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Abstract  

Biomass gasification is an energy-generating process widely recognized as an efficient and 

sustainable technology, representing a viable alternative to the burning of fossil fuels. However, the 

formation of tars and impurities during biomass gasification raises the necessity of enhancing the 

gasification process in order to eliminate these unwanted products and improve the efficiency of the 
process. Numerical modelling is an attractive solution to perform detailed analysis to the gasification 

process in order to find possible solutions for this problem.  A few studies available in the literature 

present highly detailed mechanisms that are able to accurately predict the gasification kinetic behavior. 

However, these models are extremely complex and comprise long computational times. The main 

objective of this work is to propose a reduced mechanism that is able to predict the secondary gas-

phase reactions during biomass gasification. A scanning method and an error-based species and 

reactions elimination technique are applied to a detailed secondary gas-phase mechanism with 134 

species and 4533 reactions, maintaining its essential characteristics. Finally, the selected reduced 
mechanism is validated by comparing the obtained results with the data from the original mechanism. 

The reduction method applied in this work is found to effectively obtain reduced mechanisms capable of 

accurately predicting the gas yield, final gas composition and H2, CO and CO2 release rate curves of the 

initial detailed mechanism together with significantly reduced computation time. A mechanism with 89 

species and 476 reactions is one of the mechanisms obtained from the reduction process that has the 

characteristics mentioned in the previous statement, with a computational time reduction of 52.91%. The 

sensitivity analysis carried out on the biomass components proved that this reduced mechanism can be 
used for a wide range of biomass fuels. 

 
1. Introduction 
 
The increased awareness of the risks of burning 

fossil fuels and their potential devastating 
consequences has turned the world’s attention to 

alternative, renewable and clean energy sources 

such as wind, solar, geothermal and bioenergy [1].  

Bioenergy is the energy that is generated from 

organic matter, known as biomass. It is considered 

that both biomass and its respective biofuels do 

not contribute to enhance greenhouse effect, as 

the released carbon dioxide originated from the 

thermochemistry processing of the biomass is 

balanced with the absorption of that same carbon 
dioxide during the flora live span [2]. Therefore, 

the focus on bioenergy has been increasing over 
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the last years, as it is a valuable means to face 

global warming.  

Gasification is a thermochemical process that is 

able to convert solid biomass into gaseous 
products (producer gas) that can be further used 

in energy-generating processes or synthesized 

into other value-added chemicals [3]. Gasification, 

presented in Figure 1, is a multistage process that 

includes different stages, i.e., drying, pyrolysis, 

partial oxidation or combustion, cracking and char 

reduction. In particular, pyrolysis that has great 

importance in gasification is a thermal treatment 
that decomposes organic materials into liquid, 

solid (char) and gaseous (light permanent and 

combustible gases) forms in the absence of 

oxygen [4]. The liquids released from biomass 

pyrolysis include H2O, low weight molecular 

species and tars. Tars are heavy hydrocarbons 

that represent one of the utmost challenges in 
industrialization of biomass gasification 

infrastructures, since these components are often 

converted into impurities/particles [5] that lead do 

the necessity of producer gas (syngas) treatment 

after the gasification process. An efficient way to 

mitigate these occurrences is enhancing the 

gasification processes, where tars can be 

reformed under the presence of oxidizing 
atmospheres. It is still a challenge to operate 

gasifiers using biomass as feedstock and often 

suboptimal results are delivered. In this sense, 

numerical modelling is a very attractive solution to 

overcome these barriers [6]. 

 

A few studies have considered very detailed 

mechanisms that are able to predict release rate 
curves, product yields and product speciation 

under different gasification uses [7–10]. However, 

these models often comprise long computational 

times and chemical stiffness. Within this 

perspective, applying reduction methodologies is 

highly recommended to reduce detailed kinetic 

mechanisms while keeping their essential features 

[13]. 

 
Figure 1 - Gasification process steps. 

In the given context, the main objective of this work 

is to implement a numerical tool that is able of 

reducing the CRECK-S-BIO mechanism [8]. while 

keeping its characteristic features. The reduced 

mechanism should be able to accurately predict 

the behavior of the initial detailed mechanism, 

comprising less computational time. Within this 
aim, reduction techniques will be applied to both 

species and reactions to obtain a reduced 

mechanism. Focus will be given to the gasification 

of wheat straw (agricultural residue) in a drop tube 

furnace (DTF) considering the typical range of 

gasification operation conditions. 

 

2. Numerical Modelling 
 

2.1 Kinetic Mechanism 
Debiagi et al. [8] proposed a very detailed 

mechanism that is able to describe biomass 

pyrolysis behavior and secondary gas-phase 

reactions under gasification conditions, taking into 

account 161 species and 4561 reactions 
(pyrolysis: 52 species and 28 reactions; secondary 

gas-phase mechanism: 134 species and 4533 

reactions). This mechanism, named CRECK-S-
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BIO, considers that biomass is constituted by 

seven reference components for modelling 

purposes: cellulose (CELL), hemicellulose (HCE), 

three structures of lignin identified as LIGH, LIGO, 
and LIGC rich in hydrogen, oxygen, and carbon, 

respectively, and hydrophobic (TGL) and 

hydrophilic (TANN) extractives [4,7]. In this 

mechanism, pyrolysis takes place first resulting in 

the decomposition of the seven solid biomass 

components [4]. After the pyrolysis phase, the 

secondary gas phase reactions take place, where 

the partial oxidation of the released volatiles 
occurs, with tars also undergoing thermal 

cracking. A scheme of this mechanism is 

presented in figure 2: 

 

 
Figure 2 - Biomass gasification kinetic mechanism 
(CRECK-S-BIO). 

 
2.2 Reactor Modelling  
Ferreiro et al. [5] developed the kinetic-diffusion 

controlled model used in this work. This one-

dimensional model considers a spherical biomass 

particle entering the DTF along with a carrier gas 

(in this case nitrogen) where both are heated 
through convection and radiation. The release rate 

of the volatiles and the heat transfer between the 

particle and its surroundings is calculated along 

the axial direction of the DTF. Figure 3 shows a 

concept visualization of the adopted model with 

the specifications of this work regarding 

temperature profile, gasifying agent and carrier 

gas composition: 

 

Figure 3 - Reactor model. 

The model inputs are measured temperature 

profiles, biomass composition (obtained 

experimentally in a previous work [12]) and the 
reactor and mass flow characteristics. In this work 

in specific, the temperature is kept constant along 

the entire length of the reactor with values varying 

between (900-1200ºC), the steam to biomass ratio 

varies between 0-1.7, the reactor has 1320 mm 

and the air and nitrogen flow rates are 0.5L/min 

and 10L/min, respectively. This model comprises 

three main governing equations: mass balance, 
energy balance, and particle trajectory. In order to 

solve the previous equations, the species 

conservation and in order to determine the 

reaction rates and final product yields, a stiff 

ordinary differential equation solver (CVODE) is 

implemented in Python with assistance of the 

Cantera library [13]. A more detailed description of 
this model and the above equations can be found 

in a previous work [5].  

2.3 Mechanism Reduction Modelling  

CELL HCE

LIGNIN

LIG-HLIG-C LIG-O

Tars + H2O + Char + Soot + Gases

TGL TANN

ExtractivesHolocellulose

CO, CO2, H2, CH4
Impurities: PAH

Cracking, Polymerization 4561 Reactions
166 species
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The reduction process is developed in Python 

as a sub-routine of the numerical tool described 

above. Figure 4 shows the algorithm used in the 

reduction process. Firstly, the reference 
mechanism (CRECK-S-BIO) is initialized. The 

reduction process starts by scanning all species. 

This method consists in computing the error 

caused by deleting a single specie from the 

reference mechanism, repeating this process for 

each specie. The error represents the difference 

between the results obtained for the reference 

mechanism and the ones obtained for the 
reference mechanism without the specie. 

Afterwards, the species are ordered according to 

their associated errors. The goal of the scanning 

method is to evaluate the importance of each 

specie in the secondary gas-phase reactions 

behavior, with the ones with lower associated 

errors being the less important to the reference 
mechanism. The deletion of a specie is achieved 

by eliminating every reaction where this specie is 

a product and/or a reactant. In the second stage 

of the reduction process, a range of error margins 

is established. Species with lower error magnitude 

than the applied margin are deleted. 

Consequently, for each margin, a new mechanism 

is obtained and the error between the new and the 
reference mechanisms is estimated. Then, the 

same reduction techniques (scanning and 

elimination) are applied to the remaining reactions 

of the reduced mechanisms obtained previously. 

New further reduced mechanisms with the same 

number of eliminated species but with a higher 

number of eliminated reactions are obtained. A 

post-processing analysis is performed to the 
obtained results and a reduced mechanism is 

selected. The reduction methodology is then 

applied for a range of typical operating conditions, 

with a reduced mechanism being selected for 

each condition. Finally, all the selected 

mechanisms are merged, originating a final 

mechanism that contains all the reactions from the 

unified mechanisms. 

 

 
Figure 4 - Algorithm of the reaction model. 

 

In the present work, the error between the 

reference and the reduced mechanisms is 

determined through an error function that is 

formulated to preserve the behavior and the 

characteristics of the reference mechanism. 

Seven different characteristics are considered: the 

total gas yield, the H2, CO and CO2 yields and 
release rate peaks. The error associated with the 

yield parameters represents the difference 

between the yield values from the reference and 

reduced mechanisms. The peak error parameters 

represent the error corresponding to the larger 

difference between the maximum values (peaks) 

of the gases release rates (H2, CO2 and CO) 

between the reference mechanism and the values 
of the release rates points of the reduced 

mechanism at the same time/position. For each 
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above-mentioned characteristic points, a specific 

error function, based on the relative error, is 

defined as: 

 

𝜹𝒊 =
"𝒀𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆,𝒊$𝒀𝒓𝒆𝒅𝒖𝒄𝒆𝒅,𝒊"

𝒀𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆,𝒊
                (1) 

𝛿 = %
&
∑ 𝛿'&
'()                               (2) 

 

where 𝛿' 	  represents the error of the ith 

characteristic point, Y the output value of the 

evaluated characteristic point. The total error is a 

result of seven (N) different error contributions, 

which are important for the analysis of the 

mechanism’s final products and its behavior along 
the secondary gas-phase reactions of the 

gasification process. The selected reduced 

mechanism, as the reference mechanism, will be 

able to predict the secondary gas-phase reactions 

that occur during biomass gasification, including 

mass loss profiles, product speciation, release 

rates, gas composition and product yields, as 

function of time/position in a DTF. 
 

3. Results and Discussion 
 
Figure 5 shows five different sets of operating 

conditions that undergo the reduction process. 
From each selected condition, a reduced 

mechanism is obtained and posteriorly merged 

with the remaining obtained reduced mechanisms, 

to generate a reduced mechanism that is able to 

predict the secondary gas-phase reactions of the 

gasification process in the typical range of 

biomass gasification operating conditions. The 

selected conditions represent the boundaries of 
the operating conditions regarding temperature 

and steam to biomass ratio (red points) and also a 

set corresponding to the condition equidistant 

(green central point) from the minimum and 

maximum boundaries. To assess the importance 

of the central operating condition in the reduction 

process, the final reduced mechanism will be 

obtained using two different methodologies: i) 

using only the conditions set as the boundaries 

and ii) adding the central point to the 
aforementioned conditions.  

 

Figure 5 - Selected operating conditions used in the 
reduction process. 

 
Figure 6 shows the data of the reduced 

mechanisms obtained through the species and 

reactions reduction steps for a temperature of 

1200 ºC and a steam to biomass ratio of 0 (top left 
condition shown in Figure 5). These results and 

their consequent analysis are similar to the ones 

obtained for the remaining sets of operating 

conditions, hence, only the results for this specific 

condition are shown here. 

 

Figures 6a and 6b, show the results obtained for 

the species reduction step. It was selected a range 
of 21 different species error margins. For each 

margin, species with lower mean error values than 

that margin are eliminated, and a new reduced 

mechanism is obtained. From the inspection of 

Figure 6a, it is possible to see that the magnitude 

of the mean error presents a clear growing 

tendency with respect to the raise of the value of 
the species error margin. This result is expected 

since the higher the value of the species error 
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margin, the higher is the number of eliminated 

species.  

 
Figure 6 - a) Mean error for the mechanisms obtained 
from species reduction, b) Contribution of the peaks and 
yields errors to the mean error (%) and c) Mean error for 
mechanisms originated from species and reactions 
reduction for a temperature of 12 

 
Figure 6b shows the contribution of the release 

rate peaks and the yields for the mean error. The 

results show that generally, with the increase of 

the error margin, the contribution of the errors 
associated with the peaks decreases, whereas the 

contribution of the errors associated with the yields 

increase. In the area of interest, where the 

mechanisms that present mean error values lower 

than 15% (mechanisms that are found to retain the 

characteristic features of the reference 

mechanism) are situated, the contribution of the 

errors associated with the yields of the final 
products are very low in magnitude and much 

smaller when compared to the contributions from 

the peak errors. For the mechanisms with mean 

error values approximately higher than 30%, the 

contributions of the yields and peaks errors are 

similar, with the yields error even surpassing the 

peaks error in some cases (as shown in the 

supplementary material in Figures S1 to S4). 

Figure 6c shows the mean error and the 

percentage of eliminated reactions for the 
reactions reduction step and for the same 

operating conditions as the ones considered in the 

species reduction step. It is worth to emphasize 

that the reactions reduction step is implemented 

for mechanisms already reduced in the species 

reduction step. Each group of columns is 

associated with a single species error margin. The 

four groups of bars presented in Figure 6c are 
associated with the first four (lower values) 

species error margins selected from the species 

reduction step. This specific selection is due to the 

fact that the higher the value of the species error 

margin (higher number of eliminated species), the 

more sensitive the mechanisms get to the 

elimination of reactions.  This high sensitivity is 
demonstrated through the mean error values 

shown in Figure 6c, which are higher for species 

error margins with higher magnitude, reinforcing 

the idea that species error margins higher than 

0.0025 do not present meaningful results for the 

purpose of this work. For the four mechanisms 

associated with the four species error margins 

considered in Figure 6c, a range of 14 reactions 
error margins was selected and analyzed. With the 

raise of the value of the reactions error margin, a 

growing tendency of the mean error value is again 

identified. This is an expected result, as the higher 

the reactions error margin, the higher the number 

of eliminated reactions. A black line corresponding 

to the percentage of eliminated reactions is also 

shown for the species error margin 0.001 and, 
through its inspection, an initial significant jump 

can be identified between the mechanism 

obtained only through species reduction and the 

mechanism obtained through species and 

reactions reduction, followed by small increments 
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of eliminated reactions with the increase of the 

reaction error margin. The percentage of 

eliminated reactions trends corresponding to the 

remaining species error margins are similar to the 
one shown for the species error margin of 0.001, 

hence, these are not shown. 

 
Table 1 - Selection criteria for mechanisms to undergo 
the merging step 

Criteria Name / 
Limit variables 

Yields 
error (%) 

Mean 
error (%) 

Regular < 2 < 15 
Conservative < 1 < 5 
Super 
Conservative 

< 1 < 1 

 
The main objective of the selection process is to 

select a mechanism from each considered set of 

operating conditions, so that they can be 

posteriorly merged in order to obtain a new 

reduced mechanism. This mechanism will present 
itself as a viable solution to predict the secondary 

gas-phase reactions that occur during biomass 

gasification in a DTF within the selected range of 

operating conditions presented in Figure 5. The 

selection process is based on the post-processing 

analysis of the results obtained in the reduction 

step. The selection criteria used in this work was 

chosen through a preliminary analysis of the 

results of the reduction process and the 
characteristics of the mechanisms obtained in that 

process. The criteria, which is based on the mean 

error and the yields error obtained for each 

mechanism, is shown in Table 1. The super 

conservative approach was not considered on the 

mechanisms obtained through the reduction of 

both species and reactions since none of the 

mechanisms presents mean error values lower 
than 1%. 

 
The results obtained through the error calculation 

for the selected ten mechanisms are shown in 

Figure 7 and the number of reactions, species and 

computational time of each mechanism are shown 

in Table 2. The error scale upper limit is 12% to 
enable a clear vizualization of the differences 

between small error values. The computational 

time associated with the detailed mechanism is 

86.9 seconds. 

 

Figure 7 - Mechanisms originated from species reduction with 4 points A) regular, B) conservative, C) super 
conservative; and 5 points D) regular, E) conservative; F) super conservative. Mechanisms from species and 

reactions reduction with 4 points G. 
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Table 2 - Characteristics of the reduced mechanisms obtained in the merging step. 

 

Mechanism 
/Properties 

Reduction 
Type 

N of 
used 

points 

Criteria 
Name 

N 
reactions 

N 
Species 

Average 
error 
(%) 

Computational 
time reduction 

(%) 
A 

Species 

4 
 

Regular 1182 95 3.1 49.6 
B Conservative 1423 99 2.9 46.0 
C Super Cons. 1776 109 0.3 38.3 
D 

5 
Regular 1202 96 1.5 49.0 

E Conservative 1423 99 2.9 46.3 
F Super Cons. 1778 109 0.2 38.1 
G 

Species + 
Reactions 

4 Regular 298 111 6.7 55.7 
H Conservative 362 116 3.0 42.1 
I 5 Regular 322 113 4.3 55.2 
J Conservative 476 116 0.8 52.9 

Reference - - - 4533 166 - - 

It is clear from the analysis of the Figure 7 that for 

the cases where the central operating condition is 

not considered, the higher values of the error are 

located for operating conditions close to the ones 

associated with that point, with the error generally 
decreasing when approaching minimum or 

maximum boundaries of both temperature and 

steam to biomass ratio. From the general analysis 

of all six mechanisms resulting from species 

reduction (Figures 7A-F), it can be concluded that 

when using more conservative approaches, which 

originates the merge of the mechanisms with 

higher number of reactions, the mechanisms 
obtained with or without the inclusion of the central 

operating point tend to be very similar or even 

equal. The previous conclusion is supported by 
the similarity of the remaining studied parameters 

(number of reactions, number of species and 

computational time) for the mechanisms obtained 

through the conservative and super conservative 

approaches, listed in Table 2. Therefore, the 
influence of the central point is only visible in 

Figure 7 for the mechanisms with lower number of 

reactions (Figure 7A,D, Figure 7G,I, Figure 7H,J).  

Similar conclusions were found between the 

mechanisms originated from the species reduction 

(Figures 7A-F) and the ones originated from the 

reduction of both species and reactions (Figures 

7G-J). However, it can be identified a higher 

influence of the central point in the behavior of the 

final reduced mechanisms obtained through 
species and reactions reduction. This sustains the 

conclusion previously stated that the higher the 

number of reactions of the merged mechanisms 

(and, therefore, of the final mechanism), the higher 

the similarities between mechanisms obtained 

using the same selection criteria with and without 

the consideration of the central point of operating 

conditions.  

In Table 2 it is shown the reduction of the 

computational time obtained when using the 

 

Figure 8 - Computation time (%) as a function of the 
number of reactions. 
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reduced mechanisms compared to the original 

mechanism. It can be identified reductions up to 

55.71 % on the computational time.  Due to the low 

mean error values associated with mechanisms D, 
C, F and J, shown in Figure 7, it is possible to 

consider these mechanisms the most viable 

alternatives to the initial detailed mechanism when 

predicting the secondary gas-phase reactions that 

occur during biomass gasification. Analyzing 

Figure 8, it can be concluded that the reduction of 

computational time increases as the number of 

reactions decrease, which is what it was expected, 
with the exception being mechanism H. This 

exception may be due to different reaction paths 

that occur during the gasification process in this 

mechanism, which leads to a higher time for the 

CVODE solver [13] implemented in the numerical 

tool used in this work to conclude its calculations. 

A very good result was found for mechanism J 
which presents not only a very low number of 

reactions and a very low error values for all sets of 

operating conditions, but also a very high 

percentage of computational time reduction 

(52.91%).  

 

4. Conclusions 

The main conclusions that can be withdrawn from 

this work are the following: 

• The reduction methodology applied in this 
work is found to effectively reduce the reference 

mechanism, obtaining reduced mechanisms 

capable of accurately predicting the behavior of 

the reference mechanism together with 

significantly reducing the computational time, 

which are the cases of mechanisms C, D, F and 
J.  

• The remaining mechanisms retain the 

essential characteristic features of the reference 

mechanism, but are not able to predict with a 

very high precision the release rate curves of the 

major non-condensable gases (H2, CO and 

CO2) for some operating conditions;  

• The errors obtained for the mechanism in 

the interest region have an near-exclusive 
contribution of the magnitude of the release rate 

peaks, with the yield values and the location of 

those peaks presenting very identical values to 

the ones obtained with the reference detailed 

mechanism; 
• The consideration of operating conditions 

located at the interior of the parametric domain in 

the merging step of the reduction process 

generally leads to the construction of 

mechanisms better suited to predict the 

mechanism behavior for the entire range of 

operating conditions when compared to the 

mechanism built from the merge of reduced 

mechanism obtained using only boundary 
operating conditions.  

• A tendency of mechanisms with lower 

number of reactions presenting higher errors is 

verified. However, the presence of a small 

minority of mechanisms that do not respect this 

tendency reveals the absence of a full linearity 
regarding the aforementioned relation when 

using this reduction method; 

• The computational time decreases with 

the decrease of the number of reactions, with the 

reduction being more significant the higher the 

number of reactions of the mechanisms 
compared; 

• Different rection paths for different 

operating conditions and different mechanisms 

can cause of a higher difficulty in the prediction 

of the mechanism’s behavior for those same 

operating conditions and the raise in 
computational time, respectively; 

• One can highlight that in order to obtain a 

suitable reduced mechanism able to predict the 
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reference mechanism's behavior, the 

mechanism reduction procedure strongly 

depends on the following main aspects: the 

selection criteria used to select the reduced 
mechanisms to be merged, the choice of the 

operating conditions to represent the parametric 

domain boundaries and the addition of operating 

conditions at the interior of the parametric 

domain.   
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