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Abstract—Covid-19, the disease caused by the novel coro-
navirus, SARS-CoV-2, has already affected over 241 million
individuals and caused the deaths of over 4.9 million. However,
the knowledge of the impacts of this virus on infected cells
is still incomplete. Thus, the present work aims to identify
and analyse the main cell regulatory processes affected and
induced by SARS-CoV-2, using transcriptomic data from several
infectable cell lines available in public databases. We propose a
new class of statistical models to handle three major challenges,
namely the scarcity of observations, the high dimensionality of
the data, and the complexity of the interactions between genes.
Additionally, we analyse the function of these genes and their
interactions within cells to compare them to ones affected by IAV
(H1N1), RSV and HPIV3 in the target cell lines. Gathered results
show that the usage of clustering, biclustering and predictive
algorithms significantly improve the number and quality of
the detected biological processes. Additionally, a comparative
analysis of these processes is performed in order to identify
potential pathophysiological characteristics of Covid-19. These
are further compared to those identified by other authors for
the same virus as well as related ones such as SARS-CoV-1. This
approach is particularly relevant due to a lack of other works
utilizing more complex machine learning tools within this context.

Index Terms—COVID-19; SARS-CoV-2; Discriminative Reg-
ulatory Patterns; Cell Transcriptomics; Biclustering; Gene Ex-
pression Data Modeling.

I. INTRODUCTION

The infection of humans by Severe Acute Respiratory
Syndrome CoronaVirus 2 (SARS-CoV-2) represents a major
global health concern, with deaths having surpassed 4.9 mil-
lion according to the World Health Organization (WHO) 1.
Due to the situation, there has been a focus on making data
relating to this virus publicly available. This has provided an
opportunity for researchers to utilize public data to draw novel
insights into the infectious disease, which have enabled contin-
uous breakthroughs in the understanding of how the virus can
enter and utilize the cellular machinery to replicate itself and
infect other cells. The knowledge relating to these mechanisms
has been pushed forward mainly by a generic understanding of
the process of viral replication, the transcriptomic properties
of the virus, and by the study of differentially expressed genes
after infection and subsequent comparison to ones affected by
other viral strains. These genes have generally been identified
by the usage of recent sequencing technologies, such as RNA-
seq, which have been applied to certain types of cells, chosen
according to their level of permissivity to infection, as well as

1https://www.who.int/emergencies/diseases/novel-coronavirus-2019,
accessed on the 16th of October 2021

cells collected from organisms susceptible to infection, such
as humans and ferrets [1].

Despite the ongoing breakthroughs, the cellular responses
to SARS-CoV-2 are still considerably unknown. For instance,
the role played by genes with moderate differential expres-
sion, and how interactions between multiple genes support or
prevent viral replication are still being actively updated. In
addition to this, most works in this field do not make use of
more complex techniques such as clustering, predictive models
and biclustering to aid in the identification of differentially
expressed genes and related biological processes.

II. RELATED WORK

The primary focus of this work is to detect differentially
expressed genes when cells are infected by SARS-CoV-2,
as well as identifying defining traits when compared with
other viruses. Though the present section is focused on this
particular area, it composes only a fraction of the existing
body of work, with the main focus being on the identification
of host genomic factors which may affect clinical outcomes of
COVID-19 [2] and the usage of the transcriptome of SARS-
CoV-2 [3] to identify particular characteristics of the virus.

Blanco-Melo D. et al. [1] utilized high-throughput sequenc-
ing (RNA-Seq) to characterize the transcriptional response of
cells to infection by SARS-CoV-2 and against other respiratory
viruses, including RSV, IAV and HPIV3 from data collected
by the authors and MERS-CoV and SARS-CoV-1 from data
collected by Frieman et al. [4] and available on the GEO
website (GSE56192). The cells analysed consisted in three
main groups: cell lines consisting of NHBE cells, A549 cells
and Calu-3 cells; human respiratory tract cells extracted from
infected and non-infected individuals; and cells extracted from
infected and non-infected ferrets. The second and third groups
were used to ascertain if the gene signatures matched the
ones found in vitro. Aditionally, the authors treated cells with
universal IFNβ to determine whether or not SARS-CoV-2 is
sensitive to IFN-I. The treatment resulted in highly decreased
viral replication, which indicates that it is.

Then, to investigate how infection affects the cell transcrip-
tome, the authors performed a differential expression analysis
on NHBE cells, which revealed significant differences between
the response to infection by SARS-CoV-2 and other viral
strains, with PCA also revealing significant differences. Func-
tional enrichment was also performed on the resulting genes,
to better understand the cellular functions affected by SARS-
CoV-2 infection. The main factors consistent throughout the
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various models tested was the production of cytokines and
the corresponding transcriptional response, as well as the
induction of a subset of interferon stimulated genes (ISGs).

Ochsner et al. [5] analyzed multiple publicly archived
transcriptomic datasets to better identify the transcriptional
response of human cells to SARS-CoV-2 infection as well as
comparing it with MERS-CoV, SARS-CoV-1 and IAV in order
to identify possible common impacts between viral strains. The
authors generated consensomes by analysing how frequently
the corresponding genes were differentially expressed through-
out the various datasets. Similarly to Blanco-Melo D. et al. the
authors found ISGs had significant induction levels.

Wei et al. [6] performed a genome-wide CRISPR screen
on an African green monkey cell line (Vero-E6), a method
used for identifying genes or genetic sequences that have a
certain physiological effect, in this case, aiding (pro-viral) or
preventing (anti-viral) infection. To this end, surviving cells
from populations either healthy or infected with SARS-CoV-
2 were harvested 7 days post-infection. Then a genome-wide
screen was performed and a z-score was calculated to identify
which genes could be associated with increased or decreased
resistance to SARS-CoV-2-induced cell death. The gene with
the strongest pro-viral effect was ACE2, associated with the
protein which allows viral entry into the cell. TMPRSS2,
another gene posited to play a role in the entry of SARS-CoV-
2 into the cell, was not identified significantly as pro or anti-
viral, whereas the CTSL gene, which encodes the Cathepsin L
protease and can also play a role in viral entry, was identified
as pro-viral.

Similarly to Blanco-Melo et al., Wyler et al. [7] performed
a comprehensive analysis of the transcriptional response of
three cell lines, Caco-2 (a gut cell line), Calu-3 and H1299
(both lung cell lines). The authors began by identifying the
susceptibility of each cell line to SARS-CoV-2 infection,
which revealed H1299 cells had the lowest percentage of
viral reads. Caco-2 and Calu-3 cells had comparable levels,
despite the latter revealing visible signs of impaired growth
and cellular death, as opposed to the former. Additionally,
Calu-3 cells showed a strong induction of interferon-stimulated
genes, with cytokines among these, in agreement with the
findings of others.

Due to thrombotic complications being common among
COVID-19 patients, Manne et al. [8] investigated the func-
tional and transcriptional changes elicited by SARS-CoV-
2 infection in platelets. The data showed that SARS-CoV-
2 infection does indeed alter the platelet transcriptome. To
detect these changes, when comparing two groups with normal
distributions, a paired t-test was used and when comparing
two groups with non-normal distributions a Mann-Whitney test
was used, considering a two-tailed p-value < 0.05 as statisti-
cally significant. Additionally, COVID-19 induces functional
and pathological changes to platelets, including thrombocy-
topenia (abnormally low numbers of platelets), despite the
platelets not presenting detectable levels of ACE2. This may
be a contributing factor to the pathophysiology of COVID-19.

Golden et al. [9] tested the pathogenesis of the SARS-CoV-

2 virus on transgenic mice presenting the human ACE2 gene.
The infection of these mice by SARS-CoV-2 resulted in high
mortality rates, especially in male mice. The transcriptional
analysis of the lungs of infected animals revealed increases in
transcripts involved in lung injury and inflammatory cytokines,
in agreement with findings for humans.

Though there are multiple authors applying machine learn-
ing and more complex statistical models to COVID-19 patient
biometric data, in order to analyse the characteristics and the
outcome of the disease, these approaches have been more
scarcely applied to transcriptomic data. The objective of this
work is to fill this gap, addressing the question of whether
the application of those models to this data can yield novel
insights into the disease.

III. EXPLORATORY ANALYSIS

A. Data Description

The target dataset, identified as GSE147507 2, was collected
by Blanco-Melo D. et al. [1] using RNA-Seq, which means
the resulting dataset is numeric, with the values representing
the number of RNA transcripts of each gene detected in the
sample.

We began by checking the available samples. These are
subdivided into different Series (a subset of samples), each
of which aim to compare the behavior of a single cell line
among different sets of experimental conditions. A schematic
of the structure of the dataset is presented in . These also
correspond to particular experiments being run, with each
experiment containing multiple replicas of each experimental
condition being tested. As such, the assumed independence
between replicas is an important factor to test, since being
able to use samples from multiple experiments simultaneously
could significantly increase the amount of data available, and
thus improve the reliability of the analysis.

For NHBE (normal human bronchial epithelial) cells, there
are a total of 9 samples of healthy cells (3 belonging to Series
1 and 4 to Series 9), 3 samples of SARS-CoV-2 infection (all
part of Series 1), 4 samples of IAV infection (all in Series 9),
4 samples of infection by an IAV strain which lacks the NS1
protein and, finally, 2 samples of cells treated with IFNβ 4, 6
and 12 hours post treatment.

For A549 (adenocarcinomic human alveolar basal epithelial)
cells, there are 13 samples of healthy cells (3 each of Series
2, 5 and 8, 2 each of Series 3 and 4), 6 samples of SARS-
CoV-2 infection (3 each of Series 2 and 5), 2 samples of IAV
infection (Series 4), 2 samples of RSV infection (Series 3) and
3 samples of HPIV3 infection (Series 8). Blanco-Melo et al.
[1] noted A549 cells had low viral counts, which was posited,
in agreement with others, to be due to the low expression of
ACE2 in these cells. Thus, data of A549 cells with added
ACE2 (A549-ACE2) was also made available. In particular, 6
samples of healthy cells (3 each of Series 6 and 16), 6 samples
of cells infected by SARS-CoV-2 (3 each of Series 6 and 16)

2Available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE147507
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Fig. 1. Overview of the structure of the dataset

and, finally, 3 samples of cells after treatment with Ruxolitinib
(Series 16).

For Calu3 cells (generated from a bronchial adenocarci-
noma), there are 3 samples of healthy cells and 3 samples
of cells infected by SARS-CoV-2 (all belonging to Series 7).

There are an additional 2 samples from a lung biopsy of
two healthy human donors (one male, one female), as well as
2 samples from a single deceased male patient of COVID-19.

B. Preliminary analysis

Since the original data is highly skewed, which is the
norm for transcriptomic data, a log-transform was applied
for all subsequent analysis, which resulted in less skewed
distributions.

From the initial distributions, we observed the various in-
vitro cell lines to be fairly similar, whereas lung biopsy cells
appear to show lower overall transcription levels (Figure 2).

Subsequently, the standard deviation of gene expression
among healthy cells and among infected cells was computed
to verify if there are significant differences between healthy
and infected cells (Figure 3).

Despite there being clear differences in the distributions,
there seems to be no clear pattern between the different types
of cells. For NHBE and lung biopsy cells, infected cells seem
to have more variation, whereas for Calu3 and A549 cells
the opposite seems to be the case. From this we can derive
the hypothesis that there is a hierarchy in the cells when it
comes to variability of gene expression, though we cannot

Fig. 2. Distribution of gene expression (mean among samples) after applying
a log transform (N = 21797 genes)

Fig. 3. Standard deviation of gene expression within healthy and within
infected cells

posit whether this is due to the level of susceptibility of each
cell type to infection and/or due to certain types responding
better to infection.

In order to select an appropriate statistical test for the initial
feature selection, a number of assumptions need to be checked.
Firstly, we perform a median based Levene’s test [10], which
is used, in the context of this work, to assess the equality of
variances each pair of conditions (in particular for the pairs
presented in Table I). For these pairs, out of 19967 genes with
non-null expression levels, 18990 had unequal variance for at
least one pair of conditions, with p < 0.01.

Additionally, a Shapiro-Wilk test [11] is used to assess
whether these genes follow a normal distribution, applied in
this case only to healthy and SARS-CoV-2 infected cells for
each cell type (since these will be the main focus of our
analysis and this test is only defined for at least 3 samples). A
p < 0.05 was used. It is important to note that overall 32.8%,
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TABLE I
TESTED PAIRS OF CONDITIONS

First Condition Second Condition

NHBE Healthy NHBE SARS-CoV-2
NHBE Healthy NHBE IAV
NHBE Healthy NHBE IAVdNS1
A549 Healthy A549 SARS-CoV-2
A549 Healthy A549 IAV
A549 Healthy A549 RSV
A549 Healthy A549 HPIV3
Calu3 Healthy Calu3 SARS-CoV-2
Biopsy Healthy Biopsy SARS-CoV-2

46.1% and 27.4% of genes for NHBE, A549 and Calu3 cells
respectively are non-normal.

The results of Levene’s test suggest that an assumption of
equal variance cannot be made. As such, either an unequal
variance (Welch) t-test or it’s non-parametric alternative, the
Mann-Whitney U test, are more suitable for variable selection.
With the results for non-normality still including a significant
percentage of the genes the Mann-Whitney U test seems more
appropriate.

IV. SOLUTION

As previously stated, our work aims to find relevant biologi-
cal processes involved in the infection of cells by SARS-CoV-
2. To this end, we propose a methodology for the selection
and discovery of correlated groups of DEG composed of 5
major steps. First, we begin with preprocessing techniques
and preliminary gene selection. Then we proceed to pattern
detection techniques, namely clustering, predictive modeling
and biclustering. For each of these techniques, we apply
functional enrichment to the obtained groups of genes, in order
to identify related biological functions. Finally, we analyse
and interpret the identified functions, relating them to known
characteristics of the disease as well as work by other authors.
These steps are summarized in Figure 4. In the present chapter,
we motivate their need and explore each of the steps in more
detail.

V. PREPROCESSING AND GENE SELECTION

Given the highly skewed distribution of the data (with a vast
majority of genes having very low transcription), we first apply
a log transform. Then, since the data is high-dimensional, with
transcription values for over 20.000 genes, we need to select
a set of DEG to be analysed. To this end, due to the non-
normal nature of the data and the unequal variance between
the control and test groups (as seen in section III), we use
a Mann-Whitney U test, with a p < 0.05 and p < 0.01. By
default a p < 0.01 is used, however for certain cell types this
does not provide a sufficient amount of genes for analysis, so
in those cases (as well as for biclustering, in order to provide
a comparison between the two values) a p < 0.05 is used. The
Mann Whitney U test tests for the null hypothesis that the two
populations tested are equal. Therefore, this test can only be

Fig. 4. Schematic of the steps composing our proposed solution

applied for pairs of conditions. We can define the following
settings, in which this method is applied:

1) Pair Setting - Single pairs of conditions, such as, for
instance, healthy and SARS-CoV-2 infected NHBE cells
or healthy and IAV infected A549 cells;

2) Multi-condition Setting - A set of pairs of conditions,
presented in Table I. For each of these pairs, a p-value is
calculated using a Mann-Whitney U test for each gene.
Then, all genes with p < 0.01 or p < 0.05 are chosen.

Additionally, for the biclustering algorithms, we also used
an ANOVA test. This was mainly included to provide a con-
trast in the biclustering analysis to the default preprocessing
method, as well as due to this method still being robust with
non-normal the data [12].

VI. PATTERN DETECTION

The usage of complete data with a simple statistical pre-
selection of genes yields results which, depending on the
chosen level of statistical significance, can surpass 1.000
genes. Applying functional enrichment to these results delivers
none or very few enriched processes, which, when they exist,
tend to be very generic cell functions. This is due to problems
with the predictive models used to obtain relevant biological
processes. Thus, by first finding smaller sets of DEG, we can
obtain more specific biological processes, as well as better
statistical significance for each one found.

To achieve this goal, we present three main methods,
Clustering, Predictive Modeling and Biclustering.

A. Clustering

The notion of cluster in our data can assume two distinct
forms. First, a subset of correlated genes along a given set of
samples, and second a subset of correlated samples along a
given set of genes.
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The latter is mainly interesting to understand which sam-
ples may be more closely related, though since it does not
subdivide genes it cannot identify which genes may be better
at distinguishing between different conditions.

The former is the option most useful to identify gene
sets with correlated expression, though it has considerable
limitations. Namely, that each grouping found will use all
selected samples, which means, if multiple conditions are used
simultaneously, this information will not be taken into account
and will bias the detected patterns. However, by selecting
different sets of conditions for each run of the algorithms, we
can obtain relevant patterns for each specific condition and,
though this doesn’t allow for a direct comparison between
different conditions, it can provide sets of correlated genes
which may have biological relevance.

The main clustering method we propose is Agglomerative
Clustering, with Euclidean affinity and Ward linkage. This
is due to two main reasons, the easy visualization of the
proximity between genes (using a dendrogram, which can
also help in the selection of the number of clusters) and
the flexibility of the algorithm, which allows for multiple
parameters to be adjusted according to the provided data.

B. Predictive Modeling

Classifiers generally use training data to produce predictive
models, which are then used on test data to classify samples. In
our work, since we seek to better understand potential signal-
ing pathways and gene ontologies involved in the infection by
SARS-CoV-2, we mainly focus on which genes are chosen to
classify each of the samples, by inpecting the learned model.
Thus, we mainly propose associative classifiers which can
be easily interpreted, namely decision trees, random forests
and XGBoost. While not directly interpretable, both random
forests and XGBoost provide a metric of the relevance of each
gene, which can be used to obtain the set of genes with the
highest difference in expression level. In both cases, this metric
corresponds to the impurity-based feature importances, which
are calculated using the Gini criterion and then averaged across
all trees within the model.

C. Biclustering

By using biclustering algorithms, we can detect patterns
spanning particular sets of conditions, as well as patterns
spanning multiple conditions, allowing for a more comprehen-
sive view of the genes associated with not only SARS-CoV-2
infection but also the main differences when compared to other
infections. In particular, when compared to the other proposed
methods, biclustering allows for the detection of more specific
patterns, such as a set of genes with higher or lower expression
levels for a particular set of conditions, which are in turn
easier to interpret and provide better results with functional
enrichment.

We tested several algorithms, as well as different gene
selection options, to assess differences between the detected
biclusters, namely the Cheng and Church [13], plaid [14],
xMotifs [15] and BicPAMS [16] algorithms.

VII. FUNCTIONAL ENRICHMENT AND BIOLOGICAL
ANALYSIS

To obtain potential biological processes associated with the
gene groups found using the aforementioned methods, we used
the EnrichR 3 [17], [18]. This tool provides a set of metrics
to evaluate each of the enrichment results. These are the p-
value, which can be calculated using Fisher’s exact test; the q-
value, which adjusts the p-value to control the False Discovery
Rate; the z-score, which takes into account that Fisher’s exact
method to calculate the p-value produces lower values for
longer lists even if they are random. Furthermore, the tool
also provides a combined score, which combines the z-score
and the p-value as follows: c = ln(p)× z.

Given the available metrics and the results by the authors
of the tool [18], we propose the usage of both the adjusted
p-value and the combined score to compare the results of the
enrichment analysis.

Additionally, this tool provides access to multiple knowl-
edge bases (a list is available here). For our analysis, we
mainly use the Gene Ontology (GO) Biological Process
knowledge base [19], [20], in particular the 2021 revision.
This is due to the fact that it covers a large amount of genes
(14937) and also includes a high number of terms (6036), as
well as that it provides biological processes in which a given
set of genes is involved, which aligns with the goals of this
work, namely the understanding of the biological processes
elicited in response to and by the infection by SARS-CoV-
2. Additionally, we use the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [21] to analyse enriched pathways and
diseases. The identified biological processes are then analysed
and compared to known characteristics of the disease and work
by other authors, in order to identify potential new insights into
the effects of the virus and verify existing ones.

VIII. KEY FINDINGS

To solve the problem of identifying smaller and more
internally correlated sets of DEG, as overviewed in section IV,
we use three methods: Clustering, Predictive Modeling and
Biclustering. These methods allow us, when performing func-
tional enrichment, to identify more statistically significant
biological processes. In the present section, we present the
key findings resulting from the application of each of these
methods to the dataset, as well as an analysis of the identified
biological processes within the context of viral infection. In
particular, we will begin with clustering, then classification
and finally biclustering.

To assess the effectiveness of the methods explored later in
the chapter, we begin by presenting, in Table II, the result of
performing functional enrichment on the set of genes obtained
directly through preprocessing (in the Multi-Condition Setting,
p < 0.01), in the previously (section IV) defined Multi-
Condition Setting.

As we can see in Table II, there is a considerable number
of processes with low p-value. However, the c-score is signifi-

3Freely available at https://maayanlab.cloud/Enrichr/
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TABLE II
TOP 8 GO BIOLOGICAL PROCESSES ORDERED BY COMBINED SCORE,

USING JUST PREPROCESSING (MULTI-CONDITION SETTING, p < 0.01)

GO Biological Process p-value c-score

cellular response to type I interferon (GO:0071357) 2.35E-10 324.03
type I interferon signaling pathway (GO:0060337) 2.35E-10 324.03
cytokine-mediated signaling pathway (GO:0019221) 3.80E-26 319.38
protein mono-ADP-ribosylation (GO:0140289) 3.22E-04 319.17
receptor signaling pathway via STAT (GO:0097696) 2.73E-06 299.82
receptor signaling pathway via JAK-STAT (GO:0007259) 2.50E-06 250.15
exogenous peptide antigen, TAP-independent (GO:0002480) 7.04E-03 219.44
negative regulation of bone remodeling (GO:0046851) 2.62E-03 212.68

cantly lower when compared to the same genes after clustering
(see Table II). This is likely due to the higher number of
genes being analysed together when compared to the proposed
methods, since clustering and biclustering identify smaller
subgroups of genes with correlated expression and predictive
models select a smaller number of genes. Additionally, terms
such as negative regulation of bone remodeling (GO:0046851)
and negative regulation of bone resorption (GO:0045779),
which seem to be more generic and less related to the
viral infection appear in this analysis, but do not seem to
reoccur within the terms found for clustering, classification
or biclustering.

A. Clustering

Starting with a Multi-Condition Setting (p < 0.01) in
Table II, a high percentage of the top identified processes
are related to response to viral infection, as well as to
immune responses. The annotation cytoplasmic pattern recog-
nition receptor (PRR) signaling pathway in response to virus,
GO:0039528 (directly related to the annotations GO:0140546
and GO:0051607, also within the top 25 enriched processes)
corresponds to a set of molecular signals associated with
the detection (by binding of viral RNA molecules to certain
cytoplasmic receptors) of a virus. In particular, the detection
seems to be performed by the RIG-I PRR, responsible for
the detection of RNA synthesized during the process of viral
replication, since there are 3 child processes (GO:0039529
with p = 2.91 ∗ 10−3 and c = 905.29; GO:0039535
with p = 7.67 ∗ 10−4 and c = 526.08; GO:0039526 with
p = 5.26 ∗ 10−3 and c = 513.51) associated with this
receptor which are still statistically relevant. This receptor,
along with others, has been identified as part of the inflamma-
tory response to SARS-CoV-2 as well as other coronaviruses
[22]. Additionally, the signaling cascade resulting from the
detection of viral proteins is associated with the production of
Type I interferons and pro-inflammatory cytokines [23], which
can also be observed within the top enriched processes (for
instance, terms GO:0060337, GO:0071357 and GO:0060333).

In particular, the term type I interferon signaling pathway
(GO:0060337), which has several related terms also present
within the top 25 processes (for instance, type I interferon sig-
naling pathway, GO:0060337 and cytokine-mediated signaling
pathway, GO:0019221, both direct ancestors) are related to

TABLE III
TOP 8 KEGG PATHWAYS ORDERED BY COMBINED SCORE, FOR A549

CELLS

KEGG Pathway p-value c-score Cluster

Measles (map05162) 1.02E-08 295.14 2
Influenza A (map05164) 1.02E-08 252.18 2
Herpes simplex virus 1 infection (map05168) 7.16E-10 177.20 2
Epstein-Barr virus infection (map05169) 4.82E-07 156.14 2
TNF signaling pathway (map04668) 1.11E-07 153.86 0
Coronavirus disease (map05171) 3.78E-07 150.32 2
RIG-I-like receptor signaling pathway (map04622) 3.68E-04 120.34 2
NOD-like receptor signaling pathway (map04621) 9.37E-06 119.63 2

type I interferons. The association between these and the
process of viral infection is further bolstered by the presence of
terms response to interferon-beta (GO:0035456) and response
to interferon-alpha (GO:0035455), which are both type I
interferons.

It is also interesting to note the presence of the term negative
regulation of type I interferon-mediated signaling pathway
(GO:0060339) as well as negative regulation of chemokine
production (GO:0032682). Chemokines are involved in inflam-
mation and the control of viral infections, and they and their
receptors are sometimes mimicked by viruses in order to evade
host antiviral immune responses [24]. The presence of these is
noteworthy mainly due to directly opposing the other processes
related to the activation of an immune response.

Additionally, there are multiple processes directly related to
cellular response to viruses, namely defense response to sym-
biont (GO:0140546), defense response to virus (GO:0051607),
negative regulation of viral genome replication (GO:0045071,
also associated with GO:0045069), antiviral innate immune
response (GO:0140374), negative regulation of viral process
(GO:0048525) and cellular response to virus (GO:0098586).
These indicate that NHBE cells were able to identify that they
had been infected by a virus and induce an immune response.

For A549 cells, the identified terms can be seen in ??.
The genes composing all detected processes have higher
expression levels for infected cells than for control. Similarly
to NHBE cells, there seems to be a prevalence of type I
interferon and cytokine related terms. Multiple processes, such
as cellular response to type I interferon (GO:0071357), type
I interferon signaling pathway (GO:0060337), response to
interferon-beta (GO:0035456) are repeated, with most of the
common processes having to do with interferon and general
cytokine response as well as responses to viral infection.

The terms STAT cascade (GO:0097696), positive regulation
of JAK-STAT cascade (GO:0046427) and JAK-STAT cascade
(GO:0007259), are not present for NHBE cells. These are all
related to the JAK-STAT signaling pathway, which is associ-
ated with a wide variety of cytokines. Not triggering signaling
or not regulating it properly, can lead to inflammatory disease
[25], among other issues.

Interestingly, similarly to the NHBE cells the process neg-
ative regulation of type I interferon production (GO:0032480)
seems to suggest a potential attempt to reduce immune re-
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TABLE IV
TOP 25 GO BIOLOGICAL PROCESSES ORDERED BY COMBINED SCORE

(MULTI-CONDITION SETTING, p < 0.01).

GO Biological Process p-value c-score

type I interferon signaling pathway (GO:0060337) 4.40E-27 9111.11
cellular response to type I interferon (GO:0071357) 4.40E-27 9111.11
negative regulation of viral genome replication (GO:0045071) 1.10E-16 3820.31
defense response to symbiont (GO:0140546) 7.74E-22 3260.22
cytoplasmic PRR signaling pathway 4(GO:0039528) 1.74E-06 3253.53
negative regulation of viral process (GO:0048525) 5.16E-17 3163.10
defense response to virus (GO:0051607) 2.34E-21 2930.10
endogenous peptide antigen, TAP-independent (GO:0002486) 4.42E-05 2797.75

sponse. However, the opposite term, positive regulation of type
I interferon production (GO:0032481) is also within the top 25
(though with higher p-value and lower c-score). This may be
due to both pathways being active simultaneously, although it
may also reveal overlap in the genes that produce each process
(2 out of 5 genes in common between the two processes).

In Table III we present the pathways identified when using
the KEGG Pathway database (2021 version) instead of the
GO database. The results, similarly to the GO database, in-
clude multiple virus related pathways. These are all composed
by genes with higher expression values for infected cells than
control. Within the top identified terms, there is a prevalence
of virus related pathways. Coronavirus disease (map05171),
the sixth term, is directly associated with SARS-CoV-2, which
provides more confidence that the terms identified thus far are
indeed related to the viral infection.

Additionally, the term RIG-I-like receptor signaling path-
way (map04622), which is related to the previously mentioned
RIG-I receptor, helps solidify the idea of it being involved in
the anti-viral immune response.

The KEGG pathways Antigen processing and presentation
(map04612), JAK-STAT signaling pathway (map04630), the
principal signaling mechanism for a variety of cytokines,
IL-17 signaling pathway (map04657), a subset of cytokines
with various roles related to inflammatory responses and
defence against external pathogens, and NF-kappa B signaling
pathway (map04064), a signaling pathway which is activated
by the aforementioned cytokines and is related to immune
responses, all support the processes identified previously in the
role played by inflammatory cytokines and related signaling
pathways in the infection by SARS-CoV-2.

B. Predictive Models

For predictive models, we begin once again with a Multi-
Condition Setting (p < 0.01), for the Random Forest and
xGBoost algorithms. With XGBoost, 94 genes are identified.
With the Random Forest, 356 genes are selected. These
algorithms have 69 genes in common. There are multiple
terms present in both models, mostly related to immune
system activity. However, there are several processes uniquely

4Some names have been shortened in favor of succinctness, with full
definitions available in the accompanying hyperlink

identified by each of the algorithms. Processes identified only
by XGBoost are particularly interesting, since most genes
selected by XGBoost are also selected by the Random Forest
and the extra genes selected by the Random Forest may mask
relevant information.

ISG15-protein conjugation (GO:0032020), a term identified
only within XGBoost selected genes, is related to the cellular
protein modification process of ISG15. This protein has an
important role in host antiviral response, with several different
actions depending on the infecting virus. Most significantly
among these actions is the inhibition of viral replication in
addition to the modulation of the damage and repair as well
as the immune responses [26].

Also within the terms identified only by XGBoost, there
are multiple related to chemotaxis, the movement of a cell
or organism towards a higher or lower concentration of a
given substance, and migration of various types of immune
cells. In particular, macrophages [27], [28] (GO:0048246
and GO:1905517), natural killer cells [29] (GO:2000501)),
eosinophils [30] (GO:0072677 and GO:0048245), neutrophils
[31] (GO:0030593 and GO:1990266), which are all types of
white blood cells involved with the innate immune response
to viral infection.

Additionally, there are multiple terms in both cases asso-
ciated with cytokine production and related signaling path-
ways, as well as response to different types of interfer-
ons. In addition to these, terms such as regulation of fever
generation (GO:0031620), negative regulation of viral pro-
cess (GO:0048525), inflammatory response (GO:0006954) and
negative regulation of viral genome replication (GO:0045071)
are also associated with immune response. Together with the
previously mentioned signaling of white blood cells, these
results show the significant, both innate and adaptive, immune
responses by cells infected by this virus.

Among the top processes in both tables is chronic in-
flammatory response (GO:0002544). Similarly to what was
mentioned for the combined data, there are multiple terms
related to the recruitment of certain types of white blood
cells. In particular, positive regulation of monocyte chemotactic
protein-1 production (GO:0071639), the top term for the
Random Forest, is associated to a protein which plays a key
role in the migration of monocytes [32].

It is also important to note that multiple terms associ-
ated with the apoptotic process are present, namely pos-
itive regulation of intrinsic apoptotic signaling pathway
(GO:2001244), regulation of intrinsic apoptotic signaling
pathway (GO:2001242) and positive regulation of apoptotic
signaling pathway (GO:2001235). This process, responsible
for causing the death of a cell when a certain internal or ex-
ternal stimulus is received, may indicate that the cell was able
to detect that it was infected by SARS-CoV-2. This hypothesis
is further supported by the presence of the term pattern
recognition receptor signaling pathway (GO:0002221). These
receptors, as previously explained for the related term present
in Table IV, have been associated with the inflammatory
response to SARS-CoV-2 [22].
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There are several terms related to the response to virus
by the host. In particular, positive regulation of defense re-
sponse to virus by host (GO:0002230), regulation of defense
response to virus by host (GO:0050691), defense response
to symbiont (GO:0140546) and defense response to virus
(GO:0051607), although these are only present within the
Random Forest selected genes. It is also worth noting once
again the abundance of interferon related processes, as well as
some cytokine related terms. Among these, negative regulation
of cytokine production (GO:0001818) and positive regulation
of cytokine production (GO:0001819), which are contradicting,
may indicate an attempt to modulate the immune response by
the cell or potentially a mechanism of the virus to defend itself
from the immune response.

The term RIG-I signaling pathway (GO:0039529) which
is associated with the Pattern Recognition Receptor RIG-I,
and the term cytoplasmic pattern recognition receptor signal-
ing pathway in response to virus (GO:0039528) were also
identified in Table IV as well as for NHBE cells using the
Random Forest algorithm. These receptors play crucial roles
in the detection of viruses by cells and the resulting signaling
cascade, which in turn leads to the production of Type I
interferons and pro-inflammatory cytokines [23].

C. Biclustering

In order to allow for the detection of more complex patterns,
we now present the results of applying several biclustering
algorithms to our data. In particular, these algorithms, unlike
clustering, can identify patterns which span only certain con-
ditions. This means that by analyzing the resulting biclusters
and functionally enriching them, we can obtain processes
associated with any particular subset of conditions.

We begin in Table V by presenting several metrics for each
algorithm and preprocessing option used. It is important to
note that |B| corresponds to the number of biclusters; |I|
corresponds to the average number of genes per bicluster; σ|I|
corresponds to the standard deviation of genes per bicluster;
|J | corresponds to the average number of conditions per
bicluster; σ|J| corresponds to the standard deviation of the
number of conditions per bicluster; and finally Terms corre-
sponds to the average number of enriched terms per bicluster.
BicPAMS and Cheng and Church present the highest average
number of biclusters, with the Plaid and xMotifs algorithms
significantly less for most preprocessing conditions. It is also
important to note that BicPAMS selects a larger amount of
genes for a much smaller amount of conditions. This is
particularly relevant to better understand the comparatively
much larger amount of average enriched terms per bicluster
with BicPAMS, since having too many conditions can lead
to the identification of more generic genes and having too
few genes can lead to the identification of less significant
processes.

Using these methods, we obtain a set of biclusters, each
consisting of a subset of genes and a subset of conditions.
By performing functional enrichment on these genes, a set
of biological processes associated with those genes is then

TABLE V
METRICS FOR COMPARING THE PERFORMANCE OF THE TESTED
BICLUSTERING ALGORITHMS WITH DIFFERENT PREPROCESSING

TECHNIQUES

Algorithm Preprocessing |B| |I| σ|I| |J| σ|J| Terms

p < 0.01 80 208.03 18.54 3.16 0.53 28.91
p < 0.05 79 3526.66 301.50 3.24 0.64 341.70

ANOVA (top 200) 7 188.29 5.95 10.00 9.70 10.57

ANOVA (top 1000) 20 676.05 29.13 5.00 4.22 55.75
BicPAMS

ANOVA (top 5000) 57 2106.18 128.36 3.61 1.25 131.32
p < 0.01 50 15.60 12.59 12.92 5.90 3.46
p < 0.05 100 55.90 16.23 34.79 9.96 1.68

ANOVA (top 200) 8 25.00 23.49 21.38 12.56 6.50

ANOVA (top 1000) 56 17.86 15.27 17.89 10.67 4.41

Cheng
and Church

ANOVA (top 5000) 100 34.54 24.10 22.76 11.25 2.47
p < 0.01 10 64.70 55.53 14.20 5.60 29.90
p < 0.05 10 776.40 922.43 11.60 6.89 24.10

ANOVA (top 200) 8 44.00 30.76 12.88 8.43 9.88

ANOVA (top 1000) 10 159.50 100.72 12.20 7.29 18.70
Plaid

ANOVA (top 5000) 10 739.20 530.04 13.10 7.48 43.40
p < 0.01 10 31.90 17.17 8.20 2.86 1.70
p < 0.05 10 654.50 365.82 6.00 0.00 6.30

ANOVA (top 200) 6 30.33 34.30 24.50 9.73 10.67

ANOVA (top 1000) 10 71.90 103.54 11.10 4.28 7.60
xMotifs

ANOVA (top 5000) 10 326.00 538.95 6.20 0.60 5.30

produced. In order to analyze these results and obtain a more
generic view of how often certain processes occur for each
condition, a count is performed for each process identified.
This allows for the identification of the most commonly
occurring processes, and thus provides a better view of which
processes are most closely related with a certain condition,
while also potentially reducing the amount of more generic
biological processes. In addition to this, it provides a direct
element of comparison between different cell types for the
same condition, or between the same cell type and different
viruses. In addition to the number of occurrences of each
process, the best c-score and p-value are also provided, in order
to compare the statistical relevance of different processes.

We now proceed to a comparative analysis of the biological
processes associated with SARS-CoV-2 for all cell types, using
biclustering. In order to provide an ordering for the processes
taking into account all cell types, each enriched term is first
ranked by the number of occurrences it has related to a given
condition. Then a fused rank is computed by multiplying
the resulting ranks. The multiplication allows for a higher
penalization of terms which contain a single very low rank
but high ranks for other cell types.

There are several identified processes which have been
previously described with clustering and predictive models.
In particular, there are multiple terms related to cytokine
activity, for instance cytokine-mediated signaling pathway
(GO:0019221), which possesses a high number of occurrences
for A549 (1.00), NHBE (0.75) and Calu3 (1.00) cells and a
lower count for Biopsy cells (0.60). It is interesting to note a
seeming tendency for the normalized number of occurrences
for Biopsy cells to be lower for most processes, with more
generic DNA related processes, such as DNA metabolic pro-
cess (GO:0006259), DNA repair (GO:0006281) and cellular
response to DNA damage stimulus (GO:0006974), possessing
higher values. This may be due to biopsy results possibly
containing multiple cell types as well as due to the very
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low number of samples of this type of cell (2 healthy and
2 infected).

Other cytokine associated processes include cellular re-
sponse to cytokine stimulus (GO:0071345), chemokine-
mediated signaling pathway (GO:0070098) followed also by
cellular response to chemokine (GO:1990869). Chemokines in
particular play an important role in multiple processes related
with host immune response against viral infection, namely the
attraction of leukocytes to the infected tissue. The presence of
the terms neutrophil mediated immunity (GO:0002446), neu-
trophil activation involved in immune response (GO:0002283)
and neutrophil degranulation (GO:0043312), further supports
this hypothesis. Neutrophils are leukocytes which are the first
responders to sites of infection, and have also been identi-
fied as the main infiltrating cell population in IAV infection
[31]. Despite containing somewhat lower counts than other
processes, this set of enriched terms still possess p-values and
c-scores well within the range of statistical significance.

Another previously identified set of processes which is also
present is interferon related terms. Interferons are a potent
type of cytokines which are associated with antiviral response,
with most viruses having developed adaptations to at least
partially avoid this mechanism [33]. In particular, cellular
response to interferon-gamma (GO:0071346) and interferon-
gamma-mediated signaling pathway (GO:0060333).

We now proceed to a comparative analysis of the processes
associated with different viruses. There are many processes
in common with the SARS-CoV-2 analysis, which is to
be expected, since most identified processes are related to
immune response.

cellular response to interferon-gamma (GO:0071346) has
somewhat fewer occurrences when compared to the other
viruses (0.66 vs 0.85 for RSV, 0.92 for HPIV3 and 0.86 for
IAV). cytokine-mediated signaling pathway (GO:0019221) has
a somewhat higher number of occurrences for SARS-CoV-2
and HPIV than others (1.00 and 1.00 vs 0.74 for RSV and 0.92
for IAV). inflammatory response (GO:0006954) is somewhat
muted for SARS-CoV-2 when compared to the other viruses,
for both A549 (0.45 vs 0.97 for RSV, 0.92 for HPIV3, 1.00
for IAV) and NHBE cells (0.75 vs 0.91 for IAV, 1.00 for
IAVdNS1). These differences are consistent with those found
by Blanco-Melo D. et al. [1], who found SARS-CoV-2 to
induce a limited interferon response when compared with the
other viruses but a strong production of cytokines and resulting
processes. Overall, there seems to be a tendency for the other
viruses to have comparatively higher counts, especially IAV.

In Table VI, we can see a compilation of the number of GO
Biological Processes detected for each of the applied methods.
As we can see, biclustering provided, by a considerable
margin, a highest amount of biological processes, followed by
clustering. The predictive models provided the worst results,
with Random Forests providing somewhat better results for the
Multi-Condition Setting as well as for NHBE cells. Overall,
these results seem to suggest pattern-based algorithms are
better suited for this application.

TABLE VI
NUMBER OF PROCESSES FOUND, FOR DIFFERENT p VALUES, FOR EACH OF

THE METHODS APPLIED. MCS - MULTI-CONDITION SETTING.

Number of GO Biological Processes
Method Setting p < 0.05 p < 0.01 p < 0.001

MCS (p <0.01) 463 215 76
NHBE 234 75 20Clustering
A549 182 38 19

MCS (p <0.01) 215 109 44
NHBE 110 22 3Random Forests
A549 21 0 0

MCS (p <0.01) 60 41 15
NHBE 34 0 0xGBoost
A549 36 0 0

MCS (p <0.01) 4440 2086 1184
NHBE 2912 685 305BicPAMS
A549 3926 779 273

IX. CONCLUSION

This dissertation proposed a set of novel principles to
identify putative regulatory modules associated with the re-
sponse to SARS-CoV-2, while also presenting an analysis of
the biological processes associated with them, as well as a
comparison to other viruses. A particular focus was placed on
the relevance of pattern-centric views for gene set enrichment
analysis. The source of data used is an RNASeq dataset which
provides gene expression levels for a set of genes and samples,
healthy and infected by SARS-CoV-2 and other viruses.

A novel methodology was proposed combining different
approaches, which when consolidated provide a more robust
view of the putative processes associated with the infection by
SARS-CoV-2. In particular, the complete gene set is initially
filtered using a Mann-Whitney U Test, which allows for the
selection of genes with statistically relevant differences in
expression between healthy and infected cells.

Other authors perform feature enrichment directly on the set
of genes obtained using simplistic statistical tests. However,
this stance results in a smaller amount of biological processes
detected, as well as a decrease in their quality (measured using
Fisher’s Exact Test and the combined c-score). So a three-
fold, pattern-centric approach was proposed, using hierarchical
clustering, decision tree based predictive algorithms and bi-
clustering algorithms on the resulting genes to identify groups
of genes with correlated expression. With both clustering and
predictive algorithms, a mostly individual approach was taken,
separating cell type and analyzing only two conditions at a
time.

Under this methodology, we were able to validate and
identify potentially novel biological processes associated with
SARS-CoV-2 infection. Among the various enriched terms,
the high cytokine induction, Type I interferon related terms,
as well as signaling pathways related to these were reoc-
curring in all analysis performed. Additionally, comparing
these results to existing literature on SARS-CoV-2, other
viruses and also on the biological function of certain terms
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allowed for the identification of characteristics of the disease.
In particular, SARS-CoV-2 was found to induce a limited
interferon response when compared with the other viruses
but a strong production of cytokines and associated processes
(namely interferon induction and response to these stimuli).
These findings were consistent with Blanco-Melo D. et al. [1].
Additionally, we found in multiple analysis the involvement
of Pattern Recognition Receptors (with particular emphasis
on RIG-I) in the process of infection. This was not identified
by Blanco-Melo D. et al., however it is consistent with other
literature on coronaviruses, and further supports the hypothesis
that a pattern-centric view of the gene enrichment process can
result in novel information.

X. FUTURE WORK

As potential directions for future work, we suggest the:
• application of this methodology to different SARS-CoV-

2 datasets to cross-validate, expand and improve the
robustness of the provided findings;

• application of this methodology to datasets pertaining to
other viruses, to better assess it’s capability to offer new
insights into the unique biological processes associated
with each virus;

• addressing of the issue of sample interdependence by:
– obtaining more samples by using other RNASeq

datasets, which allows for the underlying relation-
ships between the different conditions to be diluted;

– designing a novel biclustering approach more tai-
lored to this type of data, which takes into account
the underlying relationships between each set of
experimental conditions.

XI. CODE AVAILABILITY

The code utilized to obtain the presented results
can be obtained in the following GitHub repository:
https://github.com/PRodrigues98/Analysis-of-regulatory-
response-to-SARS-CoV-2-infection. It utilizes python 3.8
mainly with the NumPy, pandas, scikit-learn and matplotlib
libraries.
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