
Bike Sharing System Simulator with User Incentive Methods

Rodrigo Miguel de Jesus Plácido

Thesis to obtain the Master of Science Degree in

Mechanical Engineering

Supervisors: Prof. Duarte Pedro Mata de Oliveira Valério
Prof. Susana Margarida da Silva Vieira

Examination Committee

Chairperson: Prof. Carlos Baptista Cardeira
Supervisor: Prof. Duarte Pedro Mata de Oliveira Valério

Member of the Committee: Prof. António Ramos Andrade

September 2021



Dedicated to my life inspiration and forever beloved grandfather.

ii



Acknowledgments

I would like to express my appreciation to EMEL for collaborating with me in this study.

I am particularly grateful for the counselling and monitoring given by my two supervisors: Duarte Valério

and Susana Vieira, whose timely and meticulous feedback were crucial to the writing of this thesis.

Ultimately, a thank you is not enough to express my gratitude to all my family and friends. A special thank

you to my mother and sister for their patience and unconditional support, without whom nothing would

have been possible; to my grandparents who are everyday inspiration of how hard work and honesty

pay off; to my girlfriend who pushes me to be better every day. For this, I am extremely grateful.

iii



Resumo

O interesse em criar cidades sustentáveis e verdes livres de emissões de carbono cresceu nas últimas

décadas, com os meios de transporte não poluentes a assumirem um papel fundamental neste pro-

cesso de desenvolvimento. Ao aderir a estes critérios, e ao conceito de mobilidade partilhada, surgiram

os Sistemas de Bicicletas Partilhadas (SBP). Estes estão presentes em centenas de cidades e são

hoje uma alternativa competitiva aos automóveis, metro ou autocarros. No entanto, a sua manutenção

em condições perfeitas, para que os clientes finais tenham sempre uma boa experiência, não é uma

tarefa fácil. Os fluxos de bicicletas tendem a gerar uma falta ou excesso das mesmas em algumas

estações, impedindo os utilizadores de as recolher ou largar. Existem duas grandes alternativas para

resolver este problema e levar a rede a uma condição estável: ou os operadores deslocam as bicicletas

utilizando veı́culos para as transportar entre estações, ou os utilizadores envolvem-se no processo de

balanceamento da rede através de incentivos. Este documento está centrado na segunda alternativa.

Para a avaliar foi criado e implementado um modelo baseado em dados históricos do SBP de Lisboa,

Gira, num software de simulação (Anylogic). Trata-se de um modelo baseado em agentes com uma in-

terface visual onde as viagens de bicicleta e os estados das estações podem ser observados em tempo

real, e onde alguns parâmetros do modelo podem ser facilmente alterados. Dois métodos de incentivo

ao utilizador foram computados e testados no simulador, tanto individualmente como em conjunto com

um reposicionamento noturno através de veı́culos. Após várias simulações, os resultados mostraram

que se todos os utilizadores participassem em tarefas de reposicionamento, seria possı́vel manter o

sistema equilibrado. Uma vez que esta não é uma tarefa fácil, concluiu-se que, para as metodologias

experimentadas, e de forma a manter os requisitos de ocupação das estações, os métodos de incen-

tivo ao utilizador e as tarefas de reposicionamento têm de ser utilizados em conjunto. O efeito que

os métodos de incentivo ao utilizador têm sobre o número de estações visitadas e de bicicletas trans-

portadas durante o reposicionamento é também mostrado. Embora neste trabalho sejam apresentadas

algumas conclusões valiosas, deve ser feita uma investigação futura sobre os custos relacionados com

os incentivos e o seu efeito nas tarefas de reposicionamento, tendo sempre em conta a percentagem

de cooperação dos clientes.

Palavras-chave: Sistema de bicicletas partilhadas, Incentivos ao utilizador, Reposiciona-

mento estático, Simulador

iv



Abstract

The interest in creating sustainable and green cities free of carbon emissions has grown in more re-

cent decades, with non-pollutant means of transportation taking a fundamental role in this development

process. By joining these criteria, and the concept of active shared mobility, Bike Sharing Systems

emerged. They are present in hundreds of cities and are nowadays a competitive alternative to cars,

metro or buses. Nevertheless, maintaining these systems in perfect conditions, so that final customers

always have a good experience, is not an easy task. Bike flows tend to generate a lack or excess of

bikes in some stations preventing users from picking up or dropping off bikes. There are two major al-

ternatives to solve this issue and bring the network to a steady condition: either operators relocate bikes

using trucks to transport them between stations, or users are engaged in the balancing process using

incentives. This document is focused on the second alternative. To evaluate it, a model was created and

implemented based on historical data from Lisbon BSS, Gira, in a simulation software (Anylogic). This

is an agent-based model with a visual interface where bike trips and station states can be observed in

real-time, and some model parameters can be easily changed. Two user incentive (UI) methods were

computed and tested in the simulator, both alone and in conjunction with a nightly vehicle repositioning.

After several simulations, results have shown that if all users participate in repositioning tasks, it would

be possible to keep the system balanced. Since this is not an easy task, it was concluded that, for the

experimented methodologies, and to maintain station level requirements, user incentive methods and

repositioning tasks have to be both used. The effect that UI methods have on the number of visited

stations and transported bikes during repositioning is also shown. Although some valuable conclusions

are presented in this work, future research about the costs related to UI and its effect on repositioning

tasks, also considering customer cooperation, must be taken.

Keywords: Bike-sharing system, User incentive, Static repositioning, Simulator

v



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1 Topic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related work 5

2.1 Static . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 User incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Theoretical background 11

3.1 Trip generation and trip time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Lognormal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 User behaviour and incentives model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



3.3 Repositioning problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Routing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 Clustering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Heuristic MIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.4 Skellam distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Gira BSS characterization 21

4.1 Geographical distribution and flow intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Temporal patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Operator tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Implementation 33

5.1 Used software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Trip generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 User behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.3 User incentives (UI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.4 Repositioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Anylogic simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.2 Simulator inputs/outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.3 Simulation procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.4 Visual interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Evaluation 47

6.1 Data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Parameters choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Verification and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Service level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6 Average extra effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.7 Lost users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



6.8 Repositioning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Conclusions and future research 63

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 65

Appendix A 71

A.1 Trip time figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Repositioning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.3 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.4 Principal simulator codes in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.5 Simulator user manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii



List of tables

5.1 AMSE between real and fit PMFs of the generated trips for all combinations of (sout, sin, t) 35

5.2 AMSE between real and fit PMFs of the total trip time from sout to sin for all combinations

of (sout, sin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Model versus simulation error metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Average service level (without NR; CC=1.0; Rad=1.0 km) . . . . . . . . . . . . . . . . . . 57

6.3 Average extra effort (without NR; CC=1.0; Rad=1.0 km) . . . . . . . . . . . . . . . . . . . 58

6.4 Average percentage of lost users (without NR; CC=1.0; Rad=1.0 km) . . . . . . . . . . . . 60

6.5 Repositioning results with 4 trucks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1 Principal parameters of agent Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Principal parameters of agent Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.3 Principal parameters of agent Person . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.4 Principal parameters of agent Bike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.5 Principal parameters of agent Truck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



List of figures

3.1 Poisson distributions for λ = 5, 15 and 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Lognormal distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Skellam distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Network geographic distribution (March 2019) . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Number of available docks in stations 105, 420 and 472 . . . . . . . . . . . . . . . . . . . 23

4.3 Number of available bikes in the network at 6 AM (start of operation) . . . . . . . . . . . . 23

4.4 Total number of trips per day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Trip intensity map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Average number of trips throughout a day for all weekdays . . . . . . . . . . . . . . . . . 25

4.7 Bubble plot of station difference between arrivals and departures . . . . . . . . . . . . . . 26

4.8 Station 305 daily (workday) pattern of arrivals and departures . . . . . . . . . . . . . . . . 27

4.9 Station 307 daily (workday) pattern of arrivals and departures . . . . . . . . . . . . . . . . 27

4.10 Station 486 daily (workday) pattern of arrivals and departures . . . . . . . . . . . . . . . . 28

4.11 Station 446 daily (workday) pattern of arrivals and departures . . . . . . . . . . . . . . . . 28

4.12 Station 481 daily (workday) pattern of arrivals and departures . . . . . . . . . . . . . . . . 29

4.13 Station 413 daily (workday) pattern of arrivals and departures . . . . . . . . . . . . . . . . 29

4.14 Percentage of tasks per type of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.15 Average number of repositioning visits per day at each station . . . . . . . . . . . . . . . . 30

5.1 PMF of the average number of trips between start and end stations (8:40 AM to 9:00 AM) 35

5.2 Real PMF and other PDF fit functions to trip time between start and end stations . . . . . 37

5.3 Stacked bar graph of types of cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Poisson distribution functions (λin=15, λout=10) . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Skellam distribution function (λin=15, λout=10) . . . . . . . . . . . . . . . . . . . . . . . . 39

x



5.6 Trust level distribution (λin=15, λout=10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7 Simplified flowchart of the Anylogic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Cumulative percentage of trips for different trip times . . . . . . . . . . . . . . . . . . . . . 48

6.2 Average number of trips throughout day - real versus simulation (Scenario 1; workday) . . 52

6.3 Average number of trips throughout day - real versus simulation (Scenario 1; weekend) . 52

6.4 Scenario (3) (no repositioning) VS scenario (4) (with repositioning) average number of

lost users throughout the day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Example of repositioning tasks in the map (4 trucks) . . . . . . . . . . . . . . . . . . . . . 54

6.6 Service level over 28 days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.7 Service level (without NR; Rad=0.5 km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.8 Service level (without NR; CC=0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.9 Service level (with NR; Rad=0.5 km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.10 Average number of neighbours around a station . . . . . . . . . . . . . . . . . . . . . . . . 58

6.11 Average extra effort (without NR; Rad=0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.12 Average extra effort (without NR; CC=0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.13 Average extra effort (with NR; Rad=0.5 km) . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.14 Percentage of lost users (without NR; Rad=0.5 km) . . . . . . . . . . . . . . . . . . . . . . 60

6.15 Percentage of lost users (without NR; CC=0.5) . . . . . . . . . . . . . . . . . . . . . . . . 60

6.16 Percentage of lost users (with NR; Rad=0.5 km) . . . . . . . . . . . . . . . . . . . . . . . 60

A.1 Real PMF (Lognormal fit) versus simulation PMF of trip time (all trips) . . . . . . . . . . . 71

A.2 Real PMF (Lognormal fit) versus simulation PMF of trip time (trips from 101 to 104) . . . . 72

A.3 Real versus simulation average number of repositioning visits per day at each station . . 72

A.4 Example of stations’ level before and after repositioning . . . . . . . . . . . . . . . . . . . 73

A.5 Agent Main in Anylogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.6 Agent Station in Anylogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.7 Agent Depot in Anylogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.8 Agent Person in Anylogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.9 Agent Bike in Anylogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.10 Agent Truck in Anylogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



List of acronyms

AMSE Average Mean Squared Error

BSS Bike Sharing System

CC Customer Cooperation

CPU Central Processing Unit

DB Database

M1 Method 1

M1-0.5 Method 1 with WPC=0.5

M1-0.7 Method 1 with WPC=0.7

M1-1.0 Method 1 with WPC=0.1

M2 Method 2

M2-0.7 Method 2 with WPC=0.7

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MIC Minimal Intervention Control

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

MSE Mean Squared Error

NC No Control

NR Nightly Repositioning

O-D Origin Destination

xii



PC-MA Preemptive Control via Mobile App

PDF Probability Density Function

PMF Probability Mass Function

Rad neighbourhood Radius

UI User Incentive

VAF Variance Accounted For

WPC-MA Weak Preemptive Control via Mobile App

xiii



Chapter 1

Introduction

In more recent years, Bike Sharing Systems (BSS) have been widely adopted in many major cities all

over the world. The adoption of the bike as a mean of transportation is expected to continue growing,

mostly due to governments’ efforts to face climate changes, reduce traffic, and also due to increasing

health awareness [1–3].

These systems consist of bikes spread around the city and where users can pick them up, travel to their

intended destination and drop off the bikes “at specific locations or anywhere in the city depending on

the type of (. . . ) system, locking technology, and payment mechanisms.” [2].

According to Nath and Rambha [2], two types of systems are recognised: free-floating, which allows

people to place bikes anywhere; and station-based, which forces people to pick up and drop off bikes

from stations. These stations may use docks or geo-fences to hold bikes. This document will only

address the second system type since the problem addresses Lisbon BSS, which is station-based.

However, with either free-floating or station-based, trips dynamics may take too many bikes from or

to determined stations emptying them out or overloading. There would be no problem if the difference

between arrivals and departures was kept close to zero; however, this does not happen for every station:

some are more propitious to have departures and other arrivals, leaving those stations in unbalanced

states. Besides the possibility of not encountering a bike if a station is empty, a problem that can be

solved by using other means of transport, stations might also be full. Actually, this represents a bigger

problem since it does not allow people to dock their bikes and consequently forces them to travel to

another station with empty docks.

The most common way to deal with this issue is by using trucks to move bikes between stations. BSSs

surpass this difficulty by applying either static repositioning (system rebalancing when the system is

closed for users, usually during the night shift) or dynamic repositioning (rebalancing operations while

the system is open for users) [2, 4, 5].

Another approach to this issue is by having a direct influence on user trips, recommending them to grab

bikes at stations highly occupied and/or drop off bikes at stations with low occupations. This alternative

1



may be achieved by changing the prices of trips (the most used technique), offering points, etc [2, 6, 7].

This work addresses Lisbon station-based BSS, Gira, and user incentive approaches to keep the system

balanced. An interactive agent-based simulation of Gira is created in Anylogic, based on treated historic

data, to estimate the impact of user-based approaches in service quality (percentage of customers

satisfied) and repositioning tasks of a Nightly Repositioning (NR). The following sections shall bring an

overview of the problem context and the present study importance to the scientific community.

1.1 Topic overview

The rise of automobile usage around the world led to an increasing concern on traffic and gas emissions;

consequently, eco-friendly transportation started to be promoted and widely adopted. According to

Maibach, Steg, and Anable [8], in first-world countries such as the United Kingdom, the Netherlands

and the United States of America, half of the car trips are “less than 5 miles” long, and one of the

alternatives are bike sharing systems since they are a good option for short-distance trips and increase

connectivity to public transportation networks. Their rapid growth in many countries is also due to lower

set up costs charged by this kind of system [2].

In 1965, the first generation of Bike Sharing System took its first steps in Amsterdam with only 50

bicycles (White Bicycle Plan) [9]. Followed by Vélos Jaunes in La Rochelle, France (1974) and Green

Bike Scheme in Cambridge, United Kingdom (1993) [2]. Bicycklen program in Copenhagen in 1991 was

one of the first second-generation BSSs [2]. They had the particularity of being coin deposit. Customers

had to insert coins to unlock bikes and would receive them back once they returned bikes.

These systems failed due to theft and security issues [2]. Since then, BSSs have undergone many

changes. The third generation was launched in 1995, with IT-based systems incorporating “advanced

technologies for bicycle reservations, pick up, drop off, and information tracking” [10]. The fourth genera-

tion was marked by the communication with a mobile app and “real-time information on bike availability”

[2]. Recently, the fifth generation emerged, and with it dockless bikes appeared, resulting in free-floating

setups [2]. From December 2016 onwards there are about a thousand cities with BSSs [11]. The ben-

efits of BSSs also include the fact that cycling is accepted as a healthy travelling choice for individuals,

over-weighting the health risks with a benefit/risk ratio of 19:1 [12]. Although BSSs have been encour-

aged by public agencies and users around the world, there are still some challenges to face, such as

maintenance costs, low profits, theft and vandalism [13–15]. Nevertheless, such issues have been ad-

dressed to a certain extent, through the use of technologies such as GPS or anti-theft alerts [16, 17].

Another problem for the success of BSSs is the user’s perspective of cycling as an unsafe commute

mode, with mixed traffic and the lack of dedicated bike lanes [2].

2



1.2 Motivation

Operating the rebalancing of a BSS by truck takes a lot of effort, leading to considerable costs and not

contributing to the “green” transportation goal if these are powered by pollutant fuels [6].

That is why any way of reducing the number of rebalancing trips by truck must be taken into consideration

and evaluated. The most used strategy is to constantly try to improve the rebalancing by reducing the

number of trips or travelled distance [18, 19], but there is another strategy that could have, or not, an

impact on system rebalancing: user participation [7, 20]. If every time a station is expected to be empty

or full the user accepts the alternative station that is presented to him, the probability of stations getting

full or empty would be reduced, as well as truck operating costs. Although this model seems ideal, it is

not guaranteed to be the best: incentive costs should also be taken into account to balance revenues

and expenses [2].

Lisbon BSS, Gira, has already implemented a user incentive strategy for people docking bikes on sta-

tions with occupations below 30% and departing from a station with an occupation above 70% [21]. The

incentives received consist of attributing extra points, in this case, 100 points, that can be used to pay

for future trips, since 500 points worth 1C and a daily pass costs 2C.

However, the impact of this or other strategies has not yet been tested in the past. This work will attempt

to give some answers by evaluating the performance of a BSS with and without incentives, with varying

customer cooperation (CC) percentages.

1.3 Objectives

This study aims to understand how much impact users could have in the balance of Gira BSS, if they

actively participate in repositioning, by changing the start and end stations of their trips. It is also

intended to evaluate the effect that user incentive strategies could have in truck-based repositioning.

The following objectives have been set in order to fulfil this aim:

• Properly analyse data;

• Create a simulator of Gira BSS in Anylogic, based on historical data, with a visual interface for

configuration of variables and visualisation of bike trips around the city and station states;

• Implement two types of user incentive methods, with one analogous to the current methodology

used by Gira.

• Implement a static repositioning method.

3



1.4 Contributions

The model and the simulator presented in this thesis can be of major interest to Gira, given that it

evaluates the impact of a user incentive strategy by withdrawing information on the percentage of dis-

satisfaction and the impact on truck repositioning operations.

Another contribution is the simulator itself, which could be applied not just for the purpose of this thesis

but in different projects related to Gira.

1.5 Thesis outline

This document comprises 7 chapters:

• The first chapter introduces the problem under analysis, the methods used and the importance of

presenting solutions to address it. Afterwards, research objectives and contributions are stated.

This last section presents the structure of the document by chapter.

• Chapter 2 approaches relevant previous works related to this by topic of research. The method-

ologies and software used or the objectives traced by each are some of the issues addressed.

• Chapter 3 covers the theoretical background of this research by explaining the models applied and

the probability distributions used.

• To better understand Gira BSS, its characteristics, the patterns of its users, as well as the number

of redistribution actions implemented by operators, are introduced in chapter 4. A map of the

stations with their names and a trip intensity map is shown. Patterns along the day for the whole

system and for different types of stations are also addressed.

• Chapter 5 includes an analysis of the simulator implementation and the models proposed to eval-

uate the main topic of this thesis. All the choices and the assumptions made are explained, a

diagram of the simulation is shown and all simulator agents are presented.

• Chapter 6 starts by verifying and validating the simulator. Then, results withdrawn from several

simulations (with different models and parameters) are analysed. Models are compared, for exam-

ple, by service quality measures or the number of repositioned stations.

• Last chapter starts by assessing if the initial objectives were attained or not, presenting then the

conclusions and finally future research on the studied area along with some applicabilities this

simulator may have in the future.

4



Chapter 2

Related work

The growing importance of BSSs and all issues that might arise from them led to an increasing number of

articles about this subject. One of the most studied problems is repositioning. Ghosh and Varakantham

[22] categorise the repositioning research into three topics: static, dynamic and user-incentives. This

work is mainly focused on the latter but uses static repositioning to compare results obtained from a

BSSs simulator that was built for the purpose.

Some of the literature related to repositioning and BSS simulators is presented in this chapter.

2.1 Static

Static repositioning consists of finding the best routes and inventory instructions for a fleet of vehicles,

while the system is idle for customers to use, for example, during the night. The goal is to rebalance the

system so that every station achieves a pre-determined inventory level. This type of method is usually

processed overnight when the movement is negligible [22]. To evaluate formulations, considerations

such as objective function, computational running time, number of vehicles, stations and docks, etc.,

have to be considered. According to the used method to solve the repositioning problem, the available

literature can be divided into four types of solution methods: exact algorithm, heuristic or metaheuristic,

approximation method and hybrid algorithm.

Exact algorithm

Dell’Amico, Hadjicostantinou, Iori, and Novellani [18] proposed four different Mixed Integer Linear Pro-

gramming (MILP) formulations, setting as objective function the total travel cost and using as solver a

branch-and-cut algorithm. Its best formulation is able to solve “instances with up to 50 vertices” in one

hour using a fleet of vehicles. Their study includes data from 22 cities of 7 countries.

Melo [23] based its work on the second formulation of Dell’Amico et al. [18] and built two heuristics to

5



solve the problem. The first minimised travelled distances and rebalancing operation costs, while the

second did not contemplate operation costs. A set of 10 stations from Lisbon BSS (Gira), was used to

evaluate the efficacy of the heuristics. Heuristic 1 overcame heuristic 2 by presenting better solutions

for low computing times.

Just like Melo [23], Rodrigues [24] based its work on Dell’Amico et al. [18] formulations. This time, the

four formulations were evaluated, for 74 stations of Gira. He confirmed the conclusion of Dell’Amico

et al. [18] that the third formulation presented, generally, outperforms the remaining. Proposing route

length saves between 30% and 75% when compared to the initial route plan.

Most of the articles solve their models considering that, at the end of the repositioning, a predetermined

inventory level of bikes at each station should be attained. Erdoğan, Laporte, and Calvo [25], instead of

using a target level, considered target inventory intervals, calling the problem: Static Bicycle Relocation

Problem with Demand Intervals, “a variant of the One Commodity Pick up and Delivery Travelling Sales-

man Problem” studied by Hernández-Pérez and Salazar-González [26, 27]. A branch-and-cut algorithm

with Benders decomposition is used to solve this problem. Only one vehicle and virtual networks of 30,

40 and 50 stations were considered for the study. Instances take, on average, less than six minutes to

be solved.

Approximations

Benchimol, Benchimol, Chappert, De La Taille, Laroche, Meunier, and Robinet [28] presented two so-

lution techniques to solve the pickup-and-delivery problem: a 9.5-approximation algorithm, and a 2-

approximation greedy algorithm, respectively meaning that the found solution is 9.5 and 2 times lower

than the optimal balancing tour, represented by the optimal value of an integer linear program. The

model was designed for a single vehicle with the ability to visit the same station more than once, and the

objective of minimising total travel distance. Nevertheless, they do not provide computational results.

Heuristic or metaheuristic:

The objective of Rainer-Harbach, Papazek, Raidl, Hu, and Kloimüllner [19] was “minimising the tours’

total duration and the overall number of loading actions”. They received data from Citybike Wien and

compared the method GRASP/PILOT (Greedy Randomised Adaptive Search Procedure / Preferred

Iterative LOok ahead Technique) hybrid with Variable Neighborhood Search with Greedy Heuristic. Their

work considers up to 700 stations repositioned and up to 21 vehicles. The time limit was set to one hour

for the largest instances (180 to 700 stations), 30 minutes for medium (60 to 90 stations) and 15 minutes

for smaller (15 stations).

Ho and Szeto [29] used iterated tabu search as the metaheuristic solver and as objective a penalty

cost function based on inventory levels after repositioning. Their method achieved results in less than

a second, deviating less than 0.5% from the optimal when considering less than 100 stations and one

6



vehicle. The time increased to 8 seconds when considering 400 stations. However, they assumed that

the depot could be visited more than once during repositioning, being both the pick up and drop off node,

and with sufficient bikes to deal with all demand.

Schuijbroek, Hampshire, and van Hoeve [30] proposed a cluster first route second heuristic and com-

pared it with the Mixed Integer Programming (MIP) and a constraint programming. The objective function

consists of minimising the total travelled distance. Their heuristic handles multiples vehicles, which are

allowed to visit the same station more than once. It also claims the achievement of getting “In a minute,

(. . . ) better solutions for almost all instances than the best MIP solution after 2 hours”. Experiments

were carried out with real information from Hubway, in Boston, with 60 stations and 2/3 vehicles (vehicle

capacity = 22) to rebalance the system; and Capital Bikeshare in Washington with 135 stations and

5 vehicles (vehicle capacity = 5). Schuijbroek et al. [4] is its recent article update, where loading and

unloading time factors were added. This thesis’ work implemented the method of Schuijbroek et al. [4]

to get repositioning instructions.

Hybrid (of exact method and heuristic):

Chemla, Meunier, and Calvo [31] combined a branch-and-cut with tabu search. The first solves a re-

laxation of the problem, and the second obtains an upper bound of the optimal solution. They focus on

the single-vehicle problem and define the minimisation of the total travelling distance as a goal. Results

show solutions for networks with up to 100 vertices.

A three-step metaheuristic able to solve the problem for multiple vehicles is proposed by Forma, Raviv,

and Tzur [32]. The first step clusters stations considering the geographic position and inventory level.

The second routes a vehicle through each cluster to obtain inventory targets. The third solves the original

repositioning problem, taking into consideration the results from the previous steps. The difference from

this method to cluster-first route-second, e.g. Schuijbroek, Hampshire, and Van Hoeve [4], is vehicles’

ability to visit different clusters.

2.2 Dynamic

Static repositioning is a good option to reset a BSS to an ideal state or when stations have low fluctu-

ations throughout the day but performs poorly when the spatio-temporal demand patterns display high

variance, easily resulting in full/empty stations [2]. Dynamic repositioning tries to overcome these issues

by executing repositioning tasks throughout the day and in real-time.

According to Nath and Rambha [2] research on dynamic repositioning is broken down into two ap-

proaches. The first considers the operating period is divided into a finite number of time steps, assum-

ing time-varying demand as already known. This is an extension of static repositioning formulations but

repeated along the day [2]. An example of it is Ghosh, Varakantham, Adulyasak, and Jaillet [33] which

proposed an optimisation formulation for this problem setting as objective the reduction of lost customer

7



demand; The second approach breaks the overall problem into multiple dynamic rebalancing problems,

using a rolling horizon method. For every interval of time, demand is observed, forecasts are updated

for the next time interval and, finally, the rebalancing problem is solved based on new data. [2]. Shui

and Szeto [34] used the last approach. Their objective function was to reduce total unmet demand, fuel

and CO2 emissions of vehicles over the operational period.

2.3 User incentives

This category is characterised by the help of customers on stations’ rebalancing operations, in exchange

for an incentive. Price incentives are the most used approach, but there are other options like promo-

tions, points, extra minutes, etc.

Chemla, Meunier, Pradeau, Calvo, and Yahiaoui [7], for example, use an open-source simulator with

freely set parameters to evaluate and compare several heuristics with the intention of solving the dy-

namic problem (single-vehicle), which they proved to be NP-hard (Non-deterministic Polynomial-time

hard). A dynamic pricing strategy is also used to influence the users’ decisions in its ending station; and

compared against heuristics. Low, medium and high demand, as well as different network sizes, were

compared, in four hours of simulation.

Fricker and Gast [20] propose a stochastic model of a homogeneous bike sharing system; in other

words, all stations have the same capacity and demand rate. They analyse the influence of a two-choice

model. Users pick up two possible final destinations, chosen at random, and are influenced to return the

bike to the emptiest station. According to them, the state of the network was improved by an exponential

factor, with these incentives.

Unlike Chemla et al. [7] or Fricker and Gast [20], Pfrommer, Warrington, Schildbach, and Morari [5]

created a model based on historical data from London Cycle Hire. A tailored routing algorithm was com-

puted to redistribute bikes with multiple vehicles. In addition, the authors also created a dynamic price

incentive-based Model Predictive Control with the objective of optimising operating costs for a certain

service level. Results have shown that considering only price incentives without staff redistribution, ser-

vice level could be kept above 87% on weekends. During workdays, especially during rush hours, price

incentives were insufficient.

A dynamic pricing mechanism, using the approach of regret minimisation in online learning, is used by

Singla, Santoni, Bartók, Mukerji, Meenen, and Krause [35] to obtain optimal pricing policies. Surveys

asking people for their preferences about private cost and walking distance were conducted to vali-

date their assumptions. After simulations, using historical data from Boston’s Hubway, an experimental

deployment was performed in a European city for thirty days, resulting in an acceptance rate of 60%.

Aeschbach, Zhang, Georghiou, and Lygeros [6] focused on customer’s ability to balance the system,

proposing four different control strategies, where the way they interact with customers is what distin-

guishes them. They intended to evaluate strategies’ efficacy by treating CC as a variable parameter;

8



this way, different percentages of cooperation give different service levels. They found that a CC of 50%

with a neighbourhood Radius (Rad) of 700 meters is enough to balance London’s Barclays Cycle Hire

(nowadays, Santander Cycle Hire). Part of their work is applied and experimented in this thesis.

Ghosh and Varakantham [22] take a different path to solve the problem, where payments are the given

incentive. First, they generate potential repositioning tasks based on a mixed integer linear optimisation

and then incentive people (using payment/trip-based incentives) to execute these tasks by attaching

bike trailers to their bikes. The percentage of users interested in trailer tasks was varied to observe the

effects on lost demand. They carried experiments with data from Hubway BSS (Boston).

Haider, Nikolaev, Kang, and Kwon [36] named its heuristic approach: Iterative Price Adjustment Scheme

(IPAS). The goal is to incentivise people to take bikes from or park them at imbalanced stations to make

them more imbalanced, therefore creating hub stations. This way, the number of stations visited by trucks

to carry inventory repositioning are reduced. Results were obtained with data from Capital Bikeshare in

Washington, D.C.

Pan, Cai, Fang, Tang, and Huang [37] formulated the problem as a Markov Decision Process with

the objective of maximising service level. A deep reinforcement learning algorithm called Hierarchical

Reinforcement Pricing was proposed to decide how to pay people. Experiments were conducted using

Mobike’s (Beijing, China) dataset and compared with other state of the art methods like Singla et al. [35].

Patel, Qiu, and Negahban [38] developed a customised station object in Simio simulation software where

incentives are given to customers willing to pick up bikes from stations that will soon become full. They

used experimental data from CitiBike system in Jersey City and results showed that incentives help

improve bike availability and service level. Nevertheless, total profit can be reduced if the discount

offered is excessively increased.

2.4 Simulators

Given that BSS simulators are a recent trend, there is not much literature on the topic, nevertheless, in

the last few years, their popularity increased [39].

The most common objective presented in simulators’ literature is to evaluate repositioning schemes and

Caggiani and Ottomanelli [40] is one of those examples. They propose a method where it is assumed

that an operating day is divided into discrete time intervals. At the beginning of each interval, the network

is updated, and trips are generated “based on relative O-D (Origin-Destination) attractiveness”. People

who can not find bikes at the departure station are removed and those who arrive at a full station must

wait until there is a free dock.

Chemla et al. [7] created the OADLIBSim, a discrete-event open-source simulator programmed in C++.

The purpose of this simulator was to evaluate dynamic rebalancing algorithms along with dynamic pric-

ing. Users arrive at the initial station i following a Poisson distribution, being drawn at random to desti-

nation j according to a probability pi,j . Users facing empty stations on the departure and full stations on

9



arrival choose their next destination minimising walking and riding distance. To compare strategies, the

number of satisfied users is taken into consideration to measure quality.

Ji, Cherry, Han, and Jordan [41] developed a Monte Carlo simulation model with the objectives of simu-

lating the operations of an e-bike sharing system and evaluate how many bikes and batteries are needed

to meet demand and recharge rates. Trips generation rate followed a Poisson distribution and riding

speed a Normal distribution. Parameters like the number of swappable batteries and battery recharging

profiles were also considered.

Dubernet and Axhausen [42] evaluated bike redistribution systems with a simulation tool, built on the

multi-agent simulation framework MATSim. Customers behaviours are modelled in line with their daily

plans.

Saltzman and Bradford [43] applied Arena 14’s software package to build a detailed animated model of

San Francisco BSS. They investigated system performance when changing daily initial conditions, such

as the number of bikes and docks. Trips are created every hour following a Poisson process, and trip

duration a Lognormal distribution. Riders arriving at a full station wait 2 minutes for an empty dock; if,

even so, no bike leaves the station, they ride to the nearest station with available docks.

Jian, Freund, Wiberg, and Henderson [44] tried to minimise the number of unsatisfied customers by

optimising both bike and dock allocations. Their approach is based on a discrete-event simulation model

that operates every minute.

MATLAB was the software chosen by Soriguera, Casado, and Jiménez [45] to implement their agent-

based simulation model. By changing system parameters and daily operations, they intend to reach

the best system design. Unlike the model presented in this thesis, they consider electric and traditional

bikes. This approximation to reality, however, increases its dimension and complexity. Users facing a

no-service event at departure, i.e. no bike available, travel to the closest station with available bikes and

those who do not use the app travel to the closest station, independently of their level. No-service event

at arrival takes all users to the closest station with free spots.

Fernández, Billhardt, Ossowski, and Sánchez [39] built a simulator called Bike3S, again, an agent-based

simulator. Their tool is designed to test different station capacities, station distributions, and balancing

strategies. In contrast with most works, exception made for Saltzman and Bradford [43], this simulator

presents a visual interface and allows several configurations to be altered according to preference.

Summarising, simulators are used for modelling, evaluate truck-based rebalancing approaches or user

incentive-based approaches. The majority of articles addressing this last topic use simulators to obtain

results, e.g. Pfrommer et al. [5], Chemla et al. [7], Waserhole and Jost [46]. Almost all of them generate

trips with Poisson probability distributions and only a few show a visual interface.

10



Chapter 3

Theoretical background

This chapter will present the methods chosen to implement in the model, as well as the theory behind

them.

3.1 Trip generation and trip time

To generate trips, the work of Pfrommer et al. [5] was followed. The authors start by defining set S as

containing all stations s ∈ S, and by distinguishing the days of the week between workdays and weekend

days, according to the binary variable w ∈ {workday(wd), weekend(we)}. Each day is divided into 72

time slices t ∈ T := {1, ..., 72} of 20 minutes each. The authors also define that the number of trips,

for each {week day type (w), departure station (i), arrival station (j), time slice (t)} relation, follows a

Poisson distribution with mean λw(i, j, t). These mean values are empirically determined by accessing

available data and computing the average number of journeys of every (w, i, j, t) relation. An extensive

explanation of this approach can be found in section 5.2.1.

After trip generation it is necessary to compute the trip time. Pfrommer et al. [5] used the average

trip time between stations (i, j) from historic data to compute these values. In this thesis, trip time is

computed based on a Lognormal distribution. Therefore, given that trip generation makes use of two

distribution functions, Poisson and Lognormal, their theory is presented below.

3.1.1 Poisson distribution

It was Siméon Denis Poisson, a French mathematician, to give his name to this distribution, which is a

discrete probability distribution that describes the probability of the number of times an event can occur,

according to a determined mean rate for a determined interval of time or space [47].

A discrete random variable X, follows a Poisson distribution of parameter λ > 0, if for k ∈ [0,∞] the

probability mass function of X is given by [48]:

11



f(k;λ) = P (X = k) =
λke−k

k!
, k ∈ N0 (3.1)

where

• e is Euler’s number (e = 2.71828...),

• k is the number of occurrences,

• k! is the factorial of k.

This distribution is characterised by an expected value and variance equal to λ [49, 50].

To estimate parameter λ given a sample of nmeasured values ki ∈ {0, 1, ...}, for i = 1, ..., n, the following

maximum likelihood estimate is used [51]:

λ̂MLE =
1

n

n∑
i=1

ki. (3.2)

Some examples of Poisson distributions are presented in figure 3.1.

0 10 20 30 40
0

0.05

0.1

0.15

0.2

M
as

s 
pr

ob
ab

ili
ty

=5
=15
=25

Figure 3.1: Poisson distributions for λ = 5, 15 and 25

3.1.2 Lognormal distribution

”More than a century ago, Galton [52] pointed out that if X1, X2, ..., Xn are independent positive random

variables and Tn =
∏n
i=1(Xi), then log(Tn) =

∑n
i=1 log(Xi) when appropriately standardised for mean

and variance, will tend to a standard normal variable as n −→ ∞. Then, the limiting distribution of the

variable Tn would be Lognormal (Log-normal or Galton). In a follow-up article, McAlister [53] derived

expressions for the mean, median, mode, variance and some percentiles of the Lognormal distribution.”

[54].

”If Y is normally distributed with mean µ and variance σ2, then the random variable X defined by the

relationship Y = log(X − γ) is distributed as a Lognormal and denoted as lognormal(γ, µ, σ2)”, where

γ is the distribution minimum value. With a transformation of random variables, the density function of a

Lognormal random variable X is obtained [54]:

12



f(x; γ, µ, σ2) = E(X = x) =
1√

2πσ(x− γ)
e−(log(x−γ)−µ)

2/(2σ2), γ < x <∞ (3.3)

Its mean and standard deviation were derived by Yuan [55], as follows:

X = γ + β
√
k, σX = β

√
k(k − 1) (3.4)

where, k = eσ
2

and β = eµ.

Figure 3.2 presents examples of Lognormal distributions for different values of µ and σ, not considering

γ impact.

0 1 2 3 4
0

0.5

1

1.5

D
en

si
ty

 p
ro

ba
bi

lit
y

=0.5, =0.5
=0.2, =0.5
=0.5, =0.2

Figure 3.2: Lognormal distributions

To estimate µ and σ given a sampleX of nmeasured values xi ∈ R+ and γ = 0 the following expressions

are used [56]:

µ̂ =

∑n
k=1 lnxi
n

, σ̂ =

√∑n
k=1 (lnxi − µ̂)

2

n
(3.5)

3.2 User behaviour and incentives model

To model user behaviour and present alternative stations to users that accept to cooperate in BSS

balancing, the work of Aeschbach et al. [6] was followed, which considers the concept of neighbouring

stations given a certain radius.

Below, the four strategies evaluated are explained:

• No Control (NC): A customer facing an empty station on departure walks to the nearest station; if

it is also empty, leaves the system. On the other hand, a customer arriving to a full station rides to

the nearest station, and, so on and so forth, until they find an empty dock.

• Minimal Intervention Control (MIC): Customers experiencing a full/empty station on arrival/ de-

parture are prompted to ride to the neighbouring station with the most empty/full slots. In case

13



there are no neighbouring stations filling the requests, the customer is sent to the closest station,

regardless of its level.

• Preemptive Control via Mobile App (PC-MA): This control demands direct communication between

the customer and the app before the journey starts. The customer must register in the app what is

the journey he intends to do, and the app outputs the station in the neighbourhood of the intended

departure with more bikes, as well as the station in the neighbourhood of the intended arrival

with fewer bikes. Additionally, the user gets to decide whether he accepts or not, randomly and

according to a CC ratio. In the case of a no-service event, he follows the same procedure as in

MIC.

• Weak Preemptive Control via Mobile App (WPC-MA): This strategy’s difference to PC-MA is that,

whenever a customer inputs their desired stations, if the occupation percentage is above or below

50% the app tells him to use that same station.

To evaluate these strategies, the authors used the concepts of “empty-station event” and “full-station

event”, the first meaning a person trying to rent a bike from an empty station and, the second, that a per-

son trying to return a bike without empty docks. Both events are referred to as “no-service events”. The

quality of the service is measured by the service level, also used in the works of Pfrommer, Warrington,

Schildbach, and Morari [5] and Singla, Santoni, Bartók, Mukerji, Meenen, and Krause [35]:

Service Level =
#Customers−#No Service

#Customers
(3.6)

To measure the average combined distance at start and end caused by the changed journey, Aeschbach

et al. [6] used the average extra effort:

Extra Effort (km) =

∑
(sout,sin)[d(sout, sout) + d(sin, sin)]

# Customers (with positive effort)
(3.7)

where d(sout, sout) is the distance between the starting station chosen by the customer (sout) and the

starting station chosen by the control strategy (sout); and d(sin, sin) is the distance between the ending

station chosen by the customer (sin) and the ending station chosen by the control strategy (sin). To

clarify, for this measure, only users who have decided to participate, and have actually changed their

journey, were considered, users who participated, but the result of the control strategy were the same

stations, were not considered.

3.3 Repositioning problem

To check the influence of user incentives on repositioning, the heuristic of Schuijbroek et al. [4] was

implemented. Gira operates a dynamic repositioning; however, we did not have access to this algorithm,

so an alternative had to be found. Since the traced objective is to evaluate the performance of user in-

centives and not the efficacy of repositioning methods, it was decided to apply an approach that fulfils its

14



purpose and does not take too much computational effort, as it is the case of static repositioning, which

is able to reset the BSS every day. Schuijbroek et al. [4] solve the repositioning problem with a cluster

first route second heuristic and target intervals smini and smaxi . Their intention is to split the problem into

smaller single-vehicle routing problems, to reduce the complexity of the problem and achieve results in

a much smaller interval of time.

In the following sections, the clustering and routing problem formulations are presented, along with the

MIP heuristic algorithm.

To compute target interval levels, smini and smaxi , the reasoning of Hulot, Aloise, and Jena [57], who

applied Skellam distribution for this purpose, was used. Therefore, the theory about this Skellam distri-

bution is also presented.

Below, the list of nomenclature related to clustering and routing formulations are introduced:

Indexes

i, j Vertexes

t Time step

v Vehicle

Sets

S Set of stations

N Set of stations with artificial vertex 0

T Set of time

V Set of vehicles

Parameters

s0i Initial inventory of station i ∈ S

smini Minimum required number of bikes of station i ∈ S

smaxi Maximum required number of bikes of station i ∈ S

Ci Capacity of station i ∈ S

di,j Distance between station i ∈ S and j ∈ S

Qv Capacity of vehicle v ∈ V

q0v Initial inventory of vehicle v ∈ V

d− Routing costs of picking up one bike

d+ Routing costs of delivering one bike

s+i Minimum number of bike deliveries at station i ∈ S

s−i Minimum number of bike pick ups at station i ∈ S

15



Decision Variables

xi,j,t,v Binary decision variable to indicate whether vehicle v ∈ V traverses arc (i, j) in time t ∈ T

y−i,t,v Decision variable to indicate amount of bikes to pick up, by vehicle v ∈ V

y+i,t,v Decision variable to indicate amount of bikes to deliver, by vehicle v ∈ V

zi,v Binary decision variable to indicate bike assignment of station i ∈ S to vehicle v ∈ V

hv Auxiliary decision variable to indicate routing costs

3.3.1 Routing problem

The objective of a routing problem is to identify repositioning instructions vehicles should follow to redis-

tribute the network, according to predefined station occupation targets. Therefore, the resulting decision

variables must show the sequence of stations to visit (xi,j,t,v) and the amount of bikes to drop (y+i,t,v) or

pick up (y−i,t,v) in every visited station. Routing MIP formulation is presented below:

Minimise : H (P1)

subject to :

s0i +
∑
t∈T
v∈V

(y+i,t,v − y
−
i,t,v) ≥ s

min
i ∀ i ∈ S (3.8)

s0i +
∑
t∈T
v∈V

(y+i,t,v − y
−
i,t,v) ≤ s

max
i ∀ i ∈ S (3.9)

∑
i∈S
j∈N

xi,j,1,v ≤ 1 ∀ v ∈ V (3.10)

∑
j∈N

xi,j,t,v ≤
∑
j∈S

xj,i,t−1,v ∀ i ∈ S, t ∈ T \ {1}, v ∈ V (3.11)

∑
i∈S
t∈T
v∈V

xi,i,t,v = 0 (3.12)

y−i,t,v ≤ Qv
∑
j∈N

xi,j,t,v ∀ i ∈ S, t ∈ T, v ∈ V (3.13)

y+i,t,v ≤ Qv
∑
j∈N

xj,i,t,v ∀ i ∈ S, t ∈ T, v ∈ V (3.14)

∑
t∈T
v∈V

y−i,t,v ≤ s
0
i ∀ i ∈ S (3.15)

∑
t∈T
v∈V

y+i,t,v ≤ Ci − s
0
i ∀ i ∈ S (3.16)

q0v +
∑
i∈S

t̃∈T: t̃≤t

(y−i,t,v − y
+
i,t,v) ≥ 0 ∀ t ∈ T, v ∈ V (3.17)

16



q0v +
∑
i∈S

t̃∈T: t̃≤t

(y−i,t,v − y
+
i,t,v) ≤ Qv ∀ t ∈ T, v ∈ V (3.18)

hv =
∑
i,j∈S
t∈T

di,jxi,j,t,v +
∑
i∈S
t∈T

d−y−i,t,v +
∑
i∈S
t∈T

d+y+i,t,v ∀ v ∈ V (3.19)

H ≥ hv ∀ v ∈ V (3.20)

xi,j,t,v ∈ {0, 1} ∀ i ∈ S, j ∈ N, t ∈ T, v ∈ V (3.21)

y−i,t,v, y
+
i,t,v ∈ N0 ∀ i ∈ S, t ∈ T, v ∈ V (3.22)

H,hv ≥ 0 ∀ v ∈ V (3.23)

Constraints (3.8) and (3.9) impose stations to be within target intervals smini and smaxi .

Constraints (3.10) to (3.14) handle vehicle routing. (3.10) does not allow vehicles to have more than

one route each. Constraint (3.11) guarantees that there are no bikes lost. Constraints (3.12) prevent

dwelling. Constraints (3.13) and (3.14) make sure that deliveries and pick ups only occur when arriving

or leaving a station, respectively. (3.15) and (3.16) constraint the amount of transshipments. (3.17) and

(3.18) ensure that the vehicles do not travel with more bikes than their capacity or with negative values.

Each vehicle routing costs are defined by constraint (3.19), adding total distance, loading and unloading

costs. Constraints (3.20) to (3.23) linearise the objective H = maxv∈V hv. In order to uniformise the

solutions, only the maximum value is considered.

3.3.2 Clustering problem

Grouping stations into clusters can be done in many ways. The most obvious would be to cluster them

by distance. This strategy by itself would not solve the problem for a BSS application, considering that

it could join all the stations in need of bikes or with excess. The alternative presented by Schuijbroek

et al. [4] introduces the Maximum Spanning Star approximation, denoted by maxi∈Sv

∑
j∈Sv

di,j , and

takes into consideration (un)loading time approximations. The MIP formulation to solve this problem is

presented below:

Minimise: Ĥ

subject to:∑
v∈V

zi,v = 1 ∀ i ∈ S \ S0 (3.24)

∑
v∈V

zi,v ≤ 1 ∀ i ∈ S0 (3.25)

q0v +
∑
v∈V

s0i zi,v ≥
∑
i∈S

smini zi,v ∀ v ∈ V (3.26)

17



− (Qv − q0v) +
∑
i∈S

s0i zi,v ≤
∑

smaxi zi,v ∀ v ∈ V (3.27)

ĥv ≥
∑
j∈S

di,j(zi,v + zj,v − 1) +
∑
j∈S

(d+s+j + d−s−j )zj,v ∀ i ∈ S, v ∈ V (3.28)

ĥv ≥
∑
j∈S

di,j(zi,v + zj,v − 1) +
∑
j∈S

(d+s+j + d−s+j )zj,v − d
−q0v ∀ i ∈ S, v ∈ V (3.29)

ĥv ≥
∑
j∈S

di,j(zi,v + zj,v − 1) +
∑
j∈S

(d+s−j + d−s−j )zj,v − d
+(Qv − q0v) ∀ i ∈ S, v ∈ V (3.30)

Ĥ ≥ ĥv ∀ v ∈ V (3.31)

zi,v ∈ {0, 1} ∀ i ∈ S, v ∈ V (3.32)

Ĥ, ĥv ≥ 0 ∀ v ∈ V (3.33)

with

s+i = max{smini − s0i , 0} ∀ i ∈ S (3.34)

s−i = max{s0i − smiaxi , 0} ∀ i ∈ S (3.35)

Cluster feasibility is guaranteed by constraints (3.24) to (3.27), with constraint (3.24) ensuring that insuf-

ficient stations are visited and (3.25) allowing self-sufficient stations to be visited. Taking into considera-

tion truck maximum capacity, minimum and maximum inventory targets are imposed by equation (3.26)

and (3.27), respectively. Constraints (3.28), (3.29) and (3.30) impose minimum required bike deliveries

and pick ups by deriving lower bounds on the (un)loading times. With constraint (3.29) dealing stations

with more deliveries and (3.30) with more pick ups. Constraints (3.31) to (3.33) linearise makespan

Ĥ = maxv∈V ĥv.

However, we observe that (P1) is practically intractable for realistic station sets with |S| ≥ 50 and vehicle

fleets with |V | ≥ 3.

3.3.3 Heuristic MIP

After presenting clustering and routing methodologies, the heuristic algorithm will follow the work of

Schuijbroek et al. [4]. The algorithm has the following sequence:

1. Solve the Clustering Problem (P2).

2. For each v ∈ V solve the Routing Problem (P1) with S = Sv and V = {v} to obtain H∗(Sv, {v}),

which is the optimal solution for P1.

3. H̃ = maxv∈VH
∗(Sv, {v}).

18



3.3.4 Skellam distribution

Skellam distribution emerged in 1946 with Skellam [58]. This is a discrete probability distribution which

corresponds to the difference of two statistically independent random variables X1 and X2 both having

both a Poisson distribution with parameters λ1 >= 0 and λ2 >= 0, respectively [59]. Considering

K = X1 −X2, the expression for this distribution is [59]:

f(k;λ1, λ2) = P (K = k) = e−λ1−λ2

(
λ1
λ2

)k/2
Ik(2
√
µ1µ2) (3.36)

where Ik(z) is the modified Bessel function.

Figure 3.3 shows an example of how two stochastic variables give rise to a Skellam distribution.

-5 0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Skellam: 1=5 2=15

Poisson: 1=5

Poisson: 1=15

Figure 3.3: Skellam distribution

19



20



Chapter 4

Gira BSS characterization

Gira is Lisbon’s BSS [60]. It belongs to EMEL - Empresa Municipal de Mobilidade e Estacionamento de

Lisboa had its first tests on the 21st of June of 2017 and was officially launched on the 19th September

2017, in Parque das Nações, with 10 stations and a capacity of 100 bicycles [61, 62]. EMEL intends

to “contribute for an increasing life quality of residents and visitors” by transforming “Lisbon into a more

accessible city, less polluted, and much less stressful” [60, 61]. Currently (July 2021), there are 60 km

of bike lanes available in Lisbon, but according to Gira’s website, this number will ”soon” be increased to

150 km, allowing the expansion and safety of the network [60].

On the 4th of February 2019 a protocol was signed between IDMEC and EMEL, giving IDMEC access to

Gira BSS data, with the objective of promoting studies about urban mobility, as well as new technologies

and parking operation methods. The present work is one of those studies, with data from January to

March of 2019. In this chapter, geographical distribution, as well as other characteristics of the network,

are presented.

4.1 Geographical distribution and flow intensity

From January to March 2019, the network had a total of 74 stations, each one composed of several

docks, and illustrated in figure 4.1. There are also hundreds of bikes both in the depot and on the

streets.

21



104
105

101

102
103

106

107108

109110

452
457

481

464

414

468

431

412

442

430
426

449 450

460

472

415 417

413

453

473

459

423

474

463

407
408406

428

427

446

403

416

471

115

421
420

484

485

309

219

304

305
306

487
486488

307

308

443

114

224

225

419

212

432

490

218216

462

483

401

214

208

303

Depot

Canvas
Figure 4.1: Network geographic distribution (March 2019)

Sources: Esri, DeLorme, HERE, MapmyIndia, Garmin, FAO, NOAA, USGS

In order to meet the demand while saving resources, stations have a different number of docks. The

most requested stations have normally 40 docks and the less requested 10 or more. This number may

vary over time, for example, due to broken docks that need to be fixed. These changes were identified

and plotted in figure 4.2, where, for example, illustrated station 105 appears to be constantly changing

the number of available docks between 37 and 40, and the station 472 shows its number of docks

22



reduced only for a few days.

Jan 01, 2019 Jan 15, 2019 Feb 01, 2019 Feb 15, 2019 Mar 01, 2019 Mar 15, 2019 Mar 31, 2019
10

15

20

25

30

35

40

45

50
N

um
be

r 
of

 a
va

ila
bl

e 
do

ck
s

Station 105
Station 420
Station 472

Figure 4.2: Number of available docks in stations 105, 420 and 472

Just like the number of docks, due to failures, thefts, cleaning, repositioning and other types of problems,

the number of available bikes in the system is always changing. These changes are illustrated in figure

4.3 where the number of bikes at the beginning of each day (bikes can be rent from 6 AM to 2 AM of the

next day) is constantly varying, but also keeping, more or less, the number of bikes in the range of 600

to 750 in January and February. These values drop to 450, in March, even though the number of trips

maintained its level (see figure 4.4).

Jan 01, 2019 Jan 15, 2019 Feb 01, 2019 Feb 15, 2019 Mar 01, 2019 Mar 15, 2019 Mar 31, 2019
350

400

450

500

550

600

650

700

750

800

T
ot

al
 n

um
be

r 
of

 b
ik

es

Figure 4.3: Number of available bikes in the network at 6 AM (start of operation)

With a simple look at the network distribution (see figure 4.1) and a proper analysis of customer be-

haviour (see figure 4.5) it is possible to claim that this BSS could easily be divided into two major zones,

the centre of the city, including the downtown; and Parque das Nações, particularly with station 104

serving as the link to the centre of the city and also all of the others linking the downtown. When it

comes to the centre zone, station 446 is the most requested, connecting every part of the city.

23



01-Jan-2019 15-Jan-2019 01-Feb-2019 15-Feb-2019 01-Mar-2019 15-Mar-2019 31-Mar-2019
0

2000

4000

6000

8000

10000

T
ot

al
 n

um
be

r 
of

 tr
ip

s

Workday
Weekend
National or school holiday

Figure 4.4: Total number of trips per day

Figure 4.5: Trip intensity map

Rain, social events, holidays, among other factors can increase or decrease the number of trips during

a day - Lucas and Andrade [63] addressed the weather effect when estimating hourly origin-destination

demand in Lisbon BSS - however, some patterns repeat over and over again. The most obvious is shown

in figure 4.4 with a considerable difference between workdays when there is a lot of movement and traffic

inside the city, reflected in more trips; and weekends with much less traffic, due to less movement. This

difference will also be presented through the daily pattern in section 4.2. It must also be highlighted, that

during the holiday of the 1st of January and the Carnival week starting on the 4th of March, the number

of trips dropped when compared to the other workdays.

24



4.2 Temporal patterns

Temporal patterns seem to preserve their shape in many BSSs, with two well-identified peaks of traffic

during workdays, one in the morning when people arrive at their jobs, and one in the afternoon, slightly

bigger, when they leave them. There is also a lunchtime curve that tends to be small in most BSSs.

At the weekend, the pattern changes to a convex curve with approximately the same level of trips,

depending on the BSS. Some examples are Chicago, Seattle and Paris BSSs [64–66].

Lisbon BSS, just like the others, is not an exception to the typical city patterns. Figure 4.6 displays the

average number of trips for all workdays at 20 minute time intervals. As we can see, for all 5 workdays

the pattern is quite similar, with the two regular peaks: the morning peak starting at 7:30 AM which has

its maximum at approximately 9 AM; the one in the afternoon starting at 3 AM and peaking at 6 PM.

Another typical peak is the lunchtime peak, which reaches its maximum at 1:30 PM. Throughout the

weekend the number of trips increases until 4 PM and from there on, starts to decrease, with Saturday

surpassing Sunday by a little.

Since temporal patterns were observed, figure

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

0

50

100

150

200

A
ve

ra
ge

 n
um

be
r 

of
 tr

ip
s

Sun
Mon
Tue
Wed
Thu
Fri
Sat

Figure 4.6: Average number of trips throughout a day for all weekdays
(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

Customers daily patterns can also be identified in figure 4.7 through their preferable arrival and departure

stations, for different time intervals, and workdays versus weekends. This graph plots the difference

between arrivals and departures at each station for different time intervals and days of the week, where

an orange bubble represents a station with a tendency to lose bikes and a blue bubble a station with

a tendency to gain bikes. In the centre, during workdays from 6 to 11 AM, people flow preferably from

Entrecampos, which has metro and train stations, to Saldanha, Marquês de Pombal, and Avenida da

Liberdade. In Parque das Nações there are stations near metro and train stations, which usually have

a higher arrival flow of bikes when compared to the departure flow. This pattern reverses its direction

in the afternoon peak. During the lunch break, peak bubbles are smaller; this does not mean that there

is less flow: it means the stations are more likely balanced. This balance is also present at night when

25



there is a lower trip flow. Throughout the weekend, patterns of the first and second half look like the

ones presented by workdays in the morning and afternoon, respectively, but with a lower intensity.

9 °11'W 9 °10'W 9 °9'W 9 °8'W 9 °7'W 9 °6'W 9 °5'W

Longitude

Canvas 1 mi 

 2 km 

9 °11'W 9 °10'W 9 °9'W 9 °8'W 9 °7'W 9 °6'W 9 °5'W

Longitude

38 °43'N

38 °44'N

38 °45'N

38 °46'N

38 °47'N

La
tit

ud
e

Canvas 1 mi 

 2 km 

Canvas 1 mi 

 2 km 38 °43'N

38 °44'N

38 °45'N

38 °46'N

38 °47'N

La
tit

ud
e

Canvas 1 mi 

 2 km 

9 °11'W 9 °10'W 9 °9'W 9 °8'W 9 °7'W 9 °6'W 9 °5'W

Longitude

38 °43'N

38 °44'N

38 °45'N

38 °46'N

38 °47'N

La
tit

ud
e

Canvas 1 mi 

 2 km 

38 °43'N

38 °44'N

38 °45'N

38 °46'N

38 °47'N

La
tit

ud
e

Canvas 1 mi 

 2 km 

WD: 11am-4pm

WD: 6am-11am

WD: 4pm-9pm

WD: 9pm-2am

WE: 4pm-9pm

WE: 9pm-2am

Figure 4.7: Bubble plot of station difference between arrivals and departures
(negative difference-orange; positive difference-blue) Workday (WD): 6AM-11AM (top-left); 11AM-4PM
(top-center); 4PM-9PM (bottom-left); 9PM-2AM (bottom-center). Weekend (WE): 6AM-4PM (top-right)

and 4PM-2AM (bottom-right).

To give us a better understanding of the network during workdays when stations variance is prominent,

an explanation of the more relevant station behaviour will be given below, looking at the most used

stations. This explanation has already been provided by Rodrigues [24] in his thesis, in which he also

makes an analysis of Gira. Therefore, some of the information obtained in its work will be projected here

with an added month of data. He considered that the categorisation criteria of daily usage patterns used

by Dell’Amico et al. [18]. This criterion groups bikes into one of three categories:

1. Stations with a peak of arrivals in the morning, more prevalent than departures, and a ”phased-out

afternoon outflow”. This pattern is typical of downtown stations, as shown by figure 4.7. Typi-

cally, these stations have blue bubbles during the morning and orange bubbles in the afternoon.

Examples of such cases are stations 305 (see figure 4.8) and 307 (see figure 4.9):

26



0 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 n
um

be
r 

of
 tr

ip
s

305 - Avenida da Liberdade / Rua Barata Salgueiro

Departures
Arrivals

Figure 4.8: Station 305 daily (workday) pattern of arrivals and departures
(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

0

2

4

6

8

A
ve

ra
ge

 n
um

be
r 

of
 tr

ip
s

307 - Marquês de Pombal

Departures
Arrivals

Figure 4.9: Station 307 daily (workday) pattern of arrivals and departures
(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

2. Contrary to the first group, this type of station has a peak of departures in the morning and more

arrivals in the afternoon. According to Dell’Amico et al. [18] these stations are found near ”park-

and-ride” areas. Rodrigues [24] applied this logic to stations near ”train stations in the middle

of the city” and added stations near ”some habitational areas”. Stations 486 (see figure 4.10)

in Entrecampos, with both metro and train stations nearby, or station 446 (see figure 4.11) in

Telheiras, with a metro station and a habitational area, are a good example of it.

27



0 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

0

0.5

1

1.5

2

2.5

A
ve

ra
ge

 n
um

be
r 

of
 tr

ip
s

486 - Rua Hermano Neves / Rua José Escada

Departures
Arrivals

Figure 4.10: Station 486 daily (workday) pattern of arrivals and departures
(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

0

5

10

15

A
ve

ra
ge

 n
um

be
r 

of
 tr

ip
s

446 - Av. República / Interface Entrecampos 

Departures
Arrivals

Figure 4.11: Station 446 daily (workday) pattern of arrivals and departures
(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

3. The last group corresponds to ”stations that present similar arrival and departure patterns during

the course of the day” and, consequently, are capable of keeping themselves relatively balanced.

Some examples are stations 481 (see figure 4.12) and 413 (see figure 4.13).

28



0 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

0

2

4

6

8

10

12
A

ve
ra

ge
 n

um
be

r 
of

 tr
ip

s

481 - Campo Grande / Museu da Cidade

Departures
Arrivals

Figure 4.12: Station 481 daily (workday) pattern of arrivals and departures
(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

0

1

2

3

4

5

A
ve

ra
ge

 n
um

be
r 

of
 tr

ip
s

413 - Av. Ressano Garcia / Av. António Augusto de Aguiar

Departures
Arrivals

Figure 4.13: Station 413 daily (workday) pattern of arrivals and departures
(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

4.3 Operator tasks

During the period of available data (January to March of 2019), Siemens was the company responsible

for the maintenance of all Gira assets, having live information about assets’ location, state, or occupancy.

This allowed them to plan actions, but also to intervene when something is wrong with some of these

assets. To perform these actions, Siemens has multiple teams of operators working day and night.

Outside operations can be divided into four types: repositioning (includes repositioning between stations,

added bikes coming from depot and bikes transported to depot), inspection and cleaning, corrective

maintenance, and trip assistance. Pie chart 4.14 displays the proportion of each task type for a total of

14.804 completed tasks within the three months of analysis. Showing that repositioning tasks represent

18% of the total amount of the operator’s actions, with corrective maintenance taking the largest part.

Repositioning operations are performed across all day; therefore, a dynamic methodology is executed.

Operation management team have a program responsible for obtaining the best sequence of reposition-

29



Repositioning (18%)

Corrective maintenance (39%) Trip assistance (9%)

Inspection and cleaning (33%)

Figure 4.14: Percentage of tasks per type of operation

ing tasks; these include stations to visit and the number of bikes to drop off or pick up in each visit. Unlike

Gira’s real type of operation (dynamic repositioning), this work will, as already mentioned, implement a

static repositioning methodology to rebalance the system during the night.

Some of the information about the characteristics of the operations was presented by Rodrigues [24]

and again confirmed to this work. It is stated in the work of Rodrigues [24] that Siemens has a fleet of

five electric trucks, this being a contractual imposition, with each truck able to transport up to 5 bikes,

and the capability of attaching a trail to increase its capacity. There are three different trails, one able to

transport 6 bikes, another 7 and the last, 10 bikes. Trucks have an autonomy of 110 km without trail, and

80 km with the trail, a low range when compared to the combustion engine, so distances to chargers

must be considered.

In Rodrigues [24] analysis to operation behaviours, he states that there are five different teams working

at shifts of 8h each, and usually, during the week there are 2 to 4 teams working at the same time. In

what concerns repositioning there are more operations during workdays, most of them occurring after

the morning peak, and less in the weekend. Through the analysis of the average number of total actions

performed across the day, he concludes that most of the interventions are of a “responsive nature,

instead of preventive”, since the number of operations follows usage patterns.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
4

11
5

20
8

21
2

21
4

21
6

21
8

21
9

22
4

22
5

30
3

30
4

30
5

30
6

30
7

30
8

30
9

40
1

40
3

40
6

40
7

40
8

41
2

41
3

41
4

41
5

41
6

41
7

41
9

42
0

42
1

42
3

42
6

42
7

42
8

43
0

43
1

43
2

44
2

44
3

44
6

44
9

45
0

45
2

45
3

45
7

45
9

46
0

46
2

46
3

46
4

46
8

47
1

47
2

47
3

47
4

48
1

48
3

48
4

48
5

48
6

48
7

48
8

49
0

Stations

0

1

2

3

4

5

A
ve

ra
ge

 n
um

be
r 

of
 r

ep
os

iti
on

in
g

or
de

rs
 (

pe
r 

da
y)

Figure 4.15: Average number of repositioning visits per day at each station

30



Reverting to repositioning tasks, figure 4.15 displays the average number of visits the stations receive

per day. In three months, around 5.000 visits were recorded, with an average of 56 visits per day, in a

total of 2.678 work orders. These orders usually have descriptions like: Remove N bikes from station A

to station B, when bikes are being transported between stations, but can also acquire the format: Take

N bikes to station C. This is, for example, related to the transportation of bikes from depot to a certain

station.

One station can be visited more than once a day. Figure 4.15 shows that station 446 - Av. Repub-

lica/Interface Entrecampos is the one that requires more visits, a comprehensive behaviour justified by

its daily pattern shown in figure 4.11, where the demand clearly overcomes the supply during the morn-

ing, reversing its behaviour in the afternoon. Other stations, on average, do not require more than one

or two visits a day.

31



32



Chapter 5

Implementation

The similarity between simulators and reality depends on the models used, their size and the number of

parameters. They cannot perfectly reproduce reality, but so far, simulators are still one of the best tools

to forecast behaviours and reach some conclusions. Therefore, one of the best ways to predict how will

UIs work, without having the risk of losing money in real experiments, is by testing them on simulators.

Setting as objective to understand customers’ influence on repositioning, a simulation model of Gira in

Anylogic was created, based on data from 3 months of 2019 (January to March). Primarily, this simulator

generates trips and shows bikes moving between stations on a map of the city. However, it has also the

possibility of activating user incentive methods and nightly repositioning, due to an interface where the

user is able to configure some options.

Software choice, model formulation and the simulator application to Anylogic, are the items presented in

this chapter. The objective is to give the reader a proper explanation of what and how it was created.

5.1 Used software

Anylogic

Anylogic was the chosen simulation software. According to their website, Anylogic ”is utilised in thou-

sands of commercial organisations and academic institutions” being the ”leading simulation modelling

software for business applications”, used in industries like supply chain, manufacturing, transportation,

warehouse operations, rail logistics, healthcare, marketing, asset management, etc. [67].

Anylogic uses three methods: discrete event, agent-based and system dynamics.

• The first consists of a process flowchart where blocks are operations connected by transitions.

These can be conditions, timeouts, rates, messages or agent arrivals.

• Agent-based modelling offers the chance of creating agents with their own characteristics. These

agents can be a population of agents, such as trucks or consumers; a single agent, like a factory,

33



hospital, a supplier; or simply an agent type like a transaction or a structural part of the model,

such as sub-process.

• System dynamics is a highly abstract method of modelling, where the dynamism is modelled with

flows, dynamic variables, rates, time-dependent functions, etc.

MATLAB

To make the analysis, data processing as well as the processing of results, MATLAB was the chosen

software.

IBM ILOG CPLEX

To solve the repositioning MIP presented in the section 3.3 IBM ILOG CPLEX Optimisation Studio soft-

ware package (version 12.10) was used. This seems to be the most used software to solve static

repositioning problems, e.g. Dell’Amico et al. [18], Rainer-Harbach et al. [19], Ho and Szeto [29], Forma

et al. [32].

5.2 Modelling

5.2.1 Trip generation

One of the main processes when building a BSS simulator is trip generation. Following the work of

Pfrommer et al., days were split into 72 slices, so that a new number of trips are generated every 20

minutes for every start-end station relation. This number relies on a Poisson distribution of parameter

λw(sout, sin, t), where sout is the initial station, sin the end station, t the day time interval (e.g. 8:40

to 9am), and w the day type (workday/weekend). λw(sout, sin, t) values are obtained and stored after

taking the average number of trips of each (w, sout, sin, t) relation from real trip data. Since from 2 AM to

6 AM the system is not available for customers, the number of trips generated is zero within this interval.

Each of these new trips has a unique trip time that is sampled from a Lognormal distribution of parameter

TripT ime(sout, sin).

Since from figure 4.6 it is possible to identify a clear correlation between workdays and weekend, with

the objective of reducing the size of input data (λw(sout, sin, t)) and increase sample’s size, days were

decoupled into two types, workdays and weekends.

Although this simulation creates trips every 20-minute interval, these are not launched in that precise

moment, instead, they start after a random uniformly distributed number of minutes between 0 and 20.

This avoids caveats like the ones modelled by Pfrommer et al. [5] (all trips created for a determined

interval of time, are launched at a precise moment; for example, all trips created for the interval 10 AM

to 10:20 AM are launched at 10 AM), approximating this implementation to reality.

34



Trip generation and trip time are the two variable inputs that bring dynamism to the system. Below, there

is an analysis and explanation of these variables:

λw(sout, sin, t) probability distribution

Data analysis has shown that the Probability Mass Function (PMF) of the number of trips generated

at each (w, sout, sin, t) relation seems to fit a distribution. Therefore, were applied Matlab tools to find

the parameters of the Poisson and Normal that best suit the PMF. Figures 5.1, 5.1b and 5.1c show this

behaviour and give also a perception of which distribution, between Normal and Poisson, best suits the

received data for the relation (w, sout, sin, t). A simple visual analysis shows Poisson as the best fit. To

confirm it, the Mean Squared Error (MSE) was used as a measure of goodness of fit:

MSE =
1

n

n∑
k=1

(ŷk − yk)2 (5.1)

where n is the number of data points, ŷk the value returned by the fit and yk the actual value for data

point k.

Table 5.1 shows that Poisson presents the lower values of AMSE, which, for this case, represents the

average value of all MSE(sout, sin, t). This result confirms the use of Poisson in other researches, e.g.

Chemla et al. [7], Fricker and Gast [20] or Aeschbach et al. [6].

Fit PMF
Normal Poisson

Workday 0.2079 0.0149
Weekend 0.0928 0.0223

Table 5.1: AMSE between real and fit PMFs of the generated trips for all combinations of (sout, sin, t)

0 2 4 6

Number of trips

0

0.1

0.2

0.3

0.4

0.5

M
as

s 
pr

ob
ab

ili
ty

Trip from 104 to 101 (8:40-9:00)

Real pmf
Normal fit
Poisson fit

0 2 4 6

Number of trips

0

0.1

0.2

0.3

0.4

0.5

M
as

s 
pr

ob
ab

ili
ty

Trip from 446 to 481 (8:40-9:00)

Real pmf
Normal fit
Poisson fit

0 2 4 6

Number of trips

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
as

s 
pr

ob
ab

ili
ty

Trip from 110 to 105 (8:40-9:00)

Real pmf
Normal fit
Poisson fit

Figure 5.1: PMF of the average number of trips between start and end stations (8:40 AM to 9:00 AM)

35



TripTime(sout, sin) probability distribution

Just like the number of trips between stations at interval t, trip time also seems to fit a distribution.

For this case, the only variables chosen were arrival and departure stations, without considering time

variable t or weekday type w. To check which is the best fitting distribution, Normal, Poisson, Rayleigh,

Gamma or Lognormal (with γ = 0) were taken into account. A visual examination of figures 5.2b, 5.2c

and 5.2a shows Lognormal as the best fit for the trip time between stations. This is confirmed by table

5.2, where the Lognormal has the lowest AMSE (average value of all MSE(sout, sin)).

Fit PMF
Normal Poisson Rayleigh Gamma Lognormal
0.0997 0.1088 0.1059 0.0895 0.0785

Table 5.2: AMSE between real and fit PMFs of the total trip time from sout to sin for all combinations of
(sout, sin)

Although this work found this Lognormal relation, from the research made has not been found any article

that modelled trip duration this way. For example, Patel et al. [38] determined trip duration ”based on

the distance and the average bike speed.” Nevertheless, Lognormal distribution is slightly addressed by

Ljubenkov, Kon, and Ratti [68] claiming: ”Trip duration follows a Lognormal distribution with a median of

10 minutes” in Boston Blue Bikes BSS; and also by Fricker and Gast [20] who evaluates the effect of

exponential, average, Lognormal and uniform distributions in the ”proportion of problematic stations as

a function of the average trip duration” coming to the conclusion that the problematic ”is increasing when

going from deterministic to uniform to Lognormal to exponential distribution”.

5.2.2 User behaviour

The behaviour of users was modelled according to the work of Aeschbach et al. [6]. At pick up moments,

when a user arrives to a station without available bikes (empty station), that person goes to the nearest

station; if that station also does not have bicycles, the person leaves the system. At drop off moments,

when a user arrives at a station without available docks (full station), the user travels to the nearest

station that is not full.

5.2.3 User incentives (UI)

After trips are generated, users have the opportunity of helping in the rebalancing of the system. Topi-

cally, receiving an incentive for it (points, trips, etc.).

The basis of this thesis is to evaluate the effect of user incentives in Gira BSS. This way, two main

methods were used and tested:

• Method 1 (M1) followed the work of Aeschbach et al. [6] (see section 2.3). It consists of using

App where people may inform the system of its start and end stations, subsequently receiving, as

36



0 5 10 15 20 25 30 35 40

Total trip time (minutes)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
en

si
ty

 p
ro

ba
bi

lit
y

Trip from 110 to 105

Real pdf
Normal fit
Poisson fit
Rayleigh fit
Gamma fit
Lognormal fit

pmf

0 5 10 15 20 25 30 35 40

Total trip time (minutes)

0

0.05

0.1

0.15

0.2

0.25

0.3

D
en

si
ty

 p
ro

ba
bi

lit
y

Trip from 104 to 101

Real pdf
Normal fit
Poisson fit
Rayleigh fit
Gamma fit
Lognormal fit

pmf

pmf

0 5 10 15 20 25 30 35 40

Total trip time (minutes)

0

0.05

0.1

0.15

0.2

D
en

si
ty

 p
ro

ba
bi

lit
y

Trip from 446 to 481

Real pdf
Normal fit
Poisson fit
Rayleigh fit
Gamma fit
Lognormal fit

pmf

Figure 5.2: Real PMF and other PDF fit functions to trip time between start and end stations

output, alternative stations - that could help to balance stations inventory - to begin and conclude

its journey. To calculate these alternative stations, the model takes into consideration the concept

of neighbours. Stations that are within a certain radius from the inputted station are considered

its neighbours. Therefore, the one from the group which has a higher/lower occupancy level is

presented as the best departure/arrival station. This strategy is applied separately and only imple-

mented if the departure station occupancy level is above 1−WPC or the arrival station occupancy

level is below WPC, where WPC (Weak Preemptive Control) is the station level control parameter,

so that, when considering WPC = 0, the strategy is not applied, but if WPC = 1, it is always

applied. It must be emphasised that when the best station from the group is the one introduced by

the user, it will also be the one shown after the strategy is applied.

• Method 2 (M2) tries to reproduce the incentive methodology used by Gira. The concept of neigh-

bour is also considered, however, the nearest station with occupancy level above 1 − WPC is

presented for departure station or below WPC for arrival station, instead of the best from the

group. Another difference to the first method is that when none of the neighbours fulfils the re-

quirements (to be above 1−WPC if it is a departure or below WPC if it is an arrival), even though

the input station has the worst inventory ratio, the output will be the same as the input. Since Gira

applies 0.3 for arrival and 0.7 for departure as the ratios for which people receive points, this was

the ratio used (WPC = 0.7).

37



To model people participation behaviour, a CC ratio was taken into account. Since some may not want

to accept both arrival and departure alternative station presented by the app, it was also considered that

from the users who want to cooperate, 1/3 would agree with the alternative arrival station, 1/3 with the

departure station and the last 1/3 to both departure and arrival (see figure 5.3). These considerations

were not taken into account by Aeschbach et al. [6]. In their paper, people accept both departure and

arrival.

1/3•CC1/3•CC 1/3•CC

CC

Cooperate at
departure

station

Cooperate at
arrival station

Cooperate at
departure and
arrival stations

Do not cooperate

1 - CC

Figure 5.3: Stacked bar graph of types of cooperation

5.2.4 Repositioning

Though Gira operates with a dynamic repositioning and an algorithm, constantly running to obtain the

best orders of repositioning, in this thesis, to drop significantly computational time and since the final

objective is not to find the best repositioning method, but instead evaluate User Incentive (UI) methods,

it was decided to implement static MILP method of Schuijbroek et al. [4], which has the particularity of

achieving good results in a few seconds or minutes. This method is described in section 3.3.

In what concerns the implementation of this MILP into the simulator, during every night, the program

starts by clustering stations to each truck, and then calculate repositioning tasks for every truck. After

they get the instructions, they leave the depot and travel across stations dropping and collecting bikes to

balance the BSS. In the end, they return to the depot.

Station patterns in section 4.2 show that the first unbalances occur at the beginning of the day, with

stations behaviours inverting during the afternoon. Therefore, a good nightly rebalance should be able

to handle not just the morning demand but some in the afternoon.

Unlike many static methodologies in the literature [18, 31, 32], Schuijbroek et al. [4] use target intervals of

station-level, instead of target values. To find these intervals the notes of Hulot et al. [57] and Schuijbroek

et al. [4] were taken into account. The procedure applied to find these values is presented in the section

below.

Intervals of Repositioning

Repositioning methods have two alternatives: they either use fill targets [28, 31], the most applied

alternative; or target intervals [4, 25]. Since this thesis work implemented Schuijbroek et al. [4] method,

target intervals were found.

According to Schuijbroek et al. [4], the number of arrival and departure bikes during a certain ”time

38



horizon period” follows a Poisson distribution, a behaviour confirmed in Gira BSS in section 5.2.1. With

this information, service level probability ”ps(f, obj, t) can be computed as a sum and difference of Pois-

son processes, (...) a Skellam distribution” [57]. Therefore, with the Poisson parameters of arrivals and

departures, it is possible to get station level distribution probability.

To get the best minimum and maximum levels of repositioning, after getting Skellam distribution from

Poisson parameters of arrivals (λin) and departures (λout) with equation 3.36, the Skellam distribution

must be rearranged. This rearrangement should result in the ratio of trust for which station level is

kept within zero and station capacity when starting with a certain level. Station levels with a ratio of

trust higher than a determined value, for example, 0.85, indicates that there is an 85 % chance that the

station will remain in a balanced state.

In the example presented in figures 5.4, 5.5 and 5.6 the station should have at the beginning of the day

a minimum of 0 bikes and a maximum of 20.

This trust level curve is found for all levels. The equation to find trust values is the following:

StationCapacity−sl∑
i=−sl

PMFSkellam(λin, λout, sl) (5.2)

where sl is station level.

For example, for sl = 1 the sum of the Skellam distribution probabilities from −1 to (stationcapacity)− 1

gives the level of trust.

0 10 20 30

Station Level

0

0.05

0.1

0.15

M
as

s 
P

ro
ba

bi
lit

y

in
=15

out
=10

Figure 5.4: Poisson distribution
functions (λin=15, λout=10)

-40 -20 0 20 40
0

0.02

0.04

0.06

0.08

M
as

s 
pr

ob
ab

ili
ty

Figure 5.5: Skellam distribution
function (λin=15, λout=10)

0 10 20 30

Station Level

0

0.2

0.4

0.6

0.8

1

T
ru

st
 L

ev
el

Figure 5.6: Trust level distribution
(λin=15, λout=10)

This work used two sets of repositioning target intervals, one for workdays and another for weekends.

For workdays data from the ”time horizon period” from 6 AM to 9 AM was used, because the first peak

occurs during this period. Trying to increase this period would not be a good practice due to station

behaviour. For example, if during the morning there is an average of 10 bikes exiting and 15 bikes

entering, balance is positive, but if during the afternoon the balance drops to -5 bikes, a union between

morning and afternoon would result in a null balance. This could result in max/min target intervals that

could not handle so well the high demand of the morning period.

39



The ”time horizon period” chosen for weekend days was from 6 AM to 1 PM. This period is larger due to

stations’ demand curves on weekends, more regular during the morning and with a peak at 4 PM.

In this work, to define target intervals, a minimum level of trust of 0.85 was applied to all stations. These

intervals were used as inputs to the model and more precisely to the repositioning MILP implemented.

5.3 Anylogic simulator

This simulator combines the dynamics of the system through trips generation; communication with cus-

tomers to model the effect of users help on repositioning; and a static repositioning that occurs at night.

These items as well as simulation procedures and modelled agents will be presented and explained in

the following sections. The most important java codes and a simulator user model are available in the

Appendix A.

5.3.1 Agents

To implement the model explained in previous sections in Anylogic (simulation software), its major abili-

ties were used: agents and flowcharts. Agents can have only parameters and variables to characterise

them, but can also have flowcharts to indicate their states and move them between places. Just to

clarify, agent types can either be single or have a population of its type higher or equal to 1. So that,

when considering a population agent type, each agent follows its own path in the flowchart and can

be accessed individually. To simulate Gira BSS, six different agents were created: Main, Person, Bike,

Station, Depot and Truck. Agents’ characteristics are summarised below:

• Agent Main is the main agent of the program. It is where all the other agents are stored, as well

as input files, functions, parameters and variables. Main also has the GIS (Geographic Information

System) Map, which during the simulation will show the city map, stations, trucks, and bikes moving

between stations, but also the controls where input values are inserted. Main stores the function

that initialises the BSS, generate trips and obtain repositioning instructions.

• Agent Person defines every user that enters the system right after its trip is created in main and

has not yet grabbed a bike. It follows the behaviour of a real user: by deciding whether to accept

user incentives or not at the beginning of its trip (a decision based on a CC ratio); or by walking

to another station if its intended initial station has no bikes available. All individual agents person

follow a flowchart and take actions depending on their decisions and the stations’ occupations. It

is inside this agent that user incentive methods are used to calculate alternative stations and is

where the person decides to take them or not.

• Agent Bike represents every individual agent bike in the system. It is activated when a person

grabs a bike and takes a trip between stations. Just like type Person, its actions are taken by

following a flowchart, with full stations taking major importance on the followed path.

40



• Agent Station is a static type agent that represents BSS stations — places where bikes are stored

so that users can pick them up or drop them off. It is mainly characterised by its coordinates, name,

and identification number, number of docks, occupation percentage, etc.

• Agent Depot is also a static agent that represents BSS depot. It is the place where trucks initiate

and finish their tasks and where bikes can be stored if at the end of the repositioning trucks are

not empty. It is only characterised by its location.

• Agent Truck represents the population of trucks responsible for repositioning tasks. After reposi-

tioning instructions (path and number of bikes to drop or collect) are calculated, in agent Main, for

each truck, they are activated to move bikes between stations or to depot. To complete its tasks,

follows a flowchart, just like Bike and Person. It is mainly characterised by instructions received

and the number of bikes capable of carrying.

Printscreens and key parameters of the agents are shown in Appendix A in section A.3.

5.3.2 Simulator inputs/outputs

To feed the simulator, some excel files, created in MATLAB, with characteristics of the network, need to

be available. These files and resulting Database (DB) tables are explained below.

Inputs:

• stationProp.xlsx: contains stations properties, more specifically, station code number, station

name (usually refers to the street where the station is placed), number of docks, and geographical

coordinates (latitude and longitude).

• lambda20.xlsx: contains Poisson parameters (λw(sout, sin, t)) for the demand of each pair of sta-

tions for every 20 minutes and day type (workday or weekend). While preparing data for the

simulator, this file must be uploaded to a table inside the simulation database called lambda20.

• lambda20pred.xlsx: contains Poisson parameters (λw(sout, sin, t)) for the demand of each pair of

stations for every 20 minutes and day type (workday or weekend). While preparing data for the

simulator, this file must be uploaded to a table inside the simulation database called lambda20Pred.

This file is used for prediction.

• DistMatrix.xlsx: contains the distance matrix, with every distance between every station in km;

• InitialOccupation.xlsx: vector with initial stations occupation. Its sum results in the total number

of bikes used in the simulation;

• Intervals.xlsx: Contains target intervals of repositioning, with the minimum (smini ) and maximum

(smaxi ) number of bikes at each station in the beginning of the day at 6 AM, for workdays and

weekends. So that the system stays balanced at least until 9 AM on workdays, and 12 AM on

weekends. These values were obtained based on past demand and Skellam distribution;

• Neighbors.xlsx: the first page contains a 2D matrix with the indexes of stations sorted by distance,

with the nearest station on the left and the furthest on the right; the second page contains a 2D

41



matrix with the correspondent distances.

• TripT ime: this file contains the parameters: minimum, µ and σ; needed to define the Lognormal

distribution of every pair of stations trip time. The first page contains a 2D matrix with the mean of

the Normal and, the second page includes the standard deviation.

Apart from the above files, certain input values should also be defined.

Right after the Run simulation button is clicked, a new window pops up. This will effectively initiate a

run, but the simulation is paused to insert some input values. At this time, values of the following input

entries can be changed:

• Method : represents the methods allowed for the run. Shows up as a checkbox where it must be

chosen if the run allows nightly repositioning and/or user incentive methods.

• Rad : value related to user incentive methods, which represents the maximum radius for which

stations are considered neighbours from 0 to 1 km.

• CustCoop: value related to user incentive methods, which represents the percentage of customers

willing to participate in the system balance.

• wpcPerc: value related to user incentive methods, which represents the ratio factor for which

stations are/are not considered as being in a balanced situation.

• NbrVehc: value related to repositioning, which represents the number of vehicles involved in BSS

rebalancing tasks.

• TruckCapacity : value related to repositioning, which represents every truck bike capacity.

With all the possible inputs checked and inserted, Run button should be clicked and the simulation

proceeds until the stop button is clicked or a pre-defined stop date is reached.

There are two other parameters to consider, but these cannot be changed in the input window. Those

parameters are:

• Truck speed : value related to repositioning, which represents every truck speed when travelling

between station or to depot.

• Person Speed : speed for which a person travels to another station after finding an empty station

at the beginning of its trip.

Outputs:

Anylogic allows storing information along with runs within database tables. That capability was properly

used to store information about each run for different parameters.

• DB table trip table: records all trips departure and arrival stations, departure and arrival dates, type

of user (depending on the participation or not in bike repositioning), number of failed departures

and arrivals, as well as the extra effort he might have done;

• DB table ok table: records every day counting of service and no-service events in departure and

arrival stations;

42



• DB table lost users: lost users occur after they try to grab a bike in two different empty stations.

This table records the date, and the first and second stations visited.

Repositioning tasks and other information related to each truck trip cannot be stored in the database, so

an excel file, initially empty, was used:

• RepResults.xlsx: records information about repositioning tasks, the number of bikes at the begin-

ning and at the end of repositioning, visited stations, amount of bikes to pick up or drop off, truck

total travelled distance and truck operating time.

5.3.3 Simulation procedures

The simulation process is divided into 6 steps that act individually but constantly interact with each other.

Those sections are initialisation of the city; trip generation; pre-trip person decision process; bike trip;

calculus of the repositioning instruction; and truck repositioning operations. All of them will be explained

below, based on what was modelled in previous sections.

1. Before the whole dynamic of the BSS starts, the environment must be prepared. BSS assets must

be placed in their locations in the map, information inside excel files transferred to arrays, and

output files cleared. Based on information from StationProp.xlsx, stations are generated in type

Station and located in their position. The same occurs to Depot, which, unlike Station, is a single

agent. Taking into consideration the number of bikes per station from InitialOccupation.xlsx, and

running through all stations, an equal number of bikes is generated in type Bike and placed at that

station.

2. The second step is when the action starts, with the generation of trips. Every 20 minutes, all

(sout, sin) pairs access “WeekArray” (generated from database lambda20) to get the Poisson pa-

rameter λsout,sin,t, and, followingly, generate a random value from the resultant Poisson distribu-

tion. The number that pops up results in the equivalent number of people generated in type Person,

creating a virtual user with pre-defined preferences of start and end stations (sout, sin). Therefore,

after a trip is generated, a single agent person of type Person is created (with that trip initial pref-

erences). A message saying NewOrder is then sent to that same agent to start its interaction with

the system. The next steps take place in the agent person.

3. The third step occurs in agent type Person. Following a flowchart, after person receives the mes-

sage NewOrder, he stops for a random timeout period (uniform distribution) between 0 and 20

minutes. This is what introduces time randomness to trip generation. Next, depending on the CC

ratio, it is drawn whether the user decides to help with repositioning or not and if the plan is to par-

ticipate in the start and/or end station. If there is cooperation, user incentive methods are applied

and the best stations within a determined Rad are calculated. If the resulting stations are different

than the initial, person parameters StartSt and/or EndSt are changed.

43



4. The number of bikes at the initial station is then checked, and if empty, this agent moves to the

nearest station being travelled distance added to the ExtraEffort trip property. If that station is

also empty, or if the user did not participate in UI methods but has also travelled to two stations

and none had bikes, the user leaves the system and is added to the lost users table. Otherwise,

trip time is obtained. To get this value, Lognormal parameters for the current (sout, sin) pair are

accessed in the TripTMat array (obtained from TripT ime.xlsx) and drawn a value from the re-

spective Lognormal distribution. If the initial station has available bikes: a random bike located

in that station is chosen; trip’s information (TripT ime, StartSt, EndSt, StartDate, ExtraEffort,

etc) is sent to that specific bike; the moveTo(EndSt) order is set; and the number of bikes at the

station updated. This order will initiate bike movement to sin, with the bike leaving its initial state

and initiating its path on the flowchart. When it arrives at the end station, the station’s occupation

is verified. If it is lower than 100% bike is left there, otherwise, a new path is traced to the closest

station that has available empty docks. When this occurs, the EndSt variable is changed, and the

number of extra meters travelled is added to ExtraEffort. This procedure is repeated until a free

spot is found.

5. With the bike docked, the number of bikes at the EndSt is updated and final information about the

trip (TripT ime, StartSt, EndSt, StartDate, EndDate, ExtraEffort, etc) is added to trip table.

6. At 2:30 AM repositioning instructions are calculated using the static repositioning method explained

in section 3.3. This method takes into consideration the current station’s occupation level, by defin-

ing that, at the end of the repositioning, this level should meet an interval criterion, with a minimum

and a maximum number of bikes. These values are stored in the IntervalMin and IntervalMax

arrays, obtained from file IntervalOfOccupation.xlsx. First, in agent Main the clusters of stations

inside the block function Clustering are calculated; then, for every truck, the sequence of sta-

tions to visit and the number of bikes to drop off or pick up are obtained inside the block function

Repositioning. After this, a message saying start is sent for all trucks of type Truck and it is started

the sequence of trips between stations to transport bikes. When there are no more instructions,

the truck returns to the Depot, existing the possibility of returning with or without bikes.

A scheme with part of what has been explained before is shown in figure 5.7.

5.3.4 Visual interface

Throughout simulation runs, a GIS Map shows stations changing their colours depending on occupancy

level, users travelling between stations and trucks moving bikes.

When empty, stations turn blue, red if full, or green if neither full nor empty.

The Person icon is shown when the person is travelling to a second station searching for bikes, in other

words, after visiting an empty first station.

If either the first or second start stations have bikes available, that means that that trip is active in agent

44



Process DATA from GIRA

Create Trips

Move to the nearest station

MATLAB

Agent Person

Move to arrival station

Yes

NoIs empty?

No
Is empty?

Agent Bike (715)

Move to chosen arrival station

create new person and assign him a trip

Yes No
User Incentives?

Repeat every 20
minutes

Record trip information

Yes

Is full?

No

ANYLOGIC

App calculates best arrival and
departure stations

Choose arrival and
departure stations

Move to nearest station from chosen
arrival station that is not full

Before moving, person
indicates their preferential arrival

and departure station

Inititate variables
Place stations in their location,

bikes in stations, Depot in depot
location and trucks in Depot

Solve the clustering
problem for all stations in
need of repositioning for 4

clusters (trucks)

YesFor each truck, solve the
repositioning problem to
obtain the repositioning

orders
Move to station

Load / Unload

No

Yes

No more orders?

Send message to start
repositioning

Start repositioning?
Move to Depot

Agent Truck (4)

Main

Save Repositioning
Information

Record lost user

Repeat every
day at 2:30am

Next task is activated once the
agent reaches its destination. 

Figure 5.7: Simplified flowchart of the Anylogic model

Bike, and an icon with a person riding a bike is displayed until the user terminates its ride. When bikes

are stopped, their icons show bikes without a person.

45



46



Chapter 6

Evaluation

This chapter presents the results of experiments carried out in the simulator. These experiments took

place in a computer equipped with Windows 10, an Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz, and

8.00GB of RAM.

Initially, the model will be validated in all of its components, followed by an analysis of UI methods.

6.1 Data filtering

To analyse Gira BSS and obtain valid input values for the simulator, data from the trip database was

filtered, starting with 409197 trips recorded. The filters applied are listed below, and if a trip record had

any of these characteristics, it was removed:

1. National or school holiday: usually these days have a much lower number of trips and do not follow

regular patterns;

2. Missing arrival station: software or hardware errors, as well as stolen bikes, are some of the

reasons for this type of record;

3. Trip time higher than 8 hours: this time interval is the maximum a bike is allowed to travel [69];

4. Average trip speed higher than 30 km/h;

5. Trip starting between 2 AM and 6 AM: this is the interval when the system is offline for users [70];

6. Trip starting and ending at the same station with a trip time lower than 90 seconds.

For the fourth filter, it was considered that the maximum speed of a cyclist would be 42 km/h on a straight

line between stations [71]. Since trips do not follow this type of line, a detour factor of 1.4 (following the

work of Schuijbroek et al. [4]) was considered, resulting in a 30 km/h filter.

To justify the last filter, figure 6.1 shows that about 50% of the trips with the same departure and arrival

stations have a trip time below 90 seconds. Below that the increase in the evaluated percentage was

relatively high, moreover, did not seem plausible to have someone renting a bike for less than 90 seconds

47



(a value below 180 e.g. could also be a reasonable choice and fit the logic applied previously, however,

this work aimed to exclude as few trips as possible). This type of behaviour is mainly associated with

people removing and, immediately after, putting the bike back in the dock, either because it has some

defect, or some kind of error occurred. In total there are 20685 trips registered with these characteristics,

corresponding to 5% of the total amount of records — a considerable amount of unnecessary noise.

0 500 1000 1500 2000 2500 3000 3500

Trip time (seconds)

0

20

40

60

80

100
%

 o
f t

rip
s 

w
ith

 tr
ip

 ti
m

e 
lo

w
er

 th
an

 X
Same departure and arrival stations

( 90 secs, 50.14% )

Figure 6.1: Cumulative percentage of trips for different trip times

After filtering, data ended up with 388512 records.

6.2 Parameters choice

Before validating the model and getting results from the application of different methods for different

parameters values, some inputs were considered to be constant for every run:

• Truck speed = 50 km/h;

• Person speed = 1.4 m/s;

• dp = dm = 357;

• Loading/Unloading task time = Number of bikes to (un)load x 1 minute;

• Number of trucks = 4;

• Truck capacity = 25;

Truck capacity was chosen to be 25, a value that does not fit the 15 maximum capacity referred in

section 4.3. This choice is explained by the type of repositioning chosen in this thesis. This allows, for

example, a station to have 30 bikes at the end of the day, for a maximum target interval of 5. Given that

this method can visit stations only once, 25 bikes would have to be picked up. Therefore, a lower truck

capacity could lead certain stations not to be properly rebalanced.

The repositioning method is divided into two phases: clustering and repositioning (repeated for every

truck). CPLEX was the solver used in Anylogic, and two parameters were defined:

48



• MIPGap - The MIP solver will terminate (with an optimal result) when the gap between the lower

and upper objective bound is less than MIPGap times the absolute value of the incumbent objective

value;

• TimeLimit - Limits the total time expended (in seconds) solving the MIP;

For both phases (clustering and repositioning) a MIPGap of 0.01 and a TimeLimit of 60 seconds were

defined.

6.3 Verification and validation

To validate this model and assess how close it fits reality, filtered data from Gira was used, and the pa-

rameters presented in the previous subsection were applied. The simulator was validated by examining

three major measures: number of trips generated, trip time, and number of users lost.

Datasets

To check the error between reality and the model, two λw(i, j, t) datasets were created, to input param-

eters into the simulation. The first testing data, dataset 1, included all available trips after being filtered,

corresponding to 3 months of trips.

With the goal of analysing if the simulator is a good predictor, a second test dataset, dataset 2, was

used. Since figure 4.4 shows February and March with a similar number of trips, the predictor test

dataset included data from 2nd of January to 15th of March, excluding the Carnival week from 4th of

March to 8th of March due to a drop in the number of trips.

Scenarios

Four scenarios, described below, were assessed:

(1) Since stations with restrictions have an impact on user initial preferences for departure and arrival

stations, this first scenario used sink/source stations, which mean that station restrictions were not

considered. The dataset used was dataset 1, and the comparison was made against the average

values per day of the same 3 months of real data.

(2) Similar to scenario (1), this scenario attempts to evaluate the prediction capabilities of this simula-

tor, using sink/source stations. It was trained with dataset 2, and it was tested and compared for

two weeks of data (16 of March to 31st of March).

(3) Scenario for which station and bike restrictions were considered, applying methodologies related

to Person and Bike behaviours modelled in previous sections. For this case, UI methods and

49



repositioning are turned off. dataset 1 was used as training and were simulated for 28 straight

days. Then compared to the average of 3 months of real data.

(4) Similar to 3rd scenario (dataset and simulated days), except for one difference: NR method was

activated. The main difference for the third relies on a reset made every night, using a fleet of 4

trucks with a capacity to transport up to 25 bikes each.

Trip generation

Trips were counted in four different formats, with one or two metrics per format.

Three metric types were applied for this validation: Mean Absolute Percentage Error (MAPE), Mean Ab-

solute Error (MAE), and Variance Accounted For (VAF), which checks the proximity between departure

and arrival signals. A VAF value of 1 means that both signals have the same shape.

These formats and their respective metrics are presented below:

• Average total trips per day:

MAPE = abs(Ntrips−Ntrips)/Ntrips (6.1)

where Ntrips is the average number of trips per day in the simulator and Ntrips the real demand;

• Origin-destination matrix (O-D matrix) or average number of trips per day starting at station Sout

and ending at station Sin:

MAE = mean(abs(DSout,Sin
−DSout,Sin

)) (6.2)

where DSout,Sin
is a 2D counter matrix with the number of trips starting in Sout and ending in Sin,

and DSout,Sin
the OD matrix based on real demand;

• Average number of trips per day starting at station Sout at time interval t (8:00 to 8:20, for

example):

MAE = mean(abs(DSout,t −DSout,t)) (6.3)

where DSout,t is a 2D counter matrix with the number of trips starting at Sout at time interval t, and

DSout,t the respective real matrix;

V AF = 1− var(Ds,t −Ds,t)/var(Ds,t) ∀ s ∈ Sout (6.4)

where Ds,t is the counter vector with number of trips starting in s ∈ Sout at time interval t and

Ds,t the respective real counter vector. Since this metric results in n metrics where n=number of

stations, the mean of all stations’ VAF, MVAF (Mean Variance Accounted For), will be evaluated.

50



• Average number of trips per day ending at station Sin at time interval t:

MAE = mean(abs(DSin,t −DSin,t)) (6.5)

where DSin,t is a 2D counter matrix with the number of trips starting in Sin at time interval t, and

DSin,t the respective real matrix;

V AF = 1− var(Ds,t −Ds,t)/var(Ds,t) ∀ s ∈ Sin (6.6)

where Ds,t is the counter vector with number of trips starting in s ∈ Sin at time interval t and Ds,t

the respective real counter vector.

From the first format to the last two, trips are separated into more variables, therefore, higher error values

are expected in the last two formats but also more importance on validation.

The average results of multiple days were considered. Stations (or pairs) will not be evaluated separately,

therefore there might be individual cases with higher errors than the average of errors presented.

Table 6.1 summarises results of the metrics applied for the four scenarios, differentiating working (WD)

from weekends (WE).

Scenario 1 Scenario 2 Scenario 3 Scenario 4
WD WE WD WE WD WE WD WE

(Total Trips)/Day - MAPE 0.16 0.24 0.27 1.72 8.14 3.82 4.41 3.28
(sout, sin) - MAE 0.07 0.08 0.34 0.29 4.11 1.53 4.04 1.52
(sout, t) - MAE 0.13 0.13 0.35 0.33 0.22 0.20 0.19 0.19
(sout, t) - MVAF 0.93 0.76 0.61 0.08 0.80 0.37 0.85 0.44
(sin, t) - MAE 0.08 0.09 0.38 0.33 0.18 0.17 0.16 0.17
(sin, t) - MVAF 0.97 0.87 0.52 -0.03 0.88 0.55 0.89 0.55

Table 6.1: Model versus simulation error metrics

As expected, results show that scenario (1) is the overall best with the lowest MAPE and MAE errors

and highest MVAF. Not having restrictions approximated this scenario from real data, validating the way

trips are generated. This also affected total trip MAPE and (sout, sin)-MAE of scenario (2) which came

in second place for these metrics, showing that when it comes to (sout, sin) relation, without the time

factor, the behaviour is consistent to reality. Problems emerged with MVAF values of (sin, t) and (sout, t)

decreasing a lot in relation to scenario (1), showing the negative influence of the time factor, also present

in (sin/sout, t)-MAE.

Looking to the (sout, t)-MVAF of scenario (1), during working days, and comparing it to scenario (3), this

value dropped from 0.93 to 0.80. This drop is not so significant if repositioning is activated, assuming a

value of 0.85. MAE errors of (sout, t) and (sin, t) increased from scenario (1) to (4) and (3), reinforcing

that scenario (4) takes advantage over (3).

With restrictions activated for scenarios (3) and (4), MAPE and (sout, sin)-MAE errors got highly in-

creased. This is due to empty and full stations that cause non-service events. This way, users see

51



themselves forced to change initial and/or end stations, or even to abandon the system.

When comparing workdays against weekends with MVAF (sin/sout, t), workdays seem to take an ad-

vantage over weekends. Figures 6.2 and 6.3 show how well simulation curves follow the real case on

workdays, and not so well on weekends.

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of the day

0

1

2

3

4

5

6

A
ve

ra
ge

 n
um

be
r 

of
 tr

ip
s

104 - Gare do Oriente

Real departures
Real arrivals
Simulated departures
Simulated arrivals

Figure 6.2: Average number of trips throughout day - real versus simulation (Scenario 1;
workday)

(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

0

0.5

1

1.5

2

2.5

A
ve

ra
ge

 n
um

be
r 

of
 tr

ip
s

104 - Gare do Oriente

Real departures
Real arrivals
Simulated departures
Simulated arrivals

Figure 6.3: Average number of trips throughout day - real versus simulation (Scenario 1;
weekend)

(20 minute interval data, ”smoothingspline”, SmoothingParam=0.9758)

Trip time

Another factor to evaluate is the time users spent in the system travelling between stations.

Figures A.2 and A.1 in Appendix A display real trip time Lognormal fit curves and compares it with

simulated PMFs for all scenarios. Figure A.2 shows trips from station 101 to 104 and figure A.1 takes

into account every trip recorded. From the visual analysis of these images, the similarity between the

real curve and simulated PMF is evident, therefore validating trip time.

52



Repositioning (intervals and path)

The last factor to check is repositioning instructions. The nightly method applied in this thesis is different

from reality, so it is not expected that the number of visits per day at each station is the same. Figure

A.3 shows that, in reality, there are, on average, stations visited more than once a day. Given that

the methodology applied does not allow a station to be visited more than once, this will be one of the

differences between the simulator and real life. Yet, it is shown that some stations are visited with

a higher frequency than in the real case. The explanation for this is that repositioning interval level

requirements must be strictly fulfilled every day, and one bike outside that interval is enough to require a

visit.

Most times, this method leaves stations with the maximum or minimum acceptable level, which is not

supposed to be a problem in the morning of the next day, however, the probability of laying outside the

admissible intervals at the end of the day is increased, therefore, becoming a station that should be

visited during the night.

When comparing the average number of lost users across day between scenario (3) (without reposition-

ing) and (4) (with repositioning) through figure 6.4, the impact of repositioning is clear, mostly during the

morning of workdays and from 6 to 1 PM of weekends. This impact was already expected since these

were the ”time horizon periods” applied to get the intervals of repositioning.

A simple truck route validation can be made by looking at figure 6.5, that shows each truck route and

the number of bikes picked up or delivered at each station.

Figure A.4 also validates the repositioning, showing that all self-sufficient station (blue dot) occupancy

is maintained while not self-sufficient stations (red dot) occupancy enter the required occupancy level

(black line) after repositioning (green dot).

00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00 24:00:00

Day Time

0

5

10

15

20

25

A
ve

ra
ge

 n
um

be
r 

of
 L

os
t U

se
rs No Repositioning (WD)

No Repositioning (WE)
Repositioning (WD)
Repositioning (WE)

Figure 6.4: Scenario (3) (no repositioning) VS scenario (4) (with repositioning) average number of lost
users throughout the day

53



38.71

38.72

38.73

38.74

38.75

38.76

-9.19 -9.18 -9.17 -9.16 -9.15 -9.14 -9.13 -9.12 -9.11 -9.1

-4
-5-5

2
1

-11

2

4
1

-4

1

-6

2
6 5

-2 1

1
-6

1

5

-2-1

-8
-8

-1
6743

Depot

Canvas

Figure 6.5: Example of repositioning tasks in the map (4 trucks)

6.4 Results and discussion

After validating the model, this chapter will now test the efficacy of user incentive methodologies for dif-

ferent scenarios and parameters. Two main methods will be considered: the one applied by Aeschbach

et al. [6], Method 1 (M1), and the one currently used by Gira, Method 2 (M2). Being one of them tested

for three different preemptive control levels, four scenarios were considered:

• M1-0.5: M1 with WPC=0.5. This method corresponds to the WPC-MA presented in section

3.2. Alternative stations are presented when the initial/final station has an occupation percent-

age lower/higher than 50/50 (%).

• M1-0.7: Method 1 considering WPC=0.7. This methodology was not considered by Aeschbach

et al. [6] in his work and will be tested here due to its similarity to M2-0.7; Users are only requested

to use the app if its initial/final station has an occupation percentage lower/higher than 30/70 (%).

• M1-1.0: Method 1 with preemptive control or WPC=1, corresponds to the PC-MA presented in

section 3.2. Users are always requested to use the app with this method.

• M2-0.7: Method 2 presented in section 5.2.3. Unlike Aeschbach et al. [6] method, which presents

as alternatives the best stations from the group (neighbourhood), this one shows the nearest

stations that fulfil the requirements — below/above 30/70 (%) for initial/end stations.

The above scenarios were tested applying the reasoning of Aeschbach et al. [6] — varying two ad-

justable control parameters: CC which is the percentage of people willing to help on repositioning tasks;

54



and the Rad used to define sets of stations. These tests were accomplished with and without NR, with

the last taking place during the night interval between 2 AM and 6 AM.

As explained in section 5.2.3, to approximate this model to reality, people choices are differentiated into

three levels: help only in departure; help only in arrival; and help in both, being attributed to each case

an equal percentage. For example, if CC is defined to 30%, each of the three previous cases has a 10%

chance of happening.

For each scenario several experiments were carried out for different parameters. In the first experiments,

neighbouring Rad was varied in intervals of 0.1 km from 0.1 km to 1 km, maintaining a CC of 0.5 and

without NR. Afterwards, CC levels were varied in intervals of 0.1 from 0.1 to 1, fixing neighbourhood Rad

in 0.5 km, and also without NR. Finally, with NR activated and a Rad settled to 0.5 km, experiments with

the following CC levels were carried: CC ∈ {0.25, 0.5, 0.75, 1}. Experiments were also taken with UI and

without repositioning for CC=1 and Rad=1, with the objective of exploring maximum ranges.

To compare results, three metrics were applied:

• Service level - A measure of service quality provided by the bike sharing system, also used in

Pfrommer et al. [5], Singla et al. [35] (see section 3.2);

• Average extra effort (km) - Result of summing the extra meters travelled to the alternative station;

• Lost user percentage - A measure of major importance since there is no available data hold by

Gira regarding people who leave the system due to empty stations.

The impact of user incentive methods on repositioning (4 trucks) was measured by:

• Visited stations per day

• Bikes transported per day

• Total travelled distance per day (km)

• Sum of all operation times (minutes)

• CPU time per repositioning instructions calculus (seconds)

Before performing the experiments, it was analysed for how long an experiment should be performed.

Figure 6.6 represents the service level of an experiment without user incentives and repositioning. A

visual examination of it shows a stabilisation around 15th to 20th day. To have a little margin, 28 straight

days, for each simulation, were experimented.All experiments were carried four times, therefore, the

following results represent the average of four values.

6.5 Service level

Service level is a measure based on the number of customers and the number of no service events.

Section 3.2 briefly explains and shows the service level equation 3.6.

BSS service level for different values of Rad is shown in figure 6.8, and the influence of varying CC is

represented in figure 6.7. For both cases, experiments were carried without repositioning.

55



0 5 10 15 20 25 30
Day Number

0.4

0.5

0.6

0.7

0.8

0.9

S
er

vi
ce

 L
ev

el

No Repositioning
Repositioning

Figure 6.6: Service level over 28 days

0 0.2 0.4 0.6 0.8 1
Customer Cooperation Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

S
er

vi
ce

 L
ev

el

M1-0.5
M1-0.7
M2-0.7
M1-1
Without UI

Figure 6.7: Service level (without NR; Rad=0.5 km)

0 0.2 0.4 0.6 0.8 1
Neighbour Search Radius (km)

0.4

0.5

0.6

0.7

0.8

0.9

1
S

er
vi

ce
 L

ev
el

M1-0.5
M1-0.7
M2-0.7
M1-1
Without UI

Figure 6.8: Service level (without NR; CC=0.5)

0 0.2 0.4 0.6 0.8 1
Customer Cooperation Ratio

0.7

0.8

0.9

1

1.1

S
er

vi
ce

 L
ev

el

M1-0.5
M1-0.7
M2-0.7
M1-1
Without UI

Figure 6.9: Service level (with NR; Rad=0.5 km)

Without user incentives, a service level of 0.43 was achieved, the minimum service level found. The

highest level was obtained by the M1-1.0 with CC=1.0 and Rad=1.0 which achieved a level of 0.99,

showing that is possible to obtain a system totally balanced without repositioning, as long as all users

accept to participate.

56



It is clear how an increase in the Rad and CC also increases service level. However, this behaviour

is not the same for every scenario tested. M2-0.7 has the worst results, with a difference of only 0.2

when varying Rad from 0 to 1 km. M1 curves have a higher service level when compared to M2, being

also evident that a higher WPC shows higher service level values. Nevertheless, it is visible how WPC’s

influence decreases, with the difference from M1-0.5 to M1-0.7 much higher than the difference from

M1-0.7 to M1-1.0.

Although these values indicate a good performance of the methods, they are low when compared to

the ones obtained in Aeschbach et al. [6]. M1-0.5 with CC=0.5 and Rad=0.5 km, an intermediate case,

obtained a service level of 0.6 a difference of 0.16 to the no UI case, but obtained a value of about 0.83 in

Aeschbach et al. [6]. This considerable difference can be related to the fact that this thesis implemented

three cases of cooperation, unlike Aeschbach et al. [6] who considered only one — participate in both

departure and arrival stations. Another possibility is the number of days simulated. This thesis took 28

straight days of simulation, since Aeschbach et al. [6] did not identify the number of consecutive days

of simulation, these values cannot be directly compared. Figure 6.6 shows how this impacts service

level. The last possibility for this discrepancy is the BSS used for analysis. In this thesis, data from Gira

including 74 stations was analysed, while Aeschbach et al. [6] used data from London’s Barclays Cycle

Hire (nowadays Santander Cycle Hire) with 745 stations (at that time). Even though this was not studied

thoroughly, it may be the case that there is a higher number of neighbouring stations around a London

BSS’s station than around a Lisbon BSS’s station for the same neighbouring Rad, a fact that would have

an impact on the best stations chosen by the method, consequently uniformly spreading bikes around a

higher number of stations.

Figure 6.9 shows the service level for different cooperation values with NR active. As expected, service

level saw a great increase for all methods, with the behaviours between them remaining unchanged. For

example, M1-0.5 with CC=0.5 and Rad=0.5 went from 0.6 without repositioning to 0.86 with reposition-

ing, getting a value of 0.71 when repositioning is activated and UI is inactive. These values represent a

relevant increase relatively to experiments without repositioning, showing how important is rebalancing

stations through trucks, and why this methodology should not be discarded, but instead cooperate with

UI methods.

Scenario
M1-0.5 M1-0.7 M1-1.0 M2-0.7

Service Level 0.95 1 1 0.78

Table 6.2: Average service level (without NR; CC=1.0; Rad=1.0 km)

6.6 Average extra effort

Asking customers to change their journey implies an extra effort by cooperative users. This effort was

measured by equation 3.7 presented in section 3.2.

57



0 0.2 0.4 0.6 0.8 1

Radius (km)

0

2

4

6

8

10

12

A
ve

ra
ge

 n
um

be
r 

of
 n

ei
gh

bo
rs

ne
ig

hb
ou

rs

Figure 6.10: Average number of neighbours around a station

The results for the extra effort expression are depicted in figures 6.11, 6.12 and 6.13. An increase on

average extra effort over Rad was identified for all scenarios, but not over CC. This was the expected

outcome, given that only an increase in the size of the neighbourhood should result in higher efforts due

to larger distances from the intended stations. An interesting fact to highlight is that calculated values

are, for some cases, higher than the Rad, for example, M1-0.5 has an average extra effort of 0.6. This

occurs because the resultant effort is the addition of effort for both start and end stations, which implies

a maximum extra effort fixed on 2 times the Rad. When methods apply a Rad of 0.5 km, they are saying

that people, at most, will add 1 km (straight line) to its journey.

When it comes to the methods applied, M1 clearly implies a higher effort over M2. This is due to the fact

that M2 shows as an alternative station the one closest to the intended; unlike M1 that indicates the one

with the best level of occupancy. This way, unlike M2, M1 will have a higher tendency to spread bikes

uniformly.

Differences are only visible between M1 and M2, because variations of WPC inside M1 do not seem to

have an impact on this metric. The same goes for experiments with repositioning, for which values with

and without repositioning appear to be the same, such as the example of (M1-0.5, CC=0.5, Rad=0.5,

no repositioning) with a value of 0.53 km, and 0.52 km with repositioning but the same CC and Rad

parameters.

Scenario
M1-0.5 M1-0.7 M1-1.0 M2-0.7

Extra Effort (km) 1.13 1.25 1.24 0.53

Table 6.3: Average extra effort (without NR; CC=1.0; Rad=1.0 km)

58



0.2 0.4 0.6 0.8 1
Neighbour Search Radius (km)

0

0.2

0.4

0.6

0.8

1
A

ve
ra

ge
 E

xt
ra

 E
ffo

rt
 (

km
)

M1-0.5
M1-0.7
M2-0.7
M1-1

Customer Cooperation Ratio

Figure 6.11: Average extra effort (without NR;
Rad=0.5)

0.2 0.4 0.6 0.8 1
Neighbour Search Radius (km)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ve

ra
ge

 E
xt

ra
 E

ffo
rt

 (
km

)

M1-0.5
M1-0.7
M2-0.7
M1-1

Figure 6.12: Average extra effort (without NR;
CC=0.5)

0.2 0.4 0.6 0.8 1
Customer Cooperation Ratio

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 E
xt

ra
 E

ffo
rt

 (
km

)

M1-0.5
M1-0.7
M2-0.7
M1-1

Figure 6.13: Average extra effort (with NR; Rad=0.5 km)

6.7 Lost users

From section 6.3 it is already known that there is always a percentage of users that will be lost when they

try to enter the system. As explained in previous sections, there is no data showing how many users

are lost in real case scenario; however, according to Gira’s management team, if a station is empty/full

for more than 15 minutes and all its neighbours within a radius of 100m are in the same situation, this

station should be repositioned as fast as possible. Although this information could not be confirmed with

the studied data, it indicates a low probability of this type of occurrences for long periods of time. Taking

this into account, the whole simulation was modelled considering that there were no more users trying

to enter the system beyond the users (trips) registered.

Inversely to service level, as shown by figures 6.14 and 6.15, the percentage of lost users decreases

with CC and Rad. As displayed by figure 6.16, NR, in this case, also has a huge impact, decreasing

these percentages.

Similarly to the case for previous metrics, M2 was the worst method, always showing higher percentages

59



of lost users.

0 0.5 1
Customer Cooperation Ratio

0

2

4

6

8

Lo
st

 U
se

rs
 (

%
)

M1-0.5
M1-0.7
M2-0.7
M1-1
Without UI

Figure 6.14: Percentage of lost users (without NR;
Rad=0.5 km)

0 0.5 1
Neighbour Search Radius (km)

0

2

4

6

8

Lo
st

 U
se

rs
 (

%
)

M1-0.5
M1-0.7
M2-0.7
M1-1
Without UI

Figure 6.15: Percentage of lost users (without NR;
CC=0.5)

0 0.5 1
Customer Cooperation Ratio

0

1

2

3

4

5

Lo
st

 U
se

rs
 (

%
)

M1-0.5
M1-0.7
M2-0.7
M1-1
Without UI

Figure 6.16: Percentage of lost users (with NR; Rad=0.5 km)

Scenario
M1-0.5 M1-0.7 M1-1.0 M2-0.7

Lost Users (%) 0.05 0.04 0.05 1.63

Table 6.4: Average percentage of lost users (without NR; CC=1.0; Rad=1.0 km)

6.8 Repositioning results

Lastly, results related to repositioning are presented in table 6.5. A general analysis shows that, just like

previous metrics, M1-1.0 is the best, followed by M1-0.7, then M1-0.5 and finally M2-0.7.

The number of visited stations is reduced with the decrease of cooperation levels for all scenarios, and

may be reduced to even less than 11 stations when comparing no repositioning (42 stations) to M1-1.0

with CC=1 (31 stations).

60



Table 6.5 also shows that the number of bikes transported is on average 2 to 2.5 times the number of

visited stations. Considering that almost half of the stations are receiving bikes and the other half losing

bikes, on average, there are 4 to 5 bikes dropped or picked up per station visited.

When it comes to the total distance travelled and operation time, the behaviour is the same as previous

measures, starting with 143 km for 445 minutes without UI, and dropping to values as low as 119 km

travelled for 350 minutes (M1-0.5, CC=1), therefore, showing the influence of UI on repositioning.

Scenario CC Visited
stations

Bikes
transported

Distance
traveled

(km)

Operation
time

(minutes)

CPU time
(seconds)

No UI 42.43 106.79 143.16 445.04 44.58

M1-0.5

0.25 39.17 91.61 134.57 436.80 20.41
0.5 37.79 85.30 133.93 422.54 31.48
0.75 36.46 78.40 131.45 404.89 27.39
1 35.15 69.63 127.62 382.06 15.52

M1-0.7

0.25 38.79 89.13 135.55 432.13 30.14
0.5 36.68 79.52 132.38 409.03 28.64
0.75 34.14 71.96 129.43 388.74 31.31
1 31.49 61.38 121.08 353.08 23.93

M1-1.0

0.25 37.84 84.37 136.67 426.02 35.47
0.5 35.96 78.81 130.23 403.46 24.04
0.75 33.13 69.86 123.97 375.54 22.92
1 31.05 60.72 118.82 350.06 10.34

M2-0.7

0.25 38.23 90.82 136.14 436.75 27.11
0.5 37.96 89.61 136.03 435.07 38.61
0.75 35.70 81.78 130.22 409.85 25.14
1 35.08 80.45 129.89 406.04 24.77

Table 6.5: Repositioning results with 4 trucks

61



62



Chapter 7

Conclusions and future research

7.1 Conclusions

This dissertation consists of the development of a functional simulator of a Gira BSS in Anylogic. This

simulation allows the study of repositioning schemes and user incentive methods, and comprises a

visual interface where people, trucks and bikes can be seen travelling between stations all day. Besides

observing trips on a map, the software user can change determined parameters like the number of

trucks, truck’s capacity, CC or Rad, as well as the methods applied.

In the simulator a nightly repositioning method (implementation of Schuijbroek et al. [4]’s work) and two

user incentive methods are incorporated. The first method follows the work of Aeschbach et al. [6] and

the second was originally modelled in the course of this project, in the pursue of reproducing the UI

method currently applied to Gira’s users.

Real data from Lisbon’s BSS has validated the simulator components, such as the number of trips

generated at each 20-minutes, trip time and repositioning tasks. The generation of trips was mainly

validated by not considering the station’s capacity or lack of bikes. Even so, when solely applying nightly

repositioning and station constraints, low errors were still reached, with the number of lost users being

drastically reduced when compared to the case of no repositioning. Results have shown that nightly

repositioning is not enough to keep the system balanced through the entire day, and only a dynamic

approach could handle all the demand.

The results from varying CC and Rad with and without repositioning have shown that customers are able

to balance the system without trucks, but only if all cooperate, and a Rad of 1 km is applied. Otherwise,

no-service events will occur with a much higher frequency. Therefore, in case not all the users cooperate,

the first conclusion to take is that truck repositioning is essential and cannot be withdrawn.

M1, presented in Aeschbach et al. [6] work, has shown evidence of a higher service level and lower

lost user percentage results than M2, for all WPC ratios. Unlike M2 that only chooses stations with

occupation percentages lower/higher than 30/70, M1 indicates the best station in the neighbourhood to

63



the app user, even if the occupation does not lay in the required interval. Taking this fact into account, M1

will always have more alternative stations to present than the other method, therefore achieving better

results. The only factor in which M2 showed better results was in the amount of extra effort. This was the

expected behaviour considering that M2 searches for the nearest station that satisfies the requirements,

while the other method seeks the best station in the neighbourhood.

Even though repositioning cannot be withdrawn, results have also shown that UI methods have reduced

the average number of stations to visit per day, and the number of bikes to transport. This is, therefore,

a way of reducing the transportation’s costs and increasing the amount of free time to spend on other

tasks.

7.2 Future work

Given the complexity of BSSs, there are still several ways to enrich and complement the analysis per-

formed in this dissertation:

• New studies can use this simulator to compare different UI or repositioning methods. The most ob-

vious is to implement a dynamic repositioning method, which would be a useful study to strengthen

the conclusions of this work. An alternative UI method should, for example, consider price incen-

tives, therefore allowing the computation of the costs associated.

• Questions such as “How much money is necessary to get people to participate?” or “How much

money will be saved on repositioning tasks compared to what is spent with UI?” are yet to be

answered. Thus, one way to get more information is by conducting surveys on Lisbon BSS’s users,

in an atempt to find their willingness to change their journey and what they demand in exchange.

• This work considered a certain number of docks and bikes within the system that have been kept

the same for all experiments. As such, future studies could asses how changes in these values

would impact the results.

• A differentiation between classic and electric bikes is another path to take.

• In addition, effects of season, weather, events, etc., were not analysed in this thesis and could be

subject to further analysis.

64



Bibliography

[1] Promoting environmentally sustainable transport (est). United Nations - Sustainable Development,

(Accessed July, 2021). URL: https://sustainabledevelopment.un.org/partnership/?p=365.

[2] R. B. Nath and T. Rambha. Modelling methods for planning and operation of bike-sharing systems.

Journal of the Indian Institute of Science, pages 1–26, 2019.

[3] M. A. Babagoli, T. K. Kaufman, P. Noyes, and P. E. Sheffield. Exploring the health and spatial

equity implications of the new york city bike share system. Journal of transport & health, 13:200–

209, 2019.

[4] J. Schuijbroek, R. C. Hampshire, and W.-J. Van Hoeve. Inventory rebalancing and vehicle routing

in bike sharing systems. European Journal of Operational Research, 257(3):992–1004, 2017.

[5] J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari. Dynamic vehicle redistribution and

online price incentives in shared mobility systems. IEEE Transactions on Intelligent Transportation

Systems, 15(4):1567–1578, 2014.

[6] P. Aeschbach, X. Zhang, A. Georghiou, and J. Lygeros. Balancing bike sharing systems through

customer cooperation-a case study on london’s barclays cycle hire. In 2015 54th IEEE Conference

on Decision and Control (CDC), pages 4722–4727. IEEE, 2015.

[7] D. Chemla, F. Meunier, T. Pradeau, R. W. Calvo, and H. Yahiaoui. Self-service bike sharing systems:

simulation, repositioning, pricing. 2013. <hal-00824078>.

[8] E. Maibach, L. Steg, and J. Anable. Promoting physical activity and reducing climate change:

Opportunities to replace short car trips with active transportation. Preventive medicine, 49(4):326–

327, 2009.

[9] P. Midgley. Bicycle-sharing schemes: enhancing sustainable mobility in urban areas. United Na-

tions, Department of Economic and Social Affairs, 8:1–12, 2011.

[10] S. A. Shaheen, S. Guzman, and H. Zhang. Bikesharing in europe, the americas, and asia: past,

present, and future. Transportation Research Record, 2143(1):159–167, 2010.

[11] D. Gutman. Will helmet law kill seattle’s new bike-share program? The Seattle Times, 2016,

(Accessed July, 2021). URL: https://www.seattletimes.com/seattle-news/transportation

/will-helmet-law-kill-seattles-new-bike-share-program/.

65

https://sustainabledevelopment.un.org/partnership/?p=365
https://www.seattletimes.com/seattle-news/transportation/will-helmet-law-kill-seattles-new-bike-share-program/
https://www.seattletimes.com/seattle-news/transportation/will-helmet-law-kill-seattles-new-bike-share-program/


[12] I. Otero, M. Nieuwenhuijsen, and D. Rojas-Rueda. Health impacts of bike sharing systems in

europe. Environment international, 115:387–394, 2018.

[13] N. McIntyre and J. Kollewe. Life cycle: is it the end for britain’s dockless bike schemes. The

Guardian, February 2019, (Accessed July, 2021). URL: https://www.theguardian.com/cities

/2019/feb/22/life-cycle-is-it-the-end-for-britains-dockless-bike-schemes.

[14] G. Paton. Ofo bike-sharing scheme abandoned amid vandalism and rising costs. The Times,

January 2019, (Accessed July, 2021). URL: https://www.thetimes.co.uk/article/ofo-bike-

sharing-scheme-abandoned-amid-vandalism-and-rising-costs-hwbhkh3mh.

[15] N. Menezes. Why bicycling in bengaluru is a cruel joke on cyclists. The Economic Times, May

2019, (Accessed July, 2021). URL: https://economictimes.indiatimes.com/news/politics-a

ndnation/why-bicycling-in-bengaluru-is-a-cruel-joke-on-cyclists/articleshow/6915

7348.cms.

[16] C. Bonnington. High-tech handlebars and anti-theft alerts. Slate, February 2018, (Accessed July,

2021). URL: https://slate.com/technology/2018/02/how-to-prevent-bike-theft-with-hi

gh-tech-handlebars-and-other-anti-theft-gadgets.html.

[17] T. Brookes. The 4 best bike trackers for catching thieves red handed. Make Use Of, March 2019,

(Accessed July, 2021). URL: https://www.makeuseof.com/tag/bike-tracker-catching-thie

ves/.

[18] M. Dell’Amico, E. Hadjicostantinou, M. Iori, and S. Novellani. The bike sharing rebalancing problem:

Mathematical formulations and benchmark instances. Omega, 45:7–19, 2014.

[19] M. Rainer-Harbach, P. Papazek, G. R. Raidl, B. Hu, and C. Kloimüllner. Pilot, grasp, and vns

approaches for the static balancing of bicycle sharing systems. Journal of Global Optimization, 63

(3):597–629, 2015.

[20] C. Fricker and N. Gast. Incentives and redistribution in homogeneous bike-sharing systems with

stations of finite capacity. Euro journal on transportation and logistics, 5(3):261–291, 2016.

[21] Passes and tariffs. Gira, (Accessed July, 2021). URL: https://www.gira-bicicletasdelisboa.

pt/passes-e-tarifarios/.

[22] S. Ghosh and P. Varakantham. Incentivizing the use of bike trailers for dynamic repositioning in

bike sharing systems. In Proceedings of the International Conference on Automated Planning and

Scheduling, volume 27, pages 373–381. AAAI Press, 2017.

[23] S. P. S. Melo. Rebalanceamento estático do sistema de bicicletas públicas partilhadas de lisboa-

gira. Master’s thesis, Instituto Superior de Economia e Gestão, 2018.

[24] M. C. Rodrigues. Planning nightly rebalancing in bike sharing systems. Master’s thesis, Instituto

Superior Técnico, June 2019.

66

https://www.theguardian.com/cities/2019/feb/22/life-cycle-is-it-the-end-for-britains-dockless-bike-schemes
https://www.theguardian.com/cities/2019/feb/22/life-cycle-is-it-the-end-for-britains-dockless-bike-schemes
https://www.thetimes.co.uk/article/ofo-bike-sharing-scheme-abandoned-amid-vandalism-and-rising-costs-hwbhkh3mh
https://www.thetimes.co.uk/article/ofo-bike-sharing-scheme-abandoned-amid-vandalism-and-rising-costs-hwbhkh3mh
https://economictimes.indiatimes.com/news/politics-andnation/why-bicycling-in-bengaluru-is-a-cruel-joke-on-cyclists/articleshow/69157348.cms
https://economictimes.indiatimes.com/news/politics-andnation/why-bicycling-in-bengaluru-is-a-cruel-joke-on-cyclists/articleshow/69157348.cms
https://economictimes.indiatimes.com/news/politics-andnation/why-bicycling-in-bengaluru-is-a-cruel-joke-on-cyclists/articleshow/69157348.cms
https://slate.com/technology/2018/02/how-to-prevent-bike-theft-with-high-tech-handlebars-and-other-anti-theft-gadgets.html
https://slate.com/technology/2018/02/how-to-prevent-bike-theft-with-high-tech-handlebars-and-other-anti-theft-gadgets.html
https://www.makeuseof.com/tag/bike-tracker-catching-thieves/
https://www.makeuseof.com/tag/bike-tracker-catching-thieves/
https://www.gira-bicicletasdelisboa.pt/passes-e-tarifarios/
https://www.gira-bicicletasdelisboa.pt/passes-e-tarifarios/


[25] G. Erdoğan, G. Laporte, and R. W. Calvo. The static bicycle relocation problem with demand

intervals. European Journal of Operational Research, 238(2):451–457, 2014.

[26] H. Hernández-Pérez and J.-J. Salazar-González. A branch-and-cut algorithm for a traveling sales-

man problem with pickup and delivery. Discrete Applied Mathematics, 145(1):126–139, 2004.

[27] H. Hernández-Pérez and J.-J. Salazar-González. The one-commodity pickup-and-delivery traveling

salesman problem: Inequalities and algorithms. Networks: An International Journal, 50(4):258–

272, 2007.

[28] M. Benchimol, P. Benchimol, B. Chappert, A. De La Taille, F. Laroche, F. Meunier, and L. Robinet.

Balancing the stations of a self service “bike hire” system. RAIRO-Operations Research, 45(1):

37–61, 2011.

[29] S. C. Ho and W. Szeto. Solving a static repositioning problem in bike-sharing systems using iterated

tabu search. Transportation Research Part E: Logistics and Transportation Review, 69:180–198,

2014.

[30] J. Schuijbroek, R. Hampshire, and W. van Hoeve. Inventory rebalancing and vehicle routing in bike

sharing systems. In Tech. Rep. 2013-E1. Tepper School of Business, Carnegie Mellon University,

2013.

[31] D. Chemla, F. Meunier, and R. W. Calvo. Bike sharing systems: Solving the static rebalancing

problem. Discrete Optimization, 10(2):120–146, 2013.

[32] I. A. Forma, T. Raviv, and M. Tzur. A 3-step math heuristic for the static repositioning problem in

bike-sharing systems. Transportation research part B: methodological, 71:230–247, 2015.

[33] S. Ghosh, P. Varakantham, Y. Adulyasak, and P. Jaillet. Dynamic repositioning to reduce lost de-

mand in bike sharing systems. Journal of Artificial Intelligence Research, 58:387–430, 2017.

[34] C. S. Shui and W. Szeto. Dynamic green bike repositioning problem–a hybrid rolling horizon artificial

bee colony algorithm approach. Transportation Research Part D: Transport and Environment, 60:

119–136, 2018.

[35] A. Singla, M. Santoni, G. Bartók, P. Mukerji, M. Meenen, and A. Krause. Incentivizing users for bal-

ancing bike sharing systems. In Proceedings of the 29th AAAI Conference on Artificial Intelligence,

volume 1, pages 723–729, 2015.

[36] Z. Haider, A. Nikolaev, J. E. Kang, and C. Kwon. Inventory rebalancing through pricing in public

bike sharing systems. European Journal of Operational Research, 270(1):103–117, 2018.

[37] L. Pan, Q. Cai, Z. Fang, P. Tang, and L. Huang. A deep reinforcement learning framework for

rebalancing dockless bike sharing systems. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 1393–1400, 2019.

67



[38] S. J. Patel, R. Qiu, and A. Negahban. Incentive-based rebalancing of bike-sharing systems. In

INFORMS International Conference on Service Science, pages 21–30. Springer, 2018.

[39] A. Fernández, H. Billhardt, S. Ossowski, and Ó. Sánchez. Bike3s: A tool for bike sharing systems

simulation. Journal of Simulation, pages 1–17, 2020.

[40] L. Caggiani and M. Ottomanelli. A modular soft computing based method for vehicles repositioning

in bike-sharing systems. Procedia-Social and Behavioral Sciences, 54:675–684, 2012.

[41] S. Ji, C. R. Cherry, L. D. Han, and D. A. Jordan. Electric bike sharing: simulation of user demand

and system availability. Journal of Cleaner Production, 85:250–257, 2014.

[42] T. J. P. Dubernet and K. W. Axhausen. A multiagent simulation framework for evaluating bike

redistribution systems in bike sharing schemes. Arbeitsberichte Verkehrs-und Raumplanung, 1010,

2014.

[43] R. M. Saltzman and R. M. Bradford. Simulating a more efficient bike sharing system. Journal of

Supply Chain and Operations Management, 14(2):36–47, 2016.

[44] N. Jian, D. Freund, H. M. Wiberg, and S. G. Henderson. Simulation optimization for a large-scale

bike-sharing system. In 2016 Winter Simulation Conference (WSC), pages 602–613. IEEE, 2016.

[45] F. Soriguera, V. Casado, and E. Jiménez. A simulation model for public bike-sharing systems.

Transportation Research Procedia, 33:139–146, 2018.

[46] A. Waserhole and V. Jost. Pricing in vehicle sharing systems: Optimization in queuing networks

with product forms. EURO Journal on Transportation and Logistics, 5(3):293–320, 2016.

[47] F. A. Haight. Handbook of the Poisson distribution. John Wiley & Sons, 1967.

[48] R. D. Yates and D. J. Goodman. Probability and stochastic processes: a friendly introduction for

electrical and computer engineers. John Wiley & Sons, 2014.

[49] Expectation of poisson distribution. Proof Wiki, (Accessed July, 2021). URL: https://proofwiki.

org/wiki/Expectation of Poisson Distribution.

[50] Variance of poisson distribution. Proof Wiki, (Accessed July, 2021). URL: https://proofwiki.or

g/wiki/Variance of Poisson Distribution.

[51] Poisson distribution. Wikipedia, (Accessed July, 2021). URL: https://en.wikipedia.org/wiki/

Poisson distribution.

[52] F. Galton. Psychometric experiments. Brain, 2(2):149–162, 1879.

[53] D. McAlister. XIII. the law of the geometric mean. In Proceedings of the Royal Society of London,

volume 29, pages 367–376. The Royal Society London, 1879.

[54] N. Balakrishnan and W. Chen. Handbook of tables for order statistics from lognormal distributions

with applications. Springer Science & Business Media, 1999.

68

https://proofwiki.org/wiki/Expectation_of_Poisson_Distribution
https://proofwiki.org/wiki/Expectation_of_Poisson_Distribution
https://proofwiki.org/wiki/Variance_of_Poisson_Distribution
https://proofwiki.org/wiki/Variance_of_Poisson_Distribution
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_distribution


[55] P.-T. Yuan. On the logarithmic frequency distribution and the semi-logarithmic correlation surface.

The Annals of Mathematical Statistics, 4(1):30–74, 1933.

[56] Log-normal distribution. Wikipedia, (Accessed July, 2021). URL: https://en.wikipedia.org/wik

i/Log-normal distribution.

[57] P. Hulot, D. Aloise, and S. D. Jena. Towards station-level demand prediction for effective rebalancing

in bike-sharing systems. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 378–386, 2018.

[58] J. G. Skellam. The frequency distribution of the difference between two poisson variates belonging

to different populations. Journal of the Royal Statistical Society: Series A, 109:296, 1946.

[59] J. Strackee and J. D. van der Gon. The frequency distribution of the difference between two poisson

variates. Statistica Neerlandica, 16(1):17–23, 1962.

[60] Sobre a gira - gira - bicicletas de lisboa. (Accessed July, 2021). URL: https://www.gira-bicicle

tasdelisboa.pt/sobre-a-gira/.

[61] Emel lança bike sharing. September 2017, (Accessed July, 2021). URL: https://www.gira-bic

icletasdelisboa.pt/noticias/emel-lanca-bike-sharing/.

[62] Rede de bicicletas partilhadas de lisboa começa a funcionar na terça-feira. September 2017,

(Accessed July, 2021). URL: https://24.sapo.pt/atualidade/artigos/rede-de-bicicletas

-partilhadas-de-lisboa-comeca-a-funcionar-na-terca-feira.

[63] V. Lucas and A. R. Andrade. Predicting hourly origin-destination demand in bike sharing systems

using hurdle models: Lisbon case study. Case Studies on Transport Policy, 2021. ISSN 2213-624X.

doi: https://doi.org/10.1016/j.cstp.2021.10.003. URL https://www.sciencedirect.com/science/

article/pii/S2213624X21001656.

[64] C. Etienne and O. Latifa. Model-based count series clustering for bike sharing system usage min-

ing: a case study with the vélib’system of paris. ACM Transactions on Intelligent Systems and

Technology (TIST), 5(3):1–21, 2014.

[65] D. Gervini and M. Khanal. Exploring patterns of demand in bike sharing systems via replicated

point process models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(3):

585–602, 2019.

[66] F. Sun, P. Chen, and J. Jiao. Promoting public bike-sharing: A lesson from the unsuccessful pronto

system. Transportation Research Part D: Transport and Environment, 63:533–547, 2018.

[67] Anylogic, (Accessed July, 2021). URL: https://www.anylogic.com.

[68] D. Ljubenkov, F. Kon, and C. Ratti. Optimizing bike sharing system flows using graph mining,

convolutional and recurrent neural networks. In 2020 IEEE European Technology and Engineering

Management Summit (E-TEMS), pages 1–6. IEEE, 2020.

69

https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution
https://www.gira-bicicletasdelisboa.pt/sobre-a-gira/
https://www.gira-bicicletasdelisboa.pt/sobre-a-gira/
https://www.gira-bicicletasdelisboa.pt/noticias/emel-lanca-bike-sharing/
https://www.gira-bicicletasdelisboa.pt/noticias/emel-lanca-bike-sharing/
https://24.sapo.pt/atualidade/artigos/rede-de-bicicletas-partilhadas-de-lisboa-comeca-a-funcionar-na-terca-feira
https://24.sapo.pt/atualidade/artigos/rede-de-bicicletas-partilhadas-de-lisboa-comeca-a-funcionar-na-terca-feira
https://www.sciencedirect.com/science/article/pii/S2213624X21001656
https://www.sciencedirect.com/science/article/pii/S2213624X21001656
https://www.anylogic.com


[69] What is a tour de france pro’s average speed and how do your stats compare? Gira, (Accessed

July, 2021). URL: https://www.gira-bicicletasdelisboa.pt/termos condicoes.pdf.

[70] What is a tour de france pro’s average speed and how do your stats compare? Gira, (Accessed

July, 2021). URL: https://www.gira-bicicletasdelisboa.pt/perguntas-frequentes/.

[71] W. Yost. What is a tour de france pro’s average speed and how do your stats compare? bicycling,

(Accessed July, 2021). URL: https://www.bicycling.com/racing/a20037750/you-versus-a-

tour-de-france-pro-cyclist/.

70

https://www.gira-bicicletasdelisboa.pt/termos_condicoes.pdf
https://www.gira-bicicletasdelisboa.pt/perguntas-frequentes/
https://www.bicycling.com/racing/a20037750/you-versus-a-tour-de-france-pro-cyclist/
https://www.bicycling.com/racing/a20037750/you-versus-a-tour-de-france-pro-cyclist/


Appendix A

A.1 Trip time figures

Figure A.1: Real PMF (Lognormal fit) versus simulation PMF of trip time (all trips)

71



Figure A.2: Real PMF (Lognormal fit) versus simulation PMF of trip time (trips from 101 to 104)

A.2 Repositioning results

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
4

11
5

20
8

21
2

21
4

21
6

21
8

21
9

22
4

22
5

30
3

30
4

30
5

30
6

30
7

30
8

30
9

40
1

40
3

40
6

40
7

40
8

41
2

41
3

41
4

41
5

41
6

41
7

41
9

42
0

42
1

42
3

42
6

42
7

42
8

43
0

43
1

43
2

44
2

44
3

44
6

44
9

45
0

45
2

45
3

45
7

45
9

46
0

46
2

46
3

46
4

46
8

47
1

47
2

47
3

47
4

48
1

48
3

48
4

48
5

48
6

48
7

48
8

49
0

Stations

0

1

2

3

4

5

A
ve

ra
ge

 n
um

be
r 

of
 r

ep
os

iti
on

in
g

vi
si

ts
 (

pe
r 

da
y)

Real
Simulation

Figure A.3: Real versus simulation average number of repositioning visits per day at each station

72



104
105
101
102
103
106
107
108
109
110
452
457
481
464
414
468
431
412
442
430
426
449
450
460
472
415
417
413
453
473
459
423
474
463
407
408
406
428
427
446
403
416
471
115
421
420
484
485
309
219
304
305
306
487
486
488
307
308
443
114
224
225
419
212
432
490
218
216
462
483
401
214
208
303

S
ta

tio
ns

05101520253035404550 Inventory bounds (nº of bikes)

S
ta

tio
n 

C
ap

ac
ity

G
oo

d 
O

cc
up

an
cy

 In
te

rv
al

S
el

f-
S

uf
fic

ie
nt

 S
ta

tio
n

N
ot

 S
el

f-
S

uf
fic

ie
nt

 S
ta

tio
n 

(b
ef

or
e 

re
po

si
tio

ni
ng

)
N

ot
 S

el
f-

S
uf

fic
ie

nt
 S

ta
tio

n 
(a

fte
r 

re
po

si
tio

ni
ng

)

Fi
gu

re
A

.4
:

E
xa

m
pl

e
of

st
at

io
ns

’l
ev

el
be

fo
re

an
d

af
te

rr
ep

os
iti

on
in

g

73



A.3 Agents

Main

Figure A.5: Agent Main in Anylogic

74



Parameter Description
TruckSpeed Truck speed
PersonSpeed Person speed

UI

Indicates which user incentive method is used:
0 - no UI
1 - method 1
2 - method 2

NR Indicates if nightly repositioning is activated
SR Indicates if station restrictions are activated or not
Data Indicates which file is used as input data (λw(i, j, t))
Radius Neighbourhood radius
CustCoop Customer cooperation ratio

wpcPerc

Ratio that indicates if stations primarily chosen by customers
could be changed or not. When a UI method is active and a customer
insert a start/end station with an occupation ratio higher/lower than
wpcPerc/1-wpcPerc, than customer’s choice is fine and the app will not
give an alternative station. If it is lower/higher than wpcPerc/1-wpcPerc
than the method will try to find a better station within specified ”Radius”.

NbrVehc Number of trucks used on tasks of repositioning
TruckCapacity Maximum number of bikes truck is able to transport

Table A.1: Principal parameters of agent Main

Station

Figure A.6: Agent Station in Anylogic

Parameter Description
StNum Station index number
StName Station code
NbrBikes Number of bikes at the station
OccPerc Station occupation percentage
full Boolean variable that indicates if the station is full
empty Boolean variable that indicates if the station is empty

Table A.2: Principal parameters of agent Station

75



Depot

Figure A.7: Agent Depot in Anylogic

Person

Figure A.8: Agent Person in Anylogic

Parameter Description
StartSt Trip start station
EndSt Number of bikes at the station
ExtraEffort Extra meter travelled by customer due to UI methods

Table A.3: Principal parameters of agent Person

76



Bike

Figure A.9: Agent Bike in Anylogic

Parameter Description
StartSt Trip start station
EndSt Trip end station
StartDate Trip start date
EndDate Trip end date
EqEndSt Boolean variable that indicate if start and end stationa re the same
TripT Trip time
ExtraEffort Extra meter travelled by customer due to UI methods
repTasksOn Boolean variable that indicates if trucks are repositioning bikes

Table A.4: Principal parameters of agent Bike

77



Truck

Figure A.10: Agent Truck in Anylogic

Parameter Description

Instructions Matrix that indicates stations to visit and number of bikes to pick
up or drop at that station

instNum Instruction number
NbrBikes Number of bikes of bikes to pick up or drop at the current station

TaskTime Task time. It is equal to one minute times the number of bikes to
drop or pick up.

Table A.5: Principal parameters of agent Truck

78



A.4 Principal simulator codes in Java

Create Trips

Code implemented in agent Main and inside event: CreateTrips.

// Iterate through all stations combinations 
for (int StartSt = 0; StartSt < NbrSt; StartSt++) { 
  for (int EndSt = 0; EndSt < NbrSt; EndSt++) { 
 
    // Get number of trips poisson value for current weekday,  
    // time interval and from station i to j 
    double meanValue = WeekArray.get(WeekArrIndex).get(countLamb); 
 
    // Exterior iteration variable 
    countLamb = countLamb + 1; 
 
    // Get random number of trips according to current poisson distribution 
    int nTrips = roundToInt(poisson(meanValue)); 
 
    if (nTrips > 0) { 
      for (int k = 0; k < nTrips; k++) { 
 
        // Add person to agent Person 
        add_people(); 
        countPp = people.size() - 1; 
        people(countPp).setLocation(depot); 
 
        // Add new order to yes/no service events 
        StEndYesNot[StartSt][4] = StEndYesNot[StartSt][4] + 1; 
 
        // Initiate new order 
        people(countPp).StartSt = StartSt; 
        people(countPp).EndSt = EndSt; 
        depot.send("newOrder", people.get(countPp)); 
 
        // Exterior iteration variable 
        countPp = countPp + 1; 
      } 
    } 
  } 
} 

79



Clustering

Code implemented in agent Main inside function: Clustering.

try { 
 
  // Define an empty model 
  IloCplex model = new IloCplex(); 
 
  // Define the binary decision variables 
  IloNumVar[][] z = new IloNumVar[NbrSt][]; 
  for (int i = 0; i < NbrSt; i++) { 
    z[i] = model.boolVarArray(NbrVehc); 
  } 
 
  IloNumVar[] h = model.numVarArray(NbrVehc, 0, 
Double.MAX_VALUE); 
 
  IloNumVar H = model.numVar(0, Double.MAX_VALUE); 
 
  // Define the objective function 
  model.addMinimize(H); 
 
  // Define the constraints 
  // (1) 
  for (int i = 0; i < NbrSt; i++) { 
    if (sSuff[i] != true) { 
      IloLinearNumExpr e1 = model.linearNumExpr(); 
      for (int v = 0; v < NbrVehc; v++) { 
        e1.addTerm(1, z[i][v]); 
      } 
      model.addEq(e1, 1); 
    } 
  } 
 
  // (2) 
  for (int i = 0; i < NbrSt; i++) { 
    if (sSuff[i] == true) { 
      IloLinearNumExpr e2 = model.linearNumExpr(); 
      for (int v = 0; v < NbrVehc; v++) { 
        e2.addTerm(1, z[i][v]); 
      } 
      model.addLe(e2, 1); 
    } 
  } 
 
  // (3) 
  for (int v = 0; v < NbrVehc; v++) { 
    IloLinearNumExpr e3 = model.linearNumExpr(); 
    for (int i = 0; i < NbrSt; i++) { 
      if (s0[i] > 0) { 
        e3.addTerm(s0[i], z[i][v]); 
      } 
      if (sMin[i] > 0) { 
        e3.addTerm(-sMin[i], z[i][v]); 
      } 
    } 
    if (q0[v] > 0) { 
      model.addGe(e3, -q0[v]); 
    } else { 
      model.addGe(e3, 0); 
    } 
  } 
 
  // (4) 
  for (int v = 0; v < NbrVehc; v++) { 
    IloLinearNumExpr e4 = model.linearNumExpr(); 
    for (int i = 0; i < NbrSt; i++) { 
      if (s0[i] > 0) { 
        e4.addTerm(s0[i], z[i][v]); 
      } 
      if (sMax[i] > 0) { 
        e4.addTerm(-sMax[i], z[i][v]); 
      } 
    } 
    if (abs(Q[v] - q0[v]) > 0) { 
      model.addLe(e4, (Q[v] - q0[v])); 
    } else { 
      model.addLe(e4, 0); 
    } 
  } 
 
  // (5) 
  for (int v = 0; v < NbrVehc; v++) { 
    for (int i = 0; i < NbrSt; i++) { 
      IloLinearNumExpr e5 = model.linearNumExpr(); 
      double k = 0; 
      for (int j = 0; j < NbrSt; j++) { 
        if (d[i][j] > 0) { 

          k = k + d[i][j]; 
          e5.addTerm(d[i][j], z[i][v]); 
          e5.addTerm(d[i][j], z[j][v]); 
        } 
        if (dp * sMax[j] > 0) { 
          e5.addTerm(dp * sMax[j], z[j][v]); 
        } 
        if (dm * sMin[j] > 0) { 
          e5.addTerm(dm * sMin[j], z[j][v]); 
        } 
        e5.addTerm(-1, h[v]); 
      } 
      if (k > 0) { 
        model.addGe(k, e5); 
      } else { 
        model.addGe(0, e5); 
      } 
    } 
  } 
 
  // (6) 
  for (int v = 0; v < NbrVehc; v++) { 
    for (int i = 0; i < NbrSt; i++) { 
      IloLinearNumExpr e6 = model.linearNumExpr(); 
      double k = 0; 
      for (int j = 0; j < NbrSt; j++) { 
        if (d[i][j] > 0) { 
          k = k + d[i][j]; 
          e6.addTerm(d[i][j], z[i][v]); 
          e6.addTerm(d[i][j], z[j][v]); 
        } 
        if (dp * sMax[j] > 0) { 
          e6.addTerm(dp * sMax[j], z[j][v]); 
        } 
        if (dm * sMax[j] > 0) { 
          e6.addTerm(dm * sMax[j], z[j][v]); 
        } 
        e6.addTerm(-1, h[v]); 
      } 
      if ((k + dm * q0[v]) > 0) { 
        model.addGe(k + dm * q0[v], e6); 
      } else { 
        model.addGe(0, e6); 
      } 
    } 
  } 
 
  // (7) 
  for (int v = 0; v < NbrVehc; v++) { 
    for (int i = 0; i < NbrSt; i++) { 
      IloLinearNumExpr e7 = model.linearNumExpr(); 
      double k = 0; 
      for (int j = 0; j < NbrSt; j++) { 
        if (d[i][j] > 0) { 
          k = k + d[i][j]; 
          e7.addTerm(d[i][j], z[i][v]); 
          e7.addTerm(d[i][j], z[j][v]); 
        } 
        if (dp * sMin[j] > 0) { 
          e7.addTerm(dp * sMin[j], z[j][v]); 
        } 
        if (dm * sMin[j] > 0) { 
          e7.addTerm(dm * sMin[j], z[j][v]); 
        } 
        e7.addTerm(-1, h[v]); 
      } 
      if ((k + dp * (Q[v] - q0[v])) > 0) { 
        model.addGe(k + dp * (Q[v] - q0[v]), e7); 
      } else { 
        model.addGe(0, e7); 
      } 
    } 
  } 
 
  // (8) 
  IloNumExpr e8 = model.max(h); 
  model.addEq(H, e8); 
 
  // Set Model Params 
  //model.setParam(IloCplex.IntParam.Simplex.Display, 
0); 
  model.setParam(IloCplex.Param.MIP.Tolerances.MIPGap, 
0.01); 
  model.setParam(IloCplex.Param.TimeLimit, 60); // 
seconds 

80



 
  double t1 = model.getCplexTime(); 
  // Solve Model 
  boolean isSolved = model.solve(); 
  double t2 = model.getCplexTime(); 
  T = t2 - t1; 
 
  // Save optimal objective values, decision variables 
and GAP 
  ArrayList results = new ArrayList(); 
  double[][] zFinal = new double[NbrSt][NbrVehc]; 
  double[][] hFinal = new double[NbrVehc][1]; 
  double[][] HFinal = new double[1][1]; 
  double[][] gapFinal = new double[1][1]; 
 
  if (isSolved) { 
    for (int v = 0; v < NbrVehc; v++) { 
      for (int i = 0; i < NbrSt; i++) { 
        zFinal[i][v] = 
(double)(model.getValue(z[i][v])); 
      } 
      hFinal[v][0] = (double)(model.getValue(h[v])); 
    } 
    HFinal[0][0] = model.getValue(H); 
    gapFinal[0][0] = model.getMIPRelativeGap(); 
  } else { 
    // Print error if model not solved 
    PrintStream ps = System.out; 
    ps.print("Model not Solved"); 
  } 
 
  // Set output array 
  model.end(); 
  model.close(); 
  results.add(zFinal); 
  results.add(hFinal); 
  results.add(HFinal); 
  results.add(gapFinal); 
  return results; 
 
} catch (IloException ex) { 
  ex.printStackTrace(); 
} 
 
return null; 

81



Routing

Code implemented in agent Main inside function: Routing.

try { 
 
  // Define an empty model 
  IloCplex model = new IloCplex(); 
 
  // Define binary decision variables 
  IloNumVar[][][] x = new IloNumVar[NbrStv][NbrStv 
+ 1][]; 
  for (int i = 0; i < NbrStv; i++) { 
    for (int j = 0; j < NbrStv + 1; j++) { 
      x[i][j] = model.boolVarArray(NbrStv + 1); 
    } 
  } 
 
  // Define integer decision variables 
  IloNumVar[][] ym = new IloIntVar[NbrStv][]; 
  for (int i = 0; i < NbrStv; i++) { 
    ym[i] = model.intVarArray(NbrStv + 1, 0, 
Integer.MAX_VALUE); 
  } 
 
  // Define integer decision variables 
  IloNumVar[][] yp = new IloIntVar[NbrStv][]; 
  for (int i = 0; i < NbrStv; i++) { 
    yp[i] = model.intVarArray(NbrStv + 1, 0, 
Integer.MAX_VALUE); 
  } 
 
  // Define decision variables 
  IloNumVar h = model.numVar(0, Double.MAX_VALUE); 
 
  // Define the objective function 
  model.addMinimize(h); 
 
  // Define the constraints 
  // (1) 
  for (int i = 0; i < NbrStv; i++) { 
    IloLinearNumExpr e1 = model.linearNumExpr(); 
    for (int t = 0; t < NbrStv + 1; t++) { 
      e1.addTerm(1, yp[i][t]); 
      e1.addTerm(-1, ym[i][t]); 
    } 
    model.addGe(e1, sMinv[i] - s0v[i]); 
  } 
 
  // (2) 
  for (int i = 0; i < NbrStv; i++) { 
    IloLinearNumExpr e2 = model.linearNumExpr(); 
    for (int t = 0; t < NbrStv + 1; t++) { 
      e2.addTerm(1, yp[i][t]); 
      e2.addTerm(-1, ym[i][t]); 
    } 
    model.addLe(e2, sMaxv[i] - s0v[i]); 
  } 
 
  // (3) 
  IloLinearNumExpr e3 = model.linearNumExpr(); 
  for (int i = 0; i < NbrStv; i++) { 
    for (int j = 0; j < NbrStv + 1; j++) { 
      e3.addTerm(1, x[i][j][0]); 
    } 
  } 
  model.addLe(e3, 1); 
 
  // (4) 
  for (int i = 0; i < NbrStv; i++) { 
    for (int t = 1; t < NbrStv + 1; t++) { 
      IloLinearNumExpr e4 = model.linearNumExpr(); 
      for (int j = 0; j < NbrStv + 1; j++) { 
        e4.addTerm(1, x[i][j][t]); 
      } 
      for (int j = 0; j < NbrStv; j++) { 
        e4.addTerm(-1, x[j][i][t - 1]); 
      } 
      model.addLe(e4, 0); 
    } 
  } 
 
  // (5) 
  IloLinearNumExpr e5 = model.linearNumExpr(); 
  for (int i = 0; i < NbrStv; i++) { 
    for (int t = 0; t < NbrStv + 1; t++) { 
      e5.addTerm(1, x[i][i][t]); 
    } 
  } 

  model.addEq(e5, 0); 
 
  // (6) 
  for (int i = 0; i < NbrStv; i++) { 
    for (int t = 0; t < NbrStv + 1; t++) { 
      IloLinearNumExpr e6 = model.linearNumExpr(); 
      e6.addTerm(1, ym[i][t]); 
      for (int j = 0; j < NbrStv + 1; j++) { 
        if (Qv > 0) { 
          e6.addTerm(-Qv, x[i][j][t]); 
        } 
      } 
      model.addLe(e6, 0); 
    } 
  } 
 
  // (7) 
  for (int i = 0; i < NbrStv; i++) { 
    for (int t = 0; t < NbrStv + 1; t++) { 
      IloLinearNumExpr e7 = model.linearNumExpr(); 
      e7.addTerm(1, yp[i][t]); 
      for (int j = 0; j < NbrStv; j++) { 
        e7.addTerm(-Qv, x[j][i][t]); 
      } 
      model.addLe(e7, 0); 
    } 
  } 
 
  // (8) 
  for (int i = 0; i < NbrStv; i++) { 
    IloLinearNumExpr e8 = model.linearNumExpr(); 
    for (int t = 0; t < NbrStv + 1; t++) { 
      e8.addTerm(1, ym[i][t]); 
    } 
    model.addLe(e8, s0v[i]); 
  } 
 
  // (9) 
 
  for (int i = 0; i < NbrStv; i++) { 
    IloLinearNumExpr e9 = model.linearNumExpr(); 
    for (int t = 0; t < NbrStv + 1; t++) { 
      e9.addTerm(1, yp[i][t]); 
    } 
    model.addLe(e9, Cv[i] - s0v[i]); 
  } 
 
  // (10) 
  for (int t = 0; t < NbrStv + 1; t++) { 
    IloLinearNumExpr e10 = model.linearNumExpr(); 
    for (int i = 0; i < NbrStv; i++) { 
      for (int t2 = 0; t2 <= t; t2++) { 
        e10.addTerm(1, ym[i][t2]); 
        e10.addTerm(-1, yp[i][t2]); 
      } 
    } 
    model.addGe(e10, -q0v); 
  } 
 
  // (11) 
  for (int t = 0; t < NbrStv + 1; t++) { 
    IloLinearNumExpr e11 = model.linearNumExpr(); 
    for (int i = 0; i < NbrStv; i++) { 
      for (int t2 = 0; t2 <= t; t2++) { 
        e11.addTerm(1, ym[i][t2]); 
        e11.addTerm(-1, yp[i][t2]); 
      } 
    } 
    model.addLe(e11, Qv - q0v); 
  } 
 
  // (12) 
  IloLinearNumExpr e12 = model.linearNumExpr(); 
  for (int i = 0; i < NbrStv; i++) { 
    for (int t = 0; t < NbrStv + 1; t++) { 
      e12.addTerm(dm, ym[i][t]); 
      e12.addTerm(dp, yp[i][t]); 
      for (int j = 0; j < NbrStv; j++) { 
        e12.addTerm(dv[i][j], x[i][j][t]); 
      } 
    } 
  } 
  model.addEq(h, e12); 
 
  // Set Model Params 

82



  
//model.setParam(IloCplex.IntParam.Simplex.Display
, 0); 
  
model.setParam(IloCplex.Param.MIP.Tolerances.MIPGa
p, 0.01); 
  model.setParam(IloCplex.Param.TimeLimit, 60); // 
seconds 
 
  double t1 = model.getCplexTime(); 
  // Solve Model 
  boolean isSolved = model.solve(); 
  double t2 = model.getCplexTime(); 
  Tv[v] = t2 - t1; 
 
  // Save optimal objective values, decision 
variables and GAP 
  ArrayList results = new ArrayList(); 
  double[][][] xFinal = new double[NbrStv][NbrStv 
+ 1][NbrStv + 1]; 
  double[][][] ymFinal = new double[NbrStv][NbrStv 
+ 1][1]; 
  double[][][] ypFinal = new double[NbrStv][NbrStv 
+ 1][1]; 
  double[][][] hFinal = new double[1][1][1]; 
  double[][][] gapFinal = new double[1][1][1]; 
 
  if (isSolved) { 
    for (int i = 0; i < NbrStv; i++) { 
      for (int t = 0; t < NbrStv + 1; t++) { 
        ymFinal[i][t][0] = 
(double)(model.getValue(ym[i][t])); 
        ypFinal[i][t][0] = 
(double)(model.getValue(yp[i][t])); 
        for (int j = 0; j < NbrStv + 1; j++) { 
          xFinal[i][j][t] = 
(double)(model.getValue(x[i][j][t])); 
        } 
      } 
    } 
    hFinal[0][0][0] = model.getValue(h); 
    gapFinal[0][0][0] = model.getMIPRelativeGap(); 
  } else { 
    // Print error if model not solved 
    PrintStream ps = System.out; 
    ps.print("Model not Solved"); 
  } 
 
  // Set output array 
  model.end(); 
  model.close(); 
  results.add(xFinal); 
  results.add(ymFinal); 
  results.add(ypFinal); 
  results.add(hFinal); 
  results.add(gapFinal); 
  return results; 
 
} catch (IloException ex) { 
  ex.printStackTrace(); 
} 
return null; 

83



Repositioning

Code implemented in agent Main inside function: Repositioning.

// Reset variables 
InstructArray = new ArrayList < int[][] > (); 
ymArray = new ArrayList < double[][][] > (); 
ypArray = new ArrayList < double[][][] > (); 
xvArray = new ArrayList < double[][][] > (); 
H = 0; 
GAP = 0; 
s0 = new int[NbrSt]; 
sMin = new int[NbrSt]; 
sMax = new int[NbrSt]; 
sSuff = new boolean[NbrSt]; 
sp = new int[NbrSt]; 
sm = new int[NbrSt]; 
hv = new double[NbrVehc]; 
GAPv = new double[NbrVehc]; 
 
int WeekDay = getDayOfWeek(); 
WeekArrIndex = 0; 
if (WeekDay == 1 || WeekDay == 7) { 
  WeekArrIndex = 1; 
} 
 
// Update variables 
for (int i = 0; i < NbrSt; i++) { 
  s0[i] = roundToInt(stations(i).NbrBikes); 
  sMin[i] = IntervMinArr[i][WeekArrIndex]; 
  sMax[i] = IntervMaxArr[i][WeekArrIndex]; 
  sp[i] = max(sMin[i] - s0[i], 0); 
  sm[i] = max(s0[i] - sMax[i], 0); 
  if (s0[i] >= sMin[i] & s0[i] <= sMax[i]) { 
    sSuff[i] = true; 
  } else { 
    sSuff[i] = false; 
  } 
} 
 
// Cluster stations 
ArrayList < double[][] > ClusterResults = 
Clustering(C, DistMat, dm, dp, NbrSt, NbrVehc, q0, 
Q, s0, sMin, sMax, sSuff, sp, sm); 
 
// Results from clustering 
double[][] zF = ClusterResults.get(0); 
H = ClusterResults.get(2)[0][0]; 
GAP = ClusterResults.get(3)[0][0]; 
 
// Run through all vehicles 
for (int v = 0; v < NbrVehc; v++) { 
 
  // Number of stations to visit 
  int NbrStv = 0; 
  for (int j = 0; j < NbrSt; j++) { 
    NbrStv = NbrStv + roundToInt(zF[j][v]); 
  } 
 
  if (NbrStv > 0) { 
 
    vOn[v] = true; 
 
    // Initiate and rearrange variables 
    int[] Sv = new int[NbrStv]; 
    int[] Cv = new int[NbrStv]; 
    double[][] dv = new double[NbrStv][NbrStv]; 
    int q0v = q0[v]; 
    int Qv = Q[v]; 
    int[] s0v = new int[NbrStv]; 
    int[] sMinv = new int[NbrStv]; 
    int[] sMaxv = new int[NbrStv]; 
    int n = 0; 
    for (int j = 0; j < NbrSt; j++) { 
      if (zF[j][v] >= 0.99) { 
        Sv[n] = j; 
        Cv[n] = C[j]; 
        s0v[n] = s0[j]; 
        sMinv[n] = sMin[j]; 
        sMaxv[n] = sMax[j]; 
        n = n + 1; 
      } 
    } 
    for (int j = 0; j < Sv.length; j++) { 
      for (int k = 0; k < Sv.length; k++) { 
        dv[j][k] = DistMat[Sv[j]][Sv[k]]; 
      } 
    } 
 

    // Routing Instructions 
    ArrayList < double[][][] > RoutingResults = 
Routing(Cv, dv, dm, dp, NbrStv, q0v, Qv, s0v, 
sMinv, sMaxv, v); 
 
    // Results from routing 
    double[][][] xFv = RoutingResults.get(0); 
    double[][][] ym = RoutingResults.get(1); 
    double[][][] yp = RoutingResults.get(2); 
    hv[v] = RoutingResults.get(3)[0][0][0]; 
    GAPv[v] = RoutingResults.get(4)[0][0][0]; 
 
    // Instructions from routing results 
    int[][] Instructions = new int[NbrStv + 1][4]; 
    for (int t = 0; t < NbrStv + 1; t++) { 
      int StartSt = 0; 
      int EndSt = 0; 
      for (int i = 0; i < NbrStv; i++) { 
        for (int j = 0; j < NbrStv + 1; j++) { 
          if (xFv[i][j][t] >= 0.99) { 
            Instructions[t][0] = Sv[i] + 1; 
            if (j == NbrStv) { 
              Instructions[t][2] = 0; 
            } else { 
              Instructions[t][2] = Sv[j] + 1;; 
            } 
            StartSt = i; 
            EndSt = j; 
          } 
        } 
      } 
      if (EndSt == NbrStv) { 
        Instructions[t][1] = roundToInt(-
ym[StartSt][t][0] + 
          yp[StartSt][t][0]); 
        Instructions[t][3] = 0; 
      } else { 
        if (ym[StartSt][t][0] > 0 || 
yp[EndSt][t][0] > 0) { 
          Instructions[t][1] = roundToInt(-
ym[StartSt][t][0]); 
          Instructions[t][3] = 
roundToInt(yp[EndSt][t][0]); 
        } else if (ym[EndSt][t][0] > 0 || 
yp[StartSt][t][0] > 0) { 
          Instructions[t][3] = roundToInt(-
ym[EndSt][t][0]); 
          Instructions[t][1] = 
roundToInt(yp[StartSt][t][0]); 
        } else { 
          Instructions[t][1] = 0; 
          Instructions[t][3] = 0; 
        } 
      } 
    } 
 
    // Update instructions array lists 
    InstructArray.add(Instructions); 
    ymArray.add(ym); 
    ypArray.add(yp); 
    xvArray.add(xFv); 
 
    // Set trucks variables 
    trucks(v).Instructions = Instructions; 
    trucks(v).Stations = Sv; 
 
  } else { 
    // Update instructions array lists 
    int[][] Instructions = new int[1][1]; 
    InstructArray.add(Instructions); 
    double[][][] ym = new double[1][1][1]; 
    ymArray.add(ym); 
    double[][][] yp = new double[1][1][1]; 
    ypArray.add(yp); 
  } 
} 

84



UI Method 1

Code implemented in agent Person inside flowchart block: state3.

// Initiate variables 
int ss = StartSt; 
int es = EndSt; 
double fullestPerc = 0; 
double emptyPerc = 1; 
int newSS; 
int newES; 
ExtraEffort = 0; 
boolean b0 = randomTrue(main.CustCoop); 
boolean b01 = false; 
boolean b02 = false; 
boolean b1 = false; 
boolean b2 = false; 
boolean StChange = false; 
boolean EndChange = false; 
 
UserType = 0; 
if (b0 == true) { 
  b01 = randomTrue(0.333); 
  if (b01 == true) { 
    b1 = true; 
    b2 = true; 
    UserType = 1; 
  } else { 
    b02 = randomTrue(0.5); 
    if (b02 == true) { 
      UserType = 5; 
      b1 = true; 
      b2 = false; 
    } else { 
      UserType = 7; 
      b1 = false; 
      b2 = true; 
    } 
  } 
} 
 
if (b1) { 
  // New better departure station 
  if (main.stations(ss).OccPerc < main.wpcPerc) { 
    for (int k = 0; k < main.NbrSt; k++) { 
      // Consider only neighbors 
      if (main.NeighbMat[1][ss][k] <= main.Radius) 
{ 
        newSS = 
roundToInt(main.NeighbMat[0][ss][k]); 
        if (main.stations(newSS).OccPerc > 
fullestPerc) { 
          StartSt = newSS; 
          fullestPerc = 
main.stations(newSS).OccPerc; 
          if (StartSt != ss) { 
            StChange = true; 
            ExtraEffort = ExtraEffort + 
main.DistMat[StartSt][ss]; 
          } 
        } 
      } 
    } 
  } 
} 
 
if (b2) { 
  // New better arrival station 
  if (main.stations(es).OccPerc > 1 - 
main.wpcPerc) { 
    for (int k = 0; k < main.NbrSt; k++) { 
      // Consider only neighbors 
      if (main.NeighbMat[1][es][k] <= main.Radius) 
{ 
        newES = 
roundToInt(main.NeighbMat[0][es][k]); 
        if (main.stations(newES).OccPerc < 
emptyPerc) { 
          EndSt = newES; 
          emptyPerc = 
main.stations(newES).OccPerc; 
          if (EndSt != es) { 
            EndChange = true; 
            ExtraEffort = ExtraEffort + 
main.DistMat[EndSt][es]; 
          } 
        } 
      } 
    } 

  } 
} 
 
// Define User Type 
if (b1 & b2 & StChange == true && EndChange == 
true) { 
  UserType = 2; 
} else if (b1 & b2 & StChange == true && EndChange 
== false) { 
  UserType = 3; 
} else if (b1 & b2 & StChange == false && 
EndChange == true) { 
  UserType = 4; 
} else if (b1 & !b2 & StChange == true && 
EndChange == false) { 
  UserType = 6; 
} else if (!b1 & b2 & StChange == false && 
EndChange == true) { 
  UserType = 8; 
} 

85



UI Method 2

Code implemented in agent Person inside flowchart block: state9.

// Initiate variables 
int ss = StartSt; 
int es = EndSt; 
double fullestPerc = 0; 
double emptyPerc = 1; 
int newSS; 
int newES; 
ExtraEffort = 0; 
boolean b0 = randomTrue(main.CustCoop); 
boolean b01 = false; 
boolean b02 = false; 
boolean b1 = false; 
boolean b2 = false; 
boolean StChange = false; 
boolean EndChange = false; 
 
UserType = 0; 
if (b0 == true) { 
  b01 = randomTrue(0.333); 
  if (b01 == true) { 
    b1 = true; 
    b2 = true; 
    UserType = 1; 
  } else { 
    b02 = randomTrue(0.5); 
    if (b02 == true) { 
      UserType = 5; 
      b1 = true; 
      b2 = false; 
    } else { 
      UserType = 7; 
      b1 = false; 
      b2 = true; 
    } 
  } 
} 
 
if (b1) { 
  // New better departure station 
  if (main.stations(ss).OccPerc < main.wpcPerc) { 
    int k = 0; 
    newSS = ss; 
    while (main.NeighbMat[1][ss][k] <= main.Radius 
& 
      main.stations(newSS).OccPerc < main.wpcPerc) 
{ 
      newSS = 
roundToInt(main.NeighbMat[0][ss][k]); 
      k = k + 1; 
      if (main.stations(newSS).OccPerc >= 
main.wpcPerc) { 
        StartSt = newSS; 
        if (StartSt != ss) { 
          StChange = true; 
          ExtraEffort = ExtraEffort + 
main.DistMat[StartSt][ss]; 
        } 
      } 
    } 
  } 
} 
 
if (b2) { 
  // New better arrival station 
  if (main.stations(es).OccPerc > 1 - 
main.wpcPerc) { 
    int k = 0; 
    newES = es; 
    while (main.NeighbMat[1][es][k] <= main.Radius 
& 
      main.stations(newES).OccPerc > 1 - 
main.wpcPerc) { 
      newES = 
roundToInt(main.NeighbMat[0][es][k]); 
      k = k + 1; 
      if (main.stations(newES).OccPerc <= 1 - 
main.wpcPerc) { 
        EndSt = newES; 
        if (EndSt != es) { 
          EndChange = true; 
          ExtraEffort = ExtraEffort + 
main.DistMat[EndSt][es]; 
        } 
      } 
    } 

  } 
 
} 
 
// Define User Type 
if (b1 & b2 & StChange == true && EndChange == 
true) { 
  UserType = 2; 
} else if (b1 & b2 & StChange == true && EndChange 
== false) { 
  UserType = 3; 
} else if (b1 & b2 & StChange == false && 
EndChange == true) { 
  UserType = 4; 
} else if (b1 & !b2 & StChange == true && 
EndChange == false) { 
  UserType = 6; 
} else if (!b1 & b2 & StChange == false && 
EndChange == true) { 
  UserType = 8; 
} 

86



A.5 Simulator user manual

To properly use this simulator, the sequence of procedures to make an experiment is presented below.

(1) Define model time on ”Simulation” tab;

(2) Hit green ”RunGIRA / Simulation (F5)” button;

87



(3) Set input variables and hit ”Run” button;

(4) Simulation speed can be increased or decreased. It will finish at ”Stop model date/time”.

88



(5) Hit the ”Stop” Button;

(6) Check trip results on tables: trip table, lost user and ok table; and repositioning results on the excel

file: RepResults.xlsx.

89


	Acknowledgments
	Resumo
	Abstract
	List of tables
	List of figures
	List of acronyms
	1 Introduction
	1.1 Topic overview
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Thesis outline

	2 Related work
	2.1 Static
	2.2 Dynamic
	2.3 User incentives
	2.4 Simulators

	3 Theoretical background
	3.1 Trip generation and trip time
	3.1.1 Poisson distribution
	3.1.2 Lognormal distribution

	3.2 User behaviour and incentives model
	3.3 Repositioning problem
	3.3.1 Routing problem
	3.3.2 Clustering problem
	3.3.3 Heuristic MIP
	3.3.4 Skellam distribution


	4 Gira BSS characterization
	4.1 Geographical distribution and flow intensity
	4.2 Temporal patterns
	4.3 Operator tasks

	5 Implementation
	5.1 Used software
	5.2 Modelling
	5.2.1 Trip generation
	5.2.2 User behaviour
	5.2.3 User incentives (UI)
	5.2.4 Repositioning

	5.3 Anylogic simulator
	5.3.1 Agents
	5.3.2 Simulator inputs/outputs
	5.3.3 Simulation procedures
	5.3.4 Visual interface


	6 Evaluation
	6.1 Data filtering
	6.2 Parameters choice
	6.3 Verification and validation
	6.4 Results and discussion
	6.5 Service level
	6.6 Average extra effort
	6.7 Lost users
	6.8 Repositioning results

	7 Conclusions and future research
	7.1 Conclusions
	7.2 Future work

	Bibliography
	Appendix A 
	A.1 Trip time figures
	A.2 Repositioning results
	A.3 Agents
	A.4 Principal simulator codes in Java
	A.5 Simulator user manual


