
Bayesian Network Structure Learning

João Miguel Coelho de Oliveira Ferreira da Trindade

Thesis to obtain the Master of Science degree in

Electrical and Computer Engineering

Supervisor: Prof. Luís Manuel Marques Custódio

Supervision Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. Luís Manuel Marques Custódio

Members of the Committee: Prof. Manuel Fernando Cabido Peres Lopes

October 2021

2

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-
ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Declaração

Declaro que o presente documento é um trabalho original da minha autoria e que cumpre todos os
requisitos do Código de Conduta e Boas Práticas da Universidade de Lisboa.

i

Acknowledgements

I would like to express my deepest gratitude for my family. It was only thanks to their love and support
that I ever managed to reach this far.

I would also like to thank my supervisor, Prof. Luís Manuel Marques Custódio, for his help and guidance
throughout this work.

ii

Abstract

Causal reasoning is a fundamental part of human intelligence and can be found across a broad range
of fields, from ancient philosophy and theology to medicine and economics. Bayesian networks are
probabilistic graphical models that can represent cause-effect relationships and have been used to build
system models ranging from medical diagnosis to weather prediction. However, traditional approaches
for building Bayesian networks oftentimes prove to be too costly, unethical or impossible. Therefore,
there is a need for algorithms that can learn Bayesian networks from observational data alone, which is
not trivial due to the combinatorial nature of the search space. Recently, a novel algorithm, NOTEARS,
has established a new approach, reformulating this problem as continuous optimization, which allows
the use of well-studied techniques of machine learning.

This work presents a new meta-algorithm that combines NOTEARS with a state-of-the-art traditional
algorithm, FGES, providing a greater degree of certainty when identifying and interpreting specific rela-
tionships encoded on the learned Bayesian networks, even when we do not possess expert knowledge
on the field of the observed data. We test the new meta-algorithm on well-known Bayesian networks,
showing that it identifies specific relationships with greater precision than the individual algorithms. We
also apply it to publicly available data sets and provide a method to evaluate the obtained results when
there is no ground truth. In the conducted experiments, the meta-algorithm shows competitive results
with the aforementioned algorithms, consistently outperforming NOTEARS and, in certain instances,
FGES.

Keywords: Bayesian networks, Bayesian network parameter learning, Bayesian network structure
learning, continuous optimization, causal reasoning

iii

Resumo

O raciocínio causal é uma parte fundamental da inteligência humana, sendo aplicado em áreas desde
a filosofia antiga e teologia à medicina e economia. As redes Bayesianas são modelos gráficos proba-
bilísticos capazes de representar relações de causa-efeito, com aplicações em modelos de sistemas
de diagnóstico médico e de previsão metereológica, por exemplo. Todavia, as abordagens tradicio-
nais para construir redes Bayesianas vêm frequentemente acompanhadas de custos muito elevados,
falta de ética ou inviabilidade. Daí decorre a necessidade de algoritmos capazes de aprender redes
Bayesianas exclusivamente a partir de dados observacionais, o que não é trivial dada a natureza
combinatória do espaço de procura. Recentemente, um novo algoritmo, NOTEARS, estabeleceu uma
nova abordagem, reformulando este problema como optimização contínua, o que permite a utilização
de técnicas existentes de aprendizagem automática.

O trabalho desta tese consiste na apresentação de um novo meta-algoritmo que combina o NOTE-
ARS com um algoritmo tradicional, "state-of-the-art", FGES, oferecendo um maior grau de segurança
na identificação e interpretação de relações específicas codificadas nas redes Bayesianas aprendidas,
mesmo quando não possuímos conhecimento especializado no campo dos dados observados. Tes-
tamos este novo meta-algoritmo em redes Bayesianas de referência, demonstrando que ele é capaz
de identificar relações específicas com maior precisão do que os algoritmos individuais. Procede-
mos também à aplicação do novo meta-algoritmo a conjuntos de dados publicamente disponíveis e
apresentamos um método para avaliar os resultados obtidos. Nas experiências conduzidas, o novo
meta-algoritmo apresentou resultados competitivos com os algoritmos mencionados, superando con-
sistentemente o NOTEARS e até o FGES.

Palavras-chave: Redes Bayesianas, aprendizagem de parâmetros de redes Bayesianas, aprendiza-
gem da estrutura de redes Bayesianas, optimização contínua, raciocínio causal

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Contributions . 2
1.4 Outline . 2

2 Background 3
2.1 Base Notions of Graph Theory . 3
2.2 Probabilistic Graphical Models . 5
2.3 Bayesian Networks . 6

2.3.1 D-separation . 7
2.3.2 Forward Sampling . 8
2.3.3 Bayesian Network Parameter Learning . 10

2.4 Causal Inference . 15

3 Related Work 17
3.1 Base notions . 17
3.2 Score-based Approaches . 17

3.2.1 Scoring functions . 17
3.2.2 Search Algorithms . 19

3.3 Constraint-based Approaches . 20
3.3.1 PC Algorithm . 20

3.4 Hybrid Approaches . 21
3.4.1 Max-Min Hill-Climbing . 22

3.5 Continuous Optimization Approach . 22

4 Proposed Solution 25
4.1 Regularized Search . 25

4.1.1 Complexity Analysis . 27
4.2 Metrics for comparing the DAGs . 27
4.3 Extracting a DAG from a CPDAG . 28
4.4 Comparing DAGs without Ground Truth . 30

5 Experimental Results 33
5.1 Generated Data . 33

5.1.1 Data . 33
5.1.2 Results . 34

5.2 Real Data . 41
5.2.1 Cardiovascular Disease Data Set . 42
5.2.2 Acute Inflammation Data Set . 45
5.2.3 Marital Depression Data Set . 47
5.2.4 Titanic Data Set . 50
5.2.5 Overall Results . 52

6 Conclusions 55
6.1 Closing Thoughts . 55

v

6.2 Future Work . 56

Bibliography 59

Appendix A - Overview of the Method used for Comparing DAGs without Ground Truth 63

Appendix B - Strategies for Non-convex Optimization 64

vi

List of Figures

2.1 Examples of the distinct classes of graphs. 3
2.2 Examples of paths. 4
2.3 Cycle V1, V2, V3, V4, V1. 4
2.4 Trail V1, V2, V3. 4
2.5 Topological ordering V1, V2, V3, V4. 4
2.6 Naive Bayes network. 5
2.7 Example of a Bayesian network composed of boolean variables. 7
2.8 Important sub-graphs. 8
2.9 Reducing sampling from a multinomial distribution to sampling a uniform distribution in [0, 1]. 9
2.10 Sampling the variables in the first topological level. The sampled value is identified by the

dashed line, which is green when it is in the interval of values that will correspond to the
boolean variable being True, or red when it is in the interval of False values. 9

2.11 Sampling variable C from the second topological level. The sampled value is identified by
the dashed red line, which falls into the interval of values that will correspond to C = False. 9

2.12 Sampling the variables in the third topological level. The sampled value is identified by
the dashed line, which is green when it is in the interval of values that will correspond to
the boolean variable being True, or red when it is in the interval of False values. 10

2.13 Example of DAGs learned by: 2.13a - a graph structure learning algorithm; 2.13b - a
causal discovery algorithm. 16

3.1 Meek’s rules. 21

4.1 Overview of the proposed meta-algorithm. 26
4.2 Meta-algorithm example. 27
4.3 Example of all DAGs that can be represented by a specific CPDAG. 29
4.4 Extracting a DAG from a CPDAG. 29
4.5 Bayesian network learned from the example data set. 31

5.1 Bayesian network properties. 34
5.2 Comparison of the CPDAG obtained by FGES using the score function disc-bic-score with

the original DAG. 35
5.3 Comparison of the DAG obtained by FGES using the score function disc-bic-score with

the original DAG. 36
5.4 Precision of the adjacencies of the DAGs obtained by all algorithms, using all score func-

tions. 38
5.5 SHD for the DAGs obtained by the NOTEARS, FGES and Reg-FGES, for all Bayesian

networks. 39
5.6 PPV for the DAGs obtained by the NOTEARS, FGES and Reg-FGES, for all Bayesian

networks. 39
5.7 TPR for the DAGs obtained by the NOTEARS, FGES and Reg-FGES, for all Bayesian

networks. 40
5.8 F1-Score for the DAGs obtained by the NOTEARS, FGES and Reg-FGES, for all Bayesian

networks. 40
5.9 Example CPDAG and DAG. 42
5.10 Obtained CPDAG by the FGES algorithm using the degen-gauss-bic score function and

the extracted DAG for the Cardio data set. 44

vii

5.11 Obtained CPDAG by the Reg-FGES algorithm using the bdeu-score as the scoring func-
tion and the extracted DAG for the Diagnosis data set. 46

5.12 Obtained DAG by the NOTEARS algorithm for the Marriage data set. 49
5.13 Obtained CPDAG by the FGES algorithm using the degen-gauss-bic score function and

the extracted DAG for the Titanic data set. 51

6.1 Process used to find the relative entropy between the real distribution underlying the data
and the joint probability distribution encoded by the learned Bayesian network. 63

viii

List of Tables

2.1 Number of parameters required by the CPTs/CPDs for each node of the Bayesian network
of figure 2.7. 7

3.1 Progression for the first few values of the number of DAGs for a network of n nodes. . . . 19

4.1 Example data set comprised of instantiations of boolean random variables. 30
4.2 Approximation of the real probability distribution P ∗. 31
4.3 Obtained probability distribution Q. 32

5.1 Properties of the used well-known Bayesian networks. 34
5.2 Precision of the directed edges that were detected by both NOTEARS and FGES for the

various score functions. 34
5.3 Metrics of the obtained DAGs obtained for the Alarm network. 37
5.4 Precision values of the adjacencies obtained by NOTEARS, FGES and Reg-FGES, with

the latter two using the various score functions. 37
5.5 Precision values of the adjacencies obtained by NOTEARS, FGES and Reg-FGES, with

the latter two using the score function bdeu-score. 37
5.6 Precision values of the adjacencies obtained by NOTEARS, FGES and Reg-FGES, with

the latter two using the score function disc-bic-score. 37
5.7 Precision values of the adjacencies obtained by NOTEARS, FGES and Reg-FGES, with

the latter two using the score function degen-gauss-bic. 38
5.8 SHD values for the DAGs obtained by NOTEARS, FGES and Reg-FGES, with the latter

two using as score function the bdeu-score. 41
5.9 SHD values for the DAGs obtained by NOTEARS, FGES and Reg-FGES, with the latter

two using as score function the disc-bic-score. 41
5.10 SHD values for the DAGs obtained by NOTEARS, FGES and Reg-FGES, with the latter

two using as score function the degen-gauss-bic. 41
5.11 Age discretization. 43
5.12 Body Mass Index discretization. 43
5.13 Blood pressure discretization. 44
5.14 Marginalized CPD of node BMI for analyzing P (BMI | Cardio). 44
5.15 Marginalized CPD of node BMI for analyzing P (BMI | Cholesterol). 45
5.16 Marginalized CPD of node BP for analyzing P (BP | BMI). 45
5.17 Marginalized CPD of node BP for analyzing P (BP | Cardio). 45
5.18 Marginalized CPD of node Cardio for analyzing P (Cardio | Active). 45
5.19 Marginalized CPD of node Cardio for analyzing P (Cardio | Cholesterol). 45
5.20 Temperature discretization. 46
5.21 Marginalized CPD of node Temperature for analyzing P (Temperature | Nephritis). 47
5.22 Marginalized CPD of node Temperature for analyzing P (Temperature | Inflammation). . . 47
5.23 Marginalized CPD of node Inflammation for analyzing P (Inflammation | Micturition). . . . 47
5.24 Marginalized CPD of node Inflammation for analyzing P (Inflammation | Micturition). . . . 47
5.25 BDI score discretization. 48
5.26 Marginalized CPD of node Working for analyzing P (Working | Gender). 49
5.27 Marginalized CPD of node BDI for analyzing P (BDI | Child). 49
5.28 Marginalized CPD of node BDI for analyzing P (BDI | Marriage). 50
5.29 Age discretization. 50
5.30 Siblings/Spouses and Parents/Children discretization. 51

ix

5.31 Fare discretization. 51
5.32 Marginalized CPD of node Age for analyzing P (Age | Survived). 52
5.33 Marginalized CPD of node Gender for analyzing P (Gender | Survived). 52
5.34 Marginalized CPD of node PClass for analyzing P (PClass | Survived). 52
5.35 Relative entropy (KL-divergence) values of the distributions encoded the learned Bayesian

networks for all data sets. 52

x

List of Acronyms

i.i.d.: independently and identically distributed

DAG: Directed Acyclic Graph

CPDAG: Completed Partially Directed Acyclic Graph

MEC: Markov Equivalence Class

GES: Greedy Equivalence Search

FGES: Fast Greedy Equivalence Search

Reg-FGES/R-FGES: Regularized Fast Greedy Equivalence Search

LL: Log Likelihood

BIC: Bayesian Information Criterion

MDL: Minimum Description Length

BD: Bayesian Dirichlet score

BDe: likelihood-equivalence Bayesian Dirichlet score

BDeu: likelihood-equivalence uninformative Bayesian Dirichlet score

MMPC: Max-Min Parents and Children

MLE: Maximum Likelihood Estimator

SHD: Structural Hamming Distance

ACC: Accuracy

PPV: Precision

TPR: Recall

bdeu: bdeu-score (TETRAD software suite score function) db: discrete-bic-score (TETRAD software
suite score function)

dgb: degen-gauss-bic (TETRAD software suite score function)

xi

xii

Chapter 1

Introduction

1.1 Motivation

Causal reasoning is an integral part of human intelligence, evident from its application throughout time
and across a broad spectrum of areas of knowledge. Using it we are able to understand the past,
causes, and predict the future, effects.

Bayesian networks are probabilistic graphical models particularly well-suited to describe cause-effect
relationships. On the one hand, their use of probability theory makes them especially adept for modeling
stochastic systems, having been applied to climate prediction [1], medicine [2], biological sciences [3],
[4], assessing economic trends [5], social modeling [6], and decision making [7]. While on the other
hand, their graphical representation provides a simple way to visualize the structure of a model. This
can provide valuable insights into the properties of the system it is modeling.

A traditional approach for building a Bayesian network is to conduct randomized experiments, where we
intervene in the system and analyze the effects of our intervention on the measurement data. Then, in
collaboration with an expert on the field of the system that we are contemplating, we would analyze the
results of our interventions and build the network accordingly.

However, this approach generally tends to be either too expensive, due to the running of significant
experiments and using an expert’s valuable time, or simply impossible, when the experiments are un-
feasible or if there is no one with expertise on the subject matter. Therefore, the need for an automated
strategy based purely on observational data led to the development of alternative approaches. In the
field of probabilistic graphical modeling, this is known as network structure learning [8].

These new methods essentially search for the network structure that best fits the observed data, which
is not trivial due to the combinatorial nature of the search space. They make use of clever heuristics and
strong assumptions in order to reduce the amount of possible structures to be considered, and still most
become intractable for moderately large networks [9].

A recently proposed algorithm, NOTEARS, established a new approach, reformulating the search prob-
lem as continuous optimization [10]. This allows us to use well-established machine learning methods,
while requiring fewer assumptions on the data.

However, neither NOTEARS nor the search methods guarantee that the network structure they obtain
is the one that best fits the data. Both types of approach are subjected to the pitfalls of non-convex
optimization, converging on local optima solutions. Therefore, we should always be skeptical about the
quality of the learned network structures [9], [11].

1.2 Objectives

The main objective of this work is that of knowledge discovery, for which we will seek to increase the
level of certainty on the accuracy of the relationships encoded in the learned Bayesian network.

1

In order to achieve this goal, we must first review some of the most renowned algorithms for the estab-
lished Bayesian network structure learning approaches, evaluating their strengths and weaknesses.

Then, we will propose changes to these algorithms to achieve our main objective, which will need to be
tested on data generated from well-known Bayesian networks to assess their merit based on commonly
used metrics.

Finally, if the changes that we made have proved themselves to be worthwhile in the known Bayesian
networks, then we will apply the revised method in a real-world scenario, where we will need to establish
a way to evaluate the quality of the learned Bayesian networks.

1.3 Contributions

The main contributions of this work are:

• The formulation of the hypothesis that there are certain relationships so strongly encoded in the
data, that they are common to the networks learned by different Bayesian network structure learn-
ing algorithms.

• Demonstrating on the data generated from the well-known Bayesian networks that these common
relationships are more likely to be in the original Bayesian network than the edges obtained by the
individual algorithms.

• Based on the demonstrated validity of the hypothesis, the development of a new meta-algorithm
that combines the continuous optimization approach algorithm, NOTEARS, with the state-of-the-
art search-based approach algorithm, FGES.

• Providing a method with which it is possible to evaluate and compare the performance of the
various Bayesian network structure learning algorithms when there is no ground truth Bayesian
network.

1.4 Outline

This work is split into the following chapters:

• Chapter 2 will define the used notation and introduce the concepts, the fields of study and mathe-
matical tools used on later chapters.

• Chapter 3 will give an overview of the common approaches and some of their most popular algo-
rithms, capping off with the novel continuous optimization approach.

• Chapter 4, where the proposed meta-algorithm and the methods to fairly compare models and
transform the results of the algorithms are explained.

• Chapter 5, where the conducted experiments are described, first detailing their setup, proceeded
by the experiments on data generated from well-known networks, so as to assess the quality of
the proposed solution. This is then followed by tests on real-world data, where the results of the
proposed solution serve as a basis for conjecturing over the domains of the used data.

• Chapter 6, where we will recap the important moments of the work, while also establishing possible
avenues for future work.

2

Chapter 2

Background

This chapter starts off by covering basic notions of graph theory, which will be necessary for the rest of
the work. Then it gives a brief overview of the mathematical tools used (Probabilistic Graphical Models),
specifying the chosen model (Bayesian network), while providing the reasoning for its choice, analyzing
some of its most relevant properties and giving a brief overview of Bayesian network parameter learning.
Finally, it concludes with the motivation for using Bayesian networks (Causal inference) and how it ties
into the main focus of this thesis (Bayesian network structure learning).

2.1 Base Notions of Graph Theory

A graph consists of a set of nodes V = {V1, . . . , Vn}, visually marked as circles, and a set of edges E,
which represent relationships between the nodes. For instance, the edge EVi,Vj

represents a relation-
ship between nodes Vi and Vj . Graph edges can be either undirected (e.g., Vi – Vj) or directed (e.g.,
Vi → Vj), where node Vi is referred to as the source node and Vj as the target node.

There are two distinct classes of graphs:

• Directed graphs, which are comprised solely of directed edges. On these types of graphs, for any
given node Vi we can define its set of parent nodes as the source nodes of all incoming edges of
Vi, denoted as PaVi ; and its set of children nodes as the source nodes of all outgoing edges of Vi,
denoted as ChVi

. In order to illustrate these concepts, see figure 2.1a where we highlight node V5

in yellow, its parent set, PaV5
, in red and its children set, ChV5

, in green.

• Undirected graphs, which are comprised solely of undirected edges. On these types of graphs, for
any given node Vi we can define its set of neighbor (i.e., adjacent) nodes as the set of all nodes
with which Vi is connected to, denoted NeVi . In order to illustrate these concepts, see figure 2.1b
where we highlight node V5 in yellow and its neighbor set, NeV5 , in blue.

(a) Directed graph. (b) Undirected graph.

Figure 2.1: Examples of the distinct classes of graphs.

3

In a graph, we define the degree of a node as the total number of edges a node is involved with, while
the degree of a graph is the maximum node degree in the said graph.

Other important graph notions are:

• Path: Nodes V1, . . . , Vk form a path if there is an edge for every pair of sucessive nodes, be it
(Xi → Xi+1) or (Xi – Xi+1), see figure 2.2a. In the case of directed graphs, a path is said to be
directed, see figure 2.2b.

(a) Path V1, V2, V3. (b) Directed path V1, V2, V3.

Figure 2.2: Examples of paths.

• Cycle: Defined as a directed path Vi, . . . , Vj , where Vi = Vj , i.e., its end node is its start node, see
figure 2.3. If a graph contains no cycles, then it is said to be acyclic.

Figure 2.3: Cycle V1, V2, V3, V4, V1.

• Trail : Defined as a less strict path, where for directed paths edges between successive nodes can
have the opposite direction of the succession, i.e., allowing both (Xi → Xi+1) and (Xi ← Xi+1).
See figure 2.4, noting that it is a trail but not a path.

Figure 2.4: Trail V1, V2, V3.

• Topological ordering: If for any edgeXi → Xj , with i < j, thenX1, . . . , Xj is said to be a topological
ordering of a graph, see figure 2.5

Figure 2.5: Topological ordering V1, V2, V3, V4.

4

2.2 Probabilistic Graphical Models

Probabilistic graphical models are powerful knowledge representation tools that make use of probability
and graph theory in order to describe the world and make useful predictions about it. They allow us
to encode uncertainty into a given mathematical model of the world and they also have an important
connection to causal inference.

The probabilistic aspect of modeling is important for two main reasons:

• The real-world is stochastic in nature and not fully observable, therefore it is uncertain.

• Simply making a prediction is not enough, there is also the need to assess the confidence on the
prediction.

In order to understand the usefulness of probabilistic graphical modeling, consider the following exam-
ple. Given a set of n known variables X = {X1, . . . , Xn}, we want to predict the outcome variable Y .
Therefore the model we build can be expressed as P (X1, . . . , Xn, Y : θ), where P (X, Y) is the joint
probability distribution and θ = {θ1, . . . , θm} is the set of the models’ adjustable parameters. Our model
defines a probability value [0, 1] for each combination of X1, . . . , Xn, Y . Considering the case when all
variables, both known and outcome, are binary, then our model would have 2n+1 different combinations
of the values of variables.

For real-world problems, the sheer size of the joint probability table is problematic from two points of
view:

• In the computational sense, since such a table would be too large to store and to efficiently work
with.

• In the statistical sense, since we usually only have limited data and need to efficiently estimate the
model’s parameters.

Here is where probabilistic graphical modeling makes use of the assumption of conditional indepen-
dence among the variables. A particular case of the choice of these independencies is the Naive Bayes
assumption, which assumes the independence of the known variables given the outcome variable. This
allows us to write the joint probability as a product of factors

P (X1, . . . , Xn, Y) = P (Y)

n∏
i=1

P (Xi|Y) , (2.1)

where each factor P (Xi|Y) can be completely described by a small number of parameters. Thus,
the joint distribution is characterized by O(n) parameters, therefore estimating from data and making
predictions is now tractable.

Figure 2.6: Naive Bayes network.

This independence assumption can be conveniently represented in the form of a graph, as seen in
figure 2.6. This type of representation allows us to express the notion of causality. The two main types
of graphs explored in probabilistic graphical models are:

• Bayesian Networks (BNs), comprised of directed edges in which a given variable Xi is considered
to be influenced only by its parents, which are denoted as PaXi

.

• Markov Random Fields (MRFs), comprised of undirected edges in which a given variable Xi is
considered to be influenced only by its neighbors, which are denoted as NeXi

.

The field of probabilistic graphical modeling can be seen as a conjunction of three distinct aspects:

5

1. Representation, which deals with the issue of choosing a representation for the model, should we
use for instance a Bayesian network or a Markov Random Field. This makes use of graph theory
in order to construct a tractable model.

2. Inference, which deals with the issue of asking questions to the model. This encompasses both
marginal inference, which queries the marginal probabilities of specific events, and maximum a
posteriori (MAP) inference, which asks for the most likely assignment of variables.

3. Learning, which deals with the issue of fitting the model to real-world data. This is split into learning
the parameters of the model, i.e., the factors which simplify the joint probability, and the model’s
structure itself, i.e., the presence (or absence) of edges between the variables.

The main focus of this work is on the structure learning of discrete Bayesian Networks, which is related to
the issue of causal inference. Nonetheless, one should keep in mind that all these aspects of probabilistic
graphical modeling are working in tandem.

2.3 Bayesian Networks

A Bayesian network encodes a joint probability distribution P over a set of random variables X =
{X1, . . . , Xn}. Formally, a Bayesian network B is a pair {G,Ω}, where G is a directed acyclic graph
(DAG) in which each node corresponds to one of the random variables, and Ω specifies the set of
conditional probability distributions P (Xi|PaXi

) for each Xi. The edges or lack of them encode the
conditional independence relationships among the variables, with each node Xi being independent of
its non-descendant variables given its parents, PaXi

. Thus, the joint probability distribution of all of the
variables is given as

P (X) =

n∏
i=1

P (Xi|PaXi) , (2.2)

where the individual factors P (Xi | PaXi) are called the conditional probability distributions (CPDs). This
equation is known as the chain rule for Bayesian networks [8].

The resulting factorized representation can be substantially more compact, particularly for sparse struc-
tures, as opposed to simply using the chain rule of probability,

P (X) = P (X1)

n∏
i=2

P (Xi | X1, . . . , Xi−1) , (2.3)

where the individual factors P (Xi | X1, . . . , Xi−1) are represented by conditional probability tables
(CPTs).

For instance, consider the Bayesian network in figure 2.7. Using the chain rule of equation 2.3 and an
arbitrarily chosen ordering, (A,B,C,D,E), we would factorize the probability distribution as

P (A,B,C,D,E) = P (A)P (B | A)P (C | A,B)P (D | A,B,C)P (E | A,B,C,D) ,

where each factor on the right-hand side would be represented by progressively longer CPTs.

Whereas, when using the chain rule for Bayesian networks of equation 2.2, we would factorize the
probability distribution as

P (A,B,C,D,E) = P (A)P (B)P (C | A,B)P (D | C)P (E | C) ,

where each factor on the right-hand side would be represented by CPDs, generally requiring less pa-
rameters than the CPTs.

Since we are dealing with boolean variables, we can describe the parameter θXi=False = 1 − θXi=True,
therefore we only need to store a single column, Xi = True, for all CPTs and CPDs. This means that

6

the number of parameters that the CPTs and CPDs need to store is the same as their number of rows.
Furthermore, the number of rows either requires is 2q, where q is the number of evidence variables, so
P (X1) requires 1 row, P (X2 | X1) requires 2 rows, P (X3 | X2, X1) requires 4 rows, and so on.

The total number of parameters required can be found on table 2.1, where we can see that even for
a small five node boolean variable system, the Bayesian network model allows us to describe the joint
probability distribution overX = {A,B,C,D,E} with less than a third of the parameters required by just
using the chain rule of probability.

Table 2.1: Number of parameters required by the CPTs/CPDs for each node of the Bayesian network of
figure 2.7.

Parameters A B C D E Total
CPT 1 2 4 8 16 31
CPD 1 1 4 2 2 10

Bayesian networks are of particular interest since:

• They are graphical models, therefore capable of displaying relationships clearly and intuitively, see
an example in figure 2.7.

• They are comprised of directed edges, which means that they can represent cause-effect relation-
ships.

• They can handle uncertainty, which is pervasive in most AI application domains, through the use
of probability theory.

• They can be used to represent indirect in addition to direct causality.

Figure 2.7: Example of a Bayesian network composed of boolean variables.

There are two particularly relevant concepts regarding Bayesian networks:

• D-separation, which allows us to visually identify the conditional independencies implied by the
Bayesian network’s graph.

• Forward sampling, which allows us to generate from the Bayesian network a set of samples D,
i.e., instantiations of all of the network’s random variablesD = {D1, . . . , DM}, where Dm = {X1 =

x
(m)
1 , . . . , Xn = x

(m)
n }.

2.3.1 D-separation

In order to comprehend d-separation, it is necessary to understand its base concepts, specifically:

7

• Independence: Distribution P satisfies (X ⊥⊥ Y) if and only if P (X,Y) = P (X)P (Y), which means
that knowing the outcome of X does not influence our belief in the outcome of Y .

• Conditional independence: Distribution P satisfies (X ⊥⊥ Y | Z) if and only if P (X,Y | Z) = P (X |
Z)P (Y | Z), which means that given the value of Z, knowing the value of X does not influence our
belief in the outcome of Y .

A direct acyclic graph encodes a specific set of conditional independence relationships between its
variables [9]. In order to discover this set of independencies, the DAG can be seen as a combination of
sub-graphs of the following types:

• Direct connection: G is of the form X → Y , in which case X 6⊥⊥ Y | Z regardless of Z.

• Cascade: G is of the form X → Z → Y , in which case X ⊥⊥ Y | Z.

• Common cause: G is of the form X ← Z → Y , in which case X ⊥⊥ Y | Z.

• V-structure: G is of the form X → Z ← Y , in which case X ⊥⊥ Y only holds if Z and ChZ are
unknown.

(a) Direct connection. (b) Cascade. (c) Common cause. (d) V-structure.

Figure 2.8: Important sub-graphs.

Formally, sets X and Y are said to be d-separated given Z if there is no active trail between any node
X ∈X and Y ∈ Y given Z, which is denoted as d-sepG(X;Y | Z).

A trail X1, . . . , Xn is considered active given a subset Z of observed variables if:

• For all v-structures Xi−1 → Xi ← Xi+1, then Xi or any of its descendants are in Z.

• No other node in {X1, . . . , Xn} is in Z.

Consider the distribution P overX, then I(P) is the set of independencies of the form (XA ⊥⊥XB |XC)
that hold in P , with XA,XB,XC ⊂ X. Now take I(G) to be the set of independencies encoded by a
graph G. If I(G) ⊆ I(P), then I(G) is said to be an independence-map of I(P).

2.3.2 Forward Sampling

First consider that we want to sample a distribution over a multinomial random variable with k possible
outcomes and associated probabilities θ1, . . . , θk, i.e., we want to obtain a value (or instantiation) of a
random variable that allows multiple possible values whose likelihood is a specific probability value, θi
for i ∈ [0, k].

In general, this is not a trivial problem, since computers can only generate samples from very simple
distributions, such as the uniform distribution over [0, 1]. Therefore, in order to reduce sampling from a
multinomial variable to sampling a single uniform variable, we can subdivide a unit interval [0, 1] into k
regions with region i having size θi, see figure 2.9. Then, we can sample uniformly from the unit interval
and return the value of the region in which our sample falls.

8

Figure 2.9: Reducing sampling from a multinomial distribution to sampling a uniform distribution in [0, 1].

This technique is extended to Bayesian networks with multinomial variables. Given the joint probability
function P (X1, . . . , Xn) specified by a Bayesian network, we can sample variables in topological order
[8]. This method is called forward (or ancestral) sampling and works as follows:

1. Start by sampling the variables with no parents.

2. Sample the variables on the next topological level by conditioning these variables’ CPDs to the
values sampled in the previous step.

3. Proceed to the next topological level until all n variables have been sampled.

In order to illustrate this process, consider once more the Bayesian network from figure 2.7. According
to the network’s topology, we can define three topological levels:

1. Level 1, which contains nodes A and B.

2. Level 2, which contains node C.

3. Level 3, which contains nodes D and E.

In order to apply forward sampling to this Bayesian network, we start by sampling the nodes in level 1,
A and B, see figure 2.10.

(a) Sampling variable A (b) Sampling variable B

Figure 2.10: Sampling the variables in the first topological level. The sampled value is identified by the
dashed line, which is green when it is in the interval of values that will correspond to the boolean variable
being True, or red when it is in the interval of False values.

Moving on to the next topological level, which only contains the node C, this variable will be sampled
while conditioned to A = False and B = True, see figure 2.11.

Figure 2.11: Sampling variable C from the second topological level. The sampled value is identified by
the dashed red line, which falls into the interval of values that will correspond to C = False.

Finally, reaching the third and last topological level, which contains nodesD andE, these will be sampled
while conditioned to C = False, see figure 2.12.

9

(a) Sampling variable D (b) Sampling variable E

Figure 2.12: Sampling the variables in the third topological level. The sampled value is identified by the
dashed line, which is green when it is in the interval of values that will correspond to the boolean variable
being True, or red when it is in the interval of False values.

When the process of forward sampling is concluded, all variables will have been sampled, X = {A =
False, B = True, C = False, D = True, E = False}. Thus, we will have obtained a sample of the joint
probability function defined by the Bayesian network, D = {False,True,False,True,False}. By repeating
this process M times, we will obtain a set of such data samples, D = {D1, . . . ,DM}.

2.3.3 Bayesian Network Parameter Learning

As previously mentioned, learning Bayesian networks can refer to:

• Network structure learning, where we use different algorithms to obtain a DAG from the data.

• Parameter learning, where we use different estimators to obtain the CPDs from the data and from
a given/learned DAG.

This work’s focus is centered on the network structure learning sub-problem, with most of the discussion
being on the various Bayesian network structure learning algorithms. However, later on in the work,
we will want to learn a full Bayesian network, i.e., learn both the network structure and its parameters.
Therefore, it is important to give a basic overview of parameter learning here, which will prove valuable
for the later sections.

In order to learn a Bayesian network’s parameters, there are two particularly important approaches [8]:

• Maximum Likelihood Estimator (MLE).

• Bayesian parameter estimation.

Both of these approaches evaluate of a possible parameter, θ, by seeing how well it predicts the data,
i.e., if the data is likely given the parameter, in which case the parameter is a good predictor. Therefore,
it is useful to define a:

1. Parameter space, Θ, which is the set of possible values of θ that we are considering.

2. Objective function, which allows us to evaluate how well the different possible parameters fit to our
data set, D.

Maximum Likelihood Estimator

Consider a data set D = {D1, . . . , DM} composed of M independent and identically distributed (i.i.d.)
samples of a set of random variables X from an unknown distribution P ∗(X), i.e., each sample is
sampled independently from P ∗. Also, assume that we are given a parametric model for which we want
to estimate its parameters.

Formally, a parametric model is defined by a function P (D : θ), specified in the terms of a set of pa-
rameters. Given a particular set of parameter values θ and an instance D of X, the model assigns a
probability to D. In general, for each model, not all parameter values are legal, thus we need to specify
the parameter space, Θ, which is the set of allowable parameters.

Suppose that X is a multinomial variable that can take values x1, . . . , xK . The simplest representation
of a multinomial variable is as a vector θ ∈ RK , such that

Pmultinomial(x : θ) = θk if x = xk . (2.4)

10

The parameter space of this model is

Θmultinomial =

{
θ ∈ [0, 1]K :

K∑
k=1

θk = 1

}
. (2.5)

We then define the likelihood function, which is the probability the model assigns the data set given a
choice of parameters θ,

L(θ : D) =

M∏
m=1

P (Dm : θ) . (2.6)

We can rewrite the likelihood function in a more compact form by using sufficient statistics, which corre-
spond to functions of the data that summarize the relevant information for computing the likelihood.

More formally, a function τ(D) from instances of X to Rl (for some l) is a sufficient statistic if, for any
two data sets D and D′ and any θ ∈ Θ, we have that

∑
Dm∈D

τ(Dm) =
∑

D′m∈D
′

τ(D′m) ⇒ L(θ : D) = L(θ : D′) , (2.7)

with
∑
Dm∈D τ(Dm) being referred to as the sufficient statistics of the data set D.

Continuing with the multinomial model of equation 2.4, a trivial sufficient statistic for the data set is the
tuple of counts 〈M1, . . . ,MK〉, where Mk is the number of times that xk appears in the data set. Given
the vector of counts, we can then write the likelihood function as

L(θ : D) =

K∏
k=1

θMk

k . (2.8)

Once the likelihood function has been defined, we can then use maximum likelihood estimation to
choose the parameter values. Formally, maximum likelihood estimation states that given a data set
D, we should choose the parameters θ̂ that satisfy

L(θ̂ : D) = max
θ∈Θ

L(θ : D) . (2.9)

Finally, when estimating the parameters of the multinomial distribution of equation 2.8 [8], the maximum
likelihood is achieved when

θ̂k =
Mk

M
. (2.10)

Now, suppose that given a data set D consisting of samples D1, . . . , DM , we want to learn the parame-
ters for a Bayesian network with structure G and parameters θ.

We can write the likelihood function as

L(θ : D) =

M∏
m=1

PG(Dm : θ)

=

M∏
m=1

n∏
i=1

P (X
(m)
i | Pa(m)

Xi
: θ)

=

n∏
i=1

[
M∏
m=1

P (X
(m)
i | Pa(m)

Xi
: θ)

]
,

(2.11)

11

where each of the terms in the square brackets refers to the conditional likelihood of a particular variable
given its parents in the network. Furthermore, using θXi|PaXi

to denote the subset of parameters that
determines P (Xi | PaXi

) in our model, we can write the likelihood as

L(θ : D) =

n∏
i=1

Li(θXi|PaXi
: D) , (2.12)

where the local likelihood function for Xi is

Li(θXi|PaXi
: D) =

M∏
m=1

P (X
(m)
i | Pa(m)

Xi
: θXi|PaXi

) . (2.13)

The fact that the likelihood decomposes as a product of independent terms, one for each of the network’s
CPDs, is known as the global decomposition of the likelihood function [8].

Let D be a complete data set for X1, . . . , Xn, let G be a network structure over these variables, and
suppose that the parameters θXi|PaXi

are disjoint (i.e., each CPD is parameterized by a separate set of
parameters that do not overlap) from θXj |PaXj

for all j 6= i. Let θ̂Xi|PaXi
be the parameters that maximize

Li(θXi|PaXi
: D), then, θ̂ =

〈
θ̂X1|PaX1

, . . . , θ̂Xn|PaXn

〉
maximizes L(θ : D) [8].

This means that we can maximize each local likelihood function independently of the rest of the network,
and then combine the solutions to get the MLE solution. Furthermore, this decomposition stems from
the network structure and does not depend on any particular choice of parameterization of the CPDs.

Now, suppose that we have a variable X with parents U . By representing the CPD P (X | U) as a table,
then we will have a parameter θx|u for each combination of x ∈ Val(X) and u ∈ Val(U), therefore

LX(θX|U : D) =

M∏
m=1

θx(m)|u(m)

=
∏

u∈Val(U)

[∏
x∈Val(X)

θ
Mx,u

x|u

]
,

(2.14)

where Mx,u is the number of times Dm = x and u(m) = u in D.

Our goal is to maximize this term while ensuring that
∑
θx|u = 1 for all u. Since for different values u of

U the choice of parameters are independent from one another, we can independently maximize each of
the terms inside the square brackets in equation 2.14.

Therefore, we can further decompose equation 2.14 as a product of multinomial likelihood functions. By
using the counts in the data for the different outcomes x, {Mx,u : x ∈ Val(X)}, we can then compute the
MLE parameters,

θ̂x|u =
Mx,u

Mu
, (2.15)

where Mu =
∑
xMx,u.

Note that we need Mu data points to estimate the parameter θ̂x|u. As the number of parents U in-
creases, the number of different u increases exponentially, therefore the number of data points that we
expect to have for a single u decreases exponentially. This is known a data fragmentation and leads to
overfitting and the presence of a large amount of zeros in the distribution due to unseen/rarely seen u
in the data set. Which means that if the data set is not representative of the real distribution, MLE can
lead to parameters that prove themselves inadequate when dealing with unseen data.

12

Bayesian Parameter Estimation

Similarly to MLE, let us start with a data setD comprised ofM i.i.d. samples of a set of random variables
X from an unknown distribution P ∗(X). Also, assume that we possess a parametric model P (D : θ),
where we can choose parameters from a parameter space Θ.

While the MLE approach seeks to find the parameters θ̂ ∈ Θ that best fit the data, Bayesian parameter
estimation requires that we use probabilities to describe our initial uncertainty about the parameters θ,
then using probabilistic reasoning to account for our observations. This is achieved by describing a joint
probability distribution over the data and the parameters

P (D,θ) = P (D | θ)P (θ) , (2.16)

where P (D | θ) is the likelihood function, and P (θ) is the prior distribution, which encodes our initial
uncertainty about the parameters.

We can then use Bayes’ rule to obtain the posterior distribution over the parameters

P (θ |D) =
P (D | θ)P (θ)

P (D)
, (2.17)

where P (D) is the marginal likelihood of the data, i.e., the a priori probability of observing the data set
D given our prior beliefs, and it is obtained by

P (D) =

∫
Θ

P (D | θ)P (θ)dθ (2.18)

Since the posterior is a product of the prior and the likelihood, as seen in equation 2.17, we expect the
prior to be similar in form to the likelihood. One prior where this is the case is the Dirichlet distribution,
which is specified by a set of hyperparameters α = {α1, . . . , αK} such that

θ ∼ Dirichlet(α) if P (θ) ∝
K∏
k=1

θαk−1
k . (2.19)

If P (θ) is Dirichlet(α), then P (θ | D) is Dirichlet(α +M), where α +M = {α1 + M1, . . . , αK + MK}
and Mk is the number of occurrences of xk in the data set. This is due to the fact that Dirichlet priors
are conjugate to the multinomial model.

Formally, a family of priors, P (θ : α), is conjugate to a particular model, P (D | θ), if for any possible data
set D of i.i.d. samples from P (D | θ) and any choice of legal hyperparameters, α, for the prior over θ,
there are hyperparameters, α′, such that P (θ : α′) ∝ P (D | θ)P (θ : α).

The posterior also allows us to predict the probability of future data instances. Let us assume that we are
going to sample a new data instance DM+1, since we already have observedD, the Bayesian estimator
is the posterior distribution over the new instance

P (DM+1 |D) =

∫
P (DM+1 |D,θ)P (θ |D)dθ

=

∫
P (DM+1 | θ)P (θ |D)dθ

= EP (θ|D){P (DM+1 | θ)} ,

(2.20)

which means that this prediction is the average over all parameters according to the posterior.

13

Let P (θ) be a Dirichlet distribution with hyperparameters α, and α =
∑K
k=1 αk, then E{θk} = αk

α . Since
the posterior is Dirichlet(α+M), where M = {M1, . . . ,MK} are sufficient statistics from the data, then
the prediction with a Dirichlet prior is

P (x(M+1) = xk |D) = EP (θ|D){θk}

=
Mk + αk
M + α

.
(2.21)

For this reason, the hyperparameters are considered to be pseudo-counts, i.e., the number of times we
expect to have seen the different outcomes in our prior to the experiment [8]. Furthermore, α is known
as the equivalent sample size and is the total of these pseudo-counts, reflecting our confidence in the
prior.

Though the MLE estimate of equation 2.10 assigns probability 0 to values that were not observed in
the data set, this should be avoided since they will classify unseen data instances as extremely unlikely.
While in Bayesian estimation, even if we do not have prior knowledge, we can use a uniform prior that
will prevent our estimates from taking values close to 0 by considering all possible values to be equally
likely.

Now, consider a network structure G with parameters θ = (θX1|PaX1
, . . . ,θXn|PaXn

). Following the
Bayesian parameter estimation approach, we need to specify a prior, P (θ), over all possible param-
eterizations of the network, so that the posterior distribution is

P (θ |D) =
P (D | θ)P (θ)

P (D)
, (2.22)

where P (θ) is the prior distribution, P (D | θ) is the likelihood function, and P (D) is a normalizing
constant known as the marginal likelihood.

The prior, P (θ), is said to satisfy global parameter independence if its form is

P (θ) =

n∏
i=1

P (θXi|PaXi
) , (2.23)

which in turn allows us to decompose the likelihood, P (D | θ), into local likelihoods

P (D | θ) =

n∏
i=1

P (θXi|PaXi
|D) . (2.24)

Furthermore, for a variable X with parents U , the prior, P (θX|U), is said to satisfy local parameter
independence if

P (θX|U) =
∏
u

P (θX|u) . (2.25)

When the prior, P (θ), satisfies both global and local parameter independence, then

P (θ |D) =

n∏
i=1

∏
uXi

P (θXi|uXi
|D) . (2.26)

In addition, if P (θX|u) is a Dirichlet prior with hyperparameters αx1|u, . . . , αxK |u, then the posterior,
P (θX|u |D), is a Dirichlet distribution with hyperparameters αx1|u +Mx1,u, . . . , αxK |u +MxK ,u. There-
fore, when predicting a new data instance, we have

P (X
(M+1)
i = xi | U (M+1) = u,D) =

αxi|u +Mxi,u∑n
i=1 αxi|u +Mxi,u

. (2.27)

14

With regards to choosing a parameter prior for a Bayesian network, where each node Xi has a set
of multinomial distributions θXi|paXi

(one for each of the parents of Xi’s instantiations, paXi
), these

parameters will each have a separate Dirichlet prior subject to the hyperparameters

αXi|paXi
= (αx1

i |paXi
, . . . , α

x
Ki
i |paXi

) , (2.28)

where Ki is the number of values of Xi.

One approach uses a fixed prior, αxj
i |paXi

= 1, for all the hyperparameters of the network, which is
known as the K2 prior.

Another approach considers an imaginary data set D′ of "prior" instances, from which we then use
counts as hyperparameters

αxi|paXi
= αxi,paXi

, (2.29)

where αxi,paXi
is the number of times that Xi = xi and PaXi

= paXi
in D′. Furthermore, we can avoid

storing D′ by using the size of the data set, α, and a representation P ′(X1, . . . , Xn) of the frequencies
of the events in D′, thus

αxi|paXi
= α · P ′(xi,paXi

) . (2.30)

This approach is known as the BDe prior and it chooses to represent P ′ by a Bayesian network, then
using inference algorithms (e.g., Variable-Elimination) to efficiently compute P ′(xi,paXi

).

Furthermore, if we assume that the prior distribution over the parameters is uniform, i.e., all values are
equally likely, then we can compute the hyperparameters using just the equivalent sample size, α,

αxi|paxi
=

α

ri · qi
, (2.31)

where ri = |Xi| is the number of possible values of Xi, and qi =
∑
Xj∈PaXi

rj is the number of possible
configurations of the parent set , PaXi

, of Xi. This is known as the likelihood-equivalent uninformative
Bayesian Dirichlet (BDeu) prior. For a more detailed analysis on the choice of a Bayesian network
parameter prior, see [8].

2.4 Causal Inference

Consider a system composed by a set of random variables, which interact and influence each other.
Having access to a set of measurement data of these variables, how can we model the system? This
problem is tackled in the probabilistic graphical modeling literature [12]–[15], where the strategy laid
out is to use graphical models to model the joint probability distribution over the set of variables that
describes the system.

We can describe this system as a graphG, composed by a set of nodes V that correspond to the random
variables of the system and by a set of edges E that describe relationships between a pair of nodes. In
the case that these edges are directed, i.e., from a source node to a target node, and there are no loops
in the graph, then the graph directly encodes a notion of causality between connected nodes.

So given a set of random variables and a set of data that corresponds to measurements of these vari-
ables, the problem is how to pick the directed acyclic graph that best fits our data. This is known as a
problem of causal inference [9], [16], [17], while in the field of probabilistic graphical modeling it is known
as graph structure learning [12], [18], [19].

From Bayes’ theorem, we have

P (G |D) =
P (G)P (D | G)

P (D)
, (2.32)

15

where G is a specific Bayesian network structure chosen out of all possible network structures, D is
the set of data samples of the system’s random variables, while P (D) is a normalization constant that
does not depend upon structure. Thus, to determine the posterior distribution for network structures,
P (G |D), we need to compute the marginal likelihood of the data, (p(D | G)) for each possible structure.

Unfortunately, the Bayesian approach of equation 2.32 is often impractical. One important computation
bottleneck is produced by the average over models due to the large number of possible structure hy-
potheses, which will be further elaborated upon later. Consequently, when it is impossible to exclude
almost all of these hypotheses, this approach is intractable.

Researchers use two approaches to address this problem:

• Model selection: select a "good" model (i.e., structure hypothesis) from among all possible models,
and use it as if it were the correct model.

• Selective model averaging: select a manageable number of good models from among all possible
models and pretend that these models are exhaustive.

Most literature on learning with Bayesian networks is concerned with model selection [20]. In some
of these approaches, a criterion is used to measure the degree to which a network structure fits the
prior knowledge and data. Meanwhile, selective model averaging is more complex, because in order to
identify significantly different yet complementary network structures, a single criterion is unlikely to work
[21].

It is important to note that though the fields of graph structure learning and causal inference are closely
related, they are not one and the same. The former is simply interested in learning a graph structure
from observed data, while the latter’s goal is that the links between nodes express causal relationships.
Learning causal graphs from observational data alone is generally intractable [22]. This is due to the
fact that common graph structure learning algorithms assume that all variables are observed, i.e., there
are no latent (i.e., hidden) variables.

Usually, causal discovery algorithms make use of interventional data and do-calculus to establish causal
relationships [23]. This is necessary in order to account for possible confounders, which are latent
variables that are a common parent of observed variables and which may be the cause for an edge
between those variables. For instance, see figure 2.13, where both DAGs encode X 6⊥⊥ Y , yet when
viewing edges under a causal lens the graphs imply very different causal relationships. On the one
hand, using a graph structure learning algorithm we would learn the DAG that implied X causes Y (or
the opposite), as seen in figure 2.13a. While on the other hand, using a causal discovery algorithm we
would find that there is no causal relationship between X and Y , as seen in figure 2.13b.

(a) DAG with no latent variables. (b) DAG where Z is a confounder.

Figure 2.13: Example of DAGs learned by: 2.13a - a graph structure learning algorithm; 2.13b - a causal
discovery algorithm.

In the next chapter, we will review the approaches that were developed for tackling the problem of
Bayesian network structure learning from a model selection perspective, highlighting their most-renowned
algorithms.

16

Chapter 3

Related Work

This chapter covers the algorithms used to learn the structure of Bayesian networks. It starts with
the main classes of the traditionally used approaches, providing insight on some of their most popular
algorithms. Then it shifts into the newer approaches, focusing on the algorithm that reformulated the
original search problem as continuous optimization, NOTEARS [10].

3.1 Base notions

Given a data set D = {D1, . . . , DM}, where Dm is an instantiation of all the variables in V , Bayesian
network structure learning is the problem of learning a graph structure fromD. AssumingD is complete,
i.e., all variables ofX have an observed instantiation, its set of parameters is maximized using frequency
counts from the data, as seen in section 2.3.3. Consequently, finding the optimal Bayesian network is
reduced to finding the optimal structure that fits the data.

Since the focus is on Bayesian networks, the problem of structure learning amounts to learning the DAG
from data. Traditional approaches are split into two major classes:

• Score-based approaches.

• Constraint-based approaches.

3.2 Score-based Approaches

Score-based approaches for Bayesian network structure learning resort to a:

1. Scoring function, which is used to measure how well a given structure fits the data.

2. Search algorithm, which is used to find the best scoring structure out of all possible DAGs.

3.2.1 Scoring functions

Useful scoring functions are decomposible, which means that the score for a given network B can be
computed as the sum of scores for its individual variables

Score(B |D) =

n∑
i=1

Score(Xi | PaXi
,D) . (3.1)

Commonly used scoring functions fall into one of two camps:

• Information-theoretic scoring functions.

• Bayesian scoring functions.

17

The former are based in the log-likelihood function, which is the log probability of D given B. Assuming
the data samples are independent and identically distributed, the log likelihood (LL) can be computed as

LL(D | B) =

M∑
m=1

log P (Dm | B) =

n∑
i=1

M∑
m=1

log P (X
(m)
i | pa(m)

Xi
) , (3.2)

whereX(m)
i is the instantiation ofXi in the data sampleDm, and pa(m)

Xi
is the instantiation ofXi’s parents

in the data sample Dm.

Unfortunately, the LL score is not a good scoring function, since adding a new edge never decreases
the likelihood of the network. This favors densely connected networks, where inference has a higher
computational cost, and leads to over-fitting to the training data.

In order to address these issues, commonly used scoring functions include a penalizing factor to offset
the log-likelihood term and favor less complex networks. Furthermore, most Bayesian networks used for
real-world problems tend to be sparsely connected [24].

Bayesian Information Criterion (BIC) score

The BIC score is equivalent to the minimum description length (MDL) [25], whose goal is to minimally
encode D as:

1. The network structure can be encoded by storing the conditional probability tables of all variables,
which requires log M

2 × p, where log M
2 is the memory space expected to be required by a single

probability value, and p is the number of individual values for all variables.

2. The unexplained data can be encoded with LL(D|B) bits.

This way we obtain the MDL penalty term

LL-PNMDL(Xi, B,D) = − log M × pi
2

, (3.3)

where pi is the number of independent parameters for Xi.

The intuition behind LL-PNMDL is that the more complex the model structure, then the longer the encod-
ing. The BIC score is equivalent to the LL score of equation 3.2 with the added the MDL penalty term
of equation 3.3. It requires a sufficiently large set of training data, since it is based on the asymptotic
behavior of models.

The BIC score is one of the most popular scoring functions, and has been shown to be very competitive
with scores that require more assumptions on the nature of the training data [26].

Bayesian Dirichlet scores

For a Bayesian network B with network structure G and Dirichlet priors, where P (θXi|paXi
| G) has

hyperparameters {(αGxi|ui
: j = 1, . . . , |Xi|}, the Bayesian Dirichlet (BD) score [27] is

BD(G,D) = P (B)

n∏
i=1

∏
ui∈Val(PaG

Xi
)

Γ(αGXi|ui
)

Γ(αGXi|ui
+Mui

)

∏
xj
i∈Val(Xi)

Γ(αGxi|ui
+Mxj

i ,ui
)

Γ(αG
xj
i |ui

)
, (3.4)

where Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function, Mui

is the number of instances in the data set D
that PaXi

= ui, and αGXi|ui
=
∑M
m=1 α

G
xj
i |ui

.

However, it is unusable in practice since it requires specifying a parameter for all possible variable-parent
combinations, αGxi|ui

, and was not score equivalent, i.e., it did not assign the same score to structures
that encoded the same set of d-separation facts. Nonetheless, certain cases of the BD score are in fact
useful.

18

In order to address the fact that the BD score is not score equivalent, the likelihood-equivalence Bayesian
Dirichlet (BDe) score [28] was proposed, introducing the parameter of equivalent sample size, α. From
this parameter and a prior distribution over network structures, P ′, all network parameters can be com-
puted as

αxi|paXi
= α · P ′(xi,paXi

) , (3.5)

which is the same as the prior used for Bayesian parameter estimation from equation 2.30 seen in sec-
tion 2.3.3. The only difference is that this prior distribution is defined over network structures, G, instead
of parameters θ. However, the BDe score is still inadequate since it requires computing P ′(xi,paXi

),
which might not be trivial.

The BDe score was then further improved, originating the likelihood-equivalence uninformative Bayesian
Dirichlet (BDeu) score [29], which assumed that the prior distribution over network structures was uni-
form, i.e., they were all equally likely. With this assumption, in order to compute the hyperparameters,
the only required parameter is the equivalent sample size, α,

αxi|paXi
=

α

ri · qi
, (3.6)

where ri = |Xi| is the number of possible values of Xi, and qi =
∑
Xj∈PaXi

rj is the number of possible
configurations of the parent set, PaXi , of Xi.

The density of the network structure is directly correlated to the value of α, and it has been shown that
it is very sensitive to it [30]. Therefore, when the density of the desired network structure is completely
unknown, α’s selection is not trivial.

3.2.2 Search Algorithms

Having now a score function that allows us to evaluate the fitness of possible network structures to the
data, we want to evaluate possible DAGs.

The "simplest" method is known as exhaustive search and evaluates all possible directed acyclic graphs,
choosing the one with the best score. Like all brute force methods, this quickly becomes intractable since
the number of possible DAGs is super-exponential to the number of nodes [31]. If Rn is the number of
DAGs with n vertices, then

Rn =

n∑
k=1

(−1)k+1

(
n

k

)
2k(n−k)Rn−k , (3.7)

for n ≥ 1, and with R0 = 1.

Table 3.1: Progression for the first few values of the number of DAGs for a network of n nodes.

n 1 2 3 4 5 ... 10
Rn 1 3 25 543 29281 ... 4175098976430598143

Therefore a search strategy for traversing the possible DAGs search space is required. Here is where
the decomposability of the scoring function aids us. Instead of scoring all possible DAGs, this property
allows us to score mere edge operations, such as adding, deleting or inverting an edge. This allows
the creation of greedy algorithms that iteratively perform the edge operation that maximizes the scoring
function, starting either with an empty or a complete graph.

However, one should note that though this clever heuristic greatly simplifies the search over possible
DAGs, it comes at a cost. Since the graph space is highly non-convex, there is the risk of getting
stuck in local maxima of the scoring function. Strategies to escape these local optima include randomly
disturbing the network or the use of simulated annealing [32], check Appendix B.

19

Greedy Equivalence Search

GES conducts its search in the space of Markov Equivalence Classes, which are represented as com-
pleted partially directed acyclic graphs (CPDAGs), also known as patterns [33] and follows these steps:

1. Start with an empty graph, i.e., all possible marginal and conditional independence constraints.

2. Repeatedly add or reverse a specific edge, with the chosen operation being the one with the
highest score according to the chosen score function, until a maximum is reached.

3. Repeatedly remove edges, as long as it increases the scoring function.

4. When a maximum is reached, the result is the CPDAG of the desired structure.

Two DAGs are said to be in the same Markov Equivalence Class if they share the same d-separation
facts. In this case, they can both be represented by a CPDAG which contains directed and undi-
rected edges. In this graph, an undirected edge means that neither possible direction would alter the
d-separation facts encoded by the graph [9].

The GES algorithm makes use of the Meek Conjecture [33]. This conjecture states that for two DAGs
H and G, such that H is an independence map of G, i.e., any independence implied by the structure of
H is also implied by the structure of G, then there is a finite sequence of edge operations that obey the
following properties:

1. After each edge change, G is a DAG and H remains an independence map of G.

2. After all edge changes, G = H.

3.3 Constraint-based Approaches

Constraint-based approaches make use of independence tests between the variables, in order to identify
a set of edge constraints that the best DAG must satisfy [18]. Since we know that if two variables are
independent, then there is no edge connecting them. This type of approach requires extensive testing,
so for large networks (above 200 nodes) it becomes intractable.

3.3.1 PC Algorithm

Similarly to Greedy Equivalence Search, this algorithm reduces the DAG search space to the CPDAG
search space. However, it reaches the skeleton of the desired graph differently, doing so as follows:

1. Start with a fully connected undirected graph.

2. For each pair of adjacent nodes X and Y , find the set of nodes Z that are adjacent to X yet are
not Y .

3. Check if X ⊥⊥ Y | Z holds, i.e., if X and Y are conditionally independent given Z ∈ Z.

4. If so, remove the edge connecting X and Y and add Z to the separation sets of X and Y , denoted
SXY and SY X accordingly.

At the end of this process, we will have the skeleton of the desired graph. In order to transform it into the
CPDAG, we will have to identify all possible v-structures in the following manner:

1. For each pair of non-adjacent nodes X and Y with common neighbor Z, check if Z 6∈ SXY .

2. If so, then replace X – Z – Y with X → Z ← Y .

3. This results in a partially directed acyclic graph (PDAG), of which we can still assign a direction to
certain undirected edges according to Meek’s rules [34], expressed in figure 3.1:

20

(a) Rule 1 (b) Rule 2

(c) Rule 3 (d) Rule 4

Figure 3.1: Meek’s rules.

Finally, we will have obtained the desired CPDAG. From here, a specific DAG can then be extracted, as
we will see later.

It is required to identify all possible v-structures in step 2) in order to obtain the CPDAG, because other-
wise the graph would encode different d-separation facts. Thus, the possible v-structures are enforced
in an earlier step prior to obtaining the CPDAG, so that it represents a single Markov Equivalence Class.

For instance, consider the DAGs in figures 2.8b and 2.8c, which both state X ⊥⊥ Y | Z, therefore are
in the same Markov Equivalence Class and can be represented as a CPDAG of three nodes and two
undirected edges. Now consider the DAG in figure 2.8d, which states X 6⊥⊥ Y | Z, therefore belongs to
different Markov Equivalence Class.

The PC algorithm’s evaluation of the independence between pairs of nodes that represent discrete
random variables resorts to two well-known tests imported from the field of statistics: the chi-square test
[35] and the g-square test [9],

χ2 =
∑ (Observed− Expected)

Expected
, (3.8)

G2 = 2×
∑

(Observed)ln
(

Observed
Expected

)
. (3.9)

3.4 Hybrid Approaches

This type of algorithms combines both approaches discussed previously. They follow these steps:

1. In the same vein as constraint-based algorithms, they use conditional information tests to infer the
skeleton of the desired graph.

2. Then, they employ the methods of score-based algorithms, greedily performing local search,
choosing the edge operation that maximizes a specified score.

These hybrid algorithms share both the positive and negative aspects of the previously mentioned ap-
proaches. An extensive conditional independence testing phase is intractable for large networks, though

21

it has been shown to be theoretically sound. While the skeleton orientation phase incurs the risks of non-
convex optimization, it does not provide any theoretical guarantees on the network structure itself [26].

3.4.1 Max-Min Hill-Climbing

On its first part, it applies a local discovery algorithm called Max-Min Parents and Children (MMPC) for
finding the skeleton of the desired graph, that works similarly to the PC algorithm. For each node, it is
also looking for sets of possible parents and children nodes.

In order to orient the skeleton, it performs Greedy Hill-Climbing:

1. Similarly to Greedy Equivalence Search, it begins with an empty graph.

2. However, it constrains the search space by considering only adding edges that were identified in
the first phase, when it applied MMPC.

3. The other operations are not constrained, and it performs the edge operation that maximizes the
specified score.

This algorithm has been shown to achieve competitive results when compared with the more traditional
algorithms [36].

3.5 Continuous Optimization Approach

With the recent boom in machine learning, spearheaded by neural networks and their seemingly end-
less possible applications, one would expect for it to have somehow translated into advances on graph
structure learning. This in fact happened for Markov Random Fields, which was recognized as a convex
problem [37], therefore solvable using black-box convex optimizers such as CVX [38].

Unfortunately, this did not translate for discrete Bayesian Networks. Some promising work has been
made in order to distinguish DAGs from the same CPDAG [39]. Here the authors extend the notion
of additive noise to discrete models, so that if the joint distribution P (X,Y) admits such a model Y =
f(X) + N , with N ⊥⊥ X, but not the reversed model, then X – Y is identified as X → Y . However this
approach is only tractable for very small networks and the authors themselves only tested it for bivariate
systems.

While constraint-based methods become intractable for large networks, due to the conditional inde-
pendence testing performed to identify forbidden edges, the problem with score-based methods is one
of maintaining acyclicity throughout the edge operations during the search. Both approaches however
make strong assumptions on the structure of the data, namely that there are no latent, i.e., unobservable
variables (also known as confounders in the causal inference literature) or need to specify a maximum
allowed node degree.

In order to avoid specifying a maximum node degree, which is used to limit the search for the possible
parent set for each node, a new approach has been developed [40]. It starts by estimating the score of
a large number of parent sets. Then, for only the most promising parent sets, it exactly computes their
score.

After obtaining all these possible parent sets, one should use the state-of-the-art exact structure learning
optimization solver, GOBNILP [41]. This is an integer program that will select for each node the parent
set that yields the best scoring DAG, while not introducing cycles.

Recently, a new approach has been developed that avoids the need for extensive knowledge of graph
theory and transforms the search over the possible DAG space problem into a continuous optimization
problem subject to a novel condition of acyclicity [10]. The author’s approach amounts to an equality
constraint optimization problem, which ensures the acyclicity of the resulting DAG,

h(W) = tr
(
eW◦W

)
− d = 0 , (3.10)

where W is the weighted adjacency matrix, ◦ is the Hadamard product, tr(.) is the trace operator, and d
is the number of variables.

22

This in turn makes the previous score-based approaches, which were engaged with maximizing a spe-
cific score function while searching in the DAG (or CPDAG) space, into a continuous optimization prob-
lem of the form

min
W∈Rd×d

F (W) =
1

2n
‖X −XW‖2F + λ‖W‖1

s.t. h(W) = 0 ,

(3.11)

where n is the total number of samples, ‖.‖F is the Frobenius norm, and λ is a regularization parameter
that controls the sparsity of the identified weights.

This algorithm, known as NOTEARS, uses the following strategy to solve this equality constraint problem
(ECP):

1. Convert the constrained problem into a sequence of unconstrained sub-problems. This is achieved
via the use of the augmented Lagrangian strategy [42].

2. Optimize the unconstrained sub-problems, for which they employ L-BFGS and Proximal Quasi-
Newton optimization techniques [43].

3. Threshold the resulting weighted adjacency matrix, W .

This approach enables the use of several well-studied optimization techniques, such as gradient de-
scent. Though it is a non-convex optimization problem, the authors found that the obtained results were
close to the ones found by the state-of-the-art exact algorithm, GOBNILP [41].

This novel continuous optimization approach has reinvigorated the DAG structure learning field, sparking
multiple new models that improve upon NOTEARS [44] or that branch out in other directions [22].

23

24

Chapter 4

Proposed Solution

This chapter starts by explaining the meta-algorithm devised from the algorithms covered on the previous
chapter, then going into its complexity analysis. This is then followed by specifying the metrics that will be
used for comparing the DAGs obtained for generated data seen in the next chapter, which is succeeded
by a detailed explanation of the method used to extract a DAG from a CPDAG. Finally, it concludes with
the method used to evaluate and compare the Bayesian networks learned from real data in chapter 5.

4.1 Regularized Search

Motivated by the results achieved with an algorithm that required less assumptions on the data [10],
there remains a question on how well traditional algorithms really stack up against the recent continuous
optimization approach.

When we apply a structure learning algorithm to a specific set of data, which was generated from a
known Bayesian network through forward sampling, then we can compare the original and the obtained
graph. The edges of the obtained graph can be classified as being either:

• True Positive (TP), when it matches an edge in the true graph.

• False Positive (FP), when it does not match an edge in the true graph.

However, if the underlying graph is unknown, then knowing for certain which one of these types a
specific edge is becomes a much more complex problem. By analyzing how the different algorithms
perform in controlled experiments, we can establish a degree of certainty on the truthfulness of the
edges identified. This then raises the question of how to increase our sureness on the quality of the
obtained graph structure.

While different structure learning algorithms return different graphs for the same data set, there is some
overlap on the identified edges. This leads to the hypothesis that these common edges have a higher
degree of certainty than the rest and represent some of the data’s underlying dependencies.

Following this hypothesis, a meta-algorithm was devised, combining the traditional score-based algo-
rithm, FGES, with the recent continuous optimization algorithm, NOTEARS. This new meta-algorithm
applies these distinct structure learning algorithms so as to find the set of directed edges that the result-
ing graphs have in common. Then, re-applies the FGES algorithm using this set of common directed
edges as prior knowledge, i.e., enforcing that instead of starting the search from an empty graph, it now
starts from a graph that only contains the set of directed edges common to both FGES and NOTEARS.
Thanks to this process, a regularized form of FGES is obtained, which from now on will be referred to
as the Reg-FGES algorithm. For an overview of the proposed meta-algorithm, see figure 4.1.

25

Figure 4.1: Overview of the proposed meta-algorithm.

In order to illustrate the proposed meta-algorithm, consider that we want to learn a DAG from a data set
comprised of instantiations of five random variables,X = {A,B,C,D,E}. Following the meta-algorithm,
we:

1. Apply the FGES algorithm, which starts from an empty graph and iteratively performs the edge
operation (adding, deleting or reversing an edge) that maximizes the graph’s score according to
the chosen score function. This will result in a CPDAG, as seen in figure 4.2a.

2. Apply the NOTEARS algorithm, which iteratively updates the whole weighted adjacency matrix via
optimization of the objective function F (W), see equation 3.11. This will result in a DAG, as seen
in figure 4.2b.

3. Compare the CPDAG obtained from the FGES algorithm with the DAG obtained from the NOTEARS
algorithm in order to find the directed edges that were detected by both. This results in a set of
directed edges, as seen in figure 4.2c.

4. Using the set of directed edges that were detected by both algorithms as prior knowledge, apply
the FGES algorithm again. However, instead of starting from an empty graph, it starts from a graph
that only contains this set of common edges. This algorithm, Reg-FGES, will result in a CPDAG,
as seen in figure 4.2d.

26

(a) CPDAG obtained by FGES (b) DAG obtained by NOTEARS

(c) Overlapping directed edges (d) CPDAG obtained by Reg-FGES

Figure 4.2: Meta-algorithm example.

The blue colored edges in the CPDAGs of figures 4.2a and 4.2d are undirected edges. Meanwhile, the
green colored edges in figures 4.2c and 4.2d are the directed edges that were detected by both the
FGES and NOTEARS algorithms, as seen in figures 4.2a and 4.2b.

Note also that, though Reg-FGES starts from a graph that contains the edges D → C and D → E, it
outputs a different CPDAG than the one obtained by FGES, as seen in figures 4.2a and 4.2d. This is
due to the fact that the FGES algorithm iteratively performs the local edge operation (adding, removing
or reversing an edge) that maximizes the chosen score function. This means that it is subject to getting
stuck on a local maximum, therefore starting from different graphs may lead to different results, though
it is also possible that they both reach the same CPDAG.

4.1.1 Complexity Analysis

Since the devised method is a meta-algorithm, its overall computational complexity will be the sum of
complexities of the individual algorithms. Seeing as how we are regularizing FGES with NOTEARS, the
complexity is as follows:

1. FGES: O(n2), where n is the number of nodes/variables [45]. Keep in mind that this "low" com-
plexity is only achieved by sufficiently bounding the maximum node degree, otherwise it would be
exponential in the number of variables O(en), since it is a combination problem.

2. NOTEARS: O(n3), due to the fact that the innovative acyclicity constraint requires evaluating the
weighted adjacency matrix exponential, eW◦W , see equation 3.10 [10].

3. Reg-FGES: O(n2), same as FGES, yet in practice the newly-attained prior knowledge will restrict
the search space of Markov Equivalent Classes, therefore speeding up the search. While FGES
starts its search from the empty graph, its regularized version, Reg-FGES, will start from a graph
containing the directed edges that were found by both NOTEARS and FGES.

Since NOTEARS clearly dominates the other algorithms, the overall complexity of the meta-algorithm
will be O(n3).

4.2 Metrics for comparing the DAGs

In order to compare obtained graphs between themselves and the original, one can make use of a
confusion matrix by counting the values of

• True Positives (TP), which correspond to the obtained edges that match the original ones.

27

• True Negatives (TN), which correspond to the absent edges in the obtained model that also do not
exist in the original.

• False Positives (FP), which correspond to the obtained edges that do not exist in the original graph.

• False Negatives (FN), which are edges that exist in the original model, yet are not present in the
obtained model.

With these values, one can then compute the commonly used metrics:

Accuracy: ACC =
TP + TN

TP + TN + FP + FN
; (4.1)

Precision: PPV =
TP

TP + FP
; (4.2)

Recall: TPR =
TP

TP + FN
; (4.3)

F1-Score: F1-Score = 2× PPV× TPR
PPV + TPR

. (4.4)

An alternative metric, popular with this type of problems is the Structural Hamming Distance (SHD). This
measures the "distance" from the obtained graph to the original one, by computing the total of edge
operations required to turn one into the other

SHD = A+D +R , (4.5)

where the possible edge operations are:

• Adding an edge (A).

• Deleting an edge (D).

• Reversing the direction of an edge (R).

4.3 Extracting a DAG from a CPDAG

It is important to note that FGES returns a CPDAG. However, the goal is to obtain the original graph or
a graph as close to it as we can, i.e., the DAG with the lowest possible SHD value.

Since the CPDAG represents a Markov Equivalence Class, i.e., a class of DAGs that represent the same
set of conditional independences, it is well-nigh impossible to distinguish between DAGs within the same
Markov Equivalence Class. This is due to the fact that DAGs in the same Markov Equivalence Class are
score-equivalent, i.e., the scoring function assigns the same value to them since they encode the same
probability distribution [45]. Recent research with Additive Noise Models has shown some promise in
this endeavour, yet it is still limited to graphs with a single pair of nodes due to high computational costs
[46].

So in order to extract a DAG from a CPDAG, the method described in [9] was applied. For example,
consider the DAGs in figures 4.3a, 4.3b and 4.3c. All three of these graphs encode X ⊥⊥ Y | Z, and
therefore they are in the same Markov Equivalence Class and can be represented as in figure 4.3d,
which is the output of FGES.

28

(a) (b)

(c) (d)

Figure 4.3: Example of all DAGs that can be represented by a specific CPDAG.

The method used works as follows:

1. Pick a random undirected edge from the CPDAG and give it a random direction.

2. Check if there are any remaining undirected edges that share the target node of the originally
undirected edge that was given a direction in the previous step.

3. If so, then assign a direction to the undirected edges that were identified in the previous step, in
such a way that no new v-structures are formed.

4. Repeat the previous two steps, effectively propagating the effect of the first step, as long as there
are undirected edges that form a trail starting with the first oriented edge.

5. When all undirected edges that were along this trail are directed, repeat the process starting at the
first step, for as long as there are undirected edges.

6. Finally, when all undirected edges have been oriented, we will have a DAG.

In order to illustrate this process, consider that we want to extract a DAG from the CPDAG in figure 4.3d.
We start by randomly picking an undirected edge and assigning it a random direction, see figure 4.4a
where the chosen edge was (X – Z) and the assigned direction was (X → Z). Then the remaining
undirected edge in blue, (Z – Y), cannot have the direction of the red arrow, as seen in figure 4.4c,
because then the graph would encode X 6⊥⊥ Y | Z, therefore being a different Markov Equivalence
Class from the one in figure 4.3. So the only possible direction for the previously undirected edge,
(Z – Y), is (Z → Y), as seen in figure 4.4.

(a) (b)

(c)

Figure 4.4: Extracting a DAG from a CPDAG.

However, since certain edges were given an arbitrary direction, this may result in an output DAG where
these edges may have the opposite orientation of the original one. Therefore, in order to be fair to the
FGES and Reg-FGES algorithms whose output allowed different DAGs, this process of orienting edges
needs to be performed multiple times, so as to obtain the resulting graph with the lowest SHD value as
possible.

Yet, when only the data set is available and the underlying graph is unknown, an obtained graph’s SHD
value is impossible to compute. Alternatively, for simulated experiments one could also compare a
CPDAG to the original DAG, in order to orient undirected edges, though it would be even more unfair in
its comparison to the result of NOTEARS. In addition, when there is no ground truth graph it would be

29

impossible to orient the undirected edges to obtain a DAG in this manner, much less compare different
possible results.

This is precisely the motivating factor for the new meta-algorithm. For in this case it is impossible to
know the precision (PPV) of a resulting DAG, i.e., know how many of the identified edges are in fact
True Positives. If in simulated-data experiments, where we can use the previously discussed metrics,
we find that the directed edges that were detected by both algorithms have a higher PPV than the ones
detected by the individual algorithms, then the starting hypothesis will have been validated. While in
real-data experiments, i.e., when we only possess the data set, it follows that the common directed
edges detected by both algorithms should also more likely be True Positives.

4.4 Comparing DAGs without Ground Truth

In real-data experiments, all we possess is the data set of instantiations of the random variables. This
means that the original DAG underlying the data is unknown, therefore the metrics described in section
4.2 are impossible to compute, specifically:

• SHD, since it measures the distance in terms of edge operations (adding, deleting or reversing
an edge) between the obtained DAG and the original DAG. Obviously in the case that the latter is
unknown, this is impossible to find out.

• ACC, PPV, TPR, F1-Score, since they require knowing the confusion matrix of the obtained DAG,
i.e., identifying which edges are True Positives, True Negatives, False Positives, False Negatives.
Again, this is only possible when the true DAG is known.

Therefore, in order to evaluate the DAGs obtained by the different algorithms, we will make use of the
concept of relative entropy, also known as Kullback-Leibler distance [47].

The relative entropy D(p‖q) is a measure of the inefficiency of assuming that the distribution is q when
the true distribution is p, i.e., it is a measure of the distance between the two distributions. More formally,
let p(x) and q(x) be two probability mass functions, where p is the true distribution, then the relative
entropy is defined as

D(p‖q) =
∑
x∈X

p(x)log
p(x)

q(x)
. (4.6)

This distance is always non-negative and is zero if and only if p = q. However, it is important to note
that it is not a true distance between the distributions since it is not symmetric and does not satisfy the
triangle inequality.

Nonetheless, it is still useful for our purposes, since we will use it to compare the closeness of the
distributions encoded by the learned Bayesian networks to the real distribution underlying the data.

In order to illustrate this method, consider the following example where we start from a data set D =
{D1, . . . , DM} seen in table 4.1, where row i corresponds to the sample Di. The data set’s samples are
instantiations of the boolean random variables in set X = {X1, . . . , Xn}, and column j corresponds to
the random variable Xj .

Table 4.1: Example data set comprised of instantiations of boolean random variables.

A B C D E

False True False True False
False False True False True
True True True False False
False True False True False
True True True False True
False True False True False
False False True True False
True True False False True

30

The motivation behind using Bayesian networks is the fact that the joint probability distribution underlying
the data is unknown. Therefore, in order to evaluate the obtained Bayesian networks via the relative
entropy, we will need to use an approximation of the real distribution.

A trivial approximation can be found by:

1. Identifying the set of distinct samples (i.e., rows) of the data set, Z = {z1, . . . , zp}, where p ≤ m.

2. Computing the relative frequency of each distinct sample, zi for i ∈ [0, p].

Continuing with our example, we approximate the joint probability distribution underlying the data set
with the probability distribution defined by the relative frequency of each distinct sample, see table 4.2.

Table 4.2: Approximation of the real probability distribution P ∗.

A B C D E P ∗

False True False True False 0.375
False False True False True 0.125
True True True False False 0.125
True True True False True 0.25
False False True True False 0.125

Essentially, we defined a new random variable, Z, whose event space is the set of distinct rows of the
data set, Z. We then use the relative frequency of each value of Z to define the probability distribution
over this new variable, thus obtaining an approximation of the real probability distribution underlying the
data set, P ∗.

Now that we have an approximation of the real distribution, the next step is to learn a Bayesian network
from the data set, which is done in two steps:

1. Use a Bayesian network structure learning algorithm, such as the ones we discussed at length in
chapter 3, to learn a DAG from the data set.

2. With the learned DAG and the data set, learn the parameters of the Bayesian network (i.e., its
CPDs) using MLE, thus obtaining the full Bayesian network, see figure 4.5.

Figure 4.5: Bayesian network learned from the example data set.

Having learned a Bayesian network from the data, we can also use the new discrete random variable Z
that we defined when looking for an approximation of the real probability distribution, P ∗, to obtain the
probability distribution encoded by the Bayesian network, Q.

Now, instead of using the relative frequency, we will make use of the equation 2.2 to compute the
parameters of the distribution Q for each distinct row of the data set, which are then normalized (so that
they sum to one), see table 4.3.

31

Table 4.3: Obtained probability distribution Q.

A B C D E Q

False True False True False 0.547
False False True False True 0.121
True True True False False 0.146
True True True False True 0.146
False False True True False 0.04

Finally, we now have an approximation of the real probability distribution, P ∗, and the probability distri-
bution encoded by the learned Bayesian network, Q. Therefore, using equation 4.6, we can compute
the relative entropy,

D(P ∗‖Q) =
∑
z∈Z

P ∗(z)log
P ∗(z)

Q(z)

≈ 0.119 .

The obtained entropy value is relatively low, however it is not trivial to evaluate the quality of the learned
Bayesian network based solely on this parameter. The closer it is to zero the better, but how close is
close enough so that it is a high quality Bayesian network?

While this is a relevant question, for we want to learn Bayesian networks that are well-fitted to the
observed data, our current goal is to evaluate the learned Bayesian networks obtained by the different
Bayesian network structure learning algorithms. Thus, the relative entropy values computed for the
various learned Bayesian networks can be used as a comparison measure, allowing us to identify which
algorithm achieved the best results.

In summary, the whole method used to evaluate the obtained Bayesian networks is the following:

1. Find an approximation of the joint probability distribution underlying the data, P ∗, by computing the
relative frequency of the distinct combinations of the random variable values (i.e., rows) of the data
set.

2. Using the DAG obtained by the various Bayesian network structure learning algorithms, obtain the
full Bayesian network by learning its parameters, i.e., the CPD tables, using MLE, see equation
2.15.

3. Use equation 2.2 for each of the unique combination of the random variable values identified in
step 1), thus obtaining the joint probability distribution of the obtained Bayesian network, Q.

4. Compute the relative entropy, D(P ∗‖Q), using equation 4.6.

It is important to note that despite the drawbacks of MLE highlighted in section 2.3.3, it is the most
appropriate Bayesian network parameter estimator for our purposes.

The approximation of the real probability distribution underlying the data, P ∗, was computed using the
relative frequencies of each state of the new random variable Z. Therefore, considering that our goal
is to compute the relative entropy between P ∗ and the distribution encoded by the learned Bayesian
network, Q, MLE is the appropriate choice, since it also uses the relative frequency of each variable’s
state for each of its parents’ states.

Keep in mind though that this is only because we want to evaluate which of the structure learning
algorithms lead to the Bayesian network that best fit the data set. If instead we wanted to use the
learned Bayesian network for inference, then we should resort to Bayesian parameter estimation, so as
to avoid MLE’s problems of overfitting and insufficient data set size.

For an overview of the method used to obtain the relative entropy between P ∗ and Q, see figure 6.1 in
Appendix A.

32

Chapter 5

Experimental Results

This chapter analyzes the results obtained by the different Bayesian network structure learning algo-
rithms. Its first half goes over the experiments with data generated from well-known Bayesian networks,
specifying the parameters used for the simulations, and seeks to show the validity of the hypothesis that
motivated the meta-algorithm from the previous chapter. Then it concludes with the experiments on real
data, for which the underlying graph is unknown, using the method described in section 2.3.3 to evaluate
and compare the Bayesian networks learned by the different algorithms.

5.1 Generated Data

It has been shown [48] that the FGES algorithm, which is an optimized and parallelized version of the
original GES algorithm [49], outperforms both PC algorithm [9] and MMHC algorithm [36]. Therefore,
the meta-algorithm 4.1 was applied with FGES and NOTEARS [10], in order to regularize FGES, thus
obtaining Reg-FGES.

The FGES algorithm was implemented with the [50] package, while NOTEARS was implemented with
the code publicly provided by the authors at https://github.com/xunzheng/notears.

Since FGES requires specifying the maximum node, all trials were run with this parameter set to 10.
Bounding this parameter is especially useful for larger networks, in order to lower the computation time.

The scoring functions that were used for FGES were those available in the well-renowned Tetrad soft-
ware suite provided by the Center for Causal Discovery, which can be found at https://github.com/
cmu-phil/tetrad. Since all used Bayesian networks were discrete, the used scoring functions were the
bdeu-score (see equation 3.6), discrete-bic-score (see equation 3.3) and degen-bic-score [51]. These
are the ones that could handle discrete data, with the latter being able to handle a mix of discrete and
continuous data. From now on, they will be referred to as bdeu for bdeu-score, db for disc-bic-score and
dgb for degen-gauss-bic.

On the other hand, while NOTEARS does not require the same level of output processing as FGES, it
is still a factor to consider. Since it produces a weighted adjacency matrix at the end of its optimization
steps, this requires thresholding the individual weights, otherwise it might contain cycles. Following the
recommendation of the authors [10] and also of the authors of one of its follow-up papers [44], this
threshold value, ω, was set to 0.3. This hyperparameter serves to remove loops from the weighted
adjacency matrix obtained via the NOTEARS algorithm. See the original paper for an in-depth analysis
of this hyperparameter [10].

5.1.1 Data

In order to test the hypothesis that edges identified by both algorithms were more likely to be true edges,
there was the need to use well-known Bayesian networks. All of the used networks were obtained from
https://www.bnlearn.com/bnrepository/ and can be seen on table 5.1 and figure 5.1. Keep in mind
that max in-degree is the number of parents that the node with most parent nodes in the entire graph
has.

33

https://github.com/xunzheng/notears
https://github.com/cmu-phil/tetrad
https://github.com/cmu-phil/tetrad
https://www.bnlearn.com/bnrepository/

Table 5.1: Properties of the used well-known Bayesian networks.

Network Nodes Edges Parameters Max In-Degree
Asia [52] 8 8 18 2

Child [53] 20 25 230 2
Insurance [54] 27 52 984 3

Alarm [2] 37 46 509 4
Hailfinder [1] 56 66 2656 4

Win95pts 76 112 574 7
Andes [55] 223 338 1157 6

Figure 5.1: Bayesian network properties.

Since the Bayesian network repository supplies both the graphs and conditional probability tables for
well-known Bayesian networks, in order to generate a data set for a given network, it is a simple matter
of repeatedly applying forward sampling, as seen in section 2.3.2.

5.1.2 Results

In order to test the starting hypothesis that the directed edges detected by both algorithms are highly
likely to be true edges, since the true graph is known, then it is a simple matter of analyzing the precision
values of these edges, see table 5.2.

Table 5.2: Precision of the directed edges that were detected by both NOTEARS and FGES for the
various score functions.

PPV [%] Asia Child Insurance Alarm Hailfinder Win95pts Andes
bdeu 100.0 100.0 62.5 95.0 71.43 92.45 96.36

db - 100.0 85.71 94.44 100.0 86.36 100.0
dgb 80.0 100.0 85.71 88.89 71.43 87.5 91.53

Note that for the score function disc-bic-score on the Asia Bayesian network, no directed edge detected
by NOTEARS was detected by FGES, therefore there were no common directed edges.

Apart from a few relatively low precision values, there are multiple instances where the precision values
are perfect, whilst the rest are also relatively high. Motivated by these experimental results, the hypothe-
sis now appears to be validated. That is, there is likely a set of edges crucial to the underlying probability
distribution of the data, therefore being captured by both algorithms.

Following the meta-algorithm, these directed edges common to both NOTEARS and FGES are then
considered as prior knowledge and fed into FGES algorithm, so as to regularize it. By ensuring these
edges are part of the final output graph, one would expect to speed up the search process, since the
search space has been decreased, and possibly to achieve better results.

For now, we will focus on the CPDAG obtained by FGES using the score function disc-bic-score on the
Alarm Bayesian network, as seen on figure 5.2. The edges are color-coded in the following manner

34

• Black edges are the edges of the original DAG. An example of a black edge on figure 5.2 is the
edge (Kinkedtube→ Ventlung), which is marked with a black 1.

• Green edges are directed edges of the CPDAG that match an edge in the original DAG, i.e., there
is also a black edge between the same nodes that has the same direction as the green edge. An
example of a green edge on figure 5.2 is the edge (Disconnect→ Venttube), which is marked with
a green 2. Note how there is a black edge between the same nodes with the same direction, which
is marked with a black 2.

• Yellow edges are directed edges of the CPDAG that have the opposite direction of an edge in the
original DAG, i.e., there is a black edge between the same nodes that has the opposite direction of
the yellow edge. An example of a yellow edge on figure 5.2 is the edge (Ventlung → Intubation),
which is marked with a yellow 3. Note how there is a black edge between the same nodes with the
opposite direction, (Intubation→ Ventlung), which is marked with a black 3.

• Blue edges are undirected edges of the CPDAG for which one of the possible directions matches
an edge in the original DAG, i.e., there is a black edge between the same nodes. An example of
a blue edge on figure 5.2 is the edge (Anaphylaxis – TPR), which is marked with a blue 4. Note
how there is a black edge between the same nodes, (Anaphylaxis → TPR), which is marked with
a black 4.

• Red edges can either be directed or undirected edges of the CPDAG between nodes that are not
connected by an edge in the original graph. An example of a red undirected edge on figure 5.2 is
the edge (Anaphylaxis – Insuffanesth), which is marked with a red 5. While an example of a red
directed edge is the edge (Ventube → Minvol), which is marked with a red 6. Note that in neither
of these examples there is a black edge between the same nodes.

Figure 5.2: Comparison of the CPDAG obtained by FGES using the score function disc-bic-score with
the original DAG.

The step that follows is extracting a DAG from the CPDAG in figure 5.2, using the method previously
explained. The resulting DAG can be seen on figure 5.3.

35

The previously mentioned color-code is altered slightly due to assigning a direction to the undirected
edges of the CPDAG in figure 5.2. The edges that were blue in the CPDAG are now color-coded as
follows:

• Purple edges are edges in a DAG extracted from a CPDAG that match an edge in the original
DAG, i.e., there is also a black edge between the same nodes that has the same direction as the
purple edge. An example of a purple edge on figure 5.3 is the edge (Ventlung → Minvol), which
is marked with a purple 7. Note how there is a black edge between the same nodes with the
same direction, which is marked with a black 7. This purple edge corresponds to the blue edge
(Ventmach – Minvolset) in the CPDAG in figure 5.2, where it is marked with a blue 7.

• Pink edges are edges in a DAG extracted from a CPDAG that have the opposite direction of an
edge in the original DAG, i.e., there is a black edge between the same nodes that has the opposite
direction of the pink edge. An example of a pink edge on figure 5.3 is the edge (Ventmach →
Minvolset), which is marked with a pink 8. Note how there is a black edge between the same
nodes with the opposite direction, (Minvolset → Ventmach), which is marked with a black 8. This
pink edge corresponds to the blue edge (Ventmach – Minvolset) in the CPDAG in figure 5.2, where
it is marked with a blue 8.

Figure 5.3: Comparison of the DAG obtained by FGES using the score function disc-bic-score with the
original DAG.

Now it is straightforward to compute the relevant metrics for the final obtained DAG. The results for all
these metrics of the DAGs obtained by NOTEARS, FGES and Reg-FGES, with the latter two using the
various score functions, for the Alarm network can be found on table 5.3. Keep in mind that the values
for ACC, PPV, TPR, and the F1-Score are percentages.

36

Table 5.3: Metrics of the obtained DAGs obtained for the Alarm network.

Metrics Edges TP FN FP ACC PPV TPR F1-Score SHD
NOTEARS 59 21 25 38 95.68 35.59 45.65 40.0 63

FGES/bdeu 48 41 5 7 96.58 85.42 89.13 87.24 12
FGES/db 45 38 8 7 96.78 84.44 82.61 83.51 15

FGES/dgb 57 39 7 18 95.93 68.42 84.78 75.73 25
R-FGES/bdeu 49 37 9 12 96.49 75.51 80.43 77.89 21

R-FGES/db 46 36 10 10 96.7 78.26 78.26 78.26 20
R-FGES/dgb 58 37 9 21 95.85 63.79 80.43 71.15 30

It is also of interest to compute the precision of its detected adjacencies. In this context, when two
nodes are connected by an edge, they are said to be neighbors or adjacent. Therefore, all non-red
colored edges in the CPDAG in figure 5.2 are proper adjacencies, since they establish a link between a
pair of variables that is connected in the original DAG. Then, the precision of the adjacencies is the ratio
of proper adjacencies over all detected edges, regardless of their color. The adjacency precision values
obtained by all the algorithms and score functions can be found on table 5.4.

Table 5.4: Precision values of the adjacencies obtained by NOTEARS, FGES and Reg-FGES, with the
latter two using the various score functions.

PPV [%] Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 66.67 50.0 40.0 45.76 23.53 54.47 78.26

FGES/bdeu 50.0 100.0 79.25 91.67 66.67 62.34 86.14
FGES/db 83.33 100.0 92.86 93.33 75.38 78.43 89.15

FGES/dgb 83.33 100.0 72.13 77.19 79.71 75.68 82.16
R-FGES/bdeu 50.0 100.0 78.85 89.8 64.38 58.28 80.78

R-FGES/db 83.33 100.0 92.86 91.3 75.38 73.91 88.79
R-FGES/dgb 83.33 100.0 72.13 75.86 71.01 67.97 80.06

The adjacency precision values obtained for the Alarm network in table 5.4 and the precision values on
table 5.3 show an obvious disparity. This leads to the conclusion that the DAGs obtained by the various
algorithms and score functions contain a significant amount of edges that have the opposite direction in
the original DAG. While not ideal since they fail to identify the correct edge direction, it is encouraging
that they identify the existence of an edge between nodes that are connected in the original DAG.

Finally, comparing the adjacency precision values of the DAGs obtained by the various algorithms and
score functions with the adjacencies expressed by the set of directed edges common to both NOTEARS
and FGES only further corroborates the starting hypothesis. See tables 5.5, 5.6, 5.7, for each specific
score function. Also see figure 5.4 for an overall comparison.

Table 5.5: Precision values of the adjacencies obtained by NOTEARS, FGES and Reg-FGES, with the
latter two using the score function bdeu-score.

PPV [%] Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 66.67 50.0 40.0 45.76 23.53 54.47 78.26

FGES/bdeu 50.0 100.0 79.25 91.67 66.67 62.34 86.14
R-FGES/bdeu 50.0 100.0 78.85 89.8 64.38 58.28 80.78
Common/bdeu 100.0 100.0 100.0 100.0 85.71 92.45 96.36

Table 5.6: Precision values of the adjacencies obtained by NOTEARS, FGES and Reg-FGES, with the
latter two using the score function disc-bic-score.

PPV [%] Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 66.67 50.0 40.0 45.76 23.53 54.47 78.26

FGES/db 83.33 100.0 92.86 93.33 75.38 78.43 89.15
R-FGES/db 83.33 100.0 92.86 91.3 75.38 73.91 88.79

Common/db - 100.0 100.0 100.0 100.0 90.91 100.0

37

Table 5.7: Precision values of the adjacencies obtained by NOTEARS, FGES and Reg-FGES, with the
latter two using the score function degen-gauss-bic.

PPV [%] Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 66.67 50.0 40.0 45.76 23.53 54.47 78.26
FGES/dgb 83.33 100.0 72.13 77.19 79.71 75.68 82.16

R-FGES/dgb 83.33 100.0 72.13 75.86 71.01 67.97 80.06
Common/dgb 100.0 100.0 85.71 94.44 85.71 89.58 96.61

Figure 5.4: Precision of the adjacencies of the DAGs obtained by all algorithms, using all score functions.

Having now seen the strength of the starting hypothesis, and possessing a clear notion of the compar-
isons made for a specific network, the most relevant metrics for all networks can be seen in figures 5.5,
5.6, 5.7 and 5.8. Note that the legend in figure 5.5 is the one used in all plots, where the dotted line
represents NOTEARS, the dashed lines represent FGES and the full lines represent Reg-FGES.

38

Figure 5.5: SHD for the DAGs obtained by the NOTEARS, FGES and Reg-FGES, for all Bayesian
networks.

Figure 5.6: PPV for the DAGs obtained by the NOTEARS, FGES and Reg-FGES, for all Bayesian
networks.

39

Figure 5.7: TPR for the DAGs obtained by the NOTEARS, FGES and Reg-FGES, for all Bayesian
networks.

Figure 5.8: F1-Score for the DAGs obtained by the NOTEARS, FGES and Reg-FGES, for all Bayesian
networks.

In order to get a clearer picture of the results in figure 5.5, see tables 5.8, 5.9 and 5.10, which show
the SHD values of the DAGs obtained by the algorithms using a specific score function for FGES and
Reg-FGES. Note that for SHD, smaller is better.

40

Table 5.8: SHD values for the DAGs obtained by NOTEARS, FGES and Reg-FGES, with the latter two
using as score function the bdeu-score.

SHD Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 9 33 75 63 154 129 383

FGES/bdeu 14 2 53 12 52 84 115
R-FGES/bdeu 8 4 48 21 53 101 165

Table 5.9: SHD values for the DAGs obtained by NOTEARS, FGES and Reg-FGES, with the latter two
using as score function the disc-bic-score.

SHD Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 9 33 75 63 154 129 383

FGES/db 12 4 30 15 39 70 87
R-FGES/db 12 6 30 20 39 81 91

Table 5.10: SHD values for the DAGs obtained by NOTEARS, FGES and Reg-FGES, with the latter two
using as score function the degen-gauss-bic.

SHD Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 9 33 75 63 154 129 383
FGES/dgb 6 2 39 25 33 67 160

R-FGES/dgb 6 6 33 30 47 84 193

In spite of the relatively poor results of NOTEARS in all metrics, Reg-FGES displays similar results to
FGES. Though generally poorer than in the non-regularized version, Reg-FGES still manages to achieve
the best or on-par results for many of the Bayesian networks, for the various score functions. In addition,
even when it obtains a worse score, it is often close to the best achieved score, for instance compare
the scores for the Hailfinder network on table 5.8, or the ones for the Andes network on table 5.9.

While the regularization of FGES did not translate into significant improvements on the various metrics,
this should be taken with a grain of salt, for:

• On the one hand, since this is a non-convex optimization problem, there might be local optima
near the starting graph of Reg-FEGS, which contains the set of common directed edges detected
by both NOTEARS and FGES.

• On the other hand, the arbitrariness of the method used to extract a DAG from the obtained CPDAG
strongly influences the final DAG, as can be seen from the comparison of the precision values of
the DAG’s edges with the precision values of its adjacencies.

Nonetheless, even if the meta-algorithm did not achieve its full promise and the quality of the edges from
the obtained CPDAGs is not markedly better, the validity of the starting hypothesis is already a valuable
development.

By discovering that the directed edges common to both NOTEARS and FGES have a higher likelihood
of being present in the goal DAG, our knowledge of the previously unknown system, of which all that
was known were observed instances of its variables, is now enriched with the discovery of some highly
likely relationships.

5.2 Real Data

In order to illustrate the applicability of the Bayesian network model to real-world data, the previously
described Bayesian network structure learning algorithms were tested on some publicly available data
sets. However, one should note that these data sets contain a set of mixed random variables, so in order
to stay consistent with the focus on discrete random variables, the continuous variables were discretized.

While in section 5.1, we generated data samples from known Bayesian networks, now we are dealing
with purely observational data, so the underlying DAG is unknown. Therefore, it is then impossible to ap-
ply the metrics from section 4.2 to evaluate and compare the DAGs obtained by the various algorithms.

41

This makes measuring the quality of the obtained DAGs based solely on their structure not trivial, espe-
cially when dealing with data from fields of study of which we do not possess expert knowledge. For this
reason, we will follow the method explained in section 4.4 so as to be able to evaluate and compare the
learned Bayesian networks.

On this section, certain edges are particularly important and so they should be highlighted. In order to
illustrate this, consider the graphs in figure 5.9.

(a) CPDAG (b) DAG

Figure 5.9: Example CPDAG and DAG.

The color-code used for the edges is the following:

• Black edges correspond to normal edges, i.e., edges that were only detected by a single algorithm.
They are present in both CPDAGs and DAGs, e.g., the (A → B) edge from both figures 5.9a and
5.9b.

• Green edges correspond to directed edges that were detected by both the NOTEARS and the
FGES algorithms. They are present in both CPDAGs and DAGs, e.g., the (D → C) edge from
both figures 5.9a and 5.9b.

• Blue edges correspond to undirected edges and thus are only present in CPDAGs, e.g., the
(D – E) edge from figure 5.9a.

• Yellow edges correspond to directed edges that were previously blue undirected edges, thus they
are only present in DAGs extracted from CPDAGs, e.g., the (D → E) edge from figure 5.9b.

Note that the graph obtained by the NOTEARS algorithm will only contain black edges, since:

• The NOTEARS algorithm outputs a DAG, therefore it will not contain neither blue nor orange
edges.

• It is unwise to highlight directed edges it has in common with the FGES algorithm. This is due to
the fact the CPDAGs obtained from FGES algorithm using different score functions may result in
different sets of directed edges in common with NOTEARS, therefore it makes no sense to pick a
set over the others. For this reason, the DAG obtained by the NOTEARS algorithm will not contain
green edges.

Over the course of this section we will focus on each data set, giving an overview of its subject matter,
detailing the required data transformations and showing the DAG of the learned Bayesian network that
was "closest" to the real distribution underlying the data. It will conclude with the results of the learned
Bayesian networks obtained by the various Bayesian network structure learning algorithms and some
final remarks on these same results.

5.2.1 Cardiovascular Disease Data Set

This data set was obtained from Kaggle [56]. It is comprised of 70, 000 records of patient data collected
at the moment of a medical examination. Each record notes eleven features, which can be classified as
either being:

• Objective, when expressing factual information. This type of features includes:

– Age, measured in days.

42

– Height, measured in cm.

– Weight, measured in kg.

– Gender, classified as:

* Male.

* Female.

• Examination, when expressing results of the medical examination. This type of features includes:

– Systolic blood pressure (APhi), measured in mmHg

– Diastolic blood pressure (APlo), measured in mmHg

– Cholesterol levels, classified as:

* Normal.

* Above normal.

* Well above normal.

– Glucose levels, classified as:

* Normal.

* Above normal.

* Well above normal.

• Subjective, when expressing information given by the patient. This type of features includes:

– Smoking, whether the patient smokes or not.

– Alcohol intake, whether the patient drinks alcohol beverages or not.

– Physical activity, whether the patient is physically active or not.

Based on these features, the goal is to diagnose the patient in regards to whether or not he suffers from
cardiovascular disease.

Feature transformation

The features that measure continuous values were discretized in the following manner:

• Age: First it was converted into years and then classified according to table 5.11.

Table 5.11: Age discretization.

Age Age [years]
Young Adult [20, 29]
Adult [30, 39]
Middle Age [40, 59]
Early Elder [60, 79]

• Height/Weight: Combined into Body Mass Index (BMI), according to equation 5.1, then classified
according to table 5.12.

BMI =
Weightkg
Height2m

(5.1)

Table 5.12: Body Mass Index discretization.

BMI BMI
Underweight < 18.5
Normal Veight [18.5, 25[
Overweight [25, 30[
Obese ≥ 30

43

• Systolic blood pressure/Diastolic blood pressure: Combined into Blood Pressure (BP), which is
classified according to table 5.13.

Table 5.13: Blood pressure discretization.

BP APhi Relationship APlo

Normal < 120 ∧ < 80
Elevated [120, 130[∧ < 80
Hypertension 1 [130, 140[∨ [80, 90[
Hypertension 2 [140, 180[∨ [90, 120[
Hypertensive Crisis ≥ 180 ∨ ≥ 120

Learned Bayesian network

The algorithm/score function pair that resulted in the Bayesian network that best fit the observed data
was the FGES algorithm using the degen-gauss-bic score function, see figure 5.10.

(a) CPDAG (b) DAG

Figure 5.10: Obtained CPDAG by the FGES algorithm using the degen-gauss-bic score function and
the extracted DAG for the Cardio data set.

The learned CPDs allow us to analyze the influence that parent nodes have on their child node. We
can find out how much a specific parent influences its child node by marginalizing the latter’s CPD of all
other parent nodes. For instance, regarding the node:

• BMI – We find that if a patient is diagnosed with cardiovascular disease, then it is much more likely
that his BMI is above normal weight, rather than being underweight, as seen in table 5.14. We also
discover that when considering patients with higher levels of cholesterol, the chances that they are
underweight or have a normal BMI decreases, while the opposite is true for obese patients, as
seen in table 5.15.

Table 5.14: Marginalized CPD of node BMI for analyzing P (BMI | Cardio).

P (BMI | Cardio) BMI = Underweight BMI = Normal weight BMI = Overweight BMI = Obese
Cardio = False 0.011 0.374 0.35 0.265
Cardio = True 0.005 0.259 0.362 0.374

44

Table 5.15: Marginalized CPD of node BMI for analyzing P (BMI | Cholesterol).

P (BMI | Cholesterol) BMI = Underweight BMI = Normal weight BMI = Overweight BMI = Obese
Cholesterol = Normal 0.01 0.395 0.362 0.233
Cholesterol = Above normal 0.009 0.285 0.371 0.335
Cholesterol = Well above normal 0.005 0.268 0.336 0.391

• BP – From tables 5.16 and 5.17, we find that most of the patients’ blood pressure is on the Hy-
pertension 1 level, seeing as how it barely changes regardless of whether we know their BMI or if
they have cardiovascular disease. Meanwhile, the chances that they are in a Hypertensive Crisis
are slim, also remaining relatively unaffected by knowing their BMI, though there is a significant
increase if we observe that the patient has cardiovascular disease. The observations for these
specific BP levels on table 5.16 likely indicate the bias of the data collection process. This data
set contains the records of patient data collected at a medical examination, so it is possible that
healthier individuals would not feel the need to attend, thus skewing the data towards patients with
medical problems. On the other hand, individuals in a Hypertensive crisis would likely be examined
at a hospital’s emergency visit, rather than a simple routine checkup.

Table 5.16: Marginalized CPD of node BP for analyzing P (BP | BMI).

P (BP | BMI) BP = Normal BP = Elevated BP = Hypertension 1 BP = Hypertension 2 BP = Crisis
BMI = Underweight 0.328 0.042 0.474 0.149 0.007
BMI = Normal weight 0.161 0.052 0.599 0.185 0.003
BMI = Overweight 0.114 0.038 0.589 0.255 0.004
BMI = Obese 0.079 0.026 0.552 0.335 0.008

Table 5.17: Marginalized CPD of node BP for analyzing P (BP | Cardio).

P (BP | Cardio) BP = Normal BP = Elevated BP = Hypertension 1 BP = Hypertension 2 BP = Crisis
Cardio = False 0.262 0.045 0.575 0.116 0.002
Cardio = True 0.078 0.034 0.533 0.346 0.009

• Cardio – From table 5.18 we find that a patient’s active lifestyle has a very small positive effect
on his chance of having a cardiovascular disease. On the other hand, the higher his cholesterol
levels, the higher his chance of having cardiovascular disease. This is in line with medical literature
[57]–[59], where proper nutrition is pointed out as the most important factor in regard to preventing
heart disease.

Table 5.18: Marginalized CPD of node Cardio for analyzing P (Cardio | Active).

P (Cardio | Active) Cardio = False Cardio = True
Active = False 0.374 0.626
Active = True 0.403 0.597

Table 5.19: Marginalized CPD of node Cardio for analyzing P (Cardio | Cholesterol).

P (Cardio | Cholesterol) Cardio = False Cardio = True
Cholesterol = Normal 0.543 0.457
Cholesterol = Above normal 0.383 0.617
Cholesterol = Well above normal 0.241 0.759

5.2.2 Acute Inflammation Data Set

This data set was obtained from the UCI Machine Learning Repository [60]. It was created by a medical
expert as a data set to test the expert system, which will perform the presumptive diagnosis of two
diseases of the urinary system [61]:

• Acute inflammation of the urinary bladder.

• Acute nephritis of renal pelvis origin.

45

Acute inflammation of the urinary bladder is characterized by a sudden occurrence of pains in the ab-
domen region and the urination in form of constant urine pushing, micturition pains and a higher tem-
perature of the body, though generally not above 38 ◦C.

Acute nephritis of renal pelvis origin is characterized by a high fever, sometimes exceeding 40 ◦C, ac-
companied by shivers and lumbar pains. The symptoms of acute inflammation of the urinary bladder
are also common, while nausea and burning of urethra are less frequent symptoms.

Each entry in the data set represents a potential patient and is comprised of eight attributes, which can
be split into:

• Symptoms:

– Temperature of the patient, measured in degrees Celsius (◦C) and ranging from [35, 42].

– Occurrence of nausea, either yes or no.

– Lumbar pain, either yes or no.

– Urine pushing, i.e., whether the patient has a continuous need for urination.

– Micturition pains, either yes or no.

– Burning of urethra, either yes or no.

• Diagnosis:

– Inflammation of urinary bladder, either yes or no.

– Nephritis of renal pelvis origin, either yes or no.

Feature transformation

Most data set features can be described as boolean variables, except for the patient’s temperature which
requires discretizing according to table 5.20.

Table 5.20: Temperature discretization.

Temperature Temperature [◦C]
Low < 36
Normal [36, 37.5]
Fever [37.5, 40]
High Fever [40, 42]

Obtained Network Structure

The algorithm/score function pair that resulted in the Bayesian network that best fit the observed data
was the Reg-FGES algorithm using the bdeu-score as the scoring function, see figure 5.11.

(a) CPDAG (b) DAG

Figure 5.11: Obtained CPDAG by the Reg-FGES algorithm using the bdeu-score as the scoring function
and the extracted DAG for the Diagnosis data set.

46

Similarly to the analysis that was made for the previous data set on section 5.2.1, we can inspect the
marginalized CPDs of certain nodes in order to extract specific observations made possible by the
learned Bayesian networks. For instance, regarding the node:

• Temperature – From table 5.21, we find that patients that have been diagnosed with nephritis of
renal pelvis origin are very likely to have abnormally high temperatures, which is in line with the
expert knowledge provided by the creator of the data set. However, on table 5.22, we find that
patients diagnosed with acute inflammation of the urinary bladder have a 50% chance of having a
high fever, while the expert knowledge indicates that temperatures above 38oC are uncommon.

Table 5.21: Marginalized CPD of node Temperature for analyzing P (Temperature | Nephritis).

P (Temperature | Nephritis) Temp = Low Temp = Normal Temp = Fever Temp = High fever
Nephritis = False 0.046 0.504 0.283 0.167
Nephritis = True 0.0 0.0 0.161 0.839

Table 5.22: Marginalized CPD of node Temperature for analyzing P (Temperature | Inflammation).

P (Temperature | Inflammation) Temp = Low Temp = Normal Temp = Fever Temp = High fever
Inflammation = False 0.033 0.217 0.245 0.505
Inflammation = True 0.012 0.288 0.2 0.5

• Inflammation – From table 5.23, we find that patients that haven’t reported experiencing micturition
pains are unlikely to be diagnosed with acute inflammation of the urinary bladder, which is in
line with the knowledge provided by the medical expert, since it is one of the symptoms of this
disease. On the other hand, the learned Bayesian network identifies the relationship (Burning →
Inflammation), while the expert knowledge states that the burning of the urethra is a less frequent
symptom of the same disease, which is not in line with the results on table 5.24.

Table 5.23: Marginalized CPD of node Inflammation for analyzing P (Inflammation | Micturition).

P (Inflammation | Micturition) Inflammation = False Inflammation = True
Micturition = False 0.875 0.125
Micturition = True 0.167 0.833

Table 5.24: Marginalized CPD of node Inflammation for analyzing P (Inflammation | Micturition).

P (Inflammation | Burning) Inflammation = False Inflammation = True
Burning = False 0.542 0.458
Burning = True 0.5 0.5

5.2.3 Marital Depression Data Set

This data set was obtained from Kaggle [62]. It is comprised of the answers of married individuals
from Istanbul to an online form, which aims to examine the influence of certain demographic factors
on depression. In each form, an individual inputs his personal information and then answers the Beck
Depression Inventory, which is a 21-question multiple-choice questionnaire widely used for measuring
the severity of depression, focusing on the individual’s thought regarding certain statements [63]. For a
specific question, each possible answer has a specific score, ranging from [0, 3]. The overall score of
the questionnaire is the sum of the scores of the answers for each question.

Each entry in the data set represents a married individual from Istanbul and is comprised of 27 features,
which can be split into:

• Information:

– Survey key, which is used to identify each specific individual without encroaching on their
privacy.

47

– Gender, which can be either:

* Male.

* Female.

– Education, which can be either:

* Primary.

* High school.

* Bachelor.

* MsC/PhD.

– Working status, which can be either:

* Employed.

* Unemployed.

– Marriage style, which can be either:

* Arranged marriage.

* Courtship marriage.

– Child, which identifies whether the individual has children or not.

• Questionnaire, for the individual scores of the answers each of the 21 questions.

Feature transformation

Since we are interested in analyzing the final score of the Beck Depression Inventory, all of the data
set’s questionnaire-type features were combined into a single feature, referred to as BDI

BDI =

21∑
i=1

bdii , (5.2)

where bdii is the score of the answer given by a specific individual to the i-th question of the Beck
Depression Inventory questionnaire.

After computing the BDI score, we can characterize the individual’s level of depression according to
table 5.25.

Table 5.25: BDI score discretization.

BDI BDI
Normal [0, 10]
Mild Mood Disturbance [11, 16]
Borderline Clinical Depression [17, 20]
Moderate Depression [21, 30]
Severe Depression [31, 40]
Extreme Depression > 40

Note also that the Survey key feature was dropped, since is not particularly interesting for our purposes
of learning a Bayesian Network from the data.

Obtained Network Structure

For this data set, it was the NOTEARS algorithm that resulted in the Bayesian network that best fit the
observed data, see figure 5.12. This is surprising, since for all data sets generated from well-known
Bayesian networks in section 5.1, this algorithm was by far the one with the weakest performance on the
used metrics.

48

Figure 5.12: Obtained DAG by the NOTEARS algorithm for the Marriage data set.

Note that no edge is highlighted green due to the FGES algorithm using the various score functions
having detected different edges between themselves.

However, it is important to point out that both FGES/bdeu-score and FGES/disc-bic-score detected the
(Gender→Working) edge, which is also present in figure 5.12. This edge appears to be important and
adjusted to reality, for this data set involves married individuals from Istanbul, Turkey. Here, a traditionally
Muslim country, only 30.3% of women are part of the workforce, the lowest in the OCDE and one of the
lowest in the world [64]. This value drops to 20.5% when considering only married women, which is the
case for all females involved in the data set.

Similarly to the analysis that was made for the previous data sets on sections 5.2.1 and 5.2.2, we can
inspect the marginalized CPDs of certain nodes in order to extract specific observations made possible
by the learned Bayesian networks. For instance, regarding the node:

• Gender – The values on table 5.26 show that the individuals that participated on the questionnaire
are not representative of the population. This is due to the fact that observing that a given partic-
ipant is female has small bearing on the chances of her being employed, which is contrary to the
expert knowledge stated above when analyzing just the obtained DAG. Meanwhile, if the individual
is male there is a high likelihood that he is unemployed. Similarly to section 5.2.1, this is likely an
indicative of the bias inherent to the data collection process. Since Turkey is a highly patriarchal
society, it is possible that the over-representation of unemployed males in a questionnaire used to
measure depression in married couples is due to their own perceived failure in meeting society’s
expectations.

Table 5.26: Marginalized CPD of node Working for analyzing P (Working | Gender).

P (Working | Gender) Working = Unemployed Working = Employed
Gender = Female 0.55 0.45
Gender = Male 0.927 0.073

• BDI – Tables 5.27 and 5.28 display that observing whether a specific individual has a child shows
a similar effect on the BDI score as observing whether that person’s marriage was arranged or not.
This is in line with expert knowledge which states that depression affects people from all walks of
life and is caused by a multitude of factors [65].

Table 5.27: Marginalized CPD of node BDI for analyzing P (BDI | Child).

P (BDI | Child) BDI = Normal BDI = Mild BDI = Borderline BDI = Moderate BDI = Severe BDI = Extreme
Child = No 0.639 0.118 0.063 0.164 0.008 0.008
Child = Yes 0.599 0.189 0.075 0.112 0.025 0.0

49

Table 5.28: Marginalized CPD of node BDI for analyzing P (BDI | Marriage).

P (BDI | Marriage) BDI = Normal BDI = Mild BDI = Borderline BDI = Moderate BDI = Severe BDI = Extreme
Marriage = Arranged 0.661 0.108 0.064 0.152 0.015 0.0
Marriage = Courtship 0.576 0.198 0.075 0.124 0.019 0.008

5.2.4 Titanic Data Set

This data set was obtained from Kaggle [66]. It contains the data of passengers who boarded the RMS
Titanic which sank after striking an iceberg in the North Atlantic Ocean in 1912. Out of the original 2,201
passengers, only 711 survived [67]. At the time, it became the deadliest peacetime sinking of a cruise
ship.

Each entry in the data set represents a passenger and is comprised of 8 features:

1. Survived, which identifies whether the passenger survived the whole ordeal or not.

2. Passenger class (PClass), which can be either:

• Upper class.

• Middle class.

• Lower class.

3. Gender, which can be either:

• Male.

• Female.

4. Age, which corresponds to the passenger’s age in years.

5. Siblings/Spouse (SibSp), which corresponds to the number of siblings and spouse of the passen-
ger that were also aboard the ship.

6. Parents/Children (ParCh), which corresponds to the number of parents and children of the pas-
senger that were also aboard the ship.

7. Fare, which corresponds to the ticket fare paid by the passenger to board the ship.

8. Embarked, which identifies where the passenger boarded the ship, and can be either:

• Cherbourg.

• Queenstown.

• Southampton.

Feature transformation

The features that measure continuous values were discretized in the following manner:

• Age: The thought-process was to characterize each passenger’s age according to his ability to
help others and his own frailness. Thus, classifying each passenger according to table 5.29.

Table 5.29: Age discretization.

Age Age [years]
Child [0, 8]
Youngster [8, 16]
Adult [16, 45]
Middle-Age [45, 65]
Elder > 65

• Siblings/Spouse and Parents/Children: For both features, the idea was to classify each passenger
according to the help they could expect and organization needed for their group during the catas-
trophe. Thus, passengers traveling alone would only need to fend for themselves, yet would only

50

be able to count on the help of strangers. On the other hand, passengers traveling in large family
groups would have to focus a lot more on their group’s integrity, despite having better chances of
getting help than solo travelers. Therefore, the passengers hypothesized to have a better chance
of surviving would be those traveling in small family groups. Then, each passenger was classified
according to table 5.30.

Table 5.30: Siblings/Spouses and Parents/Children discretization.

SibSp/ParCh SibSp/ParCh
Solo 0
Small Group [1, 3]
Large Group > 3

• Fare: According to the data distribution, we can identify the classes of fares paid by passengers
seen in table 5.31.

Table 5.31: Fare discretization.

Fare Fare [GBP]
Normal < 50
Expensive [50, 100]
Very Expensive > 100

Obtained Network Structure

The algorithm/score function pair that resulted in the Bayesian network that best fit the observed data
was the FGES algorithm using the degen-gauss-bic score function, see figure 5.13.

(a) CPDAG (b) DAG

Figure 5.13: Obtained CPDAG by the FGES algorithm using the degen-gauss-bic score function and
the extracted DAG for the Titanic data set.

Similarly to the analysis that was made for the previous data sets on sections 5.2.1, 5.2.2 and 5.2.3,

51

we can inspect the marginalized CPDs of certain nodes in order to extract specific observations made
possible by the learned Bayesian networks. For instance, regarding the node:

• Age – Table 5.32 shows that for ages up until middle-age, the likelihood of passengers that survived
being in those age brackets is higher than for passengers that perished. While, the opposite is true
for middle-aged and elder passengers.

Table 5.32: Marginalized CPD of node Age for analyzing P (Age | Survived).

P (Age | Survived) Age = Child Age = Youngster Age = Adult Age = Middle-age Age = Elder
Survived = False 0.072 0.066 0.516 0.28 0.066
Survived = True 0.166 0.095 0.543 0.134 0.062

• Gender – Table 5.33 shows if we know that a passenger survived, then it is much more likely that
it is a female, while the opposite is true for male passengers.

Table 5.33: Marginalized CPD of node Gender for analyzing P (Gender | Survived).

P (Gender | Survived) Gender = Male Gender = Female
Survived = False 0.593 0.407
Survived = True 0.324 0.676

• PClass – Table 5.34 shows that if we know that a passenger perished, then it is much more likely
that he was traveling in third class, rather than in a higher class.

Table 5.34: Marginalized CPD of node PClass for analyzing P (PClass | Survived).

P (PClass | Survived) PClass = 1st Class PClass = 2nd Class PClass = 3rd Class
Survived = False 0.146 0.177 0.677
Survived = True 0.398 0.254 0.348

In the aftermath of the Titanic catastrophe, there was a great outrage over the fact that wealthier pas-
sengers were provided with more assistance than common folk. On the other hand, women and children
were also benefited at the cost of the lives of the male passengers [67]. Therefore, the observations
obtained from analysis of the marginalized CPDs are in line with the expert knowledge.

5.2.5 Overall Results

The relative entropy is used to measure how close the learned joint probability distribution is to the
original distribution, being equal to zero when they are the same, therefore the lower its value the better.

The values of the relative entropy between the joint probability distribution underlying the data set and
the joint probability distribution encoded by the Bayesian network learned by the various algorithms and
score functions can be found on table 5.35.

Table 5.35: Relative entropy (KL-divergence) values of the distributions encoded the learned Bayesian
networks for all data sets.

D(P‖Q) Cardio Diagnosis Marriage Titanic
NOTEARS 0.694 0.191 0.287 0.765
FGES/bdeu 0.532 0.226 0.49 0.774
FGES/db 0.515 0.356 0.491 0.845
FGES/dgb 0.512 0.279 0.493 0.67
R-FGES/bdeu 0.532 0.185 0.49 0.783
R-FGES/db 0.528 0.356 0.491 0.845
R-FGES/dgb 0.69 0.273 0.493 0.678

The obtained results show:

52

• When using the same score function, the FGES and Reg-FGES algorithms generally achieve
similar relative entropy values, except for the degen-gauss-bic score function on the Cardio data
set.

• Unlike with the generated data sets of section 5.1 and apart from the Cardio data set, the NOTEARS
algorithm generally proved to be competitive with the other algorithms, even achieving the best re-
sult on the Marriage data set.

• By comparing the best results for each data set, we find that the Bayesian networks obtained
for the Diagnosis and Marriage data sets fit their respective observed data better than the ones
obtained for the Cardio and Titanic data sets.

It is important to note that all used data sets are conducive to classification tasks, i.e., where we want
to predict the values of specific random variables based on knowing the values of the rest. These ran-
dom variables are known as decision variables. For instance, consider a system for medical diagnosis,
where the variables that represent specific symptoms would then influence the decision variable, which
represents the diagnosis.

For causal inference, i.e., determining causal links, the direction of the edges would then be from the
other nodes to the decision node. However, barring the Marriage data set, on the DAGs obtained for
the various data sets, the decision nodes were more akin to the root node of the naive Bayes network,
see figure 2.6. In other words, the edges are outgoing from the decision nodes, therefore the various
algorithms proved to be inadequate for causal inference.

In order to interpret the meaning of the edges in the obtained DAGs, we should think of X → Y not as
"X causes Y ", but instead as "knowing X influences Y ".

To illustrate this, consider the DAG in figure 5.13b. This graph was obtained for the Titanic data set,
where the decision variable is represented by the node Survived. Consider its outgoing edges, in par-
ticular, the (Survived → Age) and (Survived → Gender) edges. It should be obvious that whether a
passenger survived or not does not change his age or gender. What the Bayesian network is actually
implying is that, for instance, knowing that a passenger survived increases the likelihood of the passen-
ger being of a certain age and gender. The code of conduct used to determine whose lives should be
saved with the limited available lifeboats was "women and children first". This resulted in the survival of
74.35% of the women and 52.29% of the children, while only 20.27% of the men survived [67].

The same type analysis can be done for the decision variables of the rest of the data sets, which can
be considered an advantage probabilistic graphical models have over neural networks, the latter being
much more opaque in their reasoning.

53

54

Chapter 6

Conclusions

This chapter concludes the developed work, providing some observations on the subject matter of the
preceding chapters and suggesting future lines of research.

6.1 Closing Thoughts

This work addressed the problem of learning Bayesian networks from observational data alone, focusing
especially in the Bayesian network structure learning sub-problem. As we saw in chapter 3, the number
of possible DAGs grows super-exponentially as the number of nodes increases, see table 3.1.

In order to deal with the combinatory nature of the search-space, traditional algorithms seek to reduce
its size so as to speed-up the search, which comes at the cost of not guaranteeing the optimality of
the obtained solution. On the other hand, the recent continuous optimization approach followed by
the NOTEARS algorithm [10] is subject to the pitfalls of non-convex optimization, therefore it is also
not optimal. In spite of this, the results obtained in chapter 5 show that these algorithms still achieve
worthwhile solutions.

In order to extract a DAG from the CPDAG obtained by the FGES or Reg-FGES algorithms, we used
the method described in section 4.3. This method is random in nature, which leads to possibly different
output DAGs for the same input CPDAG.

In chapter 4, we formulated the hypothesis that certain relationships are so strongly evident in the data,
that they are present across the network structures learned by different Bayesian network structure
learning algorithms. Later, in section 5.1, we showed that this hypothesis appeared to be valid, see table
5.2.

Motivated by these results, in section 4.1, we proposed a meta-algorithm that combined the new Bayesian
network structure learning approach established by the NOTEARS algorithm with the state-of-the-art
score-based approach FGES algorithm. This meta-algorithm used the directed edges common to the
graphs obtained by the NOTEARS and FGES algorithms as prior knowledge and then applied the FGES
algorithm again, now using this set of edge as its starting graph.

The results in section 5.1 show that the proposed solution consistently outperformed NOTEARS and
achieved on-par results FGES on the smaller sized networks. However, for larger networks it achieved
slightly worse results, likely due to local optima of the used score-function and the randomness of the
method used to extract a DAG from the obtained CPDAG.

While the Reg-FGES did not supplant the FGES algorithm, the directed edges common to the graphs
obtained by both the NOTEARS and FGES algorithms were shown to be very likely to be correct edges,
as seen in tables 5.5, 5.6 and 5.7.

In section 5.1, the traditional metrics we used show that the FGES and Reg-FGES algorithms achieved
better DAGs than the NOTEARS algorithm, as can be seen in figures 5.5, 5.6, 5.7, 5.8. For instance, in
table 5.3 we see that the former algorithms achieved DAGs with smaller SHD values than their number
of edges, therefore they unequivocally identified correct relationships between the random variables.

55

While in section 5.2, we found that despite NOTEARS being the worst-performing algorithm when it
came to Bayesian networks structure learning, it still managed to learn the Bayesian network that en-
coded the probability distribution closest to the real distribution underlying the observed data for the
Marriage data set 5.2.3.

We also noted that, the Bayesian networks learned in section 5.2 are inadequate for inference tasks.
This is due to the use of MLE for Bayesian network parameter estimation, which overfits the models
to the data sets, as discussed in section 2.3.3. Therefore, these learned Bayesian networks do not
generalize well to unseen data. Since our goal was to evaluate Bayesian network structure learning
algorithms, this type of parameter estimation was the best-suited for it. However, if we want to use the
learned models for inference further downstream, then we should use Bayesian parameter estimation
once we have obtained the various Bayesian network structures.

As discussed in section 2.3, one of the advantages of Bayesian networks is that they are able to rep-
resent causal relationships. However, the results we obtained in section 5.2 show that the edges in
the learned Bayesian networks do not necessarily represent causal relationships. When learning a
Bayesian network from observational data alone, we generally found that the direction of certain edges
of the learned graph structures was the opposite of the expected causal direction.

For instance, for the Cardio data set of section 5.2.1, the learned Bayesian network structure contains
the edge (Cardio → Age), as seen in figure 5.10b. From a causality viewpoint, we would expect the
reverse edge (Age → Cardio) since a patient’s age is not influenced by whether or not they suffer from
cardiovascular disease, while the older a person is the more likely they are to be diagnosed this disease
[58].

Despite the discussed Bayesian network structure learning algorithms proving to be insufficient for
causal reasoning, they still offer valuable insight on the nature of the data sets by identifying important
relationships between the random variables. As mentioned in section 5.2.5, the edges in the learned
Bayesian network structure should be interpreted as knowing the value of the source influences the
value of the target.

Furthermore, the analysis conducted on section 5.2 demonstrates an advantage that Bayesian networks
(and probabilistic graphical models, in general) have over neural networks. The former’s graphical nature
allows us to understand the learned model’s reasoning, whereas for the latter this is not trivial.

On the next and final section, we will also offer possible lines of future work that should enhance the
proposed meta-algorithm and the developed methods.

6.2 Future Work

While developing the proposed solution presented in chapter 4, several choices were made that left
unexplored avenues.

First, let us consider the possible changes involving the meta-algorithm proposed in section 4.1.

On the one hand, we chose to use the FGES algorithm due to previous research showing that it achieves
better results than the alternatives that were discussed in chapter 3 [48]. However, it would be interesting
to apply the meta-algorithm using other Bayesian network structure learning algorithms.

A possible reason for the similarity of the results achieved by FGES and Reg-FGES is that the search
method both use already achieves relatively good results, being the state-of-the-art of traditional ap-
proaches. Thus, it is possible that for a worse performing traditional algorithm, regularizing it using the
meta-algorithm would result in a noticeable improvement in performance. Note that there is a wide array
of algorithms that belong to the traditional approaches, but for the sake of brevity we focused on the
most renowned.

On the other hand, the meta-algorithm joins a traditional score-based structure learning algorithm,
FGES, with the modern continuous optimization approach of the NOTEARS algorithm. However, as de-
scribed in section 4.1.1, the latter is clearly the most computationally costly step of the meta-algorithm.
Since its inception, several improved versions of this algorithm have been proposed, managing to al-
ter the acyclicity constraint so that the algorithm’s complexity becomes O(n2). For a recent review of
NOTEARS’ variants and other algorithms that fall into the continuous optimization approach, see [22].

56

There are also alternatives to the methods described in sections 4.3 and 4.4.

As was previously mentioned, using the method described in section 4.3 to extract a DAG from the
obtained CPDAG does not guarantee the DAG that best fits the data, due to the method’s random nature.
Though DAGs encoded by the same CPDAG are score-equivalent and encode the same d-separation
facts, their causal implications are not the same, e.g., X – Y encodes both X → Y and X ← Y , which
from a causal inference perspective means X causes Y and Y causes X, respectively.

Generally, it is not trivial to induct causal directionality from observation data alone [22]. However, for
particular scenarios where certain assumptions on the nature of the real distribution underlying the
data hold, there are methods that explore asymmetries in order to identify the direction of a structural
relationship. These methods are local in nature, seeing as how they can only test a single edge at a
time, i.e., bivariate networks [46], or variable triplets, where the third variable is latent, i.e., unobserved
[68]. These methods can be extended to construct full graphs by iteratively testing pairwise relationships
[69]. Therefore, one possible alternative to extract a DAG from a CPDAG would be to use these methods
to assign a direction to the undirected edges. However, their applicability is limited to CPDAGs with a
relatively small number of undirected edges, due to their computational complexity. For an extensive
review of these methods, see [70].

Regarding the method used to evaluate the DAGs learned from the real data sets described in section
4.4, while adequate to our purposes, it still only provides a rough estimate of the closeness distribution
encoded by the learned Bayesian network to the real distribution underlying the data. An alternative path
would be to use the state-of-the-art exact solver [41] to obtain a DAG that we would then consider as the
real DAG. This way we could use the same metrics described in section 4.2, performing a similar type
of analysis as the one that was done for the generated data sets in section 5.1. However, this approach
is only possible for relatively small networks, since exact solvers do not scale to domains with a large
number of variables [40].

Yet another way to evaluate and compare the DAGs obtained by the various Bayesian network structure
learning algorithms would be to use cross-validation. This would have us split the data set into a:

• Training set, which would be used to learn the full Bayesian network, i.e., both the network’s
structure and its parameters.

• Testing set, which would be used for inference on the learned Bayesian network. For each sample,
we would find the value of a decision variable, Y , based on the values of the rest of the feature
variables,X. Then, we would measure the accuracy of the values inferred by the Bayesian network
by comparing them to the values of Y in the testing set. These accuracy values would then allow
us to evaluate and compare the DAGs obtained by the various algorithms.

Note that instead of using MLE to estimate the network’s parameters, we would have to use Bayesian
parameter estimation with a uniform prior, otherwise the learned Bayesian networks would be overfit to
the training set, as discussed in section 2.3.3. This would manifest into worse results when evaluating
the accuracy of the inferences of the learned Bayesian network on the testing set.

In summary, the proposed lines of future work are:

• With the aim of achieving markedly better results using the regularized form of the traditional
algorithm as opposed to its original form, extend the meta-algorithm by using other traditional
Bayesian network structure learning algorithms, such as the ones mentioned in chapter 3
(e.g., PC [9], MMHC [36]) or others (e.g., LiNGAM [71], FCI [9]), instead of just using the FGES
algorithm.

• In order to reduce the computational complexity of the meta-algorithm, use an improved version
of NOTEARS or any other continuous optimization Bayesian network structure learning
algorithm, see [22] for a recent review of algorithms that follow this approach.

• To overcome the random nature of the method used for extracting a DAG from the CPDAG ob-
tained by the FGES and Reg-FGES algorithms, use causal directionality discovery methods
to assign a direction to the undirected edges, see [70] for an extensive review of these meth-
ods.

• For real data sets, where the underlying distribution is unknown, use as ground truth the DAG
obtained by the exact solver, GOBNILP [41]. This would allow the use of the standard metrics

57

(ACC, PPV, TPR, F1-Score, SHD) to compare the DAGs obtained by the various Bayesian network
structure learning algorithms, similarly to the type of analysis made on section 5.1.

• Another alternative to evaluate and compare the obtained DAGs for real data sets would be to use
cross-validation, learning the full Bayesian network from the training data and using the
testing data to find the accurary of the learned models.

58

Bibliography

[1] B. Abramson, J. Brown, W. Edwards, A. Murphy, and R. Winkler, “Hailfinder: A Bayesian system
for forecasting severe weather”, International Journal of Forecasting, vol. 12, no. 1, pp. 57–71,
1996.

[2] I. Beinlich, H. Suermondt, R. Chavez, and G. Cooper, “The ALARM Monitoring System: A Case
Study with Two Probabilistic Inference Techniques for Belief Networks”, in In Proceedings of the
2nd European Conference on Artificial Intelligence in Medicine, Springer-Verlag, 1989, pp. 247–
256.

[3] C. J. Needham, J. R. Bradford, A. J. Bulpitt, and D. R. Westhead, “A Primer on Learning Bayesian
Networks for Computational Biology”, PLOS Computational Biology, vol. 3, no. 8, pp. 1–8, Aug.
2007. DOI: 10.1371/journal.pcbi.0030129.

[4] M. Beaumont and B. Rannala, “The Bayesian Revolution in Genetics”, Nature Reviews Genetics,
vol. 5, pp. 251–261, 2004. DOI: 10.1038/nrg1318.

[5] M. Voronenko, D. Nikytenko, J. Krejci, O. Naumov, N. Savina, E. Topalova, V. Filippova, and V.
Lytvynenko, “Dynamic Bayesian Networks Application for Economy Competitiveness Situational
Modeling”, in Advances in Intelligent Systems and Computing V, vol. 1293, Springer International
Publishing, 2021. DOI: 10.1007/978-3-030-63270-0_14.

[6] P. Whitney, A. White, S. Walsh, A. Dalton, and A. Brothers, “Bayesian Networks for Social Model-
ing”, Social Computing, Behavioral-Cultural Modeling and Prediction, Lecture Notes in Computer
Science, vol. 6589, 2011. DOI: 10.1007/978-3-642-19656-0_33.

[7] R. M. A. Valdés, V. F. G. Comendador, A. R. Sanz, E. S. Ayra, J. A. P. Castán, and L. P. Sanz,
“Bayesian Networks for Decision-Making and Causal Analysis under Uncertainty in Aviation”,
Bayesian Networks - Advances and Novel Applications, 2018. DOI: 10.5772/intechopen.79916.

[8] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, 1st ed.,
ser. Adaptive Computation and Machine Learning Series. The MIT Press, 2009.

[9] P. Sprites, C. Glymour, and R. Scheines, Causation, Prediction, and Search, 2nd ed., ser. Adaptive
Computation and Machine Learning. The MIT Press, 2001.

[10] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing, “DAGs with NO TEARS: Continuous Opti-
mization for Structure Learning”, in Advances in Neural Information Processing Systems, vol. 31,
Curran Associates, Inc., 2018. arXiv: 1803.01422 [cs.LG].

[11] M. Kaiser and M. Sipos, Unsuitability of NOTEARS for Causal Graph Discovery, 2021. arXiv:
2104.05441 [stat.ML].

[12] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2003.

[13] C. M. Bishop, Pattern Recognition and Machine Learning, ser. Information Science and Statistics.
Springer, 2006.

[14] K. P. Murphy, Machine Learning: A Probabilistic Perspective, ser. Adaptive Computation and Ma-
chine Learning. The MIT Press, 2012.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, ser. Adaptive Computation and Machine
Learning. The MIT Press, 2016.

[16] J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference: Foundations and Learning
Algorithms, ser. Adaptive Computation and Machine Learning. The MIT Press, 2017.

59

https://doi.org/10.1371/journal.pcbi.0030129
https://doi.org/10.1038/nrg1318
https://doi.org/10.1007/978-3-030-63270-0_14
https://doi.org/10.1007/978-3-642-19656-0_33
https://doi.org/10.5772/intechopen.79916
https://arxiv.org/abs/1803.01422
https://arxiv.org/abs/2104.05441

[17] C. Glymour, K. Zhang, and P. Spirtes, “Review of Causal Discovery Methods Based on Graphical
Models”, Frontiers in Genetics, vol. 10, p. 524, 2019, ISSN: 1664-8021. DOI: 10.2289/fgene.
2019.00524.

[18] D. Margaritis, “Learning Bayesian Network Model Structure from Data”, Ph.D. dissertation, Carnegie
Mellon University, May 2003.

[19] M. F. Bari, “Bayesian Network Structure Learning”, in Proceedings of the 4th Annual Meeting of
Asian Association for Algorithms and Computation, Jan. 2011.

[20] W. Zucchini, “An Introduction to Model Selection”, Journal of Mathematical Psychology, vol. 44,
no. 1, pp. 41–61, 2000. DOI: https://doi.org/10.1006/jmps.1999.1276.

[21] D. Madigan and A. E. Raftery, “Model Selection and Accounting for Model Uncertainty in Graph-
ical Models Using Occam’s Window”, Journal of the American Statistical Association, vol. 89,
pp. 1535–1546, 1994.

[22] M. J. Vowels, N. C. Camgoz, and R. Bowden, D’ya like DAGs? A Survey on Structure Learning
and Causal Discovery, 2021. arXiv: 2103.02582 [cs.LG].

[23] J. Pearl, Causality: Models, Reasoning and Inference, 2nd ed. Cambridge University Press, 2009.

[24] N. Shajoonnezhad and A. Nikanjam, A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data, 2021. arXiv: 2108.09501 [cs.LG].

[25] W. Lam and F. Bacchus, “Learning Bayesian Belief Networks: An Approach Based on the MDL
Principle”, Computational Intelligence, vol. 10, no. 3, pp. 269–293, 1994. DOI: 10.1111/j.1467-
8640.1994.tb00166.x.

[26] Z. Liu, B. Malone, and C. Yuan, “Empirical Evaluation of Scoring Functions for Bayesian Network
Model Selection”, BMC Bioinformatics, vol. 13, S14, Sep. 2012. DOI: 10.1186/1471-2105-13-
S15-S14.

[27] C. P. Robert, N. Chopin, and J. Rousseau, “Harold Jeffreys’s Theory of Probability Revisited”,
Statistical Science, vol. 24, no. 2, May 2009, ISSN: 0883-4237. DOI: 10.1214/09-sts284.

[28] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian Networks: The Combination
of Knowledge and Statistical Data”, Machine Learning, vol. 20, pp. 197–243, 2004.

[29] W. L. Buntine, “Theory Refinement on Bayesian Networks”, in Proceedings of the 7th Conference
on Uncertainty in Artificial Intelligence, Morgan Kauffman, 1991, pp. 52–60. DOI: https://doi.
org/10.1016/B978-1-55860-203-8.50010-3.

[30] T. Silander, P. Kontkanen, and P. Myllymaki, “On Sensitivity of the MAP Bayesian Network Struc-
ture to the Equivalent Sample Size Parameter”, in Proceedings of the 23rd Conference on Uncer-
tainty in Machine Learning, 2012, pp. 360–367. arXiv: 1206.5293 [cs.LG].

[31] B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless, and H. S. Wilf, “Acyclic
Digraphs and Eigenvalues of 0,1 Matrices”, Journal of Integer Sequences, vol. 7, pp. 1–5, 2003.

[32] D. Heckerman, “A Tutorial on Learning with Bayesian Networks”, in Innovations in Bayesian Net-
works: Theory and Applications. Springer Berling Heidelberg, 2008, pp. 33–82. DOI: 10.1007/978-
3-540-85066-3_3.

[33] M. Chickering, “Optimal Structure Identification with Greedy Search”, Journal of Machine Learning
Research, vol. 3, pp. 507–554, 2002.

[34] C. Meek, “Causal Inference and Causal Explanation with Background Knowledge”, in Proceedings
of the 11th Conference on Uncertainty in Artificial Intelligence, ser. UAI’95, Morgan Kaufmann
Publishers Inc., 1995, pp. 403–410.

[35] S. E. Fienberg, The Analysis of Cross-Classified Categorical Data, 2nd ed. Springer, 2007.

[36] I. Tsamardinos, L. Brown, and C. Aliferis, “The Max-Min Hill-Climbing Bayesian Network Structure
Learning Algorithm”, Machine Learning, vol. 65, pp. 31–78, Oct. 2006. DOI: 10.1007/s10994-
006-6889-7.

[37] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont, “Model Selection Through Sparse Maximum Likeli-
hood Estimation for Multivariate Gaussian or Binary Data”, Journal of Machine Learning Research,
vol. 9, pp. 485–516, 2008.

60

https://doi.org/10.2289/fgene.2019.00524
https://doi.org/10.2289/fgene.2019.00524
https://doi.org/https://doi.org/10.1006/jmps.1999.1276
https://arxiv.org/abs/2103.02582
https://arxiv.org/abs/2108.09501
https://doi.org/10.1111/j.1467-8640.1994.tb00166.x
https://doi.org/10.1111/j.1467-8640.1994.tb00166.x
https://doi.org/10.1186/1471-2105-13-S15-S14
https://doi.org/10.1186/1471-2105-13-S15-S14
https://doi.org/10.1214/09-sts284
https://doi.org/https://doi.org/10.1016/B978-1-55860-203-8.50010-3
https://doi.org/https://doi.org/10.1016/B978-1-55860-203-8.50010-3
https://arxiv.org/abs/1206.5293
https://doi.org/10.1007/978-3-540-85066-3_3
https://doi.org/10.1007/978-3-540-85066-3_3
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1007/s10994-006-6889-7

[38] M. Grant and S. Boyd, “Graph Implementations for Non-Smooth Convex Programs”, in Recent
Advances in Learning and Control, ser. Lecture Notes in Control and Information Sciences, V.
Blondel, S. Boyd, and H. Kimura, Eds., Springer-Verlag Limited, 2008, pp. 95–110.

[39] J. Peters, D. Janzing, and B. Schölkopf, “Identifying Cause and Effect on Discrete Data using Ad-
ditive Noise Models”, in Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research, vol. 9, PMLR, 2010, pp. 597–604.

[40] M. Scanagatta, C. P. de Campos, G. Corani, and M. Zaffalon, “Learning Bayesian Networks with
Thousands of Variables”, in Advances in Neural Information Processing Systems, vol. 28, Curran
Associates, Inc., 2015. [Online]. Available: https://doi.org/10.1007/s10994-018-5701-9.

[41] J. Cussens, “Bayesian Network Learning with Cutting Planes”, in Proceedings of the 27th Confer-
ence on Uncertainty in Artificial Intelligence, Morgan Kauffman, 2012, pp. 153–160. arXiv: 1202.
3713 [cs.AI].

[42] A. Nemirovski, Lecture Notes in Optimization II: Standard Numerical Methods for Nonlinear Con-
tinuous Optimization. Technion - Israel Institute of Technology, 1999.

[43] K. Zhong, I. E. H. Yen, I. S. Dhillon, and P. Ravikumar, “Proximal Quasi-Newton for Computationally
Intensive l1-Regularized M-Estimators”, in Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, ser. NIPS’14, MIT Press, 2014, pp. 2375–
2383.

[44] Y. Yu, J. Chen, T. Gao, and M. Yu, “DAG-GNN: DAG Structure Learning with Graph Neural Net-
works”, in Proceedings of the 36th International Conference on Machine Learning, ser. Proceed-
ings of Machine Learning Research, vol. 97, PMLR, 2019. arXiv: 1904.10098 [cs.LG].

[45] M. Scutari, C. Vitolo, and A. Tucker, “Learning Bayesian Networks from Big Data with Greedy
Search: Computational Complexity and Efficient Implementation”, Statistics and Computing, vol. 29,
no. 5, pp. 1095–1108, 2018. DOI: 10.1007/s11222-019-09857-1.

[46] P. O. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf, “Nonlinear Causal Discovery with
Additive Noise Models”, in Proceedings of the 21st International Conference on Neural Information
Processing Systems, ser. NIPS’08, Red Hook, NY, USA: Curran Associates Inc., 2008, pp. 689–
696.

[47] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., ser. Wiley Series in
Telecommnunications and Signal Processing. Wiley-Interscience, 2006.

[48] B. Aragam and Q. Zhou, “Concave Penalized Estimation of Sparse Gaussian Bayesian Net-
works”, Journal of Machine Learning Research, vol. 16, pp. 2273–2328, 2015. arXiv: 1401.0852
[stat.ME].

[49] J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour, A Million Variables and More:
The Fast Greedy Equivalence Search Algorithm for Learning High-Dimensional Graphical Causal
Models, With an Application to Functional Magnetic Resonance Images, 2017. [Online]. Available:
https://doi.org/10.1007/s41060-016-0032-z.

[50] C. (Wongchokprasitti, H. Hochheiser, J. Espino, E. Maguire, B. Andrews, M. Davis, and C. Inskip,
Bd2kccd/py-causal v1.2.1, version v1.2.1, 2019. DOI: 10.5281/zenodo.3592985.

[51] B. Andrews, J. Ramsey, and G. F. Cooper, “Learning High-Dimensional Directed Acyclic Graphs
with Mixed Data-types”, in Proceedings of Machine Learning Research, vol. 104, PMLR, 2019,
pp. 4–21. [Online]. Available: https://proceedings.mlr.press/v104/andrews19a.html.

[52] S. Lauritzen and D. J. Spiegelhalter, “Local Computations with Probabilities on Graphical Struc-
tures and Their Application to Expert Systems”, Journal of the royal Statistical Society. Series B
(Methodological), vol. 50, no. 2, pp. 157–224, 1988. [Online]. Available: http://www.jstor.org/
stable/2345762.

[53] D. J. Spiegelhalter and R. G. Cowell, “Learning in Probabilistic Expert Systems”, in Bayesian
Statistics 4. Claredon Press, Oxford, 1992.

[54] J. Binder, D. Koller, S. Russel, and K. Kanazawa, “Adaptive Probabilistic Networks with Hid-
den Variables”, Machine Learning, vol. 29, no. 2-3, pp. 213–244, Nov. 1997. DOI: 10.1023/A:
1007421730016.

[55] S. Conati, A. Gertner, K. VanLehn, and M. Druzdzel, “On-Line Student Modeling for Coached
Problem Solving Using Bayesian Networks”, in Proceedings of the 6th International Conference
on User Modeling, Springer-Verlag, 1997, pp. 231–242.

61

https://doi.org/10.1007/s10994-018-5701-9
https://arxiv.org/abs/1202.3713
https://arxiv.org/abs/1202.3713
https://arxiv.org/abs/1904.10098
https://doi.org/10.1007/s11222-019-09857-1
https://arxiv.org/abs/1401.0852
https://arxiv.org/abs/1401.0852
https://doi.org/10.1007/s41060-016-0032-z
https://doi.org/10.5281/zenodo.3592985
https://proceedings.mlr.press/v104/andrews19a.html
http://www.jstor.org/stable/2345762
http://www.jstor.org/stable/2345762
https://doi.org/10.1023/A:1007421730016
https://doi.org/10.1023/A:1007421730016

[56] S. Ulianova, Cardiovascular Disease dataset, Jan. 2017. [Online]. Available: https : / / www .
kaggle.com/sulianova/cardiovascular-disease-dataset/version/1.

[57] T. C. Campbell and T. M. Campbell II, The China Study: Revised and Expanded Edition: The Most
Comprehensive Study of Nutrition Ever Conducted and the Startling Implications for Diet, Weight
Loss, and Long-Term Health. BenBella Books, 2016.

[58] C. B. Esselstyn Jr., Prevent and Reverse Heart Disease. Avery, 2007.

[59] M. Greger and G. Stone, How Not to Die: Discover the Foods Scientifically Proven to Prevent and
Reverse Disease. Flatiron Books, 2015.

[60] D. Dua and C. Graff, UCI Machine Learning Repository, 2019. [Online]. Available: http : / /
archive.ics.uci.edu/ml.

[61] J. Czerniak and H. Zarzycki, “Application of Rough Sets in the Presumptive Diagnosis of Urinary
System Diseases”, in Artificial Intelligence and Security in Computing Systems, ACS’2002 9th
International Conference Proceedings, Kluwer Academic Publishers, 2003, pp. 41–51. [Online].
Available: https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations.

[62] babyoda, Depression in Married Couples in Istanbul, Nov. 2020. [Online]. Available: https://www.
kaggle.com/babyoda/depression-in-married-couples/version/2.

[63] A. Beck, C. Ward, M. Mendelson, J. Mock, and J. Erbaugh, “An Inventory for Measuring Depres-
sion”, Archives of General Psychiatry, vol. 4, no. 6, pp. 561–571, 1961. DOI: 10.1001/archpsyc.
1961.01710120031004.

[64] D. Kağnıcıoğlu, “The Role of Women in Working Life in Turkey”, Sustainable Development and
Planning IX, WIT Transactions on Ecology and the Environment, pp. 349–358, Jun. 2017. DOI:
10.2495/SDP170301.

[65] R. Bailey, J. Mokonogho, and A. Kumar, “Racial and Ethnic Differences in Depression: Current
Perspectives”, Neuropsychiatric Disease and Treatment, vol. 15, pp. 603–609, 2019. DOI: 10.
2147/NDT.S128584.

[66] Kaggle, Titanic - Machine Learning from Disaster. [Online]. Available: https://www.kaggle.com/
c/titanic/data.

[67] J. C. Bigham, A. Gough-Calthorpe, A. Clarke, F. Lyon, J. Biles, and E. C. Chaston, Report on the
Loss of the Titanic, 1912. [Online]. Available: https://web.archive.org/web/20140103020756/
http://www.titanicinquiry.org/BOTInq/BOTReport/BOTRepSaved.php.

[68] P. O. Hoyer, S. Shimizu, A. J. Kerminen, and M. Palviainen, “Estimation of Causal Effects Using
Linear Non-Gaussian Causal Models with Hidden Variables”, International Journal of Approximate
Reasoning, vol. 49, no. 2, pp. 362–378, 2008, Special Section on Probabilistic Rough Sets and
Special Section on PGM’06. DOI: https://www.sciencedirect.com/science/article/pii/
S0888613X080000212.

[69] D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis, B. Steudel, and B. Schölkopf,
“Information-Geometric Approach to Inferring Causal Directions”, Artificial Intelligence, May 2012.
DOI: 10.1016/j.artint.2012.01.002.

[70] J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf, “Distinguishing Cause from
Effect Using Observational Data: Methods and Benchmarks”, Journal of Machine Learning Re-
search, vol. 17, no. 1, pp. 1103–1204, Jan. 2016, ISSN: 1532-4435.

[71] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen, “A Linear Non-Gaussian Acyclic Model
for Causal Discovery”, Journal of Machine Learning Research, vol. 7, pp. 2003–2030, Dec. 2006.
DOI: 10.5555/1248547.1248619.

62

https://www.kaggle.com/sulianova/cardiovascular-disease-dataset/version/1
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset/version/1
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations
https://www.kaggle.com/babyoda/depression-in-married-couples/version/2
https://www.kaggle.com/babyoda/depression-in-married-couples/version/2
https://doi.org/10.1001/archpsyc.1961.01710120031004
https://doi.org/10.1001/archpsyc.1961.01710120031004
https://doi.org/10.2495/SDP170301
https://doi.org/10.2147/NDT.S128584
https://doi.org/10.2147/NDT.S128584
https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/c/titanic/data
https://web.archive.org/web/20140103020756/http://www.titanicinquiry.org/BOTInq/BOTReport/BOTRepSaved.php
https://web.archive.org/web/20140103020756/http://www.titanicinquiry.org/BOTInq/BOTReport/BOTRepSaved.php
https://doi.org/https://www.sciencedirect.com/science/article/pii/S0888613X080000212
https://doi.org/https://www.sciencedirect.com/science/article/pii/S0888613X080000212
https://doi.org/10.1016/j.artint.2012.01.002
https://doi.org/10.5555/1248547.1248619

Appendix A - Overview of the Method used for Comparing DAGs
without Ground Truth

Here is a visual overview of the method developed for evaluating the quality of the Bayesian networks
learned from purely observation data, when there is no ground truth.

Figure 6.1: Process used to find the relative entropy between the real distribution underlying the data
and the joint probability distribution encoded by the learned Bayesian network.

63

Appendix B - Strategies non-convex optimization

A potential problem for score-based structure learning algorithms is getting stuck at a local maximum.
In order to avoid this, we can use the following methods.

Random restarts

A popular method for escaping local maxima is greedy search with random restarts, where we:

1. Apply greedy search until we hit a local maximum.

2. Randomly perturb the network structure, and repeat the process for some manageable number of
iterations.

Simulated annealing

Another popular method for escaping local maxima, where we:

1. Initialize the system at some temperature T0.

2. Pick some eligible change e at random, and evaluate p = exp(∆(e)/T0).

• If p > 1, then we make the change.

• Otherwise, we make the change with probability p.

3. Repeat this selection and evaluation process α times or until we make β changes.

• If we make no changes in α repetitions, then we stop searching.

• Otherwise, we lower the temperature by multiplying the current temperature T0 by a decay
factor 0 < γ < 1, and continue the search process.

We stop searching if we have lowered the temperature more than δ times. Thus, this algorithm is
controlled by five parameters: T0, α, β, γ and δ. To initialize this algorithm, we can start with the empty
graph, and make T0 large enough so that almost every eligible change is made, thus creating a random
graph. Alternatively, we may start with a lower temperature and use one of the initialization methods
described for local search.

64

	Introduction
	Motivation
	Objectives
	Contributions
	Outline

	Background
	Base Notions of Graph Theory
	Probabilistic Graphical Models
	Bayesian Networks
	D-separation
	Forward Sampling
	Bayesian Network Parameter Learning

	Causal Inference

	Related Work
	Base notions
	Score-based Approaches
	Scoring functions
	Search Algorithms

	Constraint-based Approaches
	PC Algorithm

	Hybrid Approaches
	Max-Min Hill-Climbing

	Continuous Optimization Approach

	Proposed Solution
	Regularized Search
	Complexity Analysis

	Metrics for comparing the DAGs
	Extracting a DAG from a CPDAG
	Comparing DAGs without Ground Truth

	Experimental Results
	Generated Data
	Data
	Results

	Real Data
	Cardiovascular Disease Data Set
	Acute Inflammation Data Set
	Marital Depression Data Set
	Titanic Data Set
	Overall Results

	Conclusions
	Closing Thoughts
	Future Work

	Bibliography
	Appendix A - Overview of the Method used for Comparing DAGs without Ground Truth
	Appendix B - Strategies for Non-convex Optimization

