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Abstract

The interest in creating sustainable and green cities free of carbon emissions has grown in
more recent decades, with non-pollutant means of transportation taking a fundamental role in this
development process. By joining these criteria, and the concept of shared mobility, Bike Sharing
Systems (BSS) emerged. They are present in hundreds of cities and are nowadays a competitive
alternative to cars, metro or buses. Nevertheless, maintaining these systems in perfect conditions, so
that final customers always have a good experience, is not an easy task. Bike flows tend to generate a
lack or excess of bikes in some stations preventing users from picking up or dropping off bikes. There
are two major alternatives to solve this issue and bring the network to a steady condition: either
operators relocate bikes using trucks to transport them between stations, or users are engaged in the
balancing process using incentives. This document is focused on the second alternative. A model,
based on historical data from Lisbon BSS, Gira, was created in a simulation software (Anylogic). This
is an agent-based model with a visual interface where bike trips and station states can be observed
in real time, and some model parameters can be easily changed. Two user incentive (UI) methods
were computed and tested in the simulator, both alone and in conjunction with a nightly vehicle
repositioning. After several simulations, results have shown that if all users participate in repositioning
tasks, it would be possible to keep the system balanced. Since this is not an easy task, it was concluded
that, for the experimented methodologies, and to maintain station level requirements, user incentive
methods and repositioning tasks have to be both used. The effect that UI methods have on the number
of visited stations and transported bikes during repositioning, it is also shown. Although some valuable
conclusions are presented in this work, a future research about the costs related to UI and its effect on
repositioning tasks, also considering customer cooperation, must be taken.
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1. Introduction

In more recent years, Bike Sharing Systems (BSS)
have been widely adopted in many major cities all
over the world. The adoption of the bike as a mean
of transportation is expected to continue growing,
mostly due to governments’ efforts to face climate
changes, reduce traffic, and also due to increasing
health awareness [1–3].

These systems consist of bikes spread around the
city and where users can pick them up, travel to
their intended destination and drop off the bikes “at
specific locations or anywhere in the city depending
on the type of (. . . ) system, locking technology, and
payment mechanisms” [2]. Two types of systems
are recognised: free-floating, which allows people
to place bikes anywhere; and station-based, which
forces people to pick up and drop off bikes from sta-
tions. These stations may use docks or geo-fences
to hold bikes [2]. This document will only address
the second system type since the problem addresses
Lisbon BSS, which is station-based. However, with

either free-floating or station-based, trips dynam-
ics may take too many bikes from or to determined
stations emptying them out or overloading. There
would be no problem if the difference between ar-
rivals and departures was kept close to zero; how-
ever, this does not happen for every station: some
are more propitious to have departures and other
arrivals, leaving those stations in unbalanced states.
Besides the possibility of not encountering a bike if
a station is empty, a problem that can be solved by
using other means of transport, stations might also
be full. Actually, this represents a bigger problem
since it does not allow people to dock their bikes
and consequently forces them to travel to another
station with empty docks [2].

The most common way to deal with this issue is
by using trucks to move bikes between stations.
BSSs surpass this difficulty by applying either static
repositioning (system rebalancing when the system
is closed for users, usually during the night shift)
or dynamic repositioning (rebalancing operations
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while the system is open for users) [2, 4, 5]. An-
other possible approach is having a direct influence
on user trips, recommending them to grab bikes at
stations highly occupied and/or drop off bikes at
stations with low occupations. This alternative may
be achieved by changing the prices of trips (most
used technique), offering points, etc. [6, 7].
This work addresses Lisbon station-based BSS,
Gira, and user incentive approaches to keep the sys-
tem balanced. An interactive agent-based simula-
tion of Gira is created in Anylogic, based on treated
historic data, to estimate the impact of user-based
approaches in service quality (percentage of cus-
tomers satisfied) and repositioning tasks of a NR
(Nightly Repositioning).

1.1. Types of repositioning
• Static repositioning consists of finding the best
routes and inventory instructions for a fleet of vehi-
cles, while the system is idle for customers to use,
for example, during the night. The goal is to rebal-
ance the system so that every station achieves a pre-
determined inventory level. This type of method is
usually processed overnight when the movement is
negligible.
• Static repositioning is a good option to reset a BSS
to an ideal state or when stations have low fluctua-
tions throughout the day but performs poorly when
the Spatio-temporal demand patterns display high
variance, easily resulting in full/empty stations.
Dynamic repositioning tries to overcome these is-
sues by executing repositioning tasks throughout
the day and in real-time [2].
• Last type is characterised by the help of customers
on stations’ rebalancing operations, in exchange for
an incentive. Price incentives are the most used ap-
proach, but there are other options like promotions,
points, extra minutes, etc.

1.2. Gira BSS
Gira is Lisbon’s BSS [8], belongs to EMEL - Em-
presa Municipal de Mobilidade e Estacionamento de
Lisboa, and represents nowadays a green, healthy
and proficient alternative mean of transportation
inside the city.
Throughout this document, data provided by
EMEL and from January to March of 2019, is anal-
ysed. At that time, the network had a total of
74 stations, each one is composed of several docks.
There are also hundreds of bikes both in the depot
and on the streets.
Rain, social events, holidays, among other factors
can increase or decrease the number of trips dur-
ing a day; however, some patterns reiterate. One of
them is the considerable difference between work-
days, when there is a lot of movement and traffic
inside the city, reflected in more trips; and weekends
with much less traffic, due to less movement. An-

other temporal pattern is the three well-identified
peaks of traffic during workdays, one in the morn-
ing when people arrive at their jobs, one during
lunchtime, and the last in the afternoon when peo-
ple return home.
During the period of available data, Siemens was
the company responsible for the maintenance of all
Gira assets. To perform this maintenance, multiple
teams of operators work day and night. As mean of
transport, they have a fleet of five electric trucks (a
contractual imposition) with each truck being able
to transport up to 5 bikes, and the capability of
attaching a trail to increase its capacity to 11, 12
or 15.
Repositioning operations are performed across all
day; therefore, a dynamic methodology is executed.
Unlike Gira’s real type of operation, this work will,
as already mentioned, implement a static reposi-
tioning methodology to rebalance the system during
the night.
Reverting to repositioning tasks, in three months,
around 5.000 visits were recorded, with an average
of 56 visits per day, in a total of 2.678 work orders.

2. Related work

Static repositioning
Rodrigues [9] based its work on four MILP formu-
lations of Dell’Amico et al. [10], that had as objec-
tive function the total travel cost and were solved
with a branch-and-cut algorithm. All of them were
evaluated by Rodrigues [9], for 74 stations of Gira.
He confirmed the conclusion of Dell’Amico et al.
[10] that the third formulation presented, generally,
outperforms the remaining.
Schuijbroek, Hampshire, and van Hoeve [11] pro-
posed a cluster first route second heuristic and com-
pared it with the MIP (Mixed Integer Program-
ming) and a constraint programming. The objec-
tive function consists of minimising the total trav-
elled distance. Their heuristic handles multiple ve-
hicles, which are allowed to visit the same station
more than once. Schuijbroek et al. [4] is its last
article update, where loading and unloading time
factors were added. This dissertation implemented
the method of Schuijbroek et al. [4] to get reposi-
tioning instructions.
Chemla, Meunier, and Calvo [12] combined a
branch-and-cut with tabu search. The first solves a
relaxation of the problem, and the second obtains
an upper bound of the optimal solution. They focus
on the single vehicle problem and define the min-
imisation of the total travelling distance as a goal.

User incentives
Fricker and Gast [13] propose a stochastic model of
a homogeneous bike sharing system; in other words,
all stations have the same capacity and demand
rate. They analyse the influence of a two-choice
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model. Users pick up two possible final destina-
tions, chosen at random, and are influenced to re-
turn the bike to the emptiest station. According to
them, the state of the network was improved by an
exponential factor, with these incentives.

Aeschbach, Zhang, Georghiou, and Lygeros [7] fo-
cused on customer’s ability to balance the system,
proposing four different control strategies, where
the way they interact with customers is what distin-
guishes them. They intended to evaluate strategies’
efficacy by treating customer cooperation (CC) as a
variable parameter; this way, different percentages
of cooperation give different service levels. They
found that a CC of 50% with a neighbourhood ra-
dius (Rad) of 700 meters is enough to balance Lon-
don’s Barclays Cycle Hire (nowadays, Santander
Cycle Hire). Part of their work is applied and ex-
perimented within this thesis.

Haider, Nikolaev, Kang, and Kwon [6] named
its heuristic approach: Iterative Price Adjustment
Scheme (IPAS). The goal is to incentivise people to
take bikes from or park them at imbalanced stations
to make them more imbalanced, therefore creating
hub stations. This way, the number of stations
visited by trucks to carry inventory repositioning
are reduced. Results were obtained with data from
Capital Bikeshare in Washington, D.C.

Simulators

Given that BSS simulators are a recent trend, there
is not much literature on the topic, nevertheless, in
the last few years, their popularity increased [14].

The most common objective presented in simula-
tors’ literature is to evaluate repositioning schemes
and Caggiani and Ottomanelli [15] is one of those
examples. They propose a method where it is as-
sumed that an operating day is divided into dis-
crete time intervals. At the beginning of each inter-
val, the network is updated, and trips are generated
“based on relative OD (Origin-Destination) attrac-
tiveness”. People who cannot find bikes at the de-
parture station are removed and those who arrive
at a full station must wait until there is a free dock.

Fernández, Billhardt, Ossowski, and Sánchez [14]
built a simulator called Bike3S, again, an agent-
based simulator. Their tool is designed to test dif-
ferent station capacities, station distributions, and
balancing strategies. This simulator presents a vi-
sual interface and allows several configurations to
be altered according to preference.

3. Modelling

Trip generation and trip time

One of the main processes when building a BSS
simulator is trip generation. Following the work
of Pfrommer et al., days were split into 72 slices,
so that a new number of trips are generated ev-
ery 20 minutes for every start-end station rela-

tion. This number relies on a Poisson distribution
of parameter λw(sout, sin, t), where sout is the ini-
tial station, sin the end station, t the day time
interval (e.g. 8:40 to 9am), and w the day type
(workday/weekend). λw(sout, sin, t) values are ob-
tained and stored after taking the average number
of trips of each (w, sout, sin, t) relation from real trip
data. Since from 2 AM to 6 AM the system is not
available for customers, the number of trips gen-
erated is zero within this interval. Each of these
new trips has a unique trip time that is originated
based on a Lognormal distribution of parameter
TripT ime(sout, sin).
Although this simulation creates trips every 20-
minute interval, these are not launched in the pre-
cise moment they are created, instead, they start af-
ter a random uniformly distributed number of min-
utes between 0 and 20. This avoids caveats like the
ones modelled by Pfrommer et al. [5] (all trips cre-
ated for a determined interval of time, are launched
at a precise moment; for example, all trips created
for the interval 10 AM to 10:20 AM are launched at
10 AM), and approximates this implementation to
reality.
Trip generation and trip time are the two variable
inputs that bring dynamism to the system. Below,
it is explained why Poisson and Lognormal were the
distributions chosen, based on real and fit PMFs
(Probability Mass Function).

• λw(sout, sin, t) probability distribution
Data analysis has shown that the PMF of the num-
ber of trips generated at each (w, sout, sin, t) rela-
tion seems to fit a distribution.
To check which distribution fits the best between
Normal and Poisson, the MSE (Mean Squared Er-
ror) was used as a measure of goodness of fit:

MSE =
1

n

n∑
k=1

(yk − yk)2 (1)

where n is the number of data points, yk the value
returned by the fit and yk the actual value for data
point k.
Table 1 shows that Poisson presents the lower val-
ues of AMSE, which, for this case, represents the
average value of all MSE(sout, sin, t). This result
confirms the use of Poisson in other researches, e.g.
Fricker and Gast [13] or Aeschbach et al. [7].

Fit PMF
Normal Poisson

Workday 0.2079 0.0149

Weekend 0.0928 0.0223

Table 1: AMSE between real and fit PMFs of the
generated trips for all combinations of (sout, sin, t)

• TripT ime(sout, sin) probability distribution
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Just like the number of trips between stations at
interval t, trip time also seems to fit a distribu-
tion. For this case, the only variables chosen were
arrival and departure stations, without considering
time variable t or weekday type w. To check which
is the best fitting distribution, Normal, Poisson,
Rayleigh, Gamma or Lognormal were taken into ac-
count. Table 2 shows that the Lognormal has the
lowest AMSE (average value of all MSE(sout, sin)).

Fit PMF
Normal Poisson Rayleigh Gamma Lognormal
0.0997 0.1088 0.1059 0.0895 0.0785

Table 2: AMSE between real and fit PMFs of the
total trip time from sout to sin for all combinations
of (sout, sin)

User behaviour
The behaviour of users was modelled according to
the work of Aeschbach et al. [7]. At pick up mo-
ments, when a person arrives at a station without
available bikes (empty station), that person goes to
the nearest station; if that station also does not have
bicycles, the person leaves the system. At drop off
moments, when a person arrives at a station with-
out available docks (full station), the person travels
to the nearest station that is not full.

User incentives (UI)
After trips are generated users have the opportunity
of helping in the rebalancing of the system. Usually
receiving an incentive for it (points, trips, etc.).
The basis of this thesis is to evaluate the effect of
user incentives in Gira BSS. This way, two main
methods were used and tested:

• M1 (Method 1) followed the work of Aeschbach
et al. [7]. It consists of using App where peo-
ple may inform the system of its start and
end stations, subsequently receiving, as out-
put, alternative stations - that could help to
balance stations inventory - to begin and con-
clude its journey. To calculate these alterna-
tive stations, the model uses the concept of
neighbours. Stations that are within a cer-
tain Rad from the inputted station are consid-
ered its neighbours. Therefore, the one from
the group which has a higher/lower occupancy
level is presented as the best departure/arrival
station. This strategy is applied separately and
only implemented if the departure station oc-
cupancy level is above 1 − WPC or the ar-
rival station occupancy level is below WPC,
where WPC (Weak Preemptive Control) is the
station level control parameter, so that, when
considering WPC = 0, the strategy is not ap-
plied, but if WPC = 1, it is always applied.

It must be emphasised that when the best sta-
tion from the group is the one introduced by
the user, it will also be the one shown after the
strategy is applied.

• M2 (Method 2) tries to reproduce the incen-
tive methodology used by Gira. The con-
cept of neighbour is also considered, however,
the nearest station with occupancy level above
1 − WPC is presented for departure station
or below WPC for arrival station, instead of
the best from the group. Another difference
to the first method is that when none of the
neighbours fulfils the requirements (to be above
1−WPC if it is a departure or below WPC if
it is an arrival), even though the input station
has the worst inventory ratio, the output will
be the same as the input. Since Gira applies
0.3 for arrival and 0.7 for departure as the ra-
tios for which people receive points, this was
the ratio used (WPC = 0.7).

To model people participation behaviour, a CC ra-
tio was taken into account. Since some may not
want to accept both arrival and departure alterna-
tive station presented by the app, it was also consid-
ered that from the users who want to cooperate, 1/3
would agree with the alternative arrival station, 1/3
with the departure station and the last 1/3 to both
departure and arrival (see figure 1). These consid-
erations were not taken into account by Aeschbach
et al. [7]. In their paper, people accept both depar-
ture and arrival.

1/3•CC1/3•CC 1/3•CC

CC

Cooperate at
departure

station

Cooperate at
arrival station

Cooperate at
departure and
arrival stations

Do not cooperate

1 - CC

Figure 1: Stacked bar graph of types of cooperation

Repositioning
Though Gira operates with a dynamic reposition-
ing and an algorithm, constantly running to obtain
the best orders of repositioning, in this thesis, to
drop significantly computational time and since the
final objective is not to find the best reposition-
ing method, but instead evaluate UI methods, it
was decided to implement the static repositioning
method of Schuijbroek et al. [4] which has the par-
ticularity of achieving good results in a few seconds
or minutes.
Unlike many static methodologies in literature [10,
12], Schuijbroek et al. [4] use target intervals of the
station level, instead of target values. To find maxi-
mum and minimum target values, for workdays the
”time horizon period” from 6 AM to 9 AM was
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used because the first peak occurs during this pe-
riod. The ”time horizon period” chosen for weekend
days was from 6 AM to 1 PM. This period is larger
due to stations’ demand curves on weekends, more
regular during the morning and with a peak at 4
PM.

4. Anylogic simulator
To implement the model explained in previous sec-
tions in Anylogic (simulation software), its major
abilities were used: agents and flowcharts. The
characteristics of the created agents are summarised
below:

• Agent Main is the main agent of the program.
It is where all the other agents are stored, as
well as input files, functions, parameters and
variables. Main also has the GIS (Geographic
Information System) Map, which during the
simulation will show the city map, stations,
trucks, and bikes moving between stations, but
also the controls where input values are in-
serted. Main stores the function that initialises
the BSS, generate trips and obtain reposition-
ing instructions.

• Agent Person defines every user that enters
the system right after its trip is created in main
and has not yet grabbed a bike. It follows the
behaviour of a real user: by deciding whether
to accept user incentives or not at the begin-
ning of its trip (a decision based on a CC ratio);
or by walking to another station if its intended
initial station has no bikes available. All peo-
ple follow a flowchart and take actions depend-
ing on their decisions and the stations’ occupa-
tions. It is inside this agent that user incentive
methods are used to calculate alternative sta-
tions and is where the person decides to take
them or not.

• Agent Bike represents every bike in the sys-
tem. It is activated when a person grabs a bike
and takes a trip between stations. Just like
type Person, its actions are taken by follow-
ing a flowchart, with full stations taking major
importance on the followed path.

• Agent Station is a static type agent that
represents BSS stations. It is mainly charac-
terised by its coordinates, name, and identifi-
cation number, number of docks, occupation
percentage, etc.

• Agent Depot is also a static agent that rep-
resents BSS depot. It is the place where trucks
initiate and finish their tasks and where bikes
can be stored if at the end of the repositioning
trucks are not empty. It is only characterised
by its location.

• Agent Truck represents the population of
trucks responsible for repositioning tasks. Af-

ter repositioning instructions (path and num-
ber of bikes to drop or collect) are calculated, in
agent Main, for each truck, they are activated
to move bikes between stations or to depot. To
complete its tasks, follows a flowchart, just like
Bike and Person. It is mainly characterised by
instructions received and the number of bikes
capable of carrying.

5. Evaluation
This chapter presents the results of experiments
carried out in the simulator. These experiments
took place in a computer equipped with Win-
dows 10, an Intel(R) Core(TM) i5-6200U CPU @
2.30GHz, and 8.00GB of RAM. Initially, the model
will be validated in all of its components, followed
by an analysis to UI methods.

5.1. Parameters choice
Before validating the model and getting results from
the application of different methods for different pa-
rameters values, some inputs were considered to be
constant for every run:

• Truck speed = 50 km/h;
• Person speed = 1.4 m/s;
• Loading/Unloading task time = Number of

bikes to (un)load x 1 minute;
• Number of trucks = 4;
• Truck capacity = 25.

5.2. Verification and validation
To validate this model and assess how close this
model fits reality, filtered data from Gira was used,
and the parameters presented in the previous sub-
section were applied. The simulator was validated
by examining three major measures: number of
trips generated, trip time, and number of users lost.

Datasets
To check the error between reality and the model,
two λw(i, j, t) datasets were created, to input pa-
rameters into the simulation. The first testing data,
dataset 1, included all available trips after being fil-
tered, corresponding to 3 months of trips. With the
goal of analysing if the simulator is a good predictor,
a second test dataset, dataset 2, with data from 2nd

of January to 15th of March (excluding the Carnival
week from 4th of March to 8th), was used.

Scenarios
Four scenarios, described below, were assessed:

(1) Since stations with restrictions have an im-
pact on user initial preferences for departure
and arrival stations, this first scenario used
sink/source stations, which mean that station
restrictions were not considered. The dataset
used was dataset 1, and the comparison was
made against the average values per day of the
same 3 months of real data.
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(2) Similar to scenario (1), this scenario attempts
to evaluate the prediction capabilities of this
simulator, using sink/source stations. It was
trained with dataset 2, and it was tested and
compared for two weeks of data (16 of March
to 31st of March).

(3) Scenario for which station and bike restrictions
were considered, applying methodologies re-
lated to Person and Bike behaviours modelled
in previous sections. For this case, UI meth-
ods and repositioning are turned off. dataset 1
was used as training and were simulated for 28
straight days. Then compared to the average
of 3 months of real data.

(4) Similar to 3rd scenario (dataset and simulated
days), except for one difference: NR method
was activated. The main difference for the
third relies on a reset made every night, using
a fleet of 4 trucks with a capacity to transport
up to 25 bikes each.

To study the number of trips are generated and
validate these values,

Trip generation

Trips were counted in four different formats, with
one or two metrics per format.

Three metric types were applied for this valida-
tion: MAPE (Mean Average Percentage Error),
MAE (Mean Average Error), and VAF (Variance
Accounted For), which checks the proximity be-
tween departure and arrival signals. A VAF value
of 1 means that both signals have the same shape.

MAPE = abs(D −D)/D (2)

MAE = mean(abs(Di,j −Di,j)) (3)

V AF = 1−var(Di,j−Di,j)/var(Di,j) ∀ i ∈ I (4)

These formats and their respective metrics are pre-
sented below:

• MAPE where D is the average number of trips
per day in the simulator and D the real de-
mand;

• MAE where Dsout,sin is a 2D counter matrix
with the number of trips starting at sout and
ending at sin, and Dsout,sin the OD matrix
based on real demand;

• MAE where Dsout,t is a 2D counter matrix with
the number of trips starting in sout at time in-
terval t, and Dsout,t the respective real matrix;

• VAF where Ds,t is the counter vector with
number of trips starting in s ∈ Sout at time
interval t and Ds,t the respective real counter
vector. Since this metric results in n metrics
where n=number of stations, will be evaluated
the mean of all stations’ VAF, called MVAF
(Mean Variance Accounted For);

• MAE where Dsin,t is a 2D counter matrix with
the number of trips starting in sin at time in-
terval t, and Dsin,t the respective real matrix;

• VAF where Ds,t is the counter vector with
number of trips starting in s ∈ Sin at time
interval t and Ds,t the respective real counter
vector.

The average results of multiple days were consid-
ered. Stations (or pairs) will not be evaluated sep-
arately, therefore there might be cases with higher
errors than the average of errors presented.
Table 3 summarises results of the metrics ap-
plied for the four scenarios, differentiating workdays
(WD) from weekends (WE). Scenario (1) validates
the generation of trips and scenario (3) the gen-
eration of trips with station restrictions. As ex-
pected, with the repositioning activated, scenario
(4) achieved better values than (3). Even though
scenario (2) has low MAEs, MVAF values are too
low, therefore, it is not recommended to use this
model as a trip generation predictor.

Repositioning (intervals and path)
The last factor to check is related to the static repo-
sitioning applied.
A simple truck route validation can be made by
looking at the figure 2, that shows each truck route
and the number of bikes picked up or delivered at
each station.
Figure 3 also validates the repositioning, showing
that all self-sufficient station (blue dot) occupancy
is maintained while not self-sufficient stations (red
dot) occupancy enter the required occupancy level
(black line) after repositioning (green dot).

5.3. Results and discussion
After validating the model, this section will now
test the efficacy of user incentive methodologies
for different scenarios and parameters. Two main
methods will be considered: the one applied by
Aeschbach et al. [7], M1; and the one currently used
by Gira, M2. Since M1 was tested for three different
WPC values, four scenarios were considered:

• M1-05: M1 with WPC=0.5, where WPC is
the control station level which says to the
UI method if an alternative station should be
found or not. Alternative stations are pre-
sented when the initial/final station has an oc-
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
WD WE WD WE WD WE WD WE

(Total Trips)/Day - MAPE 0.16 0.24 0.27 1.72 8.14 3.82 4.41 3.28
(sout, sin) - MAE 0.07 0.08 0.34 0.29 4.11 1.53 4.04 1.52
(sout, t) - MAE 0.13 0.13 0.35 0.33 0.22 0.20 0.19 0.19

(sout, t) - MVAF 0.93 0.76 0.61 0.08 0.80 0.37 0.85 0.44
(sin, t) - MAE 0.08 0.09 0.38 0.33 0.18 0.17 0.16 0.17

(sin, t) - MVAF 0.97 0.87 0.52 -0.03 0.88 0.55 0.89 0.55

Table 3: Model versus simulation error metrics
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Figure 2: Example of repositioning tasks in the map
with 4 trucks

cupation percentage lower/higher than 50/50
(%).

• M1-07: M1 considering WPC=0.7. This
methodology was not considered by Aeschbach
et al. [7] in his work and will be tested here
due to its similarity to M2-07; Users are
only requested to use the app if their ini-
tial/final station has an occupation percentage
lower/higher than 30/70 (%).

• M1-10: M1 with preemptive control or
WPC=1. Users are always requested to use
the app with this method.

• M2-07: M2 presented in section 3. Unlike
Aeschbach et al. [7] method, which presents
as alternatives the best stations from o group
(neighbourhood), this one shows nearest sta-
tions that fulfil the requirements: below/above
30/70 (%) for initial/end stations.

The above scenarios were tested applying the rea-
soning of Aeschbach et al. [7], varying two ad-
justable control parameters: CC which is the per-
centage of people willing to help on repositioning
tasks; and the Rad used to define sets of stations.
These tests were accomplished with and without

static repositioning, with the last taking place dur-
ing the night interval between 2 AM and 6 AM.
For each scenario, several experiments were car-
ried out for different parameters. For the first ex-
periments, Rad was varied in intervals of 0.1 km
from 0.1 km to 1 km, maintaining a CC of 0.5
and without NR. Afterwards, CC levels were var-
ied in intervals of 0.1 from 0.1 to 1, fixing Rad
in 0.5 km, and also without NR. Finally, with
NR activated and a Rad settled to 0.5 km, exper-
iments with the following CC levels were carried:
CC ∈ {0.25, 0.5, 0.75, 1}. Experiments were also
taken, with UI and without repositioning for CC=1
and Rad=1, with the objective of exploring maxi-
mum ranges.
To compare results, three metrics were applied:

• Service level (SL) - A measure of service quality
provided by the bike sharing system, also used
in Pfrommer et al. [5];

SL =
#Customers− #No Service

#Customers
(5)

• Average extra effort (EE) (m) - Result of sum-
ming the extra meters travelled to alternative
station;

EE =

∑
(sout,sin)[d(sout, sout) + d(sin, sin)]

# Customers (with positive effort)
(6)

where d(sout, sout) is the distance between the
starting station chosen by the customer (sout)
and the starting station chosen by the control
strategy (sout); and d(sin, sin) is the distance
between the ending station chosen by the cus-
tomer (sin) and the ending station chosen by
the control strategy (sin).

• Lost user percentage - A measure of major im-
portance since there is no available data hold
by Gira regarding people who leave the system
due to empty stations.

The impact of user incentive methods on reposition-
ing (4 trucks) was measured by:

• Visited stations per day
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Figure 3: Example of stations’ level before and after repositioning

• Bikes transported per day
• Total travelled distance per day (km)
• Sum of all operation times (minutes)
• CPU time per repositioning instructions calcu-

lus (seconds)

Experiments were performed for 28 straight days,
and each case was experimented four times, there-
fore, the following results represent the average of
four values.

Service level

BSS service level for different values of Rad is shown
in figure 5, and the influence of varying CC is rep-
resented in figure 4. For both cases, experiments
were carried without repositioning.

Without user incentives, a service level of 0.43
was achieved, the minimum service level found.
The highest level was obtained by the M1-10 with
CC=1.0 and Rad=1.0 which achieved a level of
0.99, showing that is possible to obtain a system
totally balanced without repositioning, as long as
all users accept to participate.

It is clear how an increase in the Rad and CC also
increases service level. However, this behaviour is
not the same for every scenario tested. M2-07 has
the worst results, with a difference of only 0.2 when
varying Rad from 0 to 1 km. M1 curves have a
higher service level when compared to M2, being
conspicuous that a higher WPC shows higher ser-
vice level values.

Figure 6 shows the service level for different co-
operation values with nightly repositioning active.
As expected, service level saw a great increase for
all methods, with the behaviours between them
remaining unchanged. For example, M1-05 with
CC=0.5 and Rad=0.5 went from 0.6 without reposi-
tioning to 0.86 with repositioning, getting a value of
0.71 when repositioning is activated and UI is inac-
tive. These values represent a relevant increase rel-
atively to experiments without repositioning, show-
ing how important is rebalancing stations through

trucks, and why this methodology should not be
discarded, but instead cooperate with UI methods.

Average extra effort
Asking customers to change their journey implies
an extra effort by cooperative users. This effort
was measured by equation 6. An increase on av-
erage extra effort over Rad was identified for all
scenarios, but not over CC. This was the expected
outcome, given that only an increase in the size of
the neighbourhood should result in higher efforts.
When it comes to the methods applied, M1 clearly
implies a higher effort over M2. This is due to the
fact that M2 shows as an alternative station the
one closest to the intended; unlike M1 that indi-
cates the one with the best level of occupancy. This
way, unlike M2, M1 will have a higher tendency to
spread bikes uniformly. Differences are only visible
between M1 and M2, therefore, variations of WPC
inside M1 do not seem to have an impact on this
metric. The same goes for experiments with repo-
sitioning, for which values with and without repo-
sitioning appear to be the same, such as the exam-
ple of (M1-05, CC=0.5, Rad=0.5, no repositioning)
with a value of 0.53 km, and 0.52 km with reposi-
tioning but the same CC and Rad parameters.

Lost users
Inversely to service level, as shown by figure 8, the
percentage of lost users decreases with CC and Rad.
As displayed by figure 9, in this case, NR also has
a huge impact, decreasing these percentages. Sim-
ilarly to the case for previous metrics, M2 was the
worst method, always showing higher percentages
of lost users.

Repositioning results
Lastly, results related to repositioning are presented
in table 4. A general analysis shows that, similar
to previous metrics, M1-10 is the best, followed by
M1-07, then M1-05 and finally M2-07.
The number of visited stations is reduced with the
decrease of cooperation levels for all scenarios, and
may be reduced to even less than 11 stations when
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users (with NR; Rad=0.5 km)

comparing no repositioning (42 stations) to M1-10
with CC=1 (31 stations).

Table 4 also shows that the number of bikes trans-
ported is on average 2 to 2.5 times the number of
visited stations. Considering that almost half of the
stations are receiving bikes and the other half losing
bikes, on average, there are 4 to 5 bikes dropped or
picked up per station visited.

When it comes to the total distance travelled and
operation time, the behaviour is the same as previ-
ous measures, starting with 143 km for 445 minutes
without UI, and dropping to values as low as 118 km
travelled for 350 minutes (M1-05, CC=1), therefore,
showing the influence of UIs on repositioning.

6. Conclusions

This dissertation consists of the development of a
functional simulator of a Gira BSS in Anylogic.
This simulation allows the study of repositioning
schemes and user incentive methods, and comprises
a visual interface where people, trucks and bikes
can be seen travelling between stations all day. Be-
sides observing trips on a map, the software user
can change determined parameters like the number
of trucks, truck’s capacity, CC or Rad, as well as
the methods applied.

In the simulator a nightly repositioning method
(implementation of Schuijbroek et al. [4]’s work)
and two user incentive methods are incorporated.
The first method follows the work of Aeschbach
et al. [7] and the second was originally modelled

Scenario CC
Visited
stations

Bikes
trans-
ported

Distance
traveled
(km)

Operation
time

(minutes)

CPU time
(seconds)

No UI 42.43 106.79 143.16 445.04 44.58
0.25 39.17 91.61 134.57 436.80 20.41

M1-05 0.5 37.79 85.30 133.93 422.54 31.48
0.75 36.46 78.40 131.45 404.89 27.39
1 35.15 69.63 127.62 382.06 15.52
0.25 38.79 89.13 135.55 432.13 30.14

M1-07 0.5 36.68 79.52 132.38 409.03 28.64
0.75 34.14 71.96 129.43 388.74 31.31
1 31.49 61.38 121.08 353.08 23.93
0.25 37.84 84.37 136.67 426.02 35.47

M1-10 0.5 35.96 78.81 130.23 403.46 24.04
0.75 33.13 69.86 123.97 375.54 22.92
1 31.05 60.72 118.82 350.06 10.34
0.25 38.23 90.82 136.14 436.75 27.11

M2-07 0.5 37.96 89.61 136.03 435.07 38.61
0.75 35.70 81.78 130.22 409.85 25.14
1 35.08 80.45 129.89 406.04 24.77

Table 4: Repositioning results with 4 trucks

in the course of this project, in the pursue of repro-
ducing the UI method currently applied to Gira’s
users.

Real data from Lisbon’s BSS has validated the sim-
ulator components, such as the number of trips gen-
erated at each 20-minutes, trip time and reposi-
tioning tasks. The generation of trips was mainly
validated by not considering the station’s capacity
or lack of bikes. Even so, when solely applying
nightly repositioning and station constraints, low
errors were still reached, with the number of lost

9



users being drastically reduced when compared to
the case of no repositioning. Results have shown
that nightly repositioning is not enough to keep the
system balanced through the entire day, and only a
dynamic approach could handle all the demand.
The results from varying CC and Rad with and
without repositioning have shown that customers
are able to balance the system without trucks, but
only if all cooperate, and a Rad of 1 km is ap-
plied. Otherwise, no-service events will occur with
a much higher frequency. Therefore, in case not all
the users cooperate, the first conclusion to take is
that truck repositioning is essential and cannot be
withdrawn.
M1, presented in Aeschbach et al. [7] work, has
shown evidence of a higher service level and lower
lost user percentage results than M2, for all WPC
ratios. Unlike M2 that only chooses stations with
occupation percentages lower/higher than 30/70,
M1 indicates the best station in the neighbourhood
to the app user, even if the occupation does not
lay in the required interval. Taking this fact into
account, M1 will always have more alternative sta-
tions to present than the other method, therefore
achieving better results. The only factor in which
M2 showed better results was in the amount of extra
effort. This was the expected behaviour considering
that M2 searches for the nearest station that satis-
fies the requirements, while the other method seeks
the best station in the neighbourhood.
Even though repositioning cannot be withdrawn,
results have also shown that UI methods have re-
duced the average number of stations to visit per
day, and the number of bikes to transport. This is,
therefore, a way of reducing the transportation’s
costs and increasing the amount of free time to
spend on other tasks.

Given the complexity of BSSs, there are still sev-
eral ways to enrich this dissertation:
New studies can use this simulator to compare
different UI or repositioning methods. The most
obvious is to implement a dynamic reposition-
ing method, which would be a useful study to
strengthen the conclusions of this work. An alterna-
tive UI method should, for example, consider price
incentives; Questions such as “How much money is
necessary to get people to participate?” or “How
much money will be saved on repositioning tasks
compared to what is spent with UI?” are yet to be
answered; In addition, effects of season, weather,
events, etc., were not analysed in this thesis and
could be subject to further analysis.
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