temporal convergence with the Godunov

scheme within appropriate orders of magnitude. Only the flux-limited fourth-order WENO scheme, which

showed the best results in the two-dimensional shock tube test case, is compared to the Godunov and

MUSCL schemes. The test is run for triangular and regular meshes (figure 4.27). The triangular mesh

was obtained by dividing each square cell into two triangular ones. The orientation of the triangular

mesh was taken from [14] and aims to align the gradients of the solution to the face normals.

Figure 4.27: Example of meshes for (a) square and (b) triangular cells with the diagonal and adjacent
cells highlighted.

A metric similar to the L2 norm was defined in equation 4.48 (||e||) and used to quantify the error in

density at t = 0.06 along the diagonal of the domain. The diagonal of the domain is highlighted through

an intermitent black line in figure 4.27. This set of cells was chosen to study the behaviour of the

schemes with diminished interference from the domain boundaries, which were set to have first-order

accuracy. This option also provided more aesthetically pleasing results and figures as the level of mesh

refinement here used is low.

||e|| =
∑
i∈D

dD · (ρi − ρexacti )2 (4.48)

Concerning the previous equation, D is the set of cells adjacent to the diagonal, dD the lenght of the

75



section of the diagonal that intersects cell i and ρexacti the spatial average of the exact solution along

that stretch of the diagonal.

As a way to compare accuracy, the metric ||e|| of the error in density along the diagonal is given as a

function of mesh reference size (dref ) in figure 4.28.

Figure 4.28: ||e|| metric of the error in density along the diagonal as function of mesh reference size
(dref ) for (a) square and (b) triangular meshes.

The fourth-order WENO was able to surpass the two popular schemes, in both triangular and square

meshes. However, for the triangular meshes, the gain in accuracy is diminute as defficiencies in triangu-

lar cells search areas hinder the performance of the WENO scheme. The same pattern was observed

in the triangular MUSCL scheme, which also depends on diretional stencils. For the square meshes, the

gain in accuracy is very noticeable, with the MUSCL scheme surppassing the Godunov scheme and the

fourth-order WENO surpassing both.

The metric ||e|| of the error in density along the diagonal is given as a function of solver run-time

(SRT ) to compare computational efficiency between the three schemes (figure 4.29).

Figure 4.29: ||e|| metric of the error in density along the diagonal as function of solver run-time (SRT )
for (a) square and (b) triangular meshes.

For both triangular and square meshes, the fourth-order WENO provided the worse computational

efficiency. For the square meshes, the difference between the required solver run-time for the same

76



range of error was slightly more accentuated. This fact is probably explained by the existence of an extra

face and, consequently, directional stencil for each cell. The use of MATLAB R© programming platform,

using just-in-time compilation, also does not help the already computationally strenuous WENO scheme,

exarcebating the time to compute the extra processes that high-order schemes require. For the square

meshes, the best computational efficiency was achieved by the MUSCL in the lowest level of refinement

and by the Godunov in the remaing two. For the triangular meshes, the Godunov scheme provided

the best computational efficiency. For both types of mesh, the WENO scheme did not show promiss of

surpassing the two others schemes with higher levels of refinement.

The cell averaged density values of the cells adjacent to the diagonal, computed for the highest level

of refinement, are shown as function of radial distance (r) to the origin of the domain in figure 4.30.

Figure 4.30: Density cell averaged values given as a function of radial distance to the origin (cells in the
diagonal) for (a) square and (b) triangular meshes.

4.2.4 Supersonic Forward Facing Step

The Supersonic Forward-Facing Step test case is a very well documented standard test usefull for fail-

proofing CFD code. The test consists of an inviscid supersonic flow (Mach=3) over a forward facing

step. In this section, only regular cells will be used as triangular cells provided unsatisfatory results for

the other test cases. The fourth-order WENO is again the only WENO scheme used. All the necessary

information to implement this test case was taken from [15].

The necessary flow properties troughout all the domain are prescribed by equation 4.49, aswell as

the inlet flow quantities, at the left boundary of the domain.

γ(x, y) = 1.4; R(x, y) = 0.714; p(0, y) = 1; T (0, y) = 1; ux(0, y) = 3; uy(0, y) = 0 (4.49)

The initial quantities inside the domain were the same as the inlet ones. The outlet received a super-

sonic outflow boundary condition (null Neumann boundary condition in x). The boundary conditions of

every other boundary of the domain were all reflective (symmetry planes).

The developed code was left to iterate until it reached t = 0.5s for the fourth-order WENO, Godunov

77



and MUSCL schemes. The time-step used was set by lowering the Courant-Friedrichs-Lewy number

(CFL = 0.4) until sufficient visual difference between the results was achieved. The mesh used was

a regular square mesh with considerable refinement (∆x = ∆y = 1
60 ). In figure 4.31, thirty density

countours are shown for the Godunov, MUSCL and fourth-order WENO. The reference solution at t =

0.5s was taken from [15].

Figure 4.31: Density contours for the SFFS test case at t = 0.5s for the reference solution (top left
corncer), (a) Godunov, (b) MUSCL and (c) fourth-order WENO.

From the results on figure 4.31 it becomes apparent that the fourth-order WENO scheme offered

better resemblance to the reference than the two other shemes. The thickness of the weak shock was

very close to the one in the reference and the scheme succeeded in depicting the initial intersection of

the contours related to the expansion fan, which forms on the left step corner, to the top part of the weak

shock. These two major characteristic provided a flow structure very similar to that of the reference.

The sharp twist in the density contours at the top right of the ”buble” was only captured by the WENO

scheme and the wiggles on the density contours for the expansion region are far better depicted. By

contrast, the Godunov and MUSCL schemes provided very smooth density contours, the thickness of

the shock was depicted mediocrely and the interaction between the expansion fan and the shock was

not as sharp. The MUSCL scheme appeared to provide better depiction of the flow strutures near the

top face of the step.

78



Chapter 5

Conclusions

Altough the objective of bringing arbitrary high-order accuracy to discontinuity-ridden solutions was met,

it was only accomplished through the use of characteristic variables. The computational expense of set-

ting up a approximate characteristic equation for each face made the applicability of the scheme dwindle

for discontinuity dominated solutions. WENO methodology was also found to be sensitive to the grid

type as the use of triangular cells provided lackluster results. The behaviour of stencil search areas

for triangular cells near discontinuities and shock contributed for these unimpressive results. The de-

veloped WENO schemes provided better results, accuracy-wise, than the popular Godunov and MUCL,

for all simulated cases. They did, however, provide worse computational efficiencies. The analysis of

the numerical results obtained suggests that the fourth-order WENO provided the best overall results,

obtaining a better compromise between accuracy and computational time.

5.1 Achievements

In this thesis, the WENO methodology was successfully implemented for triangular and square meshes.

The drawbacks and strenghts of the developed schemes were registred, with several numerical results

to justify them. Simple flux limiting methodologies for one-dimensional and two-dimensional WENO

schemes were successfully tested. Readable and user-friendly code was developed and organized

to provide a solid starting platform for future work and developments on WENO schemes with Least-

Squares. A considerable part of the theoretical background needed for successful implementation of

WENO schemes was catalogued and described. The developed WENO schemes succeed in provid-

ing the desired order of accuracy in smooth solutions and better accuracy than the popular schemes,

Godunov and MUSCL.

5.2 Future Work

The WENO schemes here implemented can be subjected to a myriad of improvements. At the top of

the list should be reducing the computational time required. For this purpose, more efficient methods of

79



matrix invertion can be used, such as QR decomposition, and implementation in other lower-level coding

languages explored. C language, for example, can decrease computational time by several orders of

magnitude, especially when using paralell computing. Optimization of the code for a limited array of

desired orders of accuracy should also be considered. Some implemented functions are designed to

handle arbitrary orders of accuracy and ,thus, trade computational performance for flexibility.

The two-dimensional shemes can be extended to polihedral meshes and to the full Navier-Stokes

equations.

In a future thesis, more advanced adaptative WENO methodology can be obtained. Recent devel-

opments in machine learning applied to CFD allow for detection of smooth regions and consequent

decision-making on what order of accuracy WENO to use. Using this methodology avoids reversion to

lower orders when all the required stencils intersect either discontinuities or shocks.

Better flux limiting strategies and alternatives to the use of characteristics variables can also be

explored.

The methodology for the Riemann problems set on the faces can be reworked with machine learning.

The complicated behaviour of the flow structures can be modeled providing more efficient solutions for

these problems.

80



Bibliography

[1] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta

Numerica, 29:701–762, 2020. doi: 10.1017/S0962492920000057.

[2] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. Journal of Compu-

tational Physics, 115(1):200–212, 1994. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1994.

1187. URL https://www.sciencedirect.com/science/article/pii/S0021999184711879.

[3] A. G. Vasconcelos, D. M. Albuquerque, and J. C. Pereira. A very high-order finite volume method

based on weighted least squares for elliptic operators on polyhedral unstructured grids. Computers

Fluids, 181:383–402, 2019. ISSN 0045-7930. doi: https://doi.org/10.1016/j.compfluid.2019.02.004.

URL https://www.sciencedirect.com/science/article/pii/S0045793019300295.

[4] P. Tsoutsanis, V. Titarev, and D. Drikakis. Weno schemes on arbitrary mixed-element unstruc-

tured meshes in three space dimensions. Journal of Computational Physics, 230(4):1585–1601,

2011. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2010.11.023. URL https://www.

sciencedirect.com/science/article/pii/S0021999110006388.

[5] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics, pages 163–212. 03 2009.

ISBN 978-3-540-25202-3. doi: 10.1007/b79761 5.

[6] H. Liu and X. Jiao. Wls-eno: Weighted-least-squares based essentially non-oscillatory schemes

for finite volume methods on unstructured meshes. Journal of Computational Physics, 314:749–

773, 2016. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2016.03.039. URL https://www.

sciencedirect.com/science/article/pii/S0021999116001911.

[7] D. Pan. A high-order finite volume method for solving one-dimensional convection and diffusion

equations. Numerical Heat Transfer, Part B: Fundamentals, 71:1–16, 06 2017. doi: 10.1080/

10407790.2017.1326769.

[8] P. Tsoutsanis. Stencil selection algorithms for weno schemes on unstructured meshes. Journal of

Computational Physics: X, 4:100037, 08 2019. doi: 10.1016/j.jcpx.2019.100037.

[9] J. E. Akin. Finite element analysis with error estimators : an introduction to the FEM and adaptive

error analysis for engineering students. Elsevier/Butterworth-Heinemann, England, 2005. ISBN

0750667222.

81

https://www.sciencedirect.com/science/article/pii/S0021999184711879
https://www.sciencedirect.com/science/article/pii/S0045793019300295
https://www.sciencedirect.com/science/article/pii/S0021999110006388
https://www.sciencedirect.com/science/article/pii/S0021999110006388
https://www.sciencedirect.com/science/article/pii/S0021999116001911
https://www.sciencedirect.com/science/article/pii/S0021999116001911


[10] P. S. Farmakis, P. Tsoutsanis, and X. Nogueira. Weno schemes on unstructured meshes using

a relaxed a posteriori mood limiting approach. Computer Methods in Applied Mechanics and En-

gineering, 363:112921, 2020. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2020.112921.

URL https://www.sciencedirect.com/science/article/pii/S0045782520301043.

[11] A. Cheniguel. Numerical simulation of two-dimensional diffusion equation with non local boundary

conditions. International Mathematical Forum, 01 2012.

[12] J. White, H. Nishikawa, and R. Baurle. Weighted least-squares cell-average gradient construc-

tion methods for the vulcan-cfd second-order accurate unstructured grid cell-centered finite-volume

solver. 01 2019. doi: 10.2514/6.2019-0127.

[13] L. Sedov. Similarity and Dimensional Methods in Mechanics. 05 2018. ISBN 9780203739730. doi:

10.1201/9780203739730.

[14] Y. Xia, D. Andrs, and R. Martineau. A hermite weno-based slope limiter for cell-centered finite

volume methods on unstructured meshes. 04 2017.

[15] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong

shocks. Journal of Computational Physics, 54(1):115–173, 1984. ISSN 0021-9991. doi: https://doi.

org/10.1016/0021-9991(84)90142-6. URL https://www.sciencedirect.com/science/article/

pii/0021999184901426.

82

https://www.sciencedirect.com/science/article/pii/S0045782520301043
https://www.sciencedirect.com/science/article/pii/0021999184901426
https://www.sciencedirect.com/science/article/pii/0021999184901426


Appendix A

Secondary Results

Figure A.1: Fluxes on the boundaries of the square mesh- (a) L2 norm of the error versus the average
reference size (dref ) for the third-order and seventh-order CWENO schemes. (b) L2 norm of the error
versus the average reference size (dref ) for the fourth-order and fifth-order CWENO schemes.

Figure A.2: Fluxes on the boundaries of the triangular mesh- (a) L2 norm of the error versus the average
reference size (dref ) for the third-order and seventh-order CWENO schemes. (b) L2 norm of the error
versus the average reference size (dref ) for the fourth-order and fifth-order CWENO schemes.

83



Figure A.3: Triangular meshes - Density as a function of the x-coordinate for the Godunov and MUSCL
schemes at t = 0.1s.

Figure A.4: Triangular meshes - Density as a function of the x-coordinate for the third and fourth-order
WENO schemes at t = 0.1s.

84



Appendix B

MATLAB Code

Listing B.1: Main

clc , clear a l l

%% User Provided Inpu ts

global gamma

Solver= input ( ’ Choose so l ve r ! ! ! \n 0 f o r Godunov , 1 f o r MUSCL, 2 f o r WENO: ’ ) ;

i f Solver ==2 , r = input ( ’ Degree of i n t e r p o l a t i o n : ’ ) ; end

i f Solver ==1 , r =1; end

gamma= input ( ’ S p e c i f i c Heat Rat io : ’ ) ;

%% Q u a d r i l a t e r a l mesh

global p , global t , global faces

N=12; %l e v e l o f re f inement

%%f i r s t re tang le

Lx = [ 0 , 3 ] ; %the f i r s t en t ry i s f o r the l e f t o f the rec tang le , the l a s t f o r the r i g h t

Ly = [ 0 , 1 ] ; %the f i r s t en t ry i s f o r the top o f the rec tang le , the l a s t f o r the bottom

c e l l s i d e =(1 /N)∗0 . 2 ; Ny=1/ c e l l s i d e ; Nx=3∗Ny ; n faces =4;

[ p , t , faces ]= rect mesh ( Lx , Ly , Nx , Ny , n faces ) ; %crea t i ng the mesh

%% Passing the re tangu la r mesh to the step problem

[ t , faces ]= r e c t t o s t e p ( p , t , faces ) ; %mesh ploter ( p , t , faces , 0 )

%% Mesh in fo rma t i on mat r i x

[A]= mesh info ( p , t , faces , n faces , 0 ) ; nx=size (A , 2 ) ; %number o f c e l l s

i n t c e l l s =1 :1 : nx ; %i n t e r i o r c e l l s

i f Solver==2

%% Modi f ied Tay lor Basis Polynomials

global Tay lo r Bas is

[ Tay lo r Bas is ]= Bas is Funct ions ( r ) ;

%% S t e n c i l s

global Stenc i l s , global f a i l s

S s ize =2∗ ( ( ( r +1)∗ ( r +2) ) /2)−2; %size of des i red s t e n c i l

85



[ S tenc i l s , f a i l s ]= Complete Stenc i ls (A, S size , p , t , i n t c e l l s ) ;

%s t e n c i l c h e c k e r (A, S tenc i l s , f a i l s , i n t c e l l s )

%% P Matr ices and Jacobians

global P Matr ices , global Jacobians

[ P Matr ices , Jacobians ]= A l l P M a t r i c e s (A, p , t , r , i n t c e l l s ) ;

end

%Update d t and t ime

CFL=0.4 ; i t =0;

t ime =0; t F i n a l =0 .5 ;

while t ime < t F i n a l

A2=A; A3=A;

i f Solver ==0 , [ L , rad ius , s i g n a l ]= Godunov Flux (A ) ;

e l s e i f Solver ==1 , [ L , rad ius , s i g n a l ]=MUSCL Flux (A ) ;

e l s e i f Solver ==2 , [ L , s igna l , rad ius ]=CWENO Flux (A, r ) ;

end

%i t e r a t i o n l o c a l t ime

dt=CFL∗ ( c e l l s i d e ) / ( 2 ∗ s i g n a l ) ;

i f t ime+dt>t F i n a l , d t= t F i n a l−t ime ; end , t ime=t ime+dt ;

for m=1:1 : nx

A(1 ,m)= A(1 ,m)−L (m, 1 )∗ dt ∗ ( 1 /A(7 ,m) ) ;

A(2 ,m)= A(2 ,m)−L (m, 2 )∗ dt ∗ ( 1 /A(7 ,m) ) ;

A(3 ,m)= A(3 ,m)−L (m, 3 )∗ dt ∗ ( 1 /A(7 ,m) ) ;

A(4 ,m)= A(4 ,m)−L (m, 4 )∗ dt ∗ ( 1 /A(7 ,m) ) ;

end

%second stage

i f Solver ==0 , [ L , rad ius , s i g n a l ]= Godunov Flux (A ) ;

e l s e i f Solver ==1 , [ L , rad ius , s i g n a l ]=MUSCL Flux (A ) ;

e l s e i f Solver ==2 , [ L , s igna l , rad ius ]=CWENO Flux (A, r ) ;

end

for m=1:1 : nx

A2(1 ,m)= ( 3 / 4 )∗A(1 ,m) + ( 1 / 4 )∗A1(1 ,m)− (1/4)∗L (m, 1 ) ∗ ( d t / c e l l s i d e ) ;

A2(2 ,m)= ( 3 / 4 )∗A(2 ,m) + ( 1 / 4 )∗A1(2 ,m)− (1/4)∗L (m, 2 ) ∗ ( d t / c e l l s i d e ) ;

A2(4 ,m)= ( 3 / 4 )∗A(4 ,m) + ( 1 / 4 )∗A1(4 ,m)− (1/4)∗L (m, 4 ) ∗ ( d t / c e l l s i d e ) ;

end

%t h i r d stage

i f Solver ==0 , [ L , rad ius , s i g n a l ]= Godunov Flux (A ) ;

e l s e i f Solver ==1 , [ L , rad ius , s i g n a l ]=MUSCL Flux (A ) ;

e l s e i f Solver ==2 , [ L , s igna l , rad ius ]=CWENO Flux (A, r ) ;

end

86



for m=1:1 : nx

A(1 ,m)= ( 1 / 3 )∗A(1 ,m) + ( 2 / 3 )∗A2(1 ,m)− (2/3)∗L (m, 1 ) ∗ ( d t / c e l l s i d e ) ;

A(2 ,m)= ( 1 / 3 )∗A(2 ,m) + ( 2 / 3 )∗A2(2 ,m)− (2/3)∗L (m, 2 ) ∗ ( d t / c e l l s i d e ) ;

A(4 ,m)= ( 1 / 3 )∗A(4 ,m) + ( 2 / 3 )∗A2(4 ,m)− (2/3)∗L (m, 4 ) ∗ ( d t / c e l l s i d e ) ;

end

%P l o t t i n g the r e s i d u a l o f dens i t y

r e s i d u a l =sum( abs ( L ( : , 1 ) ) ) / nx ; loglog ( t ime , res idua l , ’ kx ’ ) , hold on

drawnow

%Update i t e r a t i o n counter

i t = i t +1;

end

%% P l o t t i n g r e s u l t s

[ ˜ , ˜ , ˜ ] = Q p l o t t e r (A, c e l l s i d e , 1 ) ; %p l o t t i n g dens i t y contours

Listing B.2: Basis Functions

function [ B inomials ]= Bas is Funct ions ( r )

%This f u n c t i o n c a l c u l a t e s the basis f u n c t i o n s f o r the transformed space

num= ( ( ( r +1)∗ ( r + 2 ) ) / 2 ) ;

Binomials=zeros (num, 3 ) ; %f i r s t row has the power ( n ) f o r x ( x ˆ n )

%second row has the power (m) f o r y ( y ˆm)

%t h i r d row has the i n t e g r a t i o n value f o r the

%standard e q u i l a t e r a l u n i t t r i a n g l e .

%% Creat ing the standard b inomia ls ( x ˆ n )∗ ( y ˆm)

i =1; %Number o f Binomials a l ready created

n=0; %I n i t i a l i z a t i o n o f power o f x

while i<=num

for m=0:1 : r−n , Binomials ( i , 1 )= n ; Binomials ( i , 2 )=m; i = i +1; end , n=n+1;

end

%Removing the f i r s t term of the b inomia ls (=1)

Binomials ( 1 , : ) = [ ] ;

%% I n t e g r a t i n g the b inomia ls i n the standard u n i t square

for j =1 :1 : size ( Binomials , 1 )

Binomials ( j , 3 ) = ( 1 / ( Binomials ( j , 2 ) + 1 ) ) ∗ ( 1 / ( Binomials ( j , 1 ) + 1 ) ) ∗ . . .

( 0 . 5 ˆ ( Binomials ( j , 1 )+1 ) − ( −0.5 ) ˆ ( Binomials ( j , 1 ) + 1 ) ) ∗ ( 0 . 5 ˆ ( Binomials ( j , 2 ) + 1 ) . . .

− ( −0.5 ) ˆ ( Binomials ( j , 2 ) + 1 ) ) ; Binomials ( j ,3)=−Binomials ( j , 3 ) ;

end

end

Listing B.3: Stencils

function [ S tenc i l s , f a i l ] = s t e n c i l ( c e l l ,A , S size , p , t )

87



% c e l l : t a r g e t c e l l f o r which the s t e n c i l i s being computed

% A : mesh in fo rma t i on and c e l l values

% r : order o f the i n t e r p o l a t i o n

% p : v e r t i c e s / nodes coord ina tes

% t : c e l l v e r t i c e s / nodes

n faces=size ( t , 2 ) ;

%c a l c u l a t i o n o f the search area s t r a i g h t s and respec t i ve quadrants

[ angles , ˜ ] = Quadrants and slopes ( c e l l ,A , p , t ) ;

%i n i t i a l i z a t i o n o f the fou r d i r e c t i o n a l s t e n c i l s

S t e n c i l s = zeros (4 , S s ize ) ;

%S t e n c i l s i ze count

count = zeros ( 1 , 4 ) ;

%S t e n c i l f a i l ( respec t i ve en t ry tu rns to 1 i f the s t e n c i l has f a i l e d

%to be completed , en t ry 1 i s f o r a12 , en t ry 2 f o r a13 and 3 f o r a23 )

f a i l =zeros ( 1 , 4 ) ;

%S t e n c i l completeness ( respec t i ve en t ry tu rns to 1 i f the s t e n c i l has

%been completed , en t ry 1 i s f o r a12 , en t ry 2 f o r a13 and 3 f o r a23 )

f u l l =zeros ( 1 , 4 ) ;

%I n i t i a l i z a t i o n

cand= c e l l ;

i t e r =1;

while (sum( f a i l ==1) + sum( f u l l ==1))<n faces %U n t i l a l l d i r e c t i o n a l s t e n c i l s have f a i l e d or are completed

%From the prev ious c e l l s we e x t r a c t new candidates

candidates= zeros (1 ,4∗ size ( cand ( i t e r , : ) , 2 ) ) ;%a prev ious candidate

%has on the very max

%three new neighbours

j =0; aux cand=cand ( i t e r , : ) ; %Removing zero values

aux cand ( aux cand = = 0 ) = [ ] ;

for i =1 :1 : size ( aux cand , 2 )

aux = A(8 , aux cand (1 , i ) ) ;

i f sum(sum( cand==aux ))==0 && aux˜=0 && sum(sum( candidates==aux ))==0

j = j +1;

candidates (1 , j )= aux ;

end

aux = A(24 , aux cand (1 , i ) ) ;

i f sum(sum( cand==aux ))==0 && aux˜=0 && sum(sum( candidates==aux ))==0

j = j +1;

candidates (1 , j )= aux ;

end

aux = A(40 , aux cand (1 , i ) ) ;

88



i f sum(sum( cand==aux ))==0 && aux˜=0 && sum(sum( candidates==aux ))==0

j = j +1;

candidates (1 , j )= aux ;

end

aux= A(56 , aux cand (1 , i ) ) ;

i f sum(sum( cand==aux ))==0 && aux˜=0 && sum(sum( candidates==aux ))==0

j = j +1;

candidates (1 , j )= aux ;

end

end

%Removing the a l l o ca t e d space wi th zero value

candidates ( candidates = = 0 ) = [ ] ;

%A u x i l l i a r i e s to de tec t s t e n c i l f a i l u r e

prev a12=count ( 1 ) ;

prev a13=count ( 2 ) ;

prev a23=count ( 3 ) ;

prev a34=count ( 4 ) ;

%Evalua t ing i n which search area the candidate c e l l belongs

for m=1:1 : size ( candidates , 2 )

[ S search , ˜ ] = search area ( c e l l ,A , angles , candidates (1 ,m) ) ;

i f S search==1 && count (1)<S size && f a i l (1 ,1)==0

count (1)= count (1 )+1 ;

S t e n c i l s (1 , count ( 1 ) ) = candidates (1 ,m) ;

e l s e i f S search==2 && count (2)<S size && f a i l (1 ,2)==0

count (2)= count (2 )+1 ;

S t e n c i l s (2 , count ( 2 ) ) = candidates (1 ,m) ;

e l s e i f S search==3 && count (3)<S size && f a i l (1 ,3)==0

count (3)= count (3 )+1 ;

S t e n c i l s (3 , count ( 3 ) ) = candidates (1 ,m) ;

e l s e i f S search==4 && count (4)<S size && f a i l (1 ,4)==0

count (4)= count (4 )+1 ;

S t e n c i l s (4 , count ( 4 ) ) = candidates (1 ,m) ;

end

end

%Checking f o r s t e n c i l s f a i l u r e s

i f count (1)== prev a12 && count (1)<S size

f a i l ( 1 ,1 )=1 ;

e l s e i f count (1)== S size

f u l l (1 ,1 )=1 ;

end

i f count (2)== prev a13 && count (2)<S size

f a i l ( 1 ,2 )=1 ;

89



e l s e i f count (2)== S size

f u l l (1 ,2 )=1 ;

end

i f count (3)== prev a23 && count (3)<S size

f a i l ( 1 ,3 )=1 ;

e l s e i f count (3)== S size

f u l l (1 ,3 )=1 ;

end

i f count (4)== prev a34 && count (4)<S size

f a i l ( 1 ,4 )=1 ;

e l s e i f count (4)== S size

f u l l (1 ,4 )=1 ;

end

%F i l l i n g i n the cand mat r i x w i th a l l the c e l l s analyzed to compare i f f u t u r e

%c e l l s a r e n t a l ready there

i f isempty ( candidates )==0

i f j>size ( cand , 2 )

cand = [ cand zeros ( i t e r , j−size ( cand , 2 ) ) ; candidates ] ;

e l s e i f j == size ( cand , 2 )

cand = [ cand ; candidates ] ;

e l s e i f j<size ( cand , 2 )

candidates =[ candidates zeros (1 , size ( cand ,2)− j ) ] ;

cand =[ cand ; candidates ] ;

end

else

cand = [ cand ; zeros (1 , size ( cand , 2 ) ) ] ;

end

%i t e r a t i o n counter

i t e r = i t e r +1;

end

%% D i s c a r t i n g f a i l e d s t e n c i l s

for i =1 :1 : size ( S tenc i l s , 1 )

i f f a i l ( i )==1 , S t e n c i l s ( i , : ) = 0 ; end

end

end

Listing B.4: P Matrices

function [P]= P matr ix (A, J , c e l l , S num , r )

%This f u n c t i o n re tu rns a P mat r i x f o r a s p e c i f i c s t e n c i l o f given t a r g e t c e l l .

%c e l l : i d e n t i f i e s the t a r g e t c e l l

%S num : i d e n t i f i e s the s t e n c i l o f the s p e c i f i e d ’ c e l l ’ .

90



%’A ’ : the mesh in fo rma t i on mat r i x .

%’ p ’ : con ta ins the in fo rma t i on o f the nodes of the mesh

%’ t ’ : con ta ins the nodes belonging to each c e l l .

%’ J ’ : Jacobian o f the mapping f o r the t a r g e t c e l l .

global S t e n c i l s %S t e n c i l s

global Tay lo r Bas is %Modi f ied Tay lor Polynomial Basis Funct ions

global faces , global p , global t

%% Gauss Poin ts and Weights ( f o r an u n i t a r y re tang le t r i a n g l e )

Gauss Points =[ 0 0 ; 0.5 0 ; 1 0 ; 0.5 0 . 5 ; 0 1 ; 0 0 . 5 ; 1/3 1 / 3 ] ;

Gauss Weights =[1/40 1/15 1/40 1/15 1/40 1/15 9 / 4 0 ] ;

%% Obta in ing the des i red s t e n c i l

S t e n c i l = S t e n c i l s ( c e l l , S num , : ) ;

%% Transforming s t e n c i l coord ina tes i n t o a u x i l i a r y space

I J = inv ( J ) ; xc=A(5 , c e l l ) ; yc=A(6 , c e l l ) ; Scoord=zeros (2 , size ( S tenc i l , 3 ) ) ;

for m=1:1 : size ( Scoord , 2 )

aux =[A(5 , S t e n c i l (m) ) ; A(6 , S t e n c i l (m) ) ] ;

Scoord ( : ,m)= ( I J )∗ ( aux−[xc ; yc ] ) ;

end

%% Transforming p onto a u x i l i a r y space

Tp=p ;

Tp ( : , 1 ) = I J ( 1 , 1 )∗ ( p ( : ,1)− xc )+ I J ( 1 , 2 )∗ ( p ( : ,2)− yc ) ;

Tp ( : , 2 ) = I J ( 2 , 1 )∗ ( p ( : ,1)− xc )+ I J ( 2 , 2 )∗ ( p ( : ,2)− yc ) ;

%% Ca lcu la t i ng the P Mat r i x

% Computing the Dˆ{LS} mat r i x

S size=size ( S tenc i l s , 3 ) ;

n coe f f s =size ( Tay lor Bas is , 1 ) ;

D=zeros ( S size , n coe f f s ) ; %the number o f rows i s equal to the s ize o f

%the s t e n c i l and the number o f columns equal to

%the number o f bas is f u n c t i o n s i n the polynomia l

%model

n faces=size ( t , 2 ) ;

for m=1:1 : S s ize %going th rough t the rows of the Dˆ{LS} mat r i x

Sce l l = S t e n c i l (m) ; Sarea =0;

i f n faces ==3 , t r i a n g l e s =zeros ( 1 , 6 ) ; %t r i a n g l e −−−> one t r i a n g l e

e l s e i f n faces ==4 , t r i a n g l e s =zeros ( 2 , 6 ) ; %square −−−> two t r i a n g l e s

e l s e i f n faces >4, t r i a n g l e s =zeros ( n faces , 6 ) ; %higher than square

end

i f size ( t r i a n g l e s ,1)==1 %Decomposing element i n t o a p a r t i c u l a r number o f t r i a n g l e s

Point1= t ( Sce l l , 1 ) ; Point2= t ( Sce l l , 2 ) ; Point3= t ( SCell , 3 ) ;

t r i a n g l e s ( 1 , 1 : 3 ) = [ Tp ( Point1 , 1 ) , Tp ( Point2 , 1 ) , Tp ( Point3 , 1 ) ] ; %x−coord o f the nodes

t r i a n g l e s ( 2 , 4 : 6 ) = [ Tp ( Point1 , 2 ) , Tp ( Point2 , 2 ) , Tp ( Point3 , 2 ) ] ; %y−coord o f the nodes

91



e l s e i f size ( t r i a n g l e s ,1)==2 %beware of the o r i e n t a t i o n o f the nodes f o r square c e l l s ! ! !

Point1= t ( Sce l l , 1 ) ; Point2= t ( Sce l l , 2 ) ; Point3= t ( SCell , 3 ) ; Point4= t ( SCell , 4 ) ;

%f i r s t t r i a n g l e

t r i a n g l e s ( 1 , 1 : 3 ) = [ Tp ( Point1 , 1 ) , Tp ( Point2 , 1 ) , Tp ( Point4 , 1 ) ] ; %x−coord o f the nodes

t r i a n g l e s ( 1 , 4 : 6 ) = [ Tp ( Point1 , 2 ) , Tp ( Point2 , 2 ) , Tp ( Point4 , 2 ) ] ; %y−coord o f the nodes

%second t r i a n g l e

t r i a n g l e s ( 2 , 1 : 3 ) = [ Tp ( Point1 , 1 ) , Tp ( Point3 , 1 ) , Tp ( Point4 , 1 ) ] ; %x−coord o f the nodes

t r i a n g l e s ( 2 , 4 : 6 ) = [ Tp ( Point1 , 2 ) , Tp ( Point3 , 2 ) , Tp ( Point4 , 2 ) ] ; %y−coord o f the nodes

e l s e i f size ( t r i a n g l e s ,1)== n faces

for j =1 :1 : n faces %Decomposing c e l l i n t o ” n faces ” number o f t r i a n g l e s

Point1=faces ( Sce l l , j , 1 ) ; Point2=faces ( Sce l l , j , 2 ) ;

t r i a n g l e s ( j , 1 : 3 ) = [ Scoord (1 ,m) , Tp ( Point1 , 1 ) , Tp ( Point2 , 1 ) ] ;

t r i a n g l e s ( j , 1 : 3 ) = [ Scoord (2 ,m) , Tp ( Point1 , 2 ) , Tp ( Point2 , 2 ) ] ;

end

end

for j =1 :1 : size ( t r i a n g l e s , 1 ) %sum of the c o n t r i b u t i o n o f the t r i a n g l e s

x1= t r i a n g l e s ( j , 1 ) ; x2= t r i a n g l e s ( j , 2 ) ; x3= t r i a n g l e s ( j , 3 ) ;

y1= t r i a n g l e s ( j , 4 ) ; y2= t r i a n g l e s ( j , 5 ) ; y3= t r i a n g l e s ( j , 6 ) ;

%Passing the i n t e g r a t i o n po in t s to the considered t r i a n g l e

SJ=[ x2−x1 x3−x1 ; y2−y1 y3−y1 ] ;

TGauss=Gauss Points ;

TGauss ( : , 1 ) = Gauss Points ( : , 1 ) ∗SJ(1 ,1)+ Gauss Points ( : , 2 ) ∗SJ(1 ,2)+ x1 ;

TGauss ( : , 2 ) = Gauss Points ( : , 1 ) ∗SJ(2 ,1)+ Gauss Points ( : , 2 ) ∗SJ(2 ,2)+ y1 ;

%Checking c e l l s and i n t e g r a t i o n po in t s

%i n t p o i n t s c h e c k e r ( t r i a n g l e s , TGauss , j )

%Ca l cu la t i ng area of the t r i a n g l e

[ TArea ]= Sarea ca l cu la to r ( t r i a n g l e s , j ) ; Sarea=Sarea+TArea ;

for n =1:1 : size ( Tay lor Bas is , 1 ) %going t rough t the columns

for k =1 :1 : size ( Gauss Weights , 2 ) %going t rough t the i n t e g r a t i o n po in t s

D(m, n)=D(m, n )+ ( TArea / ( 0 . 5 ) ) ∗ Gauss Weights ( k )∗ ( TGauss ( k , 1 ) ˆ Tay lo r Bas is ( n , 1 ) ∗ . . .

TGauss ( k , 2 ) ˆ Tay lo r Bas is ( n ,2 )+ Tay lo r Bas is ( n , 3 ) ) ;

end

end

end

D(m, : ) =D(m, : ) . / Sarea ; %Passing from i n t e g r a t i o n value to average c e l l value

end

%Computing the W diagonal mat r i x ( weights mat r i x )

W=zeros (1 , size ( S tenc i l , 3 ) ) ;

for m=1:1 : size ( S tenc i l , 3 ) , W(1 ,m) = 1 / ( sqrt ( Scoord (1 ,m)ˆ2+ Scoord (2 ,m) ˆ 2 ) ) ˆ r ; end

W=diag (W) ;

%Computing the Dwf mat r i x

Dwf=W∗D;

%Computing the P Mat r i x

P=Cond Numb inverse ( transpose ( Dwf )∗D)∗ t ranspose ( Dwf ) ;

end

92



Listing B.5: WENO Flux

function [ res , fas tes t speed , l owes t rad ius ]=CWENO Flux (A, r )

global p , global t

global Tay lor Bas is , global Jacobians , global gamma

nx=size (A , 2 ) ; n faces=size ( t , 2 ) ;

% I n i t i z a l i z a t i o n o f Flux storage

MF = zeros ( nx , n faces ) ; XMF = zeros ( nx , n faces ) ;

YMF = zeros ( nx , n faces ) ; EF= zeros ( nx , n faces ) ;

Completed = zeros ( nx , n faces ) ; %1 i n d i c a t e s t h a t the f l u x f o r t h a t

%c e l l face has a l ready been ca l cu la ted

res=zeros ( nx , 4 ) ; %f o r 2D Euler

%Var iab les f o r t ime−step computat ion

f as tes t speed =0;

[ ˜ , ˜ , l owes t rad ius ]= norm vector (1 ,1 ,A, p ) ;

%Gauss Legendre po in t s [ 0 , 1 ] f o r polynomia ls :

%Up to 7 th order o f accuracy

GLQ points= [ 0 . 5 + ( 1 / 2 ) ∗ ( sqrt (525−70∗sqrt ( 3 0 ) ) / 3 5 ) , . . .

0.5 − ( 1 / 2 ) ∗ ( sqrt (525−70∗sqrt ( 3 0 ) ) / 3 5 ) , . . .

0.5 + ( 1 / 2 ) ∗ ( sqrt (525+70∗sqrt ( 3 0 ) ) / 3 5 ) , . . .

0.5 − ( 1 / 2 ) ∗ ( sqrt (525+70∗sqrt ( 3 0 ) ) / 3 5 ) ] ;

GLQ Weights =0.5∗ [ (18+ sqrt ( 3 0 . 0 ) ) / ( 3 6 ) , (18+ sqrt ( 3 0 . 0 ) ) / ( 3 6 ) , . . .

(18−sqrt ( 3 0 . 0 ) ) / ( 3 6 ) , (18−sqrt ( 3 0 . 0 ) ) / ( 3 6 ) ] ;

%Up to f o u r t h order o f accuracy

%GLQ points =0.5∗ [−1/ s q r t ( 3 ) , 1 / s q r t ( 3 ) ] + 0 . 5 ;

%GLQ Weights =0.5∗ [1 1 ] ;

%Tansformed square face paramet r i za t i on (Xn=an+bn∗s ; Y=cn+dn∗s ; )

i f n faces ==3 , [ XFace , YFace , p j ]= t r i f a c e s ; end

i f n faces ==4 , [ XFace , YFace , p j ]= square faces ; end

for c e l l =1 :1 : nx %Cycl ing t rough the c e l l s

for n =1:1 : n faces %Cycl ing t rough the faces

%Discover ing i n what neighbour p o s i t i o n the cu r ren t c e l l (m) i s on

%the cu r ren t neighbour ( n ) ( n o d e t e t e i e r ro )

neighbour=A(8+(n−1)∗16, c e l l ) ;

i f neighbour ˜=0

for i =1 :1 : n faces , i f A(8+( i −1)∗16, neighbour )== c e l l , nn= i ; end , end

end

%Ca lcu la t i ng normal , tangent vec to rs and c e l l rad ius

[ normal , tangent , aux rad ius ]= norm vector ( c e l l , n ,A, p ) ;

i f aux radius<l owes t rad ius , l owes t rad ius =aux rad ius ; end

i f neighbour ˜=0 , [ nnormal , ntangent , ˜ ] = norm vector ( neighbour , nn ,A, p ) ; end

93



i f neighbour ˜=0 && Completed ( c e l l , n)==0 %Checking i f the face has a neighbour

%C h a r a c t e r i s t i c Var iab les Approximat ion

Coeffs=CWENO(A, p , c e l l , n , r ) ; %Current c e l l po lynomia l model

NCoeffs=CWENO(A, p , neighbour , nn , r ) ; %Current neighbour polynomia l model

%Face i d e n t i f i e r f o r cu r ren t c e l l (1 f o r face 1 , 2 f o r face

%2 , etc . . . ) ( n o d e t e t e i e r ro )

t f a ce = f a c e i d e n t i f i e r (A, t , c e l l , n ) ;

%c e l l centers f o r t a r g e t and neighbour ing c e l l s

xc=A(5 , c e l l ) ; yc=A(6 , c e l l ) ;

nxc=A(5 , neighbour ) ; nyc=A(6 , neighbour ) ;

%Jacobians f o r the t a r g e t and neighbour ing c e l l s

NJ=zeros ( 2 , 2 ) ; J=zeros ( 2 , 2 ) ;

for i =1 :1 :2 , for j =1 :1 :2 , J ( i , j )= Jacobians ( c e l l , i , j ) ; . . .

NJ ( i , j )= Jacobians ( neighbour , i , j ) ; end , end

%Riemman Problem i n the Gauss i n t e g r a t i o n po in t s

Gauss Fluxes=zeros ( size ( GLQ points , 2 ) , 4 ) ;

for i =1 :1 : size ( GLQ points , 2 )

%Gauss po in t s i n the cu r ren t c e l l t ransformed space

eps i l on=XFace ( t face ,1 )+ XFace ( t face , 2 )∗GLQ points (1 , i ) ;

eta=YFace ( t face ,1 )+ YFace ( t face , 2 )∗GLQ points (1 , i ) ;

%Gauss po in t s i n the neighbour t ransformed space

t r an =NJ\ ( [ xc ; yc ]− [ nxc ; nyc ]+ J ∗ [ eps i l on ; eta ] ) ;

neps i lon= t ran ( 1 ) ; neta= t ran ( 2 ) ;

L e f t = [ 0 ; 0 ; 0 ; 0 ] ;

Right = [ 0 ; 0 ; 0 ; 0 ] ;

for j =1 :1 : size ( Tay lor Bas is , 1 )

for h=1:1:4

L e f t ( h)= L e f t ( h)+ Coeffs ( h , j ) ∗ ( ( eps i l on ˆ Tay lo r Bas is ( j , 1 ) ) ∗ . . .

( eta ˆ Tay lo r Bas is ( j , 2 ) ) +Tay lo r Bas is ( j , 3 ) ) ;

Right ( h)= Right ( h)+ NCoeffs ( h , j ) ∗ ( ( neps i lon ˆ Tay lo r Bas is ( j , 1 ) ) ∗ . . .

( neta ˆ Tay lo r Bas is ( j , 2 ) ) +Tay lo r Bas is ( j , 3 ) ) ;

end

end

%Adding the respec t i ve c e l l averages to the polynomia ls

L e f t = L e f t + [A(1 , c e l l ) ; A(2 , c e l l )∗ normal (1)+A(3 , c e l l )∗ normal ( 2 ) ; . . .

A(2 , c e l l )∗ tangent (1)+A(3 , c e l l )∗ tangent ( 2 ) ; A(4 , c e l l ) ] ;

R ight=Right +[A(1 , neighbour ) ; A(2 , neighbour )∗ nnormal (1)+A(3 , neighbour )∗ nnormal ( 2 ) ; . . .

A(2 , neighbour )∗ ntangent (1)+A(3 , neighbour )∗ ntangent ( 2 ) ; A(4 , neighbour ) ] ;

%Convert ing from neighbour face ax is to c e l l face ax is

%Normal momentum

Right (2)= Right ( 2 )∗ ( normal (1 )∗ nnormal (1)+ normal (2 )∗ nnormal ( 2 ) ) ;

94



%Tangent momentum

Right (3)= Right ( 3 )∗ ( tangent (1 )∗ ntangent (1)+ tangent (2 )∗ ntangent ( 2 ) ) ;

%Convert ing them i n t o normal Euler p r o p e r t i e s

%( from normal and tangent d i r e t i o n s to x and y )

alpha=auxtan ( normal ( 1 ) , normal ( 2 ) ) ; beta=auxtan ( tangent ( 1 ) , tangent ( 2 ) ) ;

aux Le f t= L e f t ; L e f t (2 )=cos ( alpha )∗ aux Le f t (2 )+cos ( beta )∗ aux Le f t ( 3 ) ;

L e f t (3 )= sin ( alpha )∗ aux Le f t (2 )+ sin ( beta )∗ aux Le f t ( 3 ) ;

aux Right=Right ; Right (2 )=cos ( alpha )∗ aux Right (2)+cos ( beta )∗ aux Right ( 3 ) ;

Right (3)= sin ( alpha )∗ aux Right (2)+ sin ( beta )∗ aux Right ( 3 ) ;

%Riemann Solver i n the Gauss Poin ts

sw= L im i t e r S w i t ch (A, Le f t , Right , c e l l , neighbour ) ;

i f sw==1

L e f t = [A(1 , c e l l ) ; A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ; . . .

R ight =[A(1 , neighbour ) ; A(2 , neighbour ) ; A(3 , neighbour ) ; A(4 , neighbour ) ] ;

counter=counter +1;

end

[ Gauss Fluxes ( i , : ) , aux speed ]= HLLCflux ( Le f t , Right , normal , c e l l ) ;

i f aux speed>fas tes t speed , fas tes t speed=aux speed ; end

end

%I n t e g r a t i n g f l u x e s i n the transformed space

%( p j i s the jacob ian o f the face paramet r i za t i on )

Fluxes=zeros ( 4 , 1 ) ;

Lface=A(11+(n−1)∗16, c e l l ) ; %lenght o f face i n o r i g i n a l space

TLface =1; %lenght o f face i n a u x i l l i a r y coord ina te system

for i =1 :1 : size ( Gauss Fluxes )

Fluxes (1)= Fluxes ( 1 ) + ( Lface / TLface )∗GLQ Weights ( i )∗Gauss Fluxes ( i , 1 )∗ p j ;

Fluxes (2)= Fluxes ( 2 ) + ( Lface / TLface )∗GLQ Weights ( i )∗Gauss Fluxes ( i , 2 )∗ p j ;

Fluxes (3)= Fluxes ( 3 ) + ( Lface / TLface )∗GLQ Weights ( i )∗Gauss Fluxes ( i , 3 )∗ p j ;

Fluxes (4)= Fluxes ( 4 ) + ( Lface / TLface )∗GLQ Weights ( i )∗Gauss Fluxes ( i , 4 )∗ p j ;

end

%F i l l i n g i n the f l u x e s ( o f the c e l l and the neighbour )

MF( c e l l , n )= Fluxes ( 1 ) ; XMF( c e l l , n )= Fluxes ( 2 ) ;

YMF( c e l l , n )= Fluxes ( 3 ) ; EF( c e l l , n )= Fluxes ( 4 ) ;

Completed ( c e l l , n )=1 ;

MF( neighbour , nn)=−Fluxes ( 1 ) ; XMF( neighbour , nn)=−Fluxes ( 2 ) ;

YMF( neighbour , nn)=−Fluxes ( 3 ) ; EF( neighbour , nn)=−Fluxes ( 4 ) ;

Completed ( neighbour , nn )=1 ;

e l s e i f Completed ( c e l l , n)==0

%% Boundary Condi t ions

Point1=A(9+(n−1)∗16, c e l l ) ; Point2=A(10+(n−1)∗16, c e l l ) ;

%l e f t s ide o f domain (INFLOW)

95



i f p ( Point1 ,1)==p ( Point2 , 1 ) && p ( Point1 ,1)==0

qL =[A(1 , c e l l ) ; A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ;

qR= [ 1 / ( 0 . 7 1 4 2 8 6∗1 ) ; ( 1 / ( 0 . 7 1 4 2 8 6∗1 ) )∗3 ; 0 ; ( 1 / (gamma−1)) + 0 . 5∗ ( 1 / ( 0 . 7 1 4 2 8 6∗1 ) )∗ ( 3 ˆ 2 ) ] ;

end

%r i g h t s ide o f the domain (OUTFLOW)

i f p ( Point1 ,1)==p ( Point2 , 1 ) && p ( Point1 ,1)==3

qL =[A(1 , c e l l ) ; A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ;

qR=[A(1 , c e l l ) ; A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ;

%qR = [ 1 / ( 0 . 7 1 4 ∗1 ) ; 3 ; 0 ; ( 1 / (gamma−1)) + 0 . 5∗ ( 1 / ( 0 . 7 1 4∗1 ) )∗ ( 3 ˆ 2 ) ] ;

end

%forward fac ing face of the step

i f p ( Point1 ,1)==p ( Point2 , 1 ) && p ( Point1 ,1 )==0.6

qL =[A(1 , c e l l ) ; A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ;

qR=[A(1 , c e l l );−A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ;

end

%top of the domain

i f p ( Point1 ,2)==p ( Point2 , 2 ) && p ( Point1 ,2)==1

qL =[A(1 , c e l l ) ; A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ;

qR=[A(1 , c e l l ) ; A(2 , c e l l );−A(3 , c e l l ) ; A(4 , c e l l ) ] ;

end

%bottom of domain

i f p ( Point1 ,2)==p ( Point2 , 2 ) && p ( Point1 ,2)==0

qL =[A(1 , c e l l ) ; A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ;

qR=[A(1 , c e l l ) ; A(2 , c e l l );−A(3 , c e l l ) ; A(4 , c e l l ) ] ;

end

%h o r i z o n t a l wa l l o f step

i f p ( Point1 ,2)==p ( Point2 , 2 ) && p ( Point1 ,2 )==0.2

qL =[A(1 , c e l l ) ; A(2 , c e l l ) ; A(3 , c e l l ) ; A(4 , c e l l ) ] ;

qR=[A(1 , c e l l ) ; A(2 , c e l l );−A(3 , c e l l ) ; A(4 , c e l l ) ] ;

end

f ace lengh t =A(11+(n−1)∗16, c e l l ) ;

[ Flux , ˜ ] = HLLCflux ( qL , qR, normal ) ;

Flux=Flux∗ f ace lengh t ;

MF( c e l l , n )= Flux ( 1 ) ; XMF( c e l l , n )= Flux ( 2 ) ;

YMF( c e l l , n )= Flux ( 3 ) ; EF( c e l l , n )= Flux ( 4 ) ;

Completed ( c e l l , n )=1 ;

end

end

end

for i =1 :1 : nx

res ( i , 1 )=sum(MF( i , : ) ) ;

96



res ( i , 2 )=sum(XMF( i , : ) ) ;

res ( i , 3 )=sum(YMF( i , : ) ) ;

res ( i , 4 )=sum(EF( i , : ) ) ;

end

end

97



98


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	2 Background
	2.1 Gibbs phenomenom
	2.2 Least-Squares Method
	2.3 Euler Equations
	2.3.1 Compressible Euler Equations
	2.3.2 Compressible One-Dimensional Euler Equations
	2.3.3 Compressible Two-Dimensional Euler Equations

	2.4 Riemman Problem
	2.4.1 Shock Tube 
	2.4.2 Sod's Shock Tube Problem

	2.5 Approximate Riemann Solvers
	2.5.1 Harten Lax Van-Leer (HLL)
	2.5.2 Harten Lax-van Leer Contact (HLLC)
	2.5.3 Wave Speed Estimates
	2.5.4 Riemann Solver of Roe

	2.6 Explicit Runge-Kutta Time Integration
	2.7 MUSCL scheme
	2.8 Godunov scheme

	3 1D WENO - Implementation and Results
	3.1 Implementation
	3.1.1 Polynomial Model
	3.1.2 Stencil Creation
	3.1.3 Least-Squares Problem
	3.1.4 WENO Polynomial Model
	3.1.5 Flux Calculation
	3.1.6 Comparing Approximated Riemann Solvers
	3.1.7 Flux limiting for the 1D-WENO scheme
	3.1.8 Time integration

	3.2  Test Cases
	3.2.1 Diffusion Equation and Gaussian
	3.2.2 Burguers Equation and Shocks
	3.2.3 Sod's Shock Tube


	4 2D WENO - Implementation and Results
	4.1 Implementation
	4.1.1 Polynomial Model
	4.1.2 Stencil Creation
	4.1.3 Least-Square Problem for Characteristic Variables 
	4.1.4 WENO Polynomial Model
	4.1.5 Face Flux Calculation
	4.1.6 Flux limiting for the 2D-WENO scheme
	4.1.7 CWENO, triangular meshes and shocks
	4.1.8 Time integration

	4.2 2D Test Cases
	4.2.1 Diffusive Flux Reconstruction on Gaussian Function
	4.2.2 2D Sod's Shock Tube 
	4.2.3 Sedov Blast Wave
	4.2.4 Supersonic Forward Facing Step


	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography
	A Secondary Results
	B MATLAB Code

