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1. Abstract 

 Candida parapsilosis has seen one of the most significant rises in incidence among pathogenic 

Candida spp., often taking second place only to C. albicans. Adding to this increased incidence is the 

rise in resistance to first line antifungals and lack of adequate alternative therapeutics, not only for C. 

parapsilosis but throughout the genus. Genome Scale Metabolic Models (GSMMs) have risen as a 

powerful in silico tool for the understanding of pathogenesis due to their systems view of metabolism 

and, above all, drug target predictive capacity. In this project a metabolic model for the human pathogen 

C. parapsilosis was constructed – CparMM – comprising 1112 genes, 598 proteins, 2892 reactions and 

2885 metabolites across four compartments. Upon extensive manual curation this model was 

experimentally validated and proven to quantitatively predict biomass production, as well as predict C. 

parapsilosis’  ability to use several metabolites as sole carbon or nitrogen sources. From the resulting 

validated model, a list of predicted essential genes common to other major pathogenic Candida spp. in 

mimicked host conditions was obtained. Among these predicted drug targets, 18 were found to be 

entirely new, for which no previous inhibitor was ever assigned. Additionally, Fol1, Abz1, Cab1 and Cab5 

seem to be rather promising putative novel drug targets, as they represent the possibility of inducing 

systemic metabolic impairment by targeting central metabolism.  

Key Words: C. parapsilosis; Genome Scale Metabolic Model; Resistance; Antifungals; Fungaemia. 

 

2. Introduction 

In a world of climatic and consequent social change, human susceptibility to microbial disease is 

increased. In particular, fungal infections have seen a significant rise in incidence worldwide since the 

1980’s, with Candida spp. accounting for the majority of cases 1. Furthermore, although Candida 

albicans is generally still the most common isolate, the 1990s saw a shift in incidence within the genus, 

towards Non-Candida albicans Candida species (NCAC) 2. From these, Candida parapsilosis has seen 

one of the most significant increases, often surging as the second most common etiological agent of 

Candida spp. infections worldwide, subverting historical trends in species incidence and even outranking 
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C. albicans in some European countries 3.  Non-geographically restricted and with  a broad range of 

virulence factors, adding to C. parapsilosis’ already complex pathogenicity, is both the rise in resistance 

to first-line antifungals and intrinsically lower susceptibility to alternative therapies  – such as azoles 4 

and echinocandins 1 respectively. Thus, there is a strong need to not only develop new antifungal 

therapies but also develop new, adequately paced, research tools for the understanding of the 

metabolism of pathogenesis, how to impair it, impair the pathogen’s growth and ultimately impede its 

consequent establishment of infection. 

Genome Scale Metabolic Models (GSMMs) have surged as a Systems Biology approach and 

solution for this issue 5. GSMMs correspond to the in silico  reconstructed metabolic network of a given 

organism 6 and thus allow for a systems perspective of metabolism. In the little more than 20 years since 

the publication of the first model 7, GSMMs have proven their applicability and versatility guiding strain 

design in metabolic engineering, to elucidating novel drug target discovery in molecular medicine8. Their 

applicability stems from their ability to predict the effects of specific reaction disruptions on reactions 

somewhere else in the network, before any kind of wet-lab setup 9. As the name itself conveys, GSMMs 

have as a fundamental principle the idea that the genome, albeit indirectly, codes for the metabolic 

network of the cell. Thus, the fundamental triad of GSMMs consists of Gene-Protein-Reaction 

associations (GPR), whose establishment can be done based on the accumulated knowledge of more 

than a century of biochemical research 9. Consequently, GSMMs are a platform for the integration of 

many kinds of information at many different levels and are thus permanently targetable for further 

complementation and improvement, proving a powerful tool for the future of the metabolic understanding 

of disease.  

In this project a  GSMM for the human pathogen C. parapsilosis was constructed and validated. 

From the validated model a set of predicted essential genes and reactions common to other pathogenic 

Candida spp. was obtained, and their targetability as putative novel anti-fungal drug targets was 

discussed and evaluated. 

 

3. Materials and Methods 

The herein described metabolic model reports to the yeast Candida parapsilosis with the 

taxonomic ID 5480. Henceforth, this model will be referred to as CparMM (C. parapsilosis Metabolic 

Model). Construction was performed using merlin 4.0.5 10 as the basilar software. Model construction 

comprised two main stages – metabolic network reconstruction and subsequent validation – figure 1. 

Metabolic network reconstruction comprised an initial semi-automatic obtaining of a draft reconstruction 

followed by extensive manual curation. Manual curation assured the network’s connectivity – this is, 

assured all biomass precursors’ synthesis - and comprised both a pre and a post-compartmentalisation 

stage. Compartmentalisation was implemented on an already connected and superficially validated 

network so to simplify compartment related issue solving.  

Finally, the model’s reaction and gene essentiality were predicted and assessed in mimicked 

host conditions, and coalesced with predictions from other published models for two other major 

pathogenic yeasts - C. albicans11 and C. glabrata 12. 
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3.1 Enzyme and Reaction Annotation 

Initial draft model construction comprised enzyme and subsequent reaction annotation. Enzyme annotation 

resulted from the implementation of the Basic Local Alignment Search Tool (BLAST) 13 of C. parapsilosis’ amino 

acid sequences against remote databases - UniProt-SwissProt and UniProt-TrEMBL 14. The amino acid sequences 

were retrieved from NCBI 15. Hit selection was based on phylogenetic proximity as described in Tsui et. al 2008 16. 

Subsequent reaction annotation resulted from the integration of data from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) 17 in the model. Manual curation likewise resorted to the same databases along with literature 

research.  

 

3.2 Correcting Reaction Reversibility, Directionality and Balance 

Initial meta curation was performed with resort to a merlin integrated tool which implements information from 

the remote tool eQuilibrator 18. Further curation was entirely manual and justified with resort to information from 

MetaCyc 19 and existing literature. Unbalanced reactions were identified automatically and balancing was performed 

manually and justified with resort to MetaCyc, CheBi 20, Brenda 21 and existing literature. 

 

2.3 Assuring Network Connectivity  

The biomass equation served as the first line criterium in the pipeline of blocked or missing reaction 

identification. Components of the equation whose production was not assured by the initial draft model – gaps - 

were first identified individually. Each of these was located in the network, blocked or missing reactions were 

identified and located, and possible issues assigned. Corrections and reaction addition were justified with resource 

to literature search, remote databases such as MetaCyc, Brenda, Candida Genome Database (CGD) 22 and 

UniProt, and to the already validated and published models for S. cerevisiae iMM904 23 and iND750 24 – all edited 

reactions are shown in the supplementary excel file S1.  

 

3.4 Compartmentalisation  

Compartmentalisation was implemented with resort to WoLF PSORT 25, a protein localization predictor. 

Compartmentalization was also only implemented on the already connected non-compartmentalised model in order 

to simplify respective issue solving. 

 

Figure 1: Schematic representation of the general procedure behind the construction of the herein described 

model. Draft model construction implements mainly automated tools and thus its relatively shorter time span. 

Manual curation involves a series of non-hierarchical aspects to be assessed and corrected, thus the bidirectional 

arrows. The workflow of this second stage of curation is similar for both the non- and compartmentalised model. 
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3.5 Biomass Equation 

The herein used biomass equation includes data from C. parapsilosis, Candida albicans, Candida tropicalis 

and Saccharomyces cerevisiae due to lack of C. parapsilosis’ specific literature regarding biomass composition. 

The discerned components of the biomass equation along with their relative content are shown in the supplementary 

excel file S1. 

 

3.6 Validation 

3.6.1 Growth Media and Strains 

C. parapsilosis type strain ATCC 22019 was batch cultured at 30 ºC in orbital agitation (250 rpm) in Yeast 

Extract-Peptone-Dextrose (YPD) for inoculate cultivation, Synthetic Minimal Media (SMM) for growth parameter 

determination, and Yeast Nitrogen Base either without amino acids or ammonium sulphate for carbon and nitrogen 

source usage assessment. Media composition are as follows: YPD: 20 g/L glucose (Merck), 20 g/L (Merck) and 10 

g/L yeast extract (Merck); SMM: 20g/L (Merck), 2.7 g/L ammonium sulphate, 0.05 g/L magnesium sulphate, 2 g/L 

potassium dihydrogen phosphate, 0.5 g/L calcium chloride and 100 µg/L biotin; Carbon source assessment with 

YNB: 5 g/L carbon source and 6.8 g/L YNB without amino acids; Nitrogen source assessment YNB: 5 g/L glucose 

(Merck), 2.7 g/L nitrogen source and 1.7 g/L YNB without ammonium sulphate. Solid media contained an additional 

2 g/L agar (Iberagar).  

 

3.6.3 Assessing Carbon and Nitrogen Source Usage 

The model’s ability to predict biomass production using several compounds as sole carbon or nitrogen 

sources was compared to literature based in vivo observations. For the few disparate literature based and predicted 

results wet-lab growth was assessed using the lab isolate C. parapsilosis type strain ATCC 22019. Growth was 

assessed in solid YNB media. Inoculates were first diluted in sterile water to an OD600nm of 0.05. Three consecutive 

C. parapsilosis cell suspensions – 10-1, 10-2 and 10-3 – were plated as 4 µL spots and the plates were incubated at 

30 ºC for 24 hours.  

 

3.6.4 Determining Glucose Consumption Rate in Batch Culture 

Cultures for determining the glucose consumption rate (Yx/s.mmol.gDCW-1.h-1) were performed in SMM. 

Inoculates were diluted to an initial OD600nm of 0.3 and incubated at 30 ºC in orbital agitation (250 rpm) for 10 hours.  

Growth in liquid media was monitored by measuring culture OD600nm. Samples of 4 mL for determining dry biomass 

and glucose concentration were taken every 2 hours and centrifuged at 13000 rpm for 3 min. The culture 

supernatant was collected for glucose concentration determination and the pellet was used for determining dry cell 

weight.  Biomass was measured as the mass difference of each sample tube while empty vs. after lyophilization of 

each sample. Glucose concentration was determined by HPLC on an Aminex HPX-87 H Ion Exchange 

chromatography column eluted with 0.0005 M H2SO4 at a flow rate of 0.6 mL/min at room temperature. 

Concentrations were determined with resource to the adequate calibration curves.   

 

3.7 Simulations and Flux Based Analysis 

Simulations were performed using OptFlux 26 and served the assessment of the model’s Consumption vs. 

Production profile as well as essentiality predictions – allowing for the tracing of flux through the network. 

Essentiality predictions were performed in simulated RPMI 1640 medium 27. Assessment of CparMM’s 

Consumption vs. Production profile was performed in simulated SMM and guided by those of the published models 
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iND750 for Saccharomyces cerevisiae 24 and iRV781 for C. albicans 11. Carbon and nitrogen source assessment 

were performed in simulated SMM, either substituting the reference glucose or ammonia with the test sources.  

 

4. Results and Discussion 

4.1 Model Characteristics 

The herein describe metabolic model for C. parapsilosis - CparMM - is a compartmentalised model 

comprising 1112 genes, 598 proteins, 2892 reactions and 2885 metabolites across four compartments 

– extracellular, cytoplasm, mitochondria, and peroxisome. Manual curation assessed a total of 408 

reactions from which 83 were mass balanced, 162 were corrected in regard to reversibility or 

directionality, and 163 had their annotation corrected or completed, were added or removed.  

CparMM is capable of predicting biomass production at a biologically justifiable nutritional cost 

coherent with that observed for other published models for S. cerevisiae  24 and C. albicans 11 – figure 

2. Note that biotin consumption by both Candida models, while not being present in iND750, results from 

Candida spp. being auxotrophic for this vitamin 28. Note as well that the production of the chimeric 

metabolites Pyridoxal phosphate Residue and L-Histidine Residue results from the mass balancing 

solution implemented on the reaction with the KEGG ID R10686. Furthermore, glycolaldehyde 

production is also of notice, resulting from its non-connectivity to the network and the impossibility of 

metabolite accumulation due to the assumption of steady state. 

 

 

 

 

 

 

 

Figure 2: Schematic representation of the consumption/production profiles of the three models, showing their 

respective similarities and differences. Note both Candida spp. models are producing Pyridoxal phosphate and L-

Histidine residues, due to the mass balancing solution implemented for the reaction with the KEGG ID R10686. 

Biotin consumption by both Candida models result from Candida spp. being biotin auxotrophic. 

 

CparMM also shows a reliable ability to predict biomass production using different compounds as 

sole carbon or nitrogen sources, having made 85% correct predictions from the 34 tested compounds – 

table 1. Furthermore, CparMM has been shown to make reliable quantitative predictions of rate of 

biomass production relative to a given corresponding glucose consumption rate. For an experimentally 

determined glucose consumption rate of 2.098 +/- 0.404 mmol.gDCW-1.h-1 CparMM predicts a specific 

growth rate of 0.180 h-1 being the corresponding experimentally determined 0.159 +/- 0.027 h-1.  
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Moreover, in simulated RPMI growth medium a total of 129 genes and reactions were predicted as 

essential in CparMM, 37 of which were common to the two other foremost pathogenic Candida spp. 

models – C. albicans 11 and C. glabrata 12. 

 

4.2 Assessing the Predictive Reliability of Carbon and Nitrogen Source Usage  

Beyond its Consumption vs. Production profile, CparMM’s predictive reliability was further 

cemented by assessing its ability to predict biomass production using different sole carbon or nitrogen 

sources relative to in vivo observations. In total 34 different carbon and nitrogen sources simulated in 

SMM were assessed – simulation results shown in table 1. Experimental validation was performed for 

some initially contradictory results - literature based vs. predicted results – by assessing growth in solid 

media. The results are shown in figure 3 below. 

 

 

 

 

 
 

Figure 3: Growth essays on solid YNB medium, 24h incubation at 30ºC, with different sole carbon or nitrogen 

sources for the experimental validation of contradictory predicted vs. literature observed biomass production. Glu 

– glucose (underlined carbon control); Cel – cellobiose; Gly – glycerol; Raff – raffinose; Rib – ribose; Succ – 

succinate; Am – ammonia (underlined nitrogen control); Lys – L- lysine. 

 

Table 1: Simulation results for several different carbon and nitrogen sources alongside in vitro described data. From 

the 34 different tested compounds, CparMM correctly predicted growth on 85 %. Biomass production is represented 

by a plus (+), no biomass production by a minus (-) and prediction disparities are in underlined italic. Experimentally 

validated sources are noted with an asterisk (*).                                                                                                                 
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Glucose* + + 

[29] 

Ethanol + + 

[30] 

Ammonia* + + 

[30] Maltose + + Methanol - - Nitrite - - 

Sucrose + + Acetic Acid + + Nitrate - - 

Lactose - - Succinate* + + # L-Lysine* + + # 

Galactose + + Inulin - - 
[30] 

Ethylamine - + 

[30] 

Raffinose* - + 
# 

Ribitol - - Creatine - - 

Cellobiose* + + Ribose* + + # D-Tryptophan - - 

Galactitol - - 

 
[31] 

Mannitol - + 

[30] 

Glucosamine + - 

Trehalose - - L-Arabinose - - Cadaverine - + 

Xylose + + Citrate + +     

Inositol - - Erythritol - -     

Salicin - - 
[30] 

Glycerol* + + #     

Arbutin - -         
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 Although in different extents C. parapsilosis is capable of growth in all the tested conditions – 

figure 3. This results in a de facto incorrect prediction for raffinose for which CparMM predicts no 

biomass. The case for glycerol as a carbon source not generating biomass might be made, given the 

significant lesser extent of growth relative to the other plate growths. It could be that growth resulted 

from residual nutrients from the initial inoculate medium. However, if this was the case the most likely 

observation would be that while the first dilution (10-1) would result in faint growth, no growth would be 

observed for any subsequent dilutions – which was not the case. Two possible reasons might explain 

this observation – C. parapsilosis is relatively less efficient in using glycerol as a carbon source and/or 

initial inoculate optical density was erroneously lesser. 

From the 34 tested sources, CparMM predicts disparate results for five which translates to 

around 85% correct predictions relative to the 71% prior to curation - and consequently 15% incorrect 

predictions. Even so, this reflects the reliable predictive capacity of CparMM. Note the relative extent of 

manual curation within the greater universe of the model’s close to 3000 reactions.  

 

4.3 CparMM’s Growth Parameters: Glucose Consumption Rate vs. Specific Growth Rate 

Due to lack of literature data regarding C. parapsilosis’ specific glucose consumption rate and 

its respective and resulting growth rate in SMM, these parameters were experimentally determined. The 

main objective of this step was the assessment of how similar the predicted and experimentally 

determined growth rates were for a corresponding and likewise experimentally determined glucose 

consumption rate. These parameters were obtained as the slopes of two linear regressions as described 

in Sauer et al. 32. The experimentally determined parameters along with the corresponding CparMM 

predicted specific growth rate value are shown below in table 2.  

 

 

Table 2: For the experimentally determined glucose consumption rate of 2.098 +/- 0.404 mmol.gDCW-1.h-1 CparMM 

predicts a specific growth rate of 0.180, relative to the experimentally determined rate of 0.159 +/- 0.027 h-1. The 

predicted growth rate is within the uncertainty interval of the experimentally determined parameter and thus there 

is no significant difference between both, reflecting CparMM’s predicate reliability. 

 Experimental Predicted 

YX/S/ mmol.gDCW-1.h-1 2.098 +/- 0.404 

µ/h-1 0.159 +/- 0.027 0.180 

 

 

As shown above, for a glucose consumption rate of 2.098 +/- 0.404 mmol.gDCW-1.h-1 CparMM 

predicts a specific growth rate of 0.180 h-1 relative to the experimentally determined 0.159 +/- 0.027 h-1. 

This predicted value not only is fairly similar to its experimental counterpart, as it is well within its 

corresponding uncertainty interval which translates in no significant difference between both. This is, 

CparMM is curated to an extent that beyond the qualitative verisimilitude discussed previously, it seems 

to be strikingly reliable also from a quantitative predictive perspective. 
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4.4 Predicting and Discussing Gene and Reaction Essentiality  

A CparMM simulation in RPMI 1640 medium resulted in a total of 129 predicted putative targets, 

from which 87 correspond to essential genes and 42 to essential reactions annotated with multiple genes 

- each of the predicted essential genes or reactions representing putative novel anti-fungal drug targets. 

As discussed previously, although C. albicans is still generally the most frequent cause of infection, 

other species such as C. parapsilosis and C. glabrata have seen relevant rises in incidence. 

Furthermore, in some instances infection is of mixed nature, leading to cases of breakthrough 

candidemia by species other than C. albicans  33.  It is then of interest to try and identify putative targets 

that span these species in order to maximise their applicability in the long term. Thus, CparMM’s 

predicted essentiality was intersected with that of other published models for C. albicans 11 and C. 

glabrata in the same environmental condition. This intersection resulted in a total of 37 common 

essential ECs, from which 18 are not associated to any active drug according to the information retrieved 

from the DrugBank 34 – representing entirely novel putative drug targets. Interestingly, these 

interception’s results also include essential ECs that have already been validated as essential and have 

associated in-use drugs – such as those annotated to ERG11 and the  FKS genes -, conferring an 

added level of validation to CparMM’s predictive reliability 

A first set of foremost interesting genes are the FOL1 and ABZ1 genes. Fungi and consequently 

Candida spp. rely on folate de novo biosynthesis given their inability to uptake folate from the 

environment 35. Targeting these kinds of metabolic chokeholds and thinking from an auxotrophy inducing 

perspective represents a straightforward way of compromising the cell’s growth. Both FOL1 and ABZ1 

encode proteins responsible for two folate precursor synthesising reactions. Furthermore, these genes 

do not present human orthologs since human metabolism does not synthesise folate, relying on diet 

derived folate 35. Note that the absence of a human ortholog although not an excluding factor, is a 

preferable attribute since this translates into lower chances of host drug toxicity and may allow for 

greater freedom of drug design. The dihydropteroate synthase encoded by FOL1 has been shown to be 

successfully inhibited by antifolates such as sulfones in a series of microorganisms – from Escherichia 

coli to Plasmodium falciparum 34,35. However, antifolate therapy for Candida infections is not particularly 

effective considering current antifolate compounds 36. In fact, for C. albicans only sulfanilamide is used 

clinically, although restricted to topical use 37. Given the efficacy of antifolates in treating infections by 

other etiologic agents, this might present the opportunity to design new effective antifungal compounds. 

In its turn the para-aminobenzoate synthetase encoded by ABZ1 does not seem to have any assigned 

drug neither for Candida nor for other organisms, and in that sense represents a fully novel putative 

drug target. On one hand, this putative target might present an alternative to FOL1 in the possibility of 

no effective Fol1p targeting compounds. On the other, this might also present the possibility of a 

combined targeting strategy, referring back to the idea that multiple and simultaneous targeting, 

although in smaller extents, might be relatively more effective. This is, it could be that this combined 

therapy could overcome the current inefficacy of antifolate compounds for treating Candida spp. 

infections. 
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A second set of interesting predicted essential genes common to the three considered species’ 

models are CAB5 and CAB1. Coenzyme A (CoA) is a major if not the major cosubstrate of many 

biosynthetic reactions across the cell’s metabolism  - acting as an acyl group carrier for, among others, 

fatty acid biosynthesis which have a major role in cellular structural integrity. Inhibiting CoA and 

subsequent Acyl-CoA biosynthesis represents a good manner of inducing general metabolic 

impairment. Both Cab1p and Cab5p are essential for CoA biosynthesis and thus both these putative 

targets represent the fundamental possibility of inducing systemic metabolic impairment by targeting 

one specific metabolite’s synthesis. Furthermore, they have already been described as targetable even 

if to different extents. In this sense they represent a pair of quite relevant and interesting predicted 

targets.  

Furthermore, other predicted essential genes likewise present as interesting putative novel drug 

targets. A set comprising URA3, URA4, URA5 and URA7, and another comprising  ERG7, ERG26 and 

ERG27. Justifying these genes’ interest are their relative position in the network since each are 

annotated to consecutive reactions – with the exception of ERG7. This consecutiveness presents the 

possibility of putative alternative combined therapies utilizing inhibiting compounds that although not 

particularly effective on their own, would cumulatively inhibit these pathway branches for instance. 

Moreover, the set comprising the ERG genes’ interest is further cemented by their pertaining to an 

already targetable pathway – referring back to ERG11. Furthermore, the majority of these genes’ 

encoded proteins have been shown to be essential in C. albicans and have assigned effective inhibiting 

compounds in other organisms.  

 

Conclusions and Perspectives 

In this project a metabolic model for the human pathogen C. parapsilosis was constructed – 

CparMM – comprising 1112 genes, 598 proteins, 2892 reactions and 2885 metabolites across four 

compartments. Upon extensive manual curation this model was experimentally validated and proven to 

quantitatively predict biomass production, as well as predict C. parapsilosis’  ability to use several 

metabolites as sole carbon or nitrogen sources. Still, the model would benefit from a final evaluation 

step of a number of unconnected reactions which, although not affecting the model’s performance when 

evaluating central metabolism, deserve further scrutiny.  

From the resulting validated model a list of predicted essential genes common to other major 

pathogenic Candida spp. in mimicked host conditions was obtained. Among these predicted drug targets 

18 were found to be entirely new, for which no previous inhibitor was ever assigned. Additionally, Fol1, 

Abz1, Cab1 and Cab5 seem to be rather promising putative novel drug targets as they represent the 

possibility of inducing systemic metabolic impairment by targeting central metabolism. It would be 

interesting to apply in silico docking methodologies to these predicted drug targets, allowing for the 

selection and designing of inhibitory molecules to be tested as putative novel anti-fungal drugs.  
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