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Abstract—The world of autonomous driving has received much
attention in recent years, propelled by the constant pressure
from governments and society for safer vehicles and roads, allied
with the technological advances in the fields of computer vision
and motion planning. In a constant effort to follow the trends
of the automotive world, Formula Student Germany introduced
the Driverless class, where prototypes must be able to compete
in a number of different events fully autonomously, with no
prior knowledge concerning the layout of the track. Simultaneous
Localization and Mapping (SLAM) addresses the problem of
localizing a moving agent while simultaneously constructing a
map of the environment. SLAM is widely considered in the
literature as one of the most challenging problems regarding
autonomous applications, even when applied in racing condi-
tions. This thesis aims to provide a comprehensive review of
SLAM algorithms in the Formula Student Driverless context.
Three different algorithms were implemented from scratch and
tested both in simulation and real scenarios. The algorithms
consist of two particle filter approaches and a graph-based
one. Furthermore, a new approach to the data association
problem which combines tracking information with traditional
methods is proposed and compared against others commonly
used. The results show that the proposed graph-based pipeline
held considerably better results when compared to the filtering
approaches whilst being significantly more efficient. Moreover,
regarding the data association problem, the proposed method
also produced the best results among the other algorithms in
study.

Index Terms—SLAM, Data Association, Autonomous Driving,
Formula Student

I. INTRODUCTION

The world of autonomous driving has received much at-
tention in recent years, propelled by the constant pressure
from governments and society for safer vehicles and roads
and the ever-growing availability of sensors, like cameras and
radars, in the current days’ vehicles [1]. The latter combined
with the technological advances in the fields of computer
vision and motion planning, leads us to the state of the
art regarding autonomous driving, with several manufacturers
already testing their prototypes in real-life scenarios without
any human interference. On the other hand, a crucial aspect
of any autonomous application is the ability to operate in the
limits of handling, e.g. by performing emergency/avoidance
maneuvers, and that is where racing comes in hand. Au-
tonomous racing competitions such as Roborace and Formula
Student present a unique opportunity to develop, test and
validate new technologies under challenging conditions.

A. Formula Student Competition

The Formula Student competition is Europe’s most es-
tablished educational engineering competition that challenges
engineering students from the best universities around the

world to design, build and test electric or combustion race cars
according to a strict set of rules [2] and then compete against
other teams in competitions organized all over the world. Much
more than solely racing, Formula Student being an engineering
competition, means that the fastest car does not necessarily
win, but rather the team with the best overall package, both
in terms of design, construction, performance and finances.

In a constant effort to follow the trends of the automotive
world, in 2017, one of the most important competition organiz-
ers, Formula Student Germany (FSG), introduced a new class
of vehicles, the Driverless class. In this class, the prototypes
must be able to compete in a number of different events fully
autonomously, with no human intervention and with no prior
knowledge concerning the layout of the track.

In the Driverless class the track boundaries are delimited
by blue cones on the left and yellow cones on the right,
small orange cones delimit stopping zones and big orange
cones mark timekeeping zones. The shape, dimensions and
color pattern of these cones must always be the same, and is
regulated by the FSG rules [2]. Since the layout of the track
is unknown, in order to safely navigate through the unknown
environment the prototype must identify the cones’ position
and color using the data retrieved from the available perception
sensors. Having detected the cones that delimit the track, the
prototype then needs to compute a valid path between the track
boundaries, comprising the path planning pipeline. Finally, in
order to navigate through the track using the computed path
one needs to determine a speed target and a steering input,
which is performed by the control pipeline.

B. Motivation

The Formula Student Lisboa team (FST), from Instituto
Superior Técnico, has been developing prototypes for this
competition since 2001, with ten prototypes developed so far
and proven results in the most prestigious competitions of
Europe. The team decided to embrace this new challenge and
adapt the previous prototype (FST09e) to be fully autonomous
and compete in the Driverless class in the summer of 2020.

Due to the COVID-19 pandemic that plagued the world,
the competitions did not take place, but an opportunity for
extensive testing emerged highlighting some problems.

A key part when dealing with any kind of autonomous
driving problem is being able to localize the vehicle on a
given map, or, in the order hand, in case no map is available,
construct a map of the environment given the data retrieved
from the sensors and location of the vehicle. This being said,
a chicken-or-egg like problem arises when neither a map is
available or the localization of the vehicle is known, since
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both vehicle’s motion and observation models are subject to
noise, the mapping problem necessarily induces a localization
problem. This problem is formally known as Simultaneous
Localization and Mapping (SLAM), and tackles the problem
of constructing a map whilst simultaneously localizing the
agent within it [3]. This problem is widely considered in the
literature as one of the most difficult [4] and at the same time
essential for truly autonomous vehicles.

The previous SLAM implementation within the team did
not held satisfactory results both in terms of mapping and
localization capabilities. To overcome this limitation an ex-
tensive research and testing of different SLAM algorithms
was conducted, which resulted in the implementation from
scratch of two types of SLAM approaches. The first one
being an improved version of the previous pipeline and the
second a graph-based approach where a new method for
localization was proposed along with a different method for
data association.

II. THEORETICAL BACKGROUND

A. Topic Overview

Simultaneous Localization and Mapping (SLAM) is an
essential capability for any mobile robot exploring an unknown
environment. SLAM addresses the problem of a robot moving
through an environment of which no a priori map is available.
The aim of SLAM is to acquire a map of the environment,
using a moving robot, while simultaneously localizing the
robot relative to this map [5].

As the robot moves, it collects odometry measurements,
for example, from GPS or wheel encoders, however, these
measurements are subject to error, the so called motion
noise. In addition, the robot also collects information of its
surroundings in order to construct a map, which not only are
subject to error by the sensor measurement itself (observation
noise), but also because they are corrupted by error in the
pose estimate. However, unlike observation noise, the error in
the pose estimate will have a systematic effect on the error
in the map, or put into other terms, error in the robot’s path
correlates errors in the map, as stated in [6]. As a result, the
true map cannot be estimated without also estimating the true
path of the robot, a relationship that was first identified in [7].
Since then several approaches to solve the SLAM problem
have emerged and various problems identified, one of them
being the data association problem that will be introduced in
Section II-B.

The most common approach to the SLAM problem uses
an Extended Kalman Filter (EKF) [8] for estimating the
posterior distribution over the map and robot’s pose [7]. This
approach represents the map and pose estimate by means
of a high-dimensional Gaussian. The off-diagonal entries of
this multivariate Gaussian represent the correlation discussed
earlier between errors in the robot’s pose and features in the
map. This approach allows to accommodate the nature of error
in the map, as stated in [9], however, it has two big drawbacks.

The first drawback is the computational complexity, main-
taining a multivariate Gaussian requires time and memory
quadratic in the number of features in the map, limiting its

application to relatively small maps and/or with a small num-
ber of features. This quadratic complexity is a consequence of
the Gaussian representation in which the EKF is based. The
uncertainty of the SLAM posterior is represented by a covari-
ance matrix that reflects the correlations between all possible
pairs of state variables, and consequently, the memory required
to store the information of this matrix grows quadratically with
the number of features in the map. Since all the correlations
between pairs of state variables are maintained, incorporating
a new sensor observation requires performing an operation on
every entry of the covariance matrix [3]. Several workarounds
of this quadratic complexity have been proposed [10]–[12],
where the basic idea is to decompose the problem of building
a large map into a collection of smaller maps, which can then
be updated efficiently.

The second drawback, and unequivocally more important,
is related to the data association problem, discussed in Sec-
tion II-B. Different data association hypotheses necessarily
induce multiple and different maps, this multi-modality cannot
be represented using Gaussians. The standard approach to the
data association problem in EKF is to assign an observation to
a landmark based on the maximum likelihood rule, but since
the EKF has no way of representing uncertainty over data
associations, the effect of incorporating the wrong data asso-
ciation cannot be undone. Several data association errors will
cause the filter to diverge [3]. Albeit other data associations
methods are available, however, they do not address the fact
that the EKF only considers one data association hypothesis
per time step, besides the fact that they induct complexity
to the algorithm and, due to the nature of the EKF, make it
impossible to use in real time [5].

Bearing in mind the limitations imposed by the EKF ap-
proach, a new family of methods based on particle filters
together with EKF’s for estimation of the landmark locations
was proposed by [9], and will be discussed further in detail
in Section II-C.

B. Data Association
As stated previously, although throughout the years several

achievements have been made regarding the SLAM problem,
SLAM still remains one of the most difficult problems when it
comes to an autonomous vehicle moving through an unknown
environment. One of the topics that make the SLAM problem
hard to solve is the data association problem, a problem that
arises from the fact that the mapping between the observations
and features in the map is unknown and errors in the data
association process can lead to catastrophic failures as the
divergence of the whole SLAM algorithm [13].

In many real-world problems, landmarks are not identifiable
and the total number of landmarks cannot be obtained trivially.
The data association process consists of determining, from a
set of observations, the ones that correspond to new landmarks
and the ones that correspond to already observed landmarks.
The data association problem is imposed by the fact that both
measurements, pose and landmark locations are subject to
uncertainty [14].

The measurements uncertainty leads to data association
ambiguity since the larger the uncertainty associated to the
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measurement is, the larger the number of possible landmark
assignments that need to be considered. In a similar way, the
uncertainty associated to the pose creates ambiguity due to the
fact that the agent is uncertain about its location (position and
orientation). Finally, landmark uncertainty leads to assignment
ambiguity, since it allows, in a probabilistic sense, for a
measurement to be associated with multiple landmarks.

The premise for feature-based data association is that cred-
ible features can be extracted from the environment by the
sensors. The latter can be particularly difficult in unknown en-
vironments and due to the intrinsic uncertainty of the sensors,
making, to this day, feature-based data association a difficult
research problem [15], with several algorithms being proposed
in the literature, such as Maximum Likelihood (ML) [16],
Individual Compatibility (IC) [14], Sequential Compatibil-
ity Nearest Neighbor (SCNN) [13] and Joint Compatibility
(JCBB) [17].

C. FastSLAM 1.0
Particle filters [18] are particularly useful when dealing

with SLAM problems because they can approximate arbi-
trarily complex probability distributions, whereas the EKF
approaches are limited to Gaussian approximations at all levels
of uncertainty [14]. Besides, particle filters are robust to non-
linearities in both motion and measurement models, since
no linearization is required in the propagation of the state
uncertainty. It is inherently carried along with the distribution
of the particles. The main drawback of the particle filters is
the problem of scalability for high dimensional spaces due
to the exponential time complexity of the implementation, a
problem that was overcome with the introduction of the Rao-
Blackwellized particle filter [19].

The main advantage of the particle filter over the EKF ap-
proach is to allow for multi-hypothesis data association, since
the posterior is represented by multiple particles. Therefore,
particle filters enable the data association to be done on a per-
particle instead of on a per-filter basis, meaning that different
particles may have different features correspondences or even
different number of landmarks in their maps. The multi-
hypothesis data association results in more robust algorithms
when it comes to data association errors, since particles
with wrong data associations are likely to disappear in the
resampling process [3].

Hereinafter the SLAM problem will be formally described
as a collection of N features, each of them denoted as θn,
which together comprise the map m. The vehicle pose, com-
prising the vehicle’s two-dimensional Cartesian coordinates
along with its angular orientation is defined in discrete time
as st and the complete path of the vehicle up to time t as
st. Additionally, in order to construct a map, the vehicle can
sense. These measurements encode information concerning
the range and bearing to a nearby landmark. In the name of
simplicity and for the sake of this theoretical formulation, a
single known landmark will be assumed to be observed at any
given instant in time. It should be noticed that this is a matter
of convenience and does not imply any loss of generality, since
multiple observations can be incorporated sequentially and the
data association problem was discussed in Section II-B.

At the core of SLAM there is a probabilistic law that
describes the process according to which measurements are
acquired, the measurement model as described in:

p(zt|st, θnt, nt) = g(θnt, st) + εt. (1)

The measurement model is conditioned to the vehicle’s pose
st, the identity of the landmark nt and the corresponding
feature θnt. This probability is a function of g, non-linear in the
sense that the range and bearing are obtained by trigonometric
relations, plus a distortion by noise modeled as εt with zero
mean and covariance Rt.

As stated earlier, the second input to the SLAM problem
are the controls of the vehicle, denoted as ut. Similarly to
the measurement model, also the controls are modelled as
a probabilistic law that describes the evolution of the poses
according to:

p(st|ut, st−1) = h(ut, st−1) + δt , (2)

the motion model.
The motion model describes the current pose as a function

of h, given the previous pose and control command, perturbed
by Gaussian noise δt with zero mean and covariance Pt. As it
was the case with the measurement model, function h is also
non-linear.

FastSLAM [6] exploits a property of the SLAM problem
pointed out in [20], that concerns the fact that feature estimates
are conditionally independent given the robot path. meaning
that the correlations in the uncertainty of features in the map
only arise from the uncertainty associated to the pose. The
latter means that if the true path of the vehicle was known,
then the error in the landmarks estimates would be independent
from each other. This allows for the posterior over the possible
maps and features to be represented in a factored way [6].
FastSLAM implements this factored representation by using
a particle filter for estimating the path, which means that
conditioned to each particle the individual map errors are
independent, hence the factorization into separate mapping
problems, one for each error. In this approach each particle
possesses N EKF for estimating the N landmark locations
conditioned to the path estimate. The posterior can be con-
verted into the Bayes Filter equation by making use of the
Bayes Rule:

p(st,m|zt, ut, nt) = η p(zt|st, θnt, nt)∫
p(st|st−1, ut)p(st−1,m|zt−1, ut−1, nt−1) dst−1 , (3)

where η is just a normalization constant.
The Bayes filter in (3) is equivalent to the Kalman Filter

when both g and h are linear, whereas the EKF allows for non-
linear g and h by obtaining a linear approximations through
the first order Taylor expansion.

By exploiting the conditional independence property of
SLAM, one can rewrite (3) in a factorized form:

p(st,m|zt, ut, nt) = p(st|zt, ut, nt)
∏

p(θn|st, zt, nt). (4)

In (4) is evident the separation of the SLAM problem
into N + 1 recursive problems, one over the vehicle’s path
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p(st|zt, ut, nt), and N separate landmark estimation problems
p(θn|st, zt, nt). It should be noticed that although this is
factored representation of the posterior, it is exact and not just
a general approximation [16]. Following a typical Dynamic
Bayes Network (DBN) terminology, from (4) it is clear that
this approach to the SLAM problem d-separates the individual
feature estimation problems by rendering them independent of
each other [5] and that knowledge concerning the location
of a given landmark will not give or contribute with any
information relatively to the location of the remaining features
in the map.

The key characteristic of the FastSLAM use of the EKF
is that the update is performed to a Gaussian of just two
dimensions since each landmark has its separate EKF, instead
of the typical EKF-based SLAM which requires maintaining
a covariance matrix that comprises the pose estimate along
with the location of all the landmarks. This allows the update
to be performed in constant time, instead of the quadratic
time required by the EKF, which in the end leads to better
scalability.

D. FastSLAM 2.0

The FastSLAM algorithm proposed in II-C leads to efficient
scaling and robust data association, requiring only O(NM)
in terms of memory, whereas the update step requires O(M
log N), even with unknown data association. However, it
also has its drawbacks associated to its particle filter nature.
One is the fact that the performance of the algorithm will
degrade when the motion of the vehicle is noisy relative to the
observations, a typical problem since most mobile robots have
high values of control noise but relatively accurate sensors,
causing the proposal distribution to be poorly matched with the
posterior. The second is the number of particles required for
convergence, although this value is unknown it is suspected,
in the worst case, to be exponentially proportional to the size
of the map [5].

FastSLAM 2.0 incorporates into the proposal distribution
not only the importance weights, but also the current observa-
tions in order to obtain a better posterior. This new version of
FastSLAM also proves the convergence of the algorithm for
linear SLAM problems, even for a single particle.

In regular FastSLAM, the pose s
[m]
t is sampled from (2)

according to motion command ut, not taking into account
the measurement zt. Instead, this measurement is only in-
corporated in the resampling process. This approach can be
troublesome when the motion model is noisy relative to
the measurement model, causing the sampled poses to fall
into areas of low measurement likelihood, and subsequently
disappearing in the resampling process with high probability.
As the observations become more accurate, fewer unique
samples will survive each update step, eventually causing the
filter to diverge [16].

FastSLAM 2.0 implements the idea that poses are sampled
under the consideration of both the motion ut and the mea-
surement zt, according to:

s
[m]
t ∼ p(st|st−1,[m], ut, zt, nt) , (5)

which explicitly incorporates the most recent sensor measure-
ment zt, its data association nt, the most recent control ut,
and where st−1,[m] is the path up to t−1 of the m-th particle.

The proposal distribution in (5) can be divided into the
product of two factors: the next state distribution p(st|s[m]

t−1, ut)
and the probability of the measurement zt. Obtaining the
probability of the measurement requires integration over the
possible landmark locations θnt

, which is not possible without
approximating the measurement model g in (6) to a linear
function:

g (θnt
, st) ≈ ẑ[m]

t +Gθ ·
(
θnt
− µ[m]

nt

)
+Gs · (st− ŝ[m]

t ) , (6)

where ẑ
[m]
t represents the predicted measurement, ŝ[m]

t the
predicted pose and θ̂[m]

n the predicted landmark location. The
matrix Gθ is Jacobian of g in respect to θ, and Gs the Jacobian
of g in respect to s.

According to this EKF approximation, one can rewrite the
proposal distribution in (6) as a Gaussian with mean and
covariance defined by:

Σ[m]
st =

[
GTs Q

[m]−1
t Gs + P−1

t

]−1

(7)

µ[m]
st = Σ[m]

st G
T
s Q

[m]−1
t (zt − ẑ[m]

t ) + ŝ
[m]
t , (8)

respectively, and where Q[m]
t represents the innovation covari-

ance matrix:

Q
[m]
t = Rt +GθΣ

[m]
nt, t−1G

T
θ . (9)

The new sample distribution in (5) is now parameterized
has a Gaussian approximation by (7) and (8). This Gaussian
is constructed for each particle in the particle set St−1, and a
new sample is drawn and placed in the temporary particle set
according to:

s
[m]
t ∼ N (st; µ

[m]
st ,Σ

[m]
st ). (10)

The new proposal distribution has an important ramification
concerning the creation and update of the landmarks estimate.
In the previous FastSLAM implementation, simultaneous ob-
servations were incorporated sequentially, each landmark filter
was updated separately and the weight of the resulting particle
was the product of the weights of each individually handled
observation. In this new implementation, because the obser-
vations must be incorporated into the proposal distribution,
instead of throwing away the proposal distribution after draw-
ing the sample, the proposal distribution is kept and updated
for each observation, causing it to shrink. New samples are
sequentially generated from the incremental proposal distribu-
tion in order to update the landmark filters and compute the
importance weights.

E. GraphSLAM

The SLAM algorithms presented up until now are based
on filtering techniques, meaning that they model the SLAM
problem as an online state estimation problem, being the
state variables the current position of the agent and the
map [21]. This estimate is then augmented and refined by
incorporating new measurements as they become available. A
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key disadvantage of these filtering techniques is that data is
processed and then discarded, making it impossible to revisit
all data at the time of map building. Smoothing approaches,
such as GraphSLAM, a state-of-the-art graph-based SLAM
method proposed in [22], address the full SLAM problem,
and seek to estimate the full trajectory of the robot from the
full set of measurements along with the map.

The posterior of the full SLAM problem naturally forms a
sparse graph, where nodes represent pose estimates or land-
mark locations with edges denoting observations connecting
them. This graph leads to a sum of non-linear quadratic
constraints, that when linearized, form a least-squares problem
that can be optimized using standard optimization techniques.
Optimizing these constraints yields a maximum likelihood
map and corresponding set of robot poses [23].

Since both observations and odometry estimates are as-
sumed to be only affected by local Gaussian noise and the
data associations as known, one can rewrite the measurement
model (1) and the motion model in (2) in a general way as:

p(zi|s1:N ) = ηi exp
(
(−ei(zi, ẑi))

TΩi et(zi, ẑi)
)
, (11)

where ẑi(s1:N ) defines the expected measurement associated
to the i-th observation or odometry measurement given the set
of poses s1:N :

ẑ(sn, sn+1) = sn+1 	 sn , (12)

ei(zi, ẑi) is the residual for measurement j defined by:

e(z, ẑ) = z 	 ẑ = z 	 (sn+1 	 sn). (13)

Ωi is the information matrix defined by the inverse of the
covariance of either the measurement noise εt or the motion
noise δt and ηi is a normalization constant. The operand 	
represents the inverse pose composition, i.e. the inverse of the
transformation between sn and sn+1.

The goal of this graph-based algorithm is to compute
a Gaussian approximation of the posterior, which involves
computing the mean of this distribution as the configuration
of nodes that maximizes the likelihood of the observations
Z = {zi} as in:

arg max p(s1:N |Z). (14)

Knowing that p(Z) is an unknown constant and that p(s1:N )
is uniformly distributed [24], one can rewrite (14) using the
Bayes’ rule as:

p(s1:N |Z) =
p(Z|s1:N ) p(s1:N )

p(Z)
∝ p(Z|s1:N ). (15)

From (11) and (15) the GraphSLAM optimization problem can
be simplified into:

arg max p(s1:N |Z) = arg min

M∑
i=1

(ei(zi, ẑi))
TΩiei(zi, ẑi) ,

(16)

meaning that the distribution that we seek to minimize is
defined by:

x∗ = arg min
x

F(x), where (17)

F (x) =

M∑
i=1

(ei(zi, ẑi))
TΩiei(zi, ẑi). (18)

If a good initial guess x̆ of the parameters is known, a
numerical solution of (17) can be obtained from standard
optimization techniques such as the Gauss-Newton [25] or the
Levenberg-Marquardt [26] algorithms, through an approxima-
tion of the error function by its first order Taylor expansion
around the current initial guess x̆.

The Gauss-Newton (GN) [25] algorithm iterates through
the linearization of (17) where in every iteration, the previous
solution is used as the linearization point and as initial guess.

The Levenberg-Marquardt (LM) [26] algorithm is a non-
linear variant of the Gauss-Newton that introduces a damping
factor and backup actions in order to control and guarantee the
convergence. Instead of solving the result of the linearization
directly, this method solves a damped version of it according
to:

(H + λI)∆x∗ = −b , (19)

where λ is the damping factor, responsible for controlling the
step size in case of non-linear surfaces (the larger λ is the
smaller are the ∆x). The main advantage of this algorithm is
to dynamically control the damping factor by monitoring the
error of the new configuration after each iteration. If the new
error is smaller than the one in the previous iteration, then
the λ is decreased for the next iteration, increasing the rate
of convergence. If, on the other hand, the error is larger than
in the previous iteration, meaning that the optimum solution
was surpassed, then the solution is reverted (backup action)
and the λ increased.

The main advantage of these these optimization techniques
is that it allow for an abstraction in the SLAM problem
by splitting the problem into a back-end problem and a
front-end one. Most optimization techniques seek to compute
the best map given the constraints (SLAM back-ends) and
they typically rely on efficient implementations of common
optimization algorithms, such as sparse Cholesky factoriza-
tion [27] or Preconditioned Conjugate Gradients [28] (PCG).
In contrast to that, SLAM front-ends seek to interpret the
sensor data to determine the most likely constraint resulting
from an observation to obtain the group of constraints that are
the basis of optimization approaches.

III. IMPLEMENTATION

A. Vehicle Setup

The FST09e was the most successful and reliable prototype
developed and built by the team so far, scoring in 2019 an
amazing 9th place out of 39 teams in the most prestigious
and challenging competition in the world, the Formula Student
Germany (FSG), held at the famous Hockenheimring.

In order to meet the set of challenges posed by the Driver-
less competition, the prototype was equipped with a series of
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(a) Side view (b) Top View

Fig. 1: Location and field-of-view of LiDAR and Camera.

sensors (see Fig. 1), in order to replace the driver’s ability to
perceive the environment. The added sensors include a LiDAR,
one RGB camera one ARHS and a powerful computer.

B. SLAM Inputs

The objective of the Autonomous Pipeline is to process the
data retrieved from the various sensors and output a control
command (steering + pedal) to guide the car along the track.

The Autonomous Pipeline is based in the ROS (Robot
Operating System) framework [29] and is implemented in its
majority in C++ programming language, with the exception
being the algorithms that use Neural Networks, which are
implemented using Python.

Parallel to this processing, a SLAM algorithm is responsible
for mapping the track whistle providing a location of the vehi-
cle. This algorithm receives as inputs the cone detections from
the Perception Pipeline and velocities estimates computed by
the State Estimation Pipeline.

C. FastSLAM Implementation

Both FastSLAM 1.0 and 2.0 algorithms were implemented
from scratch using the ROS framework and C++ programming
language, according to the formulation in [5]. Although the
general idea behind the algorithm was maintained, some
changes were required in order for it to work in the Formula
Student environment, mainly in the weight calculation, loop
closure detection and transition to localization phase. This
Section will cover the specifics of our FastSLAM implemen-
tations, discarding the differences between them but focusing
on the common aspects of both algorithms.

As described in Section III-B, the pipeline receives as inputs
the cone detections and velocity estimates. Cone detections
are only accepted provided they were observed a minimum
number of times and whose color classification is known.

Every time a new set of landmark observations is received,
the particle filter is updated. The update starts by propagating
the particle poses using the motion model without noise, where
the delay between the timestamp of the cone detections and
the last pose estimate is compensated. After that the data
association process takes place, where the observations are
either mapped to existing landmarks in the map or generate
new ones. This process will be fully discussed in Section III-E.
In the case of FastSLAM 2.0, the pose estimate is then
enhanced using an EKF which is iteratively refined with
the incorporation of the matched observations. With the now
known data associations for every particle, the EKF of each
landmark can be updated. Lastly, the weight w[m]

t of each

particle can be calculated, based on the likelihood of the
data association process, the number of new landmarks and
a penalty for every landmark that is in the field-of-view (FoV)
but is not observed or whose mapped color does not agree
with the observation [30], according to:

wk = wk−1l
vwkbw

γ
c

∏
wk,n , (20)

where wk−1 is the particle weight in the previous update, l the
weight assigned to new landmarks and v the number of new
landmarks, wb the penalty for landmarks that were in sensor
range but were not observed and k the number of not observed
landmarks, wc penalizes color mismatches for all γ landmarks
whose color does not match the associated observation and
wk,n are the importance weights.

Naturally, the particle weight variance increases over time
and therefore resampling is enforced once the effective sample
size Neff of the particles drops below a certain threshold:

N
[k]
eff =

1∑(
w[k]

)2 . (21)

To detect the loop closure a simple finite state machine is
used [31], where each landmark possesses a loop closure state
that can take one of the following states: landmarkInView,
landmarkLeftView, landmarkReturned. When landmarks are
created they are initialized in the landmarkInView state, and
when they left the FOV they transition to the landmarkLeft-
View state. The landmarkReturned state is triggered when
landmarks that were in the landmarkLeftView state return to
the FOV with a heading not deviating more than a threshold
from the initial observed heading.

This state machine is implemented along with a statistics
function that keeps track, for each set of observations, of the
number of landmarks that were observed or missed according
to the expected FoV of the sensors. If a landmark is missed
more times than the ones it was observed then it is deleted.
The loop closure is detected when the number of returned land-
marks is equal or greater than the number of seen plus missed
landmarks multiplied by a percentage factor and the standard
deviation of all particles drops below a fixed threshold.

After loop closure detection the SLAM algorithm switches
to a localization phase using the map of the highest particle
weight which is copied to the remaining particles in the
particle set. The map is fixed by disabling the landmark EKF
update and both track boundaries and centerline are computed.
In order to localize the car, a smooth pose update is given by
taking the weighted average over all the particles, essentially
turning the SLAM algorithm into a Monte Carlo Localization
problem.

D. GraphSLAM Implementation

Similarly to the FastSLAM implementation, the Graph-
SLAM implementation receives as inputs the validated cone
detections from the perception pipeline along with velocity es-
timates from the state estimation pipeline. Here some novelties
to the original algorithm proposed in [21] were introduced by
including an EKF for estimating the landmark locations [32]
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and by performing a multi-level optimization allowing this
SLAM algorithm to be used exclusively for localization.

The algorithm is callback-based meaning that an update is
performed every time a new set of cone detections is received,
although based on the ROS framework which allows for nodes
to be run at specific rates. For every new set of cone detections,
a pose is sampled from the motion model, and a new odometry
vertex is created along with an edge connecting the previous
pose vertex to the new one. The error function in (13) is
defined as the relative transformation between the two pose
estimates sa and sb, according to:

est,t+1(st, st+1) = zt,t+1 	 hst,t+1(st, st+1) (22)

hst,t+1(st, st+1) = sa 	 sb

=

 (xa − xb) cos θb + (ya − yb) sin θb)
−(xa − xb) sin θb + (ya − yb) cos θb)

θb − θa

 .

(23)

After sampling the pose, the data association takes place,
observations that lead to the creation of new landmarks are
directly added to the graph with the creation of the respective
vertex in the position in which they were observed along
with an edge connecting the new landmark to the pose from
which it was observed. Again, the error function is defined
as the relative transformation between the landmark and pose
vertexes, as in:

eθt,i(st, θi) = zt,i − hθt,i(st, θi) (24)

hθt,i(st, θi) =

(
(xst − xθi ) cos θst + (yst − yθi ) sin θst
−(xst − xθi ) sin θst + (yst − yθi ) cos θst

)
.

(25)

The sum of all constraints in (18) that we seek to minimize
can then be rewritten has:

F (x) = xT0 Ωox0+∑
t

(xst − h(ut, x
s
t−1))TP−1

t (xst − h(ut, x
s
t−1))

+
∑
t

∑
i

(zt,i − g(θt, x
s
t ))

TR−1
t (zt,i − g(θt, x

s
t )) ,

(26)

where xT0 Ωox0 is the anchoring constraint fixing the prob-
lem to the global reference frame. This constraint is needed
because all the other relative constraints have no information
about the global reference frame, meaning that if an anchoring
point is not establish, the cost function would be invariant to
rigid-body transformations, resulting in the system of equa-
tions being undetermined.

The first difference to the original algorithm comes when
the observations are mapped to already existing landmarks. In
such cases, following the idea of the FastSLAM, this imple-
mentation also uses an EKF per landmark to iteratively refine
the position estimate of the landmarks has they suffer multiple
observations. This is particularly useful because otherwise, the
optimization process would try to minimize the error according
to the first position in which the landmark was observed,
which is not necessarily the most accurate. Observations that
lead to new landmarks typically tend to occur at the limit
of the sensor range, where the uncertainty associated to the

measurement is higher. These new landmarks become closer
and are observed multiple times as the car navigates through
them, meaning that would be illogical not to consider those
observations, with smaller error, to improve the estimate. In
such cases, the position of the landmark is updated in the graph
following the standard EKF update equations and a new edge
connecting the pose and the corresponding landmark is added
to the graph. Once again the error function is defined as the
relative transformation between the current pose and landmark
position generated by the observation, as in (24).

The second particularity of the implementation is the multi-
level optimization. A feature that is available since the back-
end of this GraphSLAM application is based on the g2o
library [24]. The idea is, just like in the FastSLAM approach,
to split the SLAM problem into two, one global localization
problem and N landmark mapping problems conditioned to
the pose estimate. To do that the optimization is divided into
two levels. The first handles the localization problem and the
second the landmark location problem. After the update of
the landmark locations, the local graph formed by the pose
estimate and the observations is optimized. The optimized pose
is then recovered and used to improve the estimate sampled
from the motion model. When loop closure is detected, using
the same statics function and state machine as in Section III-C,
the position of the landmarks in the second level is optimized.
The optimized locations of the landmarks are then saved, the
EKF update is disabled and their corresponding vertexes set
fixed.

The algorithm transitions then to a localization phase where
only the first level optimization, concerning the pose estimate,
is performed. In this phase new observations do not lead to
the creation of new landmarks, they are instead only assigned
to already existing ones but do not improve their estimate
since the second level graph is set fixed and the EKF update
disabled.

E. Data Association Implementation

As described earlier the track is delimited by cones of
identical size, only distinguishable by their color or color
pattern, placed on similar looking asphalt. This invalidates the
use of descriptors to aid the data association process.

The first algorithm used by the team to solve the SLAM
problem was based on a Rao-Blackwellized particle filter that
uses the maximum likelihood principle to solve the data asso-
ciation problem on a per-particle basis, which naturally allows
for multi-hypothesis data association. This process, although
reliable, can become computational expensive depending on
the number of simultaneous observations because it involves
for each observation loop through all the possible landmark
assignments in the map searching for the one that best fits
the observation. In order to overcome this drawback a data
association method that combines the maximum likelihood
principle with tracking information from the visible landmarks
was implemented.

The idea behind the method is to avoid looping through all
the landmarks calculating the value of the likelihood function.
Instead, landmarks that possess tracking information indicating
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that they are unlikely to correspond to the observation are
immediately discarded. Landmarks that do not possess track-
ing information are tested in terms of likelihood against the
observations according to:

p(zt|st, θnt
, nt) =

1

(2π)n/2
√
|Qt|

exp

(
−1

2
(zt − ẑt)TQ−1

t (zt − ẑt)
)
. (27)

It should be added that all observations that fail the individual
compatibility test are considered as spurious measurements
and discarded.

The tracking part of the data association process is im-
plemented at the level of the observations in the perception
pipeline, running in parallel with the ML to save on compu-
tational time. The tracking is done in a Iterative Closest Point
(ICP) manner, by comparing each new set of observations with
the previous one using the Bhattacharyya distance [33].

The Bhattacharyya distance is preferred to the Mahalanobis
distance because it explicitly incorporates the covariance of
the observation. This is particularly useful since noise levels of
the observations often exceed the minimum expected distance
between neighboring cones [32], and because it solves the
problem raised by the IC test when the validation gates
overlap. In such cases, where observations have similar means
but different standard deviations, the Mahalanobis distance
would erratically, tend to zero, whereas the Bhattacharyya dis-
tance grows depending on the difference between the standard
deviations.

If the observations are deemed to be the same they are
saved with a unique index and passed to the SLAM pipeline as
cone detections, where the EKF update takes place using the
standard equations. On the other hand, in the SLAM pipeline
when landmarks are created using the ML method the index
of the observation generating the landmark is saved in its data
structure.

Later, when new observations are being evaluated during
the data association process this index is compared to the one
stored in the landmark data structure and in case of a match
the observation is set to be of that specific landmark and the
maximum likelihood process does not need to take place.

IV. RESULTS

This chapter will focus on the analysis in terms of accuracy
and performance of both proposed pipelines (FastSLAM 2.0
and GraphSLAM) as well as the data association method in
study. The initial implementation of the FastSLAM 1.0 will
be compared against the new SLAM implementations in study,
and the data association method will be compared against the
individual methods presented in Section II-B.

The parameters used for testing both FastSLAM and Graph-
SLAM implementations are presented in Table I.

A. Mapping Results

In these tests were evaluated the overall map accuracy as
well as individual cone class accuracy in two different tracks.
The maps were acquired at a constant speed of 3.5 m/s,

TABLE I: SLAM Parameters

FastSLAM GraphSLAM
Number of Particles 50 N/A

New Landmark Threshold 0.02 0.02
Loop Closure Factor 0.8 0.8

Rr 0.4m 0.4m
Rθ 4◦ 4◦

Px 0.5m 0.1m
Py 0.5m 0.5m
Pϕ 5◦ 1◦

the minimum imposed by the competition regulations [2].
The maps obtained for the most demanding track are plotted
against the ground truth in Figs. 2(a), 3(a) and 4(a).

(a) Map (b) RMSE per cone class

Fig. 2: FastSLAM 1.0

(a) Map (b) RMSE per cone class

Fig. 3: FastSLAM 2.0

(a) Map (b) RMSE per cone class

Fig. 4: GraphSLAM

In Figs. 2(a), 3(a) and 4(a) are evident the improvement
from the first implementation of SLAM within the team to
FastSLAM 2.0 and even more when compared to the proposed
GraphSLAM implementation.

In order to quantify this improvement, the root mean
squared error (RMSE) per cone class as a function of
the travelled distance was computed and is presented in
Figs. 2(b), 3(b) and 4(b), .
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From the analysis of the Figs. 2(a), 3(a) and 4(a) is
notorious that the error decreases from FastSLAM 1.0 to 2.0
and even more in the case of GraphSLAM. Moreover, the
propagation of the error due to the drift in the pose estimate
is evident in the FastSLAM implementations, see Figs. 2(b)
and 3(b). In addition, in Fig. 4(b) the role of the optimization
in the GraphSLAM implementation is well demonstrated by
reducing drastically the map overall error after loop closure
detection from 1.37 m to 0.42 m.

The total RMSE of the maps obtained with each algorithm
is presented in Table II.

TABLE II: Total RMSE of each implementation per track

Total RMSE [m]
FastSLAM 1.0 FastSLAM 2.0 GraphSLAM

Track 1 1.44 0.96 0.35
Track 2 1.68 1.06 0.41

Through the analysis of Table II that the current Graph-
SLAM implementation represents an improvement in terms
of mapping accuracy of 75% over the initial FastSLAM 1.0
implementation and 62% over FastSLAM 2.0, whistle being
considerably more efficient and robust.

B. Localization Results

In the absence of a way to estimate the real position of the
car along the track, the validation was done by overlapping the
uncorrected and corrected trajectories over the ground truth
map and by performing a qualitative analysis of the results.

The test was conducted using a previously attained map of
the track, during one the autocross runs, and utilizing only the
localization capabilities of the algorithms. In Fig. 5 are shown
the results in terms of localization for the most demanding
track used in testing.

(a) Centerline (b) FastSLAM 1.0

(c) FastSLAM 2.0 (d) GraphSLAM

Fig. 5: Comparison of the localization results (in red) against
the trajectory obtained from raw odometry data (in green).
In (a) is represented, in orange, the path that the car is
following.

From the analysis of Fig. 5 several important conclusions
can be taken. The first is the point from which the pose esti-
mate obtained from the raw odometry measures, i.e. , without

correction, starts to divert, caused by the error associated to
the odometry measurements accumulated over time, causing a
drift in the pose. The second is the improvement in FastSLAM
2.0 (Fig.5(c)) pose estimate over FastSLAM 1.0 (Fig.5(b)),
thanks to the new sample distribution that takes into account
the current observations to enhance the pose sampled from the
motion model. The third and last conclusion is the superior
results attained using the proposed method for localization
using GraphSLAM in Fig. 5(d).

C. Data Association Results

The data association accuracy of the proposed implementa-
tion in Section III-E was compared to the individual methods
presented in Section II-B by mapping the observations in the
global map frame connected to the associated landmarks.

(a) Maximum Likelihood + Individual
Compatibility

(b) Joint Compatibility Branch and Bound

(c) Maximum Likelihood + Tracking In-
formation

Fig. 6: Accuracy of the data association methods in real data.
The green dots correspond to observations mapped into the
world frame, red dots correspond to the landmarks in the map
and the edges represent the mapping between observations and
landmarks after the data association process.

The results of this test for the data association methods
in study are present in Fig. 6. Just by observation, it is
noticeable that the errors in the data association process are
significantly reduced when using JCBB instead of the ML+IC
method. On the other hand, when comparing the proposed
data association method combining ML, IC and tracking
information to JCBB, a smaller amount of data association
errors is also noticeable. Putting the results into quantitative
measures the ML method held an accuracy of 91%, the JCBB
of 95% and the proposed method of 98%. The accuracy of
the data association process was obtained by evaluating if the
distance between the observation and the associated landmark
was within the expected radius of a cone. A discrimination of
these accuracy measurements is presented in Table III.
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TABLE III: Accuracy of the different data association methods

ML + IC JCBB Proposed Method
Correct Data Associations 2029 2118 2186

Miss Data Associations 201 112 44

The data association errors are clearly evidenced in
Figs. 2(b), 3(b) and 4(b), corresponding to the spikes seen in
the error plots of the different cone classes. The GraphSLAM
algorithm using the proposed data association method had a
maximum data association error of 1.6 m, whereas FastSLAM
1.0 in the same conditions reached 1.76 m. The larger data
association error in FastSLAM does not necessarily evidence
an error in the data association algorithm itself, but instead,
is a consequence of the correlation between the error in the
pose estimate and the mapping of the landmarks.

V. CONCLUSION

At the beginning of this thesis, we set as objective pro-
viding FST with a SLAM algorithm that held consistent and
accurate results. To accomplish that, the natural progression
was transitioning from FastSLAM 1.0 to 2.0 which, even so,
did not deliver satisfactory results, something that is evident
in the mapping results presented in Section IV-A. Bearing in
mind this conclusion, a full SLAM approach was implemented
and tested which proven, not only, much more accurate but
also much more reliable, robust and easy to tune, given our
current setup. With this new approach we are able to achieve
good performances regarding mapping speeds and recover an
accurate map that can be used in the subsequent laps.
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H. Blum, V. Reijgwart, L. Bernreiter, L. Schaupp, J. J. Chung et al.,
“Accurate mapping and planning for autonomous racing,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 4743–4749. 6, 8

[33] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,” Bull. Calcutta
Math. Soc., vol. 35, pp. 99–109, 1943. 8


