
Recurrent Neural Networks for Next-Action Prediction

Rita Brito Cunha Vieira Conde

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Bruno Emanuel da Graça Martins

Dr. Pedro Paulo Balage

Examination Committee

Chairperson: Prof. João António Madeiras Pereira
Supervisor: Dr. Pedro Paulo Balage

Members of the Committee: Prof. Pável Pereira Calado

May 2021

Acknowledgements

I would like to thank both my advisors, Professor Bruno Martins and Dr. Pedro Balage

for their insight and given support during this year. The numerous video-call meetings were

undoubtedly essential for the success of this work. Last but not least, I would like to thank my

family and friends for their support.

Rita Brito Cunha Vieira Conde

For my family,

Resumo

De modo a antecipar o comportamento do utilizador num site de e-commerce, o objetivo

deste trabalho é prever a próxima ação do utilizador, após uma sequência de ações realizadas

numa sessão de navegação. Uma ação num contexto de e-commerce ocorre em relação a um item

para compra. Pode ser, p.e. um ‘clique numa saia’, o que revela que uma ação é composta por

diferentes componentes como o item, o tipo de interação e caracteŕısticas do item, como a sua

categoria. Assim, o propósito de prever a próxima ação inclui a previsão de cada uma das suas

componentes e, neste trabalho, estas são consideradas como tarefas distintas. Para abordar cada

uma destas tarefas, foram explorados algoritmos capazes de modelar sequências. Primeiro, mod-

elos estat́ısticos, baseados no modelo de Markov, foram testados. Segundo, modelos baseados

em redes neuronais recorrentes foram explorados. Adicionalmente, numa tentativa de melhoria

da performance de modelos de RNN, a informação contextual, derivada a partir das relações

entre as diferentes componentes da ação (p.e. o item ‘saia’ pode pertencer à categoria ‘roupa

mulher’, o que é uma hierarquia entre a componente item e a componente categoria do item) foi

integrada na arquitetura da rede: através duma função de custo customizada, no processo de

treino da rede, e duma filtragem do catálogo de elementos a considerar, no processo de avaliação

na rede. Os resultados experimentais, no dataset RetailRocket, demonstram que esta última

versão de RNN consegue superar a performance dos restantes modelos, com uma melhoria de

5% nos resultados das métricas.

Abstract

To anticipate the user behavior on an e-commerce platform, this work predicts the action

a customer is most likely to take next, after a sequence of actions in a browsing session. An

action in an e-commerce context commonly revolves around a shopping item. It can be, for

instance, a ‘click on a skirt’, which entails that an action itself is composed by a set of different

components, as the click event, the item ID, and the item’s category. That said, in this work,

the prediction of the next action is decomposed into different action component prediction tasks.

To address the proposed approach, sequence-modeling algorithms were explored for each task.

First, statistical models as the N-th order Markov Model were applied to the problem. Second,

more sophisticated models as Recurrent Neural Networks (RNN) were explored. Furthermore,

in an attempt to enhance the performance of RNN-based models, the contextual information

derived from existing relations between the action’s components - for instance, the item ‘skirt’

can belong to the category ‘women clothing’, which represents a taxonomic relation between the

components item and category - was taken into account through a customized loss function in

the training process, and a short-listing of the catalogue of elements to consider in the evaluation

process. Experimental results, on the RetailRocket dataset show that RNNs using contextual

information outperform any of the other tested models, with a visible increase of about 5% in

the evaluation metrics scores.

Palavras Chave

Keywords

Palavras Chave

- sistemas de recomendação

- modelação de sequências

- cadeia de markov

- redes neuronais recorrentes

Keywords

- recommender systems

- sequence modeling

- markov chain

- recurrent neural networks

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Proposal . 2

1.3 Contributions . 3

1.4 Structure of the Document . 4

2 Concepts and Related Work 5

2.1 Fundamental Concepts . 5

2.1.1 Markov Chain . 5

2.1.2 Neural Networks for Sequence Modeling 7

2.2 Related Work . 13

2.3 Overview . 22

3 The Proposed Approach 23

3.1 Classification Problem . 23

3.2 Implemented Models . 23

3.2.1 Baseline Approach . 24

3.2.2 Statistical Approach . 24

3.2.3 Recurrent Neural Networks Approach . 24

3.3 Overview . 29

4 Experimental Methodology and Results 31

4.1 Dataset . 31

i

4.1.1 Sessions Organization . 32

4.1.2 Characterization of Action Components 34

4.2 Evaluation Metrics . 38

4.3 Experimental Evaluation . 39

4.3.1 Dataset Preparation . 39

4.3.2 Experimental Methodology . 41

4.3.3 Experimental Results . 43

4.3.4 Overview . 50

5 Conclusions 53

5.1 Contributions . 53

5.2 Future Work . 54

Bibliography 60

ii

List of Figures

2.1 Perceptron architecture . 7

2.2 Feedforward Neural Network architecture . 8

2.3 LSTM architecture, with three LSTM units depicted 10

2.4 GRU architecture, with three GRU units depicted 12

2.5 GRU4Rec architecture . 15

2.6 Session parallel mini-batches . 17

2.7 p-RNN architecture . 18

2.8 HRNN (HRNN Init and HRNN All) architecture 19

3.1 RNN model scheme. 26

3.2 Workflow prior to the calculation of the categorical cross-entropy loss. 27

3.3 RNN model scheme with modified loss function. 28

4.1 Showcase of steps taken to process the actions logs. 33

4.2 Distribution of actions per session. 33

4.3 Events type distribution in the actions logs. 34

4.4 Boxplot showcasing the distribution of the items IDs frequencies in the actions

logs. The table below zooms in the most frequent IDs from the plot and displays

additional details. 35

4.5 Dataset taxonomy with 5 levels, that displays the relations between the items

(represented by a circle) and the corresponding category on each level (represented

by a square). 36

4.6 Distribution of the amount of items per category, regarding the level 1 and level

2 categories present in the categories catalogue. 37

iii

4.7 Tables displaying the top most frequent categories IDs appearing on the actions

logs. 38

4.8 Sequence of actions. 42

4.9 Sequence of decomposed actions. 42

4.10 Difference between output lists using different loss functions. 47

4.11 Difference between output lists using the filtered group scores step and different

loss functions. 48

iv

List of Tables

4.1 Dataset statistics before and after data processing. 32

4.2 Dataset split into train-test sets, with a 65:35 proportion. 40

4.3 Sample training sessions input transformation for a bi-grams and RNN model. . 40

4.4 Dataset split into train-test sets, with a 65:35 proportion. 41

4.5 Evaluation on the prediction of the attributes of the next-action: category of any

level, category of level 2 and item . 44

4.6 Parameters values for any RNN model, for next category prediction. 45

4.7 GRU using the modified loss function with different penalization values. 46

4.8 Evaluation of the GRU models that use side information to predict the next

category level 2 and item. 46

4.9 Evaluation on the prediction of the next category level 2 and item, on test sessions

with consecutive distinct values. 48

4.10 Parameters values for any RNN model, for next item prediction. 49

v

vi

vii

viii

1Introduction
Recommender systems (Resnick and Varian, 1997) have been re-shaping the digital world.

In the e-commerce business, these can play crucial functions, such as to predict the next query

the user is about to submit on the search-box, or predict the next item(s) to view or purchase.

The common end-motivation here is to facilitate the shopping experience and inherently enhance

the user experience on the website.

Users’ activity through an e-commerce website occurs as a sequence of actions, which can be

used to learn about future interactions. The research area of recommender systems capable to

model sequences of actions is known as sequence-aware recommender systems (Quadrana et al.,

2018), and this work lays in this area of study.

1.1 Motivation

In most online businesses, the customer does not have to be logged into a user profile to

navigate the website, hence, the users are frequently anonymous and activity from previous visits

to the website is not reachable. Consequently, the prediction of future interactions is based on

the most recent sequence of actions, recorded in the customer’s browser as a browsing session.

The sequence-aware recommendation techniques that learn from short-term history are called

session-based recommendation approaches (Wang et al., 2019).

Most academic research of sequence-aware recommender systems in the session-based do-

main (Ludewig and Jannach, 2018) is centered on the next-item prediction problem, where

following a sequence of items clicked in a given session, the aim is to predict the most likely item

ID the user will click on next. The early stages of scientific works, included item-to-item collab-

orative filtering (Linden et al., 2003), that performs sequence predictions using a similarity score

between the last viewed item and the remaining items available. This is a statistical approach

proved to work in many e-commerce settings (Fang et al., 2019), however it ignores information

from past clicks. Later on, sequence modeling approaches based on Markov Chain (MC) were

introduced (Mcfee and Lanckriet, 2011) (He et al., 2009), but due to data sparsity issues, these

can hardly be applied to every sequence prediction problem. Finally, over the last few years,

the focus has been on developing deep learning solutions based on Recurrent Neural Networks

(RNN) as presented by Hidasi et al. (2015) and Hidasi and Karatzoglou (2018). Some significant

extensions to these session modeling works have been later introduced, namely a parallel-RNN

(Hidasi et al., 2016), that simultaneously models the item’s properties as well as the item ID, in

order to help on the main prediction of the next item ID.

1.2 Thesis Proposal

To model and anticipate the user behaviour on an e-commerce platform, the aim in this

work is to find out the action a user is most likely to take next, after a sequence of actions in

an ongoing session. An action in an e-commerce context commonly evolves around a shopping

item. It can be, for instance, a ‘click on a skirt’, which entails that an action itself is composed

by multiple components, such as the click event, the item ID, and other item features, as the

item’s category. That being said, the purpose to predict the next action, includes the prediction

of each component of the action, meaning that in the example given, the prediction of the item

ID, the type of event, and the item’s category, occur in separate models.

The approach taken in each model was based on the approaches used in GRU4Rec (Hidasi

et al., 2015) (Hidasi and Karatzoglou, 2018). In this work, similar to GRU4Rec, the sequence

modeling task is viewed as a classification problem using ranking metrics for evaluation: each

action’s component has a finite catalogue of distinct elements, which are considered to be the

available classes to classify each user session, and the model’s output will be the catalogue ranked

by likelihood of each element coming up next in the given sequence. To that end, both non-deep

and deep learning models were experimented. As a starting point, the applicability of simple

statistical models to the problem was tested, such as with the N-th order Markov Chain, and

subsequently, Recurrent Neural Networks and its variants were also explored.

Some aspects inherent to the nature of e-commerce businesses, were thought as potential

limitations to the performance of the used models, being one of them the over extensive catalogue

of elements for certain components of the action. That said, the existing dependencies in an

item-feature perspective as well as between the different item’s features - for instance, an item

can belong to a certain category, meaning that there is an hierarchical relation between the item

and the category feature -, were used as contextual information to narrow the set of elements

to consider in the catalogue, during the training and evaluation processes of the RNN-based

models. This way, the network is led to predict elements within the same family as of the true

2

element.

Hence, in this work, it is also studied how using contextual information can impact the

prediction performance of a session-based recommender system, on an e-commerce setting.

1.3 Contributions

Throughout this dissertation, the following contributions are presented:

• This work decomposes an action and predicts every component separately, rather than

focusing solely on the prediction of the central component of an action, the item. Con-

sidering that the catalogue of possible values to consider differs immensely between the

different components, this was an interesting way to study and understand which model

variations bring the most significant improvements to each action’s component prediction

task. For each sequence prediction task, the applicability of a wide range of models is

studied. Most scientific research papers in the domain already benchmark their results

based on deep learning methods (Wang et al., 2019), but in this work, simple statistical

models are explored as well, namely with N-th order Markov Chain (MC), and for a more

sophisticated deep-learning approach, Recurrent Neural Networks (RNN) are used. The

limitations of using a regular RNN layer are also reviewed in this work, and consequently,

variants of the RNN, as the GRU (Cho et al., 2014) and LSTM (Hochreiter and Schmidhu-

ber, 1997) are tested, as well as a state-of-the-art LSTM version, the multiplicative LSTM

(Krause et al., 2016). To fairly assess the performance of the diverse approaches taken,

the same experiments were executed for each created model. In fact, the simple statistical

approach proved to perform similarly to more modern deep learning approaches. Further-

more, when testing the set of RNN-based models, a significant difference between the use

of a simple RNN to other RNN versions was detected, however, between the three more

evolved RNN architectures (LSTM, GRU, mLSTM) the difference was not notorious.

• The provided clickstream logs along with other details about the catalogue of items in the

website, are thoroughly analysed in this work, and from the data analysis phase one could

understand how the action’s components relate hierarchically between each other. From

this point, this taxonomic information is incorporated in any RNN-based model used,

through a customized loss function, in the training process of the network, and a filtering

step of the catalogue of elements to consider, in the evaluation process. This upgraded

3

version of an RNN-based model outperformed all other tested models by 5% in the results

for all ranking metrics.

• From the review of public scientific works that use the same e-commerce dataset1, it was

possible to assess that some aspects, that are fully covered in this work, are not yet explored

by others (Xu et al., 2019) (Lv et al., 2019) (Sheil et al., 2018). The existing relations

between the action’s components are neglected, thus this contextual information is not

incorporated in any RNN-based model used; Additionally, the applicability of simpler

models, such as the statistical model N-th order Markov Chain, is not tested.

1.4 Structure of the Document

The remaining of this document is organized as follows: Chapter 2, introduces Fundamental

Concepts for the understandting of this work, as well as existing work in the Sequence-Aware

Recommender Systems area. Chapter 3, describes the e-commerce dataset used, and the pro-

posed methods to address the sequence modeling problem. Chapter 4 presents the evaluation

methodology, including the resources supporting the experiments and the metrics used for as-

sessing the quality of results, and discusses the obtained results. Finally, Chapter 5 summarizes

the main conclusions from this research, and presents some ideas for future work.

1https://www.kaggle.com/retailrocket/ecommerce-dataset

4

https://www.kaggle.com/retailrocket/ecommerce-dataset

2Concepts and Related

Work

This chapter is divided into two sections. First, fundamental concepts for the fully compre-

hension of the document are introduced in Section 2.1. Second, related work and advancements

made in the topic of sequence-aware recommender systems are discussed in Section 2.2.

2.1 Fundamental Concepts

This section discloses the fundamental concepts that the user will need to fully understand

this document. The presented concepts are divided into two sub-sections, where both focus on

well-known models for sequence prediction. First, the Markov chain and its variants are studied.

Their strengths and weaknesses are pointed out, where the latter acts as the breaking point that

leads the reader to the following sub-section about Neural Networks for sequence modeling. In

this sub-section, Recurrent Neural Networks are explored in depth.

2.1.1 Markov Chain

The Markov chain was introduced by Markov (2006), and has been since a popular

stochastic model. It follows the Markov property, where the prediction of the next state only

depends on the current state, and not on the sequence of events that occurred previously. This

property is mathematically translated in Equation (2.1). The outcome of xn is only dependent

on the outcome of xn−1:

p(xn|xn−1, ..., x2, x1) = p(xn|xn−1) (2.1)

To estimate sequence distributions using a larger portion from the history of events, higher-

order Markov chains consider a variable look-back window of events (Ching et al., 2004). This

extension of the Markov chain is particularly accepted for language modeling problems, such as

to predict the word that follows in a phrase, and is commonly referred to as the n-grams model.

The model predicts the occurrence of an event based on the occurrence of its n-1 previous events

in the sequence. An n-gram of size 1 is called an unigram, an n-gram of size 2 is called a bigram,

where n = 2 and n-1 = 1, which means that the model predicts the occurrence of an event based

on the previous event in the sequence. For the increasing values of n, the same logic applies.

Thus, the general equation is:

p(xn|xn−1
1) = p(xn|xn−1

n−N+1) (2.2)

To estimate the n-gram probabilities, the Maximum Likelyhood Estimation (or MLE) (Rossi,

2018) approach is applied. To calculate a particular bigram probability of an event xn given

the previous event xn−1 , that is the conditional probability p(xn|xn−1), it is necessary to count

all the occurrences of the sequence xn−1xn and count the number of sequences that start with

xn−1 - which is the same as the count of all the occurrences of the sequence xn−1 alone:

p(xn|xn−1) =
count(xn−1xn)∑
x count(xn−1xn)

=
count(xn−1xn)

count(xn−1)
(2.3)

Computing n-gram probabilities for longer sequences is a more intricate task, since these tend

to occur rarely in a corpus and that often leads to many probabilities of zero that results in

noisy predictions. To exemplify, in a fashion e-commerce context, the sequence of clicked items

[trousers; skirt; shoes; shirt] could form a 4-gram, but if there are only sequences as [trousers;

skirt; belt; boots; shoes; shirt] in the corpus of logs, then that 4-gram will never be caught. To

tackle the problem, a technique called Smoothing emerged. A relevant version of this technique,

is the Additive Smoothing (Chen and Goodman, 1999), which consists on adding one to all counts

before normalizing them into probabilities, as seen on Equation (2.4) where —V— stands for

the set of all items considered.

padditive smoothing(xn|xn−1
n−N+1) =

1 + count(xn−1xn)

|V|+ count(xn−1)
(2.4)

Hence, unseen n-grams will never have probabilities of zero. Although this technique corrects

the data sparsity problem, it can be said that the n-gram model itself does not deal well with

long distance dependencies.

6

Figure 2.1: Perceptron architecture

2.1.2 Neural Networks for Sequence Modeling

A Neural Network (NN) (McCulloch and Pitts, 1943) attempts to mimic the behaviour of a

biological brain. It is composed by a set of neurons, interconnected trough synaptic connections.

The simplest model of a neural network, is the Perceptron (Rosenblatt, 1957), with only one

artificial neuron.

NNperceptron(x) = g(x.w + b) (2.5)

It is a linear classifier for binary predictions. All the inputs, x, are multiplied by their weight,

w, - these reflect the importance of the inputs to the output. The resulting values are then

passed trough an operation (usually a weighted sum), and the bias term, b, is added. Next, the

neuron’s output, 0 or 1, is determined by an activation function. The typical activation function

used in a single layer NN is a binary step classifier:

f(x1, ...,xn) =

 1 w0 + w1x1 + ...+ wnxn > 0

0 otherwise
(2.6)

As it is noticeable, the activation function (2.6) is needed to map the input into the required

values 0 or 1.

On a side note, no bias is represented in Figure 2.1 for uncluttering reasons, and henceforth

no biases will be represented in any figure.

A more complex NN model can be created by Multi-layer Perceptrons (MLP), which is also

named as a Feedforward Neural Netowrk, since information flows in one direction, going from

7

one layer to the other, from the leftmost layer to the rightmost layer. The MLP has an input

layer, hidden layers (one or more), and output layers, which unlike in a perceptron, can have

multiple neurons. This type of NN was specially designed to deal with non-linear data, where

usually the activation function to be used is a non-linear function, such as sigmoid.

To train the network, the data to be fed to the network has to be annotated with the truth

output, then the Back-Propagation (BP) algorithm is ready to act. Its main goal is to minimize

the mean-squared distance - when using mean-square error as the loss function -, between the

network’s predicted values, and the target values. These errors are then propagated backwards

trough the network, using the derivative of the cost function in each step. In the last phase of

the algorithm, the weights and biases are readjusted, using gradient descent:

∆w = −η · ∇E(w) (2.7)

The weight update ∆w is calculated by Equation (2.7), where t is the target output for the

given instance, and η is the learning rate that controls how much the weights are adjusted. The

gradient of E with respect to the vector w gives the information about the direction. According

to Ruder (2017), there are different variants of the gradient descent method that can be applied:

Batch Gradient Descent, which computes the gradient using the whole dataset and then the

average of the gradients of all the training samples is used to update the weights. This can

take too long for large datasets; Stochastic Gradient Descent, calculates the error for each

example within the training set at a time, and the weights of each layer are updated with the

computed gradient. The parameters of all the layers of the network are updated after every

training sample, and the process is repeated until all the examples of the training set are gone

through. It is computationally more faster; Mini-Batch Gradient Descent, which divides the

Figure 2.2: Feedforward Neural Network architecture

8

training dataset into small batches and performs an update for each of these batches. This

achieves the advantages of both the former variants.

The classical Neural Network has no notion of order in time, and the only input it considers

is the current example it has been exposed to. Hence, when aiming to build a model where the

input’s order has to be preserved and there is variable-length sequence data, an important sub-

class of Neural Networks to consider is the Recurrent Neural Networks (RNN) (Elman, 1990).

It is a type of neural network where outputs from previous time steps, yt−1, are taken as inputs,

xt, for the current time step, forming a loop:

xt = yt−1 (2.8)

An RNN takes a sequence of vectors x1,x2, ...xt, where t represents the time step in the

sequence, and maintains a hidden state vector ht. When taking the next time-step in the

sequence, in order to consider the information already extracted previously, the hidden state is

calculated based on the previous hidden state, ht−1, and the current input, xt. That being said,

the hidden states work as the memory of the network.

Translating the network mathematically:

ht = g(Vxt + Uht−1 + b) (2.9)

In the previous equation, V represents the weights matrix used to transform the input into a

hidden layer representation, U represents the weights matrix used to bring along information

from the previous hidden state into the next time-step, and b represents the bias vector.

As it can be seen from the same Equation (2.9), the weights do not change depending on the

time-step, which means that the recurrent layers share the parameters across time (also called

Parameter Tying), with the purpose of reducing the number of parameters to be learned (Denil

et al., 2013). Thus, when training the network, the exact same values are being multiplied

layer by layer every time the Back-Propagation Trough Time (BPTT) process happens. On

the downside, this can become a serious issue when the recurrent process is already at an

advanced stage and has to backpropagate the error to the first steps in the network. This

problem was explored in depth by Hochreiter et al. (2001) and Bengio et al. (1994) and was

formally named as Vanishing Gradient. The name is self-explanatory: the gradient values

exponentially shrink (vanish) as they propagate through each time step. Since small gradients

9

Figure 2.3: LSTM architecture, with three LSTM units depicted

mean small adjustments, in this way the purpose of using the gradient to make adjustments to

the neural network’s weights is lost. To overcome this condition, two sub-classes of Recurrent

Neural Networks emerged: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

networks.

The LSTM neural network was introduced by Hochreiter and Schmidhuber (1997) and has

been since popularized. The architecture of this network includes all the components from a

regular RNN, plus a memory cell ct, where the information can be stored in, and to regulate

the flow into the cell, it has three different gates: the forget gate f , input gate i, and output

gate o.

The neural network can be formalized as follows:

ct = ft � ct−1 + it � g

ht = ot � g(ct)

ft = σ(Vfxt + Ufht−1 + bf)

it = σ(Vixt + Uiht−1 + bi)

ot = σ(Voxt + Uoht−1 + bo)

g = tanh(Vxt + Uht−1 + b)

(2.10)

In the previous Equation (2.10), � represents an element-wise multiplication or Hadamard

product, which is given by: cij = aij .bij , where A and B are two matrices (aij and bij represent

elements in line i and column j) of n lines by m columns, and C is the resulting matrix also

with the same size n x m.

10

As it can be visually noticeable, in Figure 2.3, the LSTM network, at time t, takes three

inputs: the input of the current time-step, xt, the vector of the previous memory component

ct−1 and the vector of the previous hidden state vector, ht−1. The forget gate ft decides how

much information from the cell state is going to be omitted or kept. It passes information from

the previous hidden state, ht−1, and the current input, xt, through a sigmoid function which

outputs values in the range [0,1]. Then, to update the cell state, the input gate it decides

which information is relevant to keep from the g output. To get the new cell state, the previous

state, ct−1, is pointwise multiplied by the forget vector. Here, if it gets multiplied by values

close to zero, the previous information in the cell state will not be considered. Next, by adding

the output from the input gate, we get a new cell state. Lastly, the output gate ot determines

the next hidden state, taking into account the newly modified cell state, ct. The informa-

tion that will be carried to the next time step, will be the new cell state and the new hidden state.

Introduced by Cho et al. (2014), the GRU is a similar network to the LSTM. The main

difference relies on the non-existence of a cell state. Instead, it solely uses the hidden state

vector to transfer information over time. The architecture of the network also differs in the

number and types of gates. It has two gates: reset gate r and update gate u.

ht = ut � h̃t + (1− ut)� ht−1

h̃t = g

g = tanh(Vxt + U(rt � ht−1) + b)

rt = σ(Vrxt + Urht−1 + br)

ut = σ(Vuxt + Uuht−1 + bu)

(2.11)

The candidate update, h̃t, uses the reset gate rt, to store relevant information from the past.

Then, the network calculates ht, by using the update gate ut, and determines what to consider

from the current memory content, h̃t, and from the previous step ht−1.

As it can be seen, the GRU has fewer operations, therefore it is faster to train than LSTMs,

but none of them clearly outperforms the other - it all depends on the data used. In sum, the

main difference between a regular RNN and its variants LSTM and GRU, is that instead of

multiplying across time (which leads to exponential growth), these newer versions of RNNs have

better gradient propagation due to the additive update function used.

In the paper written by Krause et al. (2016), a problem related with the LSTM is pre-

11

Figure 2.4: GRU architecture, with three GRU units depicted

sented: it happens that many of the operations in the network involve an addition of the

transformed input, V∗xt, with the transformed hidden state vector, U∗ht−1, in the form

σ(V∗xt + U∗ht−1 + b∗). Therefore, in case there is an unexpected input, xt, many opera-

tions are affected and it might lead to irregular future cell and hidden states. This is a situation

of which the network may not be able to recover from. Hence, with the intention of overcoming

wrong inputs fed to the LSTM, a newer version of this network was created: the Multiplicative

LSTM (or mLSTM). In an mLSTM, there is an intermediate state, mt, adding to the already

existing components of a regular LSTM:

mt = Vmxt �Umht−1

ct = ft � ct−1 + it � g

ht = ot � g(ct)

ft = σ(Vfxt + Ufmt + bf)

it = σ(Vixt + Uimt + bi)

ot = σ(Voxt + Uomt + bo)

g = tanh(Vxt + Umt + b)

(2.12)

As it can be seen in the above Equation 2.12, the hidden state, ht−1, and the input, xt, are

transformed with an element-wise multiplication in the intermediate state, mt. This allows mt

to flexibly change its value in accordance to ht−1 and xt, which implies that the mLSTM can

learn parameters specifically for each possible input at a given time-step. The great advantage

of this type of neural network is that it allows the hidden state to react with flexibility to a new

12

surprising input, by using input-dependent transition functions.

2.2 Related Work

There are two main lines in recommender systems: session-aware and session-based recom-

mender systems (Quadrana et al., 2018). The session-aware systems work from the assumption

that the user can be identified in returning sessions and consequently the history of actions of

the user is propagated from session to session, powering more personalized recommendations

to a specific user. The session-based systems do not considered user identification and work

with the actions from the current session to produce recommendations suitable to any user

surfing the website. This section overviews, in a chronological order, previous studies mainly

on session-based recommender systems, and one particular scientific work that combines both

session-based and session-aware recommendations.

A frequently mentioned baseline model for systems aiming to predict the next item’s choice

of the user, includes simple item-to-item collaborative filtering recommendations (Schafer et al.,

2007), where based solely on a similarity score between the last clicked item and the remaining

items available, the system predicts the most likely items to follow next in the current session.

Each item is encoded as a binary vector where each position corresponds to a session, and in

case the item appears in a specific session that position is positively flagged in the vector. The

distance between a target item and the other available items is then calculated using a similarity

function, such as the cosine similarity, and the top closest items are retrieved by the system as

“others who viewed this item also viewed these ones”.

In the end, items often interacted together in sessions from other users are considered as

being similar to each other, and this has been actually a strong statistical approach proved

to work in many e-commerce contexts (Fang et al., 2019) (Ning and Karypis, 2011) (Linden

et al., 2003) (Ning et al., 2015), since the items similarity matrix can be pre-computed offline

and sorted in the training process to ensure fast responses at recommendation time, however, it

ignores information from past clicks.

To create complexer models that are able to take into account the items dependencies in

the logs, there has been many scientific works focusing on this matter. A first advance was

presented by Lin et al. (2011). An approach based in information retrieval methods is applied

to predict future search actions of the user based on past ones. The main objective in this

13

research is to find out whether the predictions are more accurate, when made based on the

complete or recent history of queries and URLs the user has submitted or clicked. The article

presents three methods to predict future actions. The first, called Weighted Tally (WTAL), in a

historical portion of query logs, H, of a search session, checks the co-occurrence of a candidate

future action a′, and a recent search action a in the session, in order to compute a relevance

score WTALSC:

WTALSC(a′, a,H) =
∑
X∈Tr

∑
ai,aj∈X:ai=a,aj=a′,j>i

(
1

j − i

)
(2.13)

In Equation (2.13), X is a session in the training set Tr, and a and a′ are respectively the i-th

and j-th actions in X. The relevance is higher when a′ is closer to a in the session. In the end,

the future actions candidates WTALSC scores are sorted in descending order, where the top

rank scores are the most likely actions to be taken by the user in the next steps.

The second presented method is called Session Retrieval with Prediction by Frequency

(SRPF). Firstly, there is an Indexing step, to distinguish the various types of actions in the

training set, where each session, in the training set, is assigned with an intent between a set of

groups, such as ‘Query terms’, ‘Clicked URLs’, or ‘Clicked URLs domain names’. This facilitates

the next step, where the training sessions related to the current user’s search context H are to be

retrieved. After getting the training sessions related to H, the actions that occur more frequently

in the retrieved training sessions are to be considered as candidates to user’s future actions. To

tally those frequencies of actions, two weighting styles are considered. The first gives the same

weights to every occurrence of an action:

FREQ(a,H) =
∑

X∈RETR(H)

∑
ai∈X:ai=a

1 (2.14)

In Equation (2.14), RETR(H) is the set of training sessions in the retrieval result of H. The

second weighting method, weights the actions according to the relevance score of the sessions in

which they are inserted.

WFREQ(a,H) =
∑

X∈RETR(H)

∑
ai∈X:ai=a

REL(X,H) (2.15)

In the above Equation (2.15), REL(X,H) is the relevance score of session X with respect to the

retrieval result of H. With any of mentioned weighting methods, in the end, the top frequencies

are sorted in descending order.

14

Lastly, another method to predict future actions is presented as ACTF (action flow graph

method), which follows an approach based on the PageRank algorithm. Each node of the graph

represents a query or clicked URL that appears in the search logs, and the weights are higher

when closer to the nodes that represent queries or clicked URLs by the user. The nodes with

top PageRank scores are considered the predicted future actions of the user.

In the end, it is shown that when using a combination of the three prediction methods,

better results are achieved. Moreover, to answer the main question of the paper, of whether

or not the prediction’s accuracy would be higher when using full or recent history of actions,

experimental results demonstrated that by using more historical search information in a user’s

search action it is not guaranteed to improve predictions performance.

From this point on, most of the literature found presents solutions that evolve from Recurrent

Neural Networks (Wang et al., 2019; Ludewig and Jannach, 2018; Fang et al., 2019). The first

application of RNN to model the session data is presented by Hidasi et al. (2015) and Hidasi

and Karatzoglou (2018), as GRU4Rec, which is also the first approach to the recommendation

problem as a ranking problem rather than solely a classification problem. A GRU model is

used, since it is stated that when using LSTM the same results were achieved but the model’s

performance was slower.

Figure 2.5: GRU4Rec architecture

The network’s architecture consists of one or more GRU layers, depicted in Figure 2.5 with

the cycle arrow, preceded by an optional embedding layer not represented in the figure. The

input given is an item encoded in a 1-of-N way (also referred as one-hot encoding), where N is the

15

total number of items, and the coordinate is 1 if the corresponding item is active in the session,

otherwise is 0. The hidden state is also encoded in the same way, having a vector representing

the entire item space of previously clicked items in the same session. The output is computed

using the resulting weight output which is a vector of a similar shape as the input that contains

the likelihood scores of each item in the catalogue being the next one inline. During training,

scores are compared to the vector of the next item in the session, considered as the target item,

to compute the loss using a ranking loss function (this action is represented by the bidirectional

arrow in Figure 2.5).

When there are variable length sessions and a catalogue with a huge amount of items, the

use of sequence by sequence training and the BPTT algorithm decrease the performance of the

model. Thus, to optimize the training of the network, the authors use session-parallel mini-

batches. As it is depicted in Figure 2.6, sessions are stacked on top of each other, and the

items in the same position in the different sessions form a mini-batch. The input for each mini-

batch, are the current events, and the output of each mini-batch are the next events. Whenever

sessions are finished, these are replaced by the next available. In the end, instead of using the

BPTT algorithm on each session separately, the model will do BP on the mini-batches assembled

from multiple sessions, which decreases the amount of time spent in training. Furthermore, an

optimization to reduce the computational complexity when computing the loss is also introduced.

The loss is computed over the item ID the user has clicked, named as positive item, and a subset

of the items’ IDs that haven’t been clicked upon the session, that are considered as the negative

items. The ranking method that obtained best results was with Pairwise ranking, which looks at

a pair of instances at a time, one positive and one negative item, and the loss function enforces

the rank of the positive item to be lower than the negative one, and in this way the optimal

order for that pair is found.

To evaluate the performance of the model, the position of the predicted item in the ranking

output list of items is considered. The setting that achieved the best results, is composed of a

single GRU layer without feedforward layers, and the TOP1 pair-wise loss function along with

session-parallel mini-batching. In the end, the achieved model proved to be better than the

baseline item-to-item recommendations.

All in all, GRU4Rec can accumulate the influence (rank) of all the sequential items from

the session to make a more reliable recommendation, in the form of ranking of the items in the

catalogue. In addition, it is worth mentioning that many of the upcoming works include, in

someway, the use of a GRU4Rec model.

16

Figure 2.6: Session parallel mini-batches

To model feature-to-item recommendations, a parallel RNN (p-RNN) version emerged in

Hidasi et al. (2016), that can take into account the clicked items as well as their characteristics,

such as text (e.g. item’s short description), images (e.g. item’s appearance), or price. Thus,

the goal is to include these rich-features into session-based recommendations from Hidasi et al.

(2015) previous work about GRU4Rec. The architecture of the model is composed by GRUs

for each characteristic and another to model the session (a GRU4Rec), as presented in Figure

2.7. The networks work separately as independent neural networks, and in the end, the hidden

layers are concatenated, by an element-wise multiplication of the hidden state of the ID subnet

and the hidden state of the item feature subnet(s). Then, the output is computed from the

concatenated hidden state.

The training strategies are crucial in the process, since simultaneous training in both sub-

nets, by using a backpropagation method across the whole architecture, leads to the different

components of the p-RNN learning the same relations from the data. Thus, to force the network

to learn different aspects, the authors give out three alternative training strategies that can be

applied: Alternative training, keep one subnet fixed and train the other in one epoch, then do the

other way around in another epoch, and the cycle restarts after each subnet is trained; Residual

training, a subnet A is trained and subnet B is trained on the residual error of subnet A, and

so on, but subnets already trained will not be visited again; and lastly, Intervealed training,

alternates training per mini-batch.

The evaluation of the model was done using the same metrics as in GRU4Rec research

paper, and at last, it is shown that p-RNN, using any of the alternative training strategies, gives

17

Figure 2.7: p-RNN architecture

more accurate recommendations than the baseline model of a single network that models the

session with a GRU4Rec.

Hierarchical RNNs (HRNN) start to show up, by Quadrana et al. (2017), with the goal to,

in addition to the information of the current session, also use information stored from previous

sessions of the user, by using information associated to his account in the website. A combination

between session-aware and session-based recommender systems is done hierarchically: the GRU

that models the user activity across sessions, GRUusr is ran on top of the GRU that models the

session, GRUses - a GRU4Rec network. For a returning user, in a new session, the GRUusr takes

the last hidden state of this network, and the last hidden state of the previous session network

GRUses, and given these two hidden states, the GRUusr tries to predict a good initialization for

the new session GRUses (notice the ‘session initialization’ arrow in Figure 2.8) - this architecture

is refered as HRNN Init. The session-level representation GRUsess is initialized and updated,

from the second session s2 on, as:

sm,0 = tanh(Winitcm−1 + binit) (2.16)

sm,n = GRUses(im,n, sm,n−1) (2.17)

In the previous equations, Winit and binit represent the initialization weights and biases, and

im,n represents the input item in sessionm, at time step n. Whereas, the user-level representation

18

GRUusr is updated as:

cm = GRUusr(sm, cm−1) (2.18)

In the previous Equation (2.18), sm represents the last hidden state of session s, and cm−1 rep-

resents the previous user-state. c0 = 0, is a null vector, and for that reason it is not represented

in Figure 2.8.

In fact, the representation of the GRUusr can not only be used to initialize the new session

representation, but also be used as input in all the steps of the user’s session model - refered as

HRNN All - which is marked as dashed grey lines in Figure 2.8, and in that case, the update in

the session-level network is done considering cm−1:

sm,n = GRUses(im,n, sm,n−1, cm−1) (2.19)

Figure 2.8: HRNN (HRNN Init and HRNN All) architecture

The training of the whole network is done end-to-end using back-propagation in mini-

batches, in the same way as in the baseline GRU4Rec. When going through the experimental

results, it can be realized that the HRNN All, with the forced user representation propagation

degrades the performance of the model when used on a video recommendation website context.

In any case, any of the HRNNs used, performs better than the baseline model GRU4Rec, which

can indicate that returning users tend to click on similar items from previous sessions, and thus

these personalized recommendations turn to be more accurate predictions.

Another approach to predict the next action of the user, is proposed by Smirnova (2018). An

19

extension to the usual recommending system is presented, where not only the navigation history

is taken into account, but also the history of recommended items. To that end, a new GRU

model is created, which includes a recommendation action representation - a one-hot enconded

items IDs recommended at timestep t, at - and state-action fusion mechanisms. The model is

built on top of the GRU4Rec, from Hidasi et al. (2015), with the difference that the hidden

state is computed based on one of two fusion mechanisms, in order to integrate at. This step

can either happen with early fusion, that updates the current RNN hidden state:

fearly(ht,at) = ht �Waat (2.20)

Or with late fusion, that updates the next hidden state:

f late(ht+1,at) = ht+1 �Waat (2.21)

In the previous Equation (2.21), Wa is the projection matrix between action space and RNN

hidden state.

The main goal is to obtain:

p(xt+1|at,x≤t) ∝ fout(ht+1) (2.22)

In (2.22), fout represents the output layer of the neural network, where the next hidden state

ht+1 of the model is:

ht+1 = f late(ht+1,at) (2.23)

The training of the model is done in the same way as in GRU4Rec, with a different loss

function, a negative log-likelihood function. The authors concluded that the model that incor-

porates at in the next hidden state (late fusion), which indirectly conditions at output layer of

the network, has the best results and furthermore it outperforms the baseline model GRU4Rec.

Another perspective to bear in mind in e-commerce recommending situations, is the fact

that occasions such as a user’s birthday, considered as a Personal occasion, or Valentine’s day,

considered as a Global occasion, can lead to deviated actions from the user’s path in history. To

address these circumstances, Wang et al. (2020) came up with the concept of Occasion-Aware

Recommendation (OAR).

The attention mechanism, particularly the self-attention (Vaswani et al., 2017), takes a great

20

part in the system. The self-attention measures the internal components of the input to identify

the most valuable ones, wherein the resulting output, the attention vector o, is given by:

o =
∑

αqv (2.24)

In the above equation, the attention scores, α, are given by:

αq = softmax

(
expsim(q,k)∑

expsim(q,k)

)
(2.25)

The similarity function, sim(q,k), used between keys, k, and queries, q, is the scale dot product.

The shown mechanism is used throughout the components of the system, to give attention

weights to the different types of occasion signals.

To model Intrinsic preferences, not taking into account any special occasions in the context

but just the own preferences of the user, the correlation between the most recent purchase and

the personal historic purchases is to be found, to predict the next item to be purchased. Thus,

the query q is done towards the current timestamp, and the attention weights will be calculated

as shown above. Next, the obtained output o will be used to infer the user’s next purchase.

To model Personal occasions cases, it is important to check the neighbouring days, in relation

to the current time step, in previous history, in order to give more attention to those items.

Thus, the query q is done to the upcoming personal occasion timestamp, which will be mapped

to the timestamps of the user’s previous purchases until the current timestamp (keys k), and

its corresponding products, (values v). This way, the model gives higher attention to items

purchased a long time ago within an approximate time window from the current timestamp,

which can capture personally reoccurring occasions.

Global occasions can be captured by the general behaviour of all users in the website, by

again, checking a near time period in past history - here, separated memory slots are used to

store global behaviours of the users. The query q is done in the same way as previously, where

the values corresponding to the keys are retrieved from the memory slots this time.

In addition to the mentioned self-attention layers, a gating layer is also added to the model.

The objective is to balance the global and personal occasions influences, in which it assigns

different weights, with an additive attention operation, to the different components (Intrinsic,

Personal and Global). This is a relevant mechanism, since different occasions can have different

impact from user to user, at different time steps. In the end, OAR proved to outperform the

21

baseline models used which include the GRU4Rec model.

2.3 Overview

This chapter started by presenting the fundamental concepts for this work. This included

an introduction to a range of models applicable to a sequence prediction problem. In a second

section, there was an overview of the literature which is relevant to this work. From the literature

review, one can note that the initial steps in the domain of session-based recommender systems

were taken with simpler non-deep learning models, which have shown to be effective in many e-

commerce sequence modeling problems, yet these are not able to learn the dependencies between

past actions in history, thus, the tendency of scientific research has been to focus on more

sophisticated deep learning solutions based on Recurrent Neural Networks.

The next chapter presents the proposal for this thesis and the different architectures that

will be used to model the sequence prediction tasks in hand.

22

3The Proposed Approach

An action is represented by a set of different components, for instance, the shopping item

ID or the interaction type made by the user to the item, would be regarded as distinct compo-

nents of the action. That said, the defined problem to predict the next-action in a session, is

disintegrated into individual sequence prediction tasks corresponding to the prediction of each

action component. In this work, each prediction task is addressed as a classification problem, as

it is further explained on Section 3.1, and the whole process behind the different classification

models used is presented on Section 3.2.

3.1 Classification Problem

The proposed sequence modeling task for each action component, is addressed as a classi-

fication problem: the class labels are the distinct elements for the action component, and each

session is to be classified with the last element in the sequence of elements. For instance, for

the prediction of the item ID component of an action, the classes are the distinct items IDs

available, and each session is classified with the last item ID present in the sequence of items.

3.2 Implemented Models

The starting point was given with the creation of a simple model easy to set up and that

performs reasonably enough with the available data. Next, a statistical approach was taken, with

N-th order Markov chain, and lastly, more complex models were created, based on Recurrent

Neural Networks.

All models have been generated in a Python1 3 environment, using mainly the libraries

Scikit-Learn 2, NLTK 3 and Keras 4, with Tensorflow 5 backend. The next sections introduce

1https://www.python.org
2http://scikit-learn.org
3https://www.nltk.org
4https://keras.io
5https://www.tensorflow.org

and describe the different implemented models.

3.2.1 Baseline Approach

The first approach taken was with a model easy to configure and fast to train, with the

aim to set an initial benchmark before moving into more complex models that can be harder

to interpret and deploy. Two models were initially created: one that classifies all sessions with

the most frequent class appearing in the dataset, and another, that classifies each session with

the exact same element as the one coming last in the session. The latter approach was the most

suitable to the available data, and henceforth is the reference model to take into account.

3.2.2 Statistical Approach

A core statistical model for the study of the course of actions through time is the Markov

chain (Section 2.1.1), also known as first-order Markov chain. This sequence model follows the

assumption that the probability of a state is given only by the immediate previous state, and

when wishing to use more preceding states to infer about the next state transition, a higher

N-th order is to be considered.

To design an N-th order Markov chain, the first step taken was to define the set of states

to be considered. The states are contiguous sequences of N elements, also referred as N-grams,

extracted from the training sessions. Afterwards, for each N-grams model, a matrix was created

with a dimension correspondent to the number of states, where each position describes the fre-

quency counts of moving from one state to another. These frequencies were then translated into

transitions probabilities, using additive smoothing due to many non-existent states transitions.

To get the most likely element coming next on a given test session, the last N elements from

the sequence are checked against the created matrix, and the element with the highest transition

probability corresponds to the predicted next element.

3.2.3 Recurrent Neural Networks Approach

When aiming to build a model where the input’s order has to be preserved and there is

variable-length sequence data, an important sub-class of neural networks to consider are the

Recurrent Neural Networks (RNN). The architecture of the RNN model built in this work is

similar to GRU4Rec (Section 2.2).

24

The model receives each training session, in the form of a sequence of elements, from a

specific action’s component. Considering that the available data sessions have variable-length,

the input sequences that are shorter than the maximum length, are padded with a sentinel value

that is later ignored when passed through a masking layer. The padding is made at the end of

each sequence sample, since what is intended for the hidden state of an RNN is the state of the

last valid non-padded input step.

To feed the prepared sequences to the network, the first aspect to bear in mind was the

categorical data representation. By default, each element is one-hot encoded by the total number

of distinct elements for the action component, giving an equal distance relationship between all

elements (Cui et al., 2018). However, for action’s components with an excessive number of

distinct elements, the binary vectors representing each element result in overly large and sparse

one-dimension vectors, which turn to be computationally inefficient, thus, in these cases, an

embedding layer is added as an input layer. In this additional layer, each element is mapped to

a distinct vector, and the properties of the vector are adapted while training the neural network,

making commonly co-occurring elements to naturally group together in the representation space

(Hancock and Khoshgoftaar, 2020).

The first hidden layer of the network, that receives the input, is an RNN type of layer,

which can be a simple RNN, a GRU, an LSTM or an mLSTM (Section 2.1.2). In this layer, it

is specified that the model is to be in the form Many-to-One, meaning that given a sequence

as input it returns the output at the last timestep. That last vector is then passed through a

dropout layer for regularization, followed by a final dense layer responsible for outputting the

most likely element to follow next in the session.

Since this is a multi-class problem, the model uses a combination of a categorical cross-

entropy loss function with a softmax activation function (Goodfellow et al., 2016). The softmax

function, as in Equation 3.1, re-scales the output vector to a normalized probability distribu-

tion: it passes each output result, xi, through an exponential, to really highlight the largest

numbers and suppress the ones significantly below the maximum. Next, these output results

are normalized to ensure that all probabilities sum up to 1.

The categorical cross-entropy loss function (Rubinstein and Kroese, 2004), formally repre-

sented in Equation 3.2, quantifies the difference between the two probability distributions, from

the predicted vector and expected vector - which is in fact a one-hot vector considered as a

probability distribution. A separate loss is calculated for each element in the catalogue (the

class labels), that are then summed to form the loss for a particular sequence sample. The

25

minus sign ensures that the loss gets smaller when the expected and predicted distributions are

closer to each other. The output probabilities will be considered as scores, where the highest

probability represents the highest ranked element, which is to be considered as the predicted

one.

f(x)i =
exp(xi)∑
j exp(xj))

(3.1)

CE = −
∑
x

yi log(f(x)i) (3.2)

The architecture of the described model is depicted in Figuere 3.1.

Figure 3.1: RNN model scheme.

3.2.3.1 Modified training process

The different action’s components can be related between each other in an item-feature

perspective as well as between the different item’s features - for instance, an item can belong

to a certain category, meaning that there is an hierarchical relation between the item and the

category feature.

26

(a) Relationships matrix creation. (b) Relationship verification.

Figure 3.2: Workflow prior to the calculation of the categorical cross-entropy loss.

To take advantage of this contextual information, the existing dependencies are incorporated

in the training process of the created RNN model. The objective is to lead the model into always

predict an element within the same group as of the expected element. To exemplify, for a target

shopping item ‘ring’ that belongs to the category ‘jewelry’, the items to be considered in the

catalogue should only be jewelry pieces from the same group as well, such as a ‘necklace’ or

‘earrings’, meaning that although the model could miss the expected prediction of the item

‘ring’, at least it can give out a closely related shopping item from the same category group.

To that end, a modified version of the loss function was created. The first step taken here is

to signal the type of relationship between the different elements. A square matrix is built where

the columns and rows indexes represent each available element, in the same order as in the

catalogue list. In case two elements share the same parent Y, the corresponding position in the

matrix is flagged as a positive relation with the value ‘1’. On Figure 3.2a, the elements identified

as B, D and E, share the same parent, thus the corresponding positions of the elements in the

matrix are marked as being related to each other. This relationships matrix is then passed to

the new loss function.

During the training process of the network, the vectorial representation of the expected and

predicted elements is in the form of an immutable multi-dimensional array, named as tensor,

which are accessed by the loss function. Each tensor has the exact array-shape of the catalogue of

elements, and each index corresponds to the position of an element in the catalogue list. Hence,

to get the expected and predicted element, the index of the maximum probability distribution

in each tensor is extracted. Then, to check if these are related, the indexes of the expected and

27

predicted elements are spotted in each side of the relationships matrix and the corresponding

value indicates if there is a relation. In a positive case of a relationship, a penalization value will

be applied to the categorical cross-entropy result, as it is expressed in Equation 3.3, otherwise

the result is not altered. The penalization value, p, is used with the objective to decrease the

error and therefore benefit these cases, this way it is expected that the model learns to only

consider elements in the catalogue from the same family group as the expected one.

The workflow of these last steps in the loss function is depicted in Figure 3.2b, where the

indexes for elements D and E are checked in the matrix for a relation that is indeed present,

and therefore, a penalization value p will be applied to the cross-entropy result.

CE =

 −
∑

x yi log(f(x)i) ∗ p positive relation

−
∑

x yi log(f(x)i) negative relation
(3.3)

The architecture of the described model is depicted in Figure 3.3.

Figure 3.3: RNN model scheme with modified loss function.

28

3.2.3.2 Modified evaluation process

To prevent the RNN model from even considering elements in the catalogue that, once again,

do not belong to the same family as of the expected element, the evaluation process was also

modified. The final output probabilities list is cut down to only include elements corresponding

to the same family group. This way, it is ensured that there are no noisy predictions with

elements representing other family groups.

3.3 Overview

This chapter started by presenting the proposed sequence prediction problem as a classi-

fication problem. The next section introduces the three different approaches taken to create

the classification models. The implemented models are iteratively more complex, starting from

a simple baseline model, to a statistical N-th order Markov chain, and finally, to a Recurrent

Neural Network model. Later on, some alterations are proposed to the RNN model, where it

is suggested a modification in the training and evaluation processes, in order to incorporate

contextual information coming from the existing relations between the action’s components.

The use of different architectures allows, in the next chapter, to test which brings the best

results for each action’s component sequence prediction task.

29

30

4ExperimentalMethodology and Results

This chapter presents all the process behind the evaluation of the designed models. Sec-

tion 4.1 analyses the e-commerce dataset used. Section 4.2 introduces the metrics that were

extracted to fairly compare the performance of the different models. Section 4.3 describes all

the conducted experiments done to address the sequence modeling problem with the given data,

and later reports and discuses the obtained results for each experiment.

4.1 Dataset

The dataset used by this work was collected from an e-commerce website, provided by

RetailRocket 1 in a Kaggle repository 2, in a raw format, barring hashed values due to data

anonymization issues. The data is provided in three separate files: one file containing the usage

logs from the website, other containing the items details, and another with the item’s categories

details.

The collected usage logs are comprehended in a period of about 4 months, from May to

September of 2015, where in total, without any processing of the data, there are 2 756 101

instances. Each instance is considered as an action in the website and is represented by the

interaction made by a user - identified by its visitor ID - to an item - also represented by an

item ID. This interaction is an event in the form of view, add to cart or transaction, and the

exact timing is also recorded.

In the items’ details file, each instance corresponds to a shopping item and its characteristics.

Each item has a unique ID, a property and its corresponding value, and also a timestamp. The

only unhashed properties for an item are the item’s availability in the website and the category,

and in this work, only the category was considered in the experiments. The timestamp associated

to a category shows that an item can change of category over time, but for consistency purposes

it was decided to keep the first category value recorded in the database - e.g. a shopping item

1https://retailrocket.net
2https://www.kaggle.com/retailrocket/ecommerce-dataset

https://retailrocket.net
https://www.kaggle.com/retailrocket/ecommerce-dataset

‘denim jeans’, that is firstly introduced in the ‘trousers’ category, and that changes later to the

‘skirts’ category, would be kept with the original category ID ‘trousers’.

A first decision in the data processing phase, was to consider only the items to which there is

access to additional information about its categorical identification, thus the actions with items

not meeting this criteria were disregarded from the logs. Therefore, each action is formally

characterized as {timestamp, visitor, event, item, category}.

4.1.1 Sessions Organization

In order to have the dataset organized by different sessions in the website, the corresponding

history of actions from each user was partitioned. The criteria used was that after 3 minutes

of user inactivity in the website a different user session is to be considered. This separation

frequently leaves sessions containing only few actions, and for the purpose of a sequence modeling

task, a session has to have a minimum of two actions. Thus, users sessions not meeting this

criteria were discarded.

With the dataset split through sessions, and by analysing their content, some inconsistencies

were found. In general, the sequences have an abnormal amount of consecutive actions with

exactly the same event, item and category. Hence, it was decided that if these repeated actions

are separated from each other by less than a minute, these are considered as duplicated entries

and are filtered out from the dataset. From Table 4.1, the resulting dataset has a new total of

297 868 actions (a reduction of 89%), through 17 992 sessions, from 212 434 different users.

Pre-Processing Post-Processing % Reduction

Total number of actions 2 756 101 297 868 89%

Distinct number of users 1 407 580 212 434 85%

Distinct number of items 235 061 23 329 90%

Table 4.1: Dataset statistics before and after data processing.

To exemplify the decisions made so far, Figure 4.1a showcases a set of actions from a certain

visitor of the website. The first step taken is to apply the time difference criteria of 3 minutes to

divide the actions through different sessions, which resulted into two separate sessions, session

1 and 2, as it is displayed on Figure 4.1b. Considering that the first session contains only an

action, it has to be dropped from the dataset. Additionally, in session 2, the first two entries

happen to be separated by seconds and have the exact same elements for all action components,

which leads to the elimination of this duplicated entry. The final filtered sample is shown on

Figure 4.1c.

32

(a) Visitor actions prior sessions division.

(b) Visitor actions post sessions division.

(c) Visitor actions after dropping the single-action session and
a duplicated action.

Figure 4.1: Showcase of steps taken to process the actions logs.

After the data cleaning steps taken throughout the totality of the dataset, it is worth

mentioning that there is still a high number of sessions with repeating values for the action’s

components throughout the sequences, but at this stage it was not possible anymore to under-

stand if the repetitions were intentional or not - it may be case that the visitors of the website

are usually this indecisive and do frequently come back to check the same element. Thus, the

dataset did not suffer any further changes.

Figure 4.2: Distribution of actions per session.

As it can be seen in Figure 4.2, the resulting sessions are predominantly composed by 2

actions, and sessions with more than 5 actions are rare to occur.

33

4.1.2 Characterization of Action Components

As already stated, an action is characterized by {timestamp, visitor, event, item, category}.

In a sequence modeling context, the components of the action to be modeled are: the event, the

item, and the item’s category. Each of the following sub-sections contains a detailed description

of each component, including an analysis of the values distribution through the actions logs, and

other relevant details.

4.1.2.1 Event component

An event can be of the type view, add to cart or transaction. Figure 4.3 focuses on the

event’s type present through the different actions. The interactions are extremely imbalanced,

where 98% are clicks to view an item, and very few are buying interactions of the type add to

cart and transaction, but whenever an item has an add to cart event in a session, the purchasing

intent is often concluded by a transaction for that item afterwards.

Figure 4.3: Events type distribution in the actions logs.

4.1.2.2 Item component

In this sub-section, the frequency distribution of the 23 329 different items in the catalogue

is analyzed. On Figure 4.4, one can quickly notice that most items are individually present in

few of the actions in the logs. In fact, 25% (Q1) of the items was interacted just once in the

website, and 75% (Q3) less than 10 times. On the other hand, there is a fraction of items that

34

was clicked frequently, such as the Item ID ‘96924’ with a presence in 1 508 different actions,

nevertheless, from the table shown in the same figure, it can be seen that this high frequency

corresponds to a very small portion of 0.5% to the whole set of actions, and all top-10 most

frequent items in the logs amount to a small percentage of 3.4% actions. That being said, it can

be concluded that the dispersion of the different IDs through the existing actions is not severely

imbalanced.

In contrast, when focusing on actions divided by the users sessions, the diversity of items

IDs throughout each session is, in general, rather reduced. From the 17 992 available sessions,

33% of the sessions have the same item ID throughout the complete sequence of actions, and

45% of the sessions contain, at least, two actions with the exact same item ID.

Figure 4.4: Boxplot showcasing the distribution of the items IDs frequencies in the actions logs.
The table below zooms in the most frequent IDs from the plot and displays additional details.

4.1.2.3 Category component

Each item present in the catalogue derives from a category, which can also derive from an

upper-level parent category. This taxonomy was also provided in a separate file, in a tree format

with 5 different levels of categories. To demonstrate the structure, a simplified tree is pictured

in Figure 4.5. The blue color scheme is used to illustrate the different levels in the tree, going

from darker to lighter blue tones, while going from higher to lower levels. The categories are

35

Figure 4.5: Dataset taxonomy with 5 levels, that displays the relations between the items
(represented by a circle) and the corresponding category on each level (represented by a square).

represented by a square form and the items by grey circles. The root category does not have any

actual categorical representation, it is only integrated to help understand the hierarchy visually.

As already mentioned, the categories identifications are hashed, however, one can consider as

an example in a fashion e-commerce setting, the shopping item ‘necklace’ as being integrated in

the category level 3 ‘jewelry’, which will be integrated in the category level 2 ‘accessories’ that

is also integrated in the super category level 1 ‘women’.

The level 1 categories can have up to four levels of descendants, and an item belongs to a

single category from any of the levels. Consequently, an item can be represented by its formal

category ID and also by the corresponding parent categories IDs from the same lineage. The

only levels that are uniformly represented through all the items are the top two levels, level 1

and level 2. In fact, in level 3, just 88% of the available items have a representation in this

category level. In level 4, 38% and in level 5, only 5% of the items.

The totality of the available 23 329 items can, at least, be represented by both top two levels.

To evaluate the distribution of the number of items included in the categories in these top two

levels, the bar graphs in Figures 4.6 illustrate how the associations are dispersed, where each bin

corresponds to a single category. One can quickly notice how uneven the distribution is: in both

cases there are too many items corresponding to the same category, and other categories with

too few items. In level 1, where there is a smaller set of categories, the items understandably

36

Figure 4.6: Distribution of the amount of items per category, regarding the level 1 and level 2
categories present in the categories catalogue.

concentrate more in each category, but half of the categories hold up individually to a high

amount of more than 1 000 items. In level 2, although the range of categories is much wider,

the items still concentrate in a sub-set of the categories, where a single category can contain up

to 1 075 items, as is the case of the category with ID ‘540’.

On Figure 4.7, the top-10 most frequent categories IDs, from levels 1 and 2, appearing in

the logs are displayed. As it would be expected, these popular categories are mostly the same

ones that also hold a wide range of items from the catalogue. The categories IDs that follow

this correspondence, between the broadest categories from the tables on Figure 4.6 and the most

common categories in the logs (Figure 4.7), are highlighted in blue color in both tables.

Regarding the actions’ distribution throughout the users sessions, the diversity of categories

IDs in each session is nearly non existent. From the 17 992 sessions, 81% have the same category

ID, and when taking into account only the category levels available to all items, the levels 1 and

2, the percentage of sessions having the same categories values is understandably higher, with

83% in regard to level 2 and 93% for level 1.

37

(a) Top-10 frequent categories level 1 (b) Top-10 frequent categories level 2

Figure 4.7: Tables displaying the top most frequent categories IDs appearing on the actions logs.

4.2 Evaluation Metrics

Each sequence modeling task in this work is taken as a classification problem. As mentioned

in Section 3.2, the output probabilities from both the N-th order MC model and any RNN, are

ordered by descending order and the first position in the rearranged catalogue of elements

corresponds to the predicted next-element for the session. Hence, to assess the quality of the

trained model, the predictions made in a separate portion of users sessions, the test sessions, are

evaluated using classification metrics. These metrics measure the amount of predictions that

were correctly and incorrectly classified as being the next-element in the different sessions. The

most intuitive classification metric is the Accuracy, that simply considers a ratio between the

correctly classified test sessions to the total of test sessions instances, as in Equation 4.1.

Accuracy =
correctly classified test sessions

test sessions
(4.1)

The underlying goal of this work is to predict solely the next element in the session, rather

than a set of next elements. Nonetheless, to assess the relevance of the predictions made, the

number of positions to consider in the ordered output catalogue can be expanded, in such manner

that a good classifier model is expected to place the true next-element in the top positions of the

list. To evaluate this ranking approach, rank accuracy metrics Recall@K and MRR are used.

Recall@K =
true next element within top-K output list

test sessions
(4.2)

Recall@K (or R@K), is the ratio between the number of test sessions predictions that con-

tained the true next-element amongst the top-K elements in the output list to the total of test

38

sessions predictions made, as shown in Equation 4.2. This metric does not consider the ranking

of the predicted element, it only takes into account if it is within the top-K set of elements or

not. Whereas, MRR, which stands for Mean Reciprocal Rank, considers the ranking position of

the element in the list. MRR is translated in Equation (4.3), where rank is the position of the

element in the output list from each test session prediction, and N is the amount of test sessions

instances.

MRR =
1

N

N∑
i=1

(
1

ranki

)
(4.3)

Taking into account the e-commerce context in which this work is integrated, the target

element should be amongst the very top of the relevant elements, hence, the K to be used will

not consider a long list of top-elements, and will therefore take the values of 1, 5 and 10. When

using R@1, the metric is equal to the regular Accuracy metric.

4.3 Experimental Evaluation

This section evaluates the performance of all created models based on different carried

experiments. Firstly, Section 4.3.1 demonstrates the preparation of the input data made for

the distinct models’ architectures. Next, with the data fully prepared to be fed to the models,

on Section 4.3.2 the experiments executed, and the results from those experiments are then

discussed in Section 4.3.3.

4.3.1 Dataset Preparation

To train and evaluate any of the models, the whole set of variable-length users sessions was

divided into train and test sets, using a split proportion of 65:35. For hyper-parameters tuning of

the RNN-based models, the train set was also divided into train and validation sets, with a split

proportion of 80:20, where after selecting the hyper-parameter values, the model is re-trained

over the complete train set and assessed in the holdout test set portion of users sessions. The

division was done by assigning randomly different visitors to the different sets, so that sessions

from the same user are not split up. On Table 4.2, one can see the details of the created train

and test sets.

The different models have different requirements for the input sessions, hence the structure

of the training sessions had to be tailored to each of the models used. For the N-th order

39

Train sessions Test sessions

Distinct number of users 74 351 16 241

Distinct number of items 20 321 16 135

Distinct number of categories (any level) 955 905

Distinct number of level 1 categories 20 20

Distinct number of level 2 categories 140 137

Total number of actions 27 250 14 790

Total number of sessions 11 697 6 323

Avg length sessions 2.0 2.0

Table 4.2: Dataset split into train-test sets, with a 65:35 proportion.

Markov chain model, the sessions are divided into fixed-size sequences of N elements. As for

the RNN models, the training and validation sessions are populated using a moving window

throughout each session. The sub-tables from Table 4.3 demonstrate the different sessions

transformations used to train both deep and non-deep learning models. On the fist table, 4.3a,

an example training session is displayed, from which it is transformed into fixed-size sequences

of two elements for a bi-grams model in Table 4.3b. For a tri-grams model, the sample session

would remain unchanged, and for larger N values this sequence would not be considered for the

train set. For an RNN model, in the last Table 4.3c, the sample session is populated with a

moving window of 1 element, which results in the creation of an additional session.

Session Elements’ sequence Next-element

1 [element ID 1, element ID 2] element ID 3

(a) Sample training session.

Session Elements’ sequence Next-element

1 [element ID 1] element ID 2

2 [element ID 2] element ID 3

(b) Sample training session from Table 4.3a, turned into fixed-size sequences for a bi-grams model.

Session Elements’ sequence Next-element

1 [element ID 1] element ID 2

2 [element ID 1, element ID 2] element ID 3

(c) Sample training session from Table 4.3a, populated with a moving window of 1 element for an RNN
model.

Table 4.3: Sample training sessions input transformation for a bi-grams and RNN model.

The details for the resulting train sets for each model are displayed on Table 4.4, naturally

40

Train sessions transformed

2-grams 3-grams 4-grams 5-grams RNN

Total number of actions 31 106 11 568 5 632 3 505 37 113

Total number of sessions 15 553 3 856 1 408 701 15 398

Avg length sessions 2.0 3.0 4.0 5.0 2.4

Table 4.4: Dataset split into train-test sets, with a 65:35 proportion.

the distinct number of users, items and categories prevails the same from Table 4.2, and hence

are not shown in this table. One can see the decreasing difference for the number of available

sequences to train N-th order Markov Chains with larger N values, and on the other hand, for

the RNN model the sessions transformation result in more 2 842 sessions, an increase of 24%

instances in the training set.

To evaluate the tuned models, the total 6 323 variable-length test sessions always remain

unchanged in order to have a fair ground for comparison.

4.3.2 Experimental Methodology

An action is an aggregation of different components, as exemplified in Figure 4.8. In this

work, the proposed problem to predict the next-action after a sequence of actions, is broken

down into individual sequence prediction tasks, as it is pictured in Figure 4.9.

This section defines the experiments executed on the evaluation of the models for each

41

prediction task. The experiments definitions are introduced through three sub-sections. The

first set of experiments, on Section 4.3.2.1, looks at the action’s components as being non-

related to each other, and on a next phase, in Section 4.3.2.2, the existing relations between the

item and the category, as well as between the different categories levels, are taken into account

as contextual information to help on the prediction of the next item and category. The last

section, Section 4.3.2.3, formulates a modified version of the test sessions to evaluate the models

performances under irregular conditions.

The results for each set of experiments are shown in the upcoming Section 4.3.3.

Figure 4.8: Sequence of actions.

Figure 4.9: Sequence of decomposed actions.

4.3.2.1 Next Element Prediction

The available components of an action to be predicted are: the item, the event, and the

category. Taking into account that the dataset is heavily imbalanced in terms of events, as it

was shown on Section 4.1.2.1, with 98% of events being view clicks, this is a component not

worth modeling. Hence, the components to be predicted are the next item and next category.

To that end, the baseline approach presented in Section 3.2.1, the N-th order Markov Chain in

Section 3.2.2 and the RNN approach in Section 3.2.3 are all executed for these two sequence

prediction tasks.

The first set of experiments was made with the prediction of the next category, since it

has a fair amount of distinct elements, ideal to set benchmark results. For that, the sequential

history of categories in a session is taken into account with no regard to any of the ascendants

42

categories’ levels, meaning that any of the models tested for this particular task is set to predict

a category within a vocabulary containing all possible categories from any level. On a next

phase, it was decided to focus on the prediction of a category level available to all items at

the thinnest level possible, which could only be level 2, and for this case, the range of different

categories to consider is much shorter. Lastly, the focus is shifted to the prediction of the next

item ID, which has a substantial larger catalogue of distinct elements to consider.

4.3.2.2 Next Element Prediction using Contextual Information

For the defined sequence prediction tasks, the contextual information coming from the

existing taxonomic relations is now to be integrated in the training and evaluation processes

of the RNN-based models, as it was explained in Sections 3.2.3.1 and 3.2.3.2.

For the prediction of the next category of level 2, the relation between the level 2 and level 1

categories is used. The objective is to guide the model to output a category level 2 that has the

same level 1 category as of the true category of level 2. For the prediction of the next item ID,

the taxonomic relation to be used is between the item and its corresponding category of level 2.

4.3.2.3 Next Element Prediction on Irregular Test Sessions

To test the robustness of the already trained models under irregular circumstances, the

sessions in the test set were altered.

Considering that there is a considerable amount of sessions with repeating elements through

time (Sections 4.1.2.2 and 4.1.2.3), the test sessions being used so far were filtered to include

consecutively different elements from action to action. That said, for the category of level 2

prediction, each test session contains consecutively different categories of level 2, and for the

item ID prediction, different items IDs.

4.3.3 Experimental Results

This section showcases and discusses the results achieved through the execution of the

previously defined experiments on Section 4.3.2.

43

4.3.3.1 Next Category Prediction

Each item belongs to a single category, which can also have up to 4 ascendants categories.

A first objective is to predict the next category, by considering the history of categories in a

session with no regard to the level in which the categories are inserted. The model works with

a vocabulary containing all possible categories values from any level, 1 244 distinct values. The

results of this experience are shown on the left-side of Table 4.5.

From the analysis of the dataset, it was stated that the users often browse in the same

category throughout an entire session. That said, the defined baseline model that predicts, as

the next category, the category from the immediate previous action in the session is expected to

perform well. Given the peculiar structure of the data, the baseline model reaches a high R@1

accuracy of 0.797.

next-category any level prediction next-category level 2 prediction next-item prediction

Baseline model R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

Assign previous value 0.797 0.797 0.797 0.797 0.869 0.869 0.869 0.869 0.350 0.350 0.350 0.350

Statistical models R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

2-grams 0.772 0.898 0.918 0.827 0.860 0.951 0.968 0.900 0.279 0.436 0.456 0.344

3-grams 0.163 0.176 0.177 0.169 0.185 0.200 0.200 0.192 0.098 0.102 0.102 0.099

4-grams 0.048 0.051 0.051 0.049 0.057 0.060 0.060 0.058 0.033 0.033 0.033 0.033

5-grams 0.020 0.021 0.021 0.021 0.023 0.024 0.024 0.023 0.014 0.014 0.014 0.014

Recurrent Neural Networks R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

SimpleRNN 0.780 0.904 0.926 0.835 0.870 0.955 0.973 0.908 0.312 0.445 0.483 0.374

LSTM 0.786 0.908 0.928 0.838 0.874 0.957 0.975 0.911 0.320 0.453 0.500 0.389

mLSTM 0.785 0.908 0.928 0.838 0.874 0.957 0.975 0.911 0.321 0.460 0.500 0.389

GRU 0.783 0.908 0.929 0.838 0.875 0.957 0.975 0.911 0.322 0.455 0.499 0.385

Table 4.5: Evaluation on the prediction of the attributes of the next-action: category of any
level, category of level 2 and item

The N-th order Markov chain model considers the frequency of co-occurrence of sequences

of elements, in order to infer which element might follow. Once again, due to the nature of the

data with most of the sessions having a length of two actions and where these have frequently

the same values, the model excels particularly well when using the frequency of pairs of actions -

bi-grams - to infer about the next transition. Naturally, when increasing the look-back window,

the co-occurrence of longer sequences becomes scarcer, and the performance of the MC with

higher orders decreases.

Each type of Recurrent Neural Network - RNN, LSTM, mLSTM, GRU - was trained under

the same circumstances for comparison purposes. The chosen values for the architecture’s pa-

rameters are displayed in Table 4.6. Each model was trained over 100 epochs with 70 neurons,

and with Adam optimizer (Kingma and Ba, 2017). For this sequence modeling case, as one can

tell from the results above, the performances do not diverge significantly between the different

types of RNN-based networks used.

44

Nr. Neurons (RNN layer) Nr. Training Epochs Batch Size Optimizer Learning Rate Dropout Rate

70 100 16 Adam 0.050 0

Table 4.6: Parameters values for any RNN model, for next category prediction.

4.3.3.2 Next Category Level 2 Prediction

In this experiment, the aim is to predict the next level 2 category in a session. All models

were trained with the same settings as before (Table 4.6), yet considering the history of categories

from level 2, with a vocabulary of 141 distinct categories. The results of this experience are shown

on the middle-side of Table 4.5.

Since now it is strictly being considered a higher and also broader level in the hierarchy of

categories, it is expected that the results are equal or better than previously - there are categories

that were being considered from levels 3, 4 or 5, that are now considered as being from the same

category of level 2, which leads to more actions having the same category value. As expected,

the performance of the baseline model is even better, and just as previously, the Markov chain

executes well when considering bi-grams.

Any of the RNN types used was trained with the same hyperparameters values from Table

4.6. Naturally, any of these models performs better than before, given that the number of distinct

values is much smaller, and in addition, as it was stated in Section 4.1.2.3, when focusing on a

higher level in the taxonomy tree the frequency of repeated values in a session is higher, which

simplifies the data to be learned. From the three RNN models used, the GRU proved to perform

slightly better and was therefore used in further experiments.

4.3.3.3 Next Category Level 2 Prediction using Contextual Information

In an attempt to help on the prediction of the category level 2, the complementary informa-

tion coming from a higher category level was thought to be used as an advantage. The objective

is to influence the level 2 prediction towards a value within the same family as the expected

category level 2 - the categories are considered as being part of the same family group if these

share the same level 1 parent. This contextual information is incorporated as shown in the

defined RNN architecture in Section 3.2.3. Through the modified loss function, introduced in

Equation 3.3, the parents of the predicted and expected categories of level 2 are compared, and

when equal, a penalization value p is applied to the categorical cross-entropy result, and when

not equal, the categorical cross-entropy result remains unchanged.

45

Table 4.7 displays the results of a GRU model using the different p values, starting from p

value of 1.0 that is equivalent to a GRU with a regular categorical cross-entropy loss function.

One can see that the metrics results, for the different penalizations used, do not differ greatly

from each other, but the p value that achieves slightly the best results for this prediction task

is of 0.1, and is therefore the value to be used in the modified loss function for the GRU model.

next-category level 2 prediction next-item prediction

penalization value p R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

p = 1.0 0.875 0.957 0.975 0.911 0.322 0.455 0.499 0.385

p = 0.5 0.875 0.957 0.975 0.911 0.321 0.455 0.499 0.385

p = 0.1 0.875 0.958 0.978 0.912 0.321 0.456 0.502 0.386

p = 0.01 0.874 0.957 0.976 0.911 0.321 0.457 0.502 0.388

Table 4.7: GRU using the modified loss function with different penalization values.

With the inclusion of this new loss function, it was possible to assess that the model is

in most cases benefiting the categories belonging to the same group of the expected category

level 2, by detecting in each output ranking-list that its top positions are mainly constituted by

sibling categories. To demonstrate, a sequence from a random visitor is fed to the model and

the output ranking lists using both the regular loss function and the modified loss function, are

depicted in Figure 4.10a and Figure 4.10b, respectively. The expected output has its output

position highlighted with green color, and the positions of the categories that belong to the same

family as the expected value are highlighted in blue color.

On Figure 4.10b, although the output list contains elements that belong to other family

groups, the higher ranked positions are exclusively composed by categories that have the same

parent as of the expected value. Whereas when using the regular categorical cross-entropy loss

function, in Figure 4.10a, the output list can contain a similar range of categories, but its top

positions are not entirely made up by categories from the same family group as the expected

category. Comparing both ‘GRU’ and ‘GRU + modified loss’ results in Table 4.8, the difference

is not that notorious. In fact, the number of times that the model hits and misses the expected

category value is very much similar, and even when expanding the top-positions to consider -

next-category level 2 prediction next-item prediction

Recurrent Neural Networks R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

GRU 0.875 0.957 0.975 0.911 0.322 0.455 0.499 0.385

GRU + modified loss 0.875 0.958 0.978 0.912 0.321 0.457 0.502 0.388

GRU + filtered group scores 0.917 0.983 0.997 0.938 0.350 0.512 0.592 0.395

GRU + modified loss + filtered group scores 0.924 0.991 0.999 0.952 0.359 0.522 0.594 0.438

Table 4.8: Evaluation of the GRU models that use side information to predict the next category
level 2 and item.

46

top-5 and top-10 -, the results are not much improved.

As a further experiment using the provided relational information, the output ranking list,

containing the whole catalogue of categories level 2, can be narrowed down in order to include

solely the categories that do share the same parent level 1, as the one from the expected category.

This way, noisy predictions with categories values from other groups are forcibly left out from

the output catalogue list. This filtering process will hereafter be referred to as filtered group

scores step.

(a) Output ranking list .

(b) Output ranking list with the custom loss function.

Figure 4.10: Difference between output lists using different loss functions.

The output ranking lists for the same example session would now be as in Figure 4.11a, when

using the regular cross-entropy loss function, and as in Figure 4.11b, when using the modified

loss function version. As it can be seen, in both cases, after applying the filtered group scores

step, the output lists now contain only elements belonging to the same family group, since there

are only blue color positions and no positions marked in white.

By forcibly excluding any non-related categories, it is assured that the list exclusively com-

prises categories within the same family. As one can tell from the results shown on Table 4.8, the

GRU performance using the combination of both steps - ‘GRU + modified loss + filtered group

scores’ - upgrades the model’s performance, especially when considering the very top values with

R@1 and R@5, by having about a 5% increase in scores. Hence, the last model created is the

best tailored to the problem of predicting the next level 2 category.

4.3.3.4 Next Category Level 2 Prediction on Irregular Test Sessions

In general, it can be said that all models tested so far achieve high scores for the category

of level 2 prediction, which may be due to the over simplified distribution of categories values

in the dataset sessions. Hence, to test if the models created can still perform well enough

in irregular conditions, a set of data was put apart, where actions repeatedly with the same

47

(a) Filtered group scores of the output ranking list.

(b) Filtered group scores of the output ranking list with the custom loss function.

Figure 4.11: Difference between output lists using the filtered group scores step and different
loss functions.

next-category level 2 prediction next-item prediction

Baseline Model R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

Assign previous value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Statistical models R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

2-grams 0.049 0.655 0.781 0.314 0.339 0.536 0.561 0.420

3-grams 0.016 0.023 0.023 0.019 0.018 0.018 0.018 0.018

4-grams 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

5-grams 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000

Recurrent Neural Networks R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

GRU 0.039 0.534 0.639 0.272 0.103 0.262 0.309 0.175

GRU + modified loss + filtered group scores 0.278 0.861 0.987 0.519 0.143 0.347 0.429 0.242

Table 4.9: Evaluation on the prediction of the next category level 2 and item, on test sessions
with consecutive distinct values.

categories were taken out from the sessions. This step resulted in a high number of single-action

sessions, which had to be dropped from the set, and consequently the new test set has only 712

sessions. Nevertheless, it is still considered to be enough data to verify the applicability of the

created models. Table 4.9 showcases the results for the irregular set of data. Evidently, the

simple baseline model is not suitable for this experiment.

In this sub-set of sequences, looking at the results from R@1 and MRR metrics, the models

do not output the true category value in the highest ranks, nevertheless when expanding the

top-list to consider, the results are satisfactory for both statistical and simple GRU models. The

GRU that uses the taxonomic relations between the categories of level 2 and level 1, notoriously

outperfoms all the others, reaching similar results to the previous experience made when using

the complete dataset on Section 4.3.3.2, in regard to the R@5 and R@10 results, which leads to

the conclusion that using the side information provided by the different grouping of categories

is indeed advantageous.

48

4.3.3.5 Next Item Prediction

The same models used for category prediction are applied to the item ID prediction task.

The first experiment aims to predict the next item ID and the results are shown on the right-side

of Table 4.5. As one can notice, in general, the scores are meaningfully lower in comparison

to the prediction of the category. There are a couple of reasons that may explain the poorer

performance: the catalogue of items is much larger, with 23 329 distinct values, and the frequency

of repeated items is not as significant as the frequency of repeated categories in the sessions.

Nonetheless, as stated in the data analysis Section 4.1.2.2, there is still a considerable amount of

sessions where the items are the same throughout the sequence, and for that reason, the baseline

model that gives out the next item inline as being the same as previously is applicable to this

task as well. In fact, comparing to all the other models, the baseline model reaches the best

R@1 result with 0.350.

Considering the N-th order Markov chain, it proves to work better when using short-distance

dependencies, as with bi-grams. Since this is a purely statistical model that is significantly

dependant on the train set corpus, it is unable to generalize, and so when used with unseen

bigger sequences of elements it has demonstrated to be incapable of giving an oriented prediction.

Going through the whole set of results, the n-grams models have the lowest outcomes.

Nr. Neurons (RNN layer) Nr. Training Epochs Batch Size Optimizer Learning Rate Dropout Rate

10 160 70 16 Adam 0.001 0.4

Table 4.10: Parameters values for any RNN model, for next item prediction.

The tuned RNN-based models were trained with the specified paratemers values in Table

4.10. Since the volume of distinct elements to consider is much higher in this task, the optional

embedding layer was added to the network’s architecture, and the number of neurons to train

was also greatly increased with a total of half of the number of distinct items IDs. In addition,

the neural networks for this task benefit from a dropout layer with a rate of 0.4 prior to the

forecasting of the prediction, given that by dropping some neurons from the training phase, the

gap between the training and validation results is shorter when using this specific dropout rate

value. In the end, the different types of networks do not present a critical difference between each

other in terms of results, in any case, the RNN type to be considered in further experiences is also

the GRU, since it presents the best results and is simpler to train (there are fewer computations

in a GRU than in an LSTM).

49

4.3.3.6 Next Item Prediction using Contextual Information

On a next experiment, the hierarchical relation between an item and its category level 2 was

used, just as in the category prediction when using the hierarchical relation between categories

level 1 and 2. In this case, a prediction can be conducted towards an item that belongs to

the same category as the expected item. The GRU model is now set to use this contextual

information with the same mechanisms as before, using a modified version of the loss function

as seen in Equation 3.3, with the best penalization value p of 0.01 as seen on Table 4.7, and by

dropping out items belonging to other family groups in the output catalogue with the filtered

group scores step. From the results on Table 4.8, the best performing GRU version uses these

two additional steps.

4.3.3.7 Next Item Prediction on Irregular Test Sessions

For this experiment, the actions consecutively with the same item ID are taken out from

the sessions, which results in 3 134 testing sequences. As one can tell from the right-side of

Table 4.9, the results from the statistical models do not differ greatly from the ones on the

first item prediction experience on Table 4.5. This may be due to the fact that items repetitions

throughout consecutive actions do not occur that often, thus the resulting test set does not differ

significantly from before, meaning that the amount of pairs transitions ought to be similar, and

therefore the 2-grams model presents robust results. On the other hand, the RNN-based model

drops its performance by half. It seems that the model may be too attached to the training data

and even the slightest modification to the testing data deviates the performance. Nevertheless,

when further analysing the results, the difference between the ‘GRU + modified loss + filtered

group scores’ and the ‘GRU’, is quite notorious, given that although there are no repeated items,

the taxonomic relations between the item and category still exist and naturally impact positively

the prediction of an item in the same way.

4.3.4 Overview

This chapter presented the experimental evaluation carried out to correctly test the perfor-

mances of the different models.

Initially, Section 4.1 introduces the e-commerce actions logs dataset used for the imple-

mented models. In Section 4.1.1, the set of actions is processed and organized through users

50

sessions, to be used in the implemented session-based models. In Section 4.1.2, a statistical

analysis, e.g. values distribution, is done to each action component.

Section 4.2 presents the different metrics that were used to evaluate the designed models

between each other.

Section 4.3 evaluates the performance of all models based on different carried experiments:

Section 4.3.1 starts by demonstrating the preparation of the input data for the training of each

model. Next, the experiments to be executed are defined over Section 4.3.2, and later on, in

Section 4.3.3, the outlined experiments are performed and the results are explored and discussed.

For each action component prediction task, the same set of models was tested, which allowed

to conclude that the architecture that yielded the most interesting results, for all prediction

tasks, was the GRU able to incorporate additional contextual information in the training and

evaluation processes. Nevertheless, the simpler statistical models proved to be particularly

robust for the next item ID prediction task.

51

52

5Conclusions
The underlying aim for this work was to predict the next action a customer is most likely

to take after a sequence of actions in a browsing session from an e-commerce website. To that

end, distinct approaches for the same sequence prediction problem were explored and compared

throughout this dissertation work. This chapter concludes the dissertation by presenting in Sec-

tion 5.1 a quick overview of the main contributions of this work, and in Section 5.2 a description

of some possible ideas to extend and possibly improve the results of this thesis.

5.1 Contributions

This work decomposes an action and predicts every component separately, rather than fo-

cusing solely on the prediction of the central component of the action, the item. Considering

that the catalogue of possible values to consider differs immensely between the different com-

ponents, this was an interesting way to study and understand which model variations bring the

most significant improvements to each action’s component prediction task.

To that end, a wide range of models architectures was tested, from non-deep to deep learning

techniques, unlike in most recent scientific works in the domain that already benchmark their

results based on deep learning methods (Wang et al., 2019). In this work, statistical models were

initially explored, namely with N-th order Markov Chain (MC), and for a more sophisticated

deep-learning approach, Recurrent Neural Networks (RNN) were used. The limitations of using

a regular RNN layer were also reviewed, and consequently, variants of the RNN, as the GRU

(Cho et al., 2014) and LSTM (Hochreiter and Schmidhuber, 1997) were tested, as well as a

state-of-the-art LSTM version, the multiplicative LSTM (Krause et al., 2016). To fairly assess

the performance of the diverse approaches taken, the same experiments were executed for each

created model. In fact, the simple statistical approach proved to perform similarly to more

modern deep learning approaches. Furthermore, when testing the set of RNN-based models,

a significant difference between the use of a simple RNN to other RNN versions was detected,

however, between the three more evolved RNN architectures the difference was not notorious.

In a regular e-commerce website, the clickstream logs along with other provided details

about the catalogue of items in the website, can be used to derive insightful information. In this

work, the way the action’s components relate between each other hierarchically was found as

relevant, and used as potential advantage in the RNN-based model. This contextual information

was incorporated in both training and evaluation processes of the network, and this version of

an RNN-based model proved to outperform all others by an interesting margin.

5.2 Future Work

For future work, it would be interesting to extend this study in other directions, by trying

out new ideas and possibly enhancing the obtained results. A first step for future work would be

to join all action’s components predictions into a single model that could predict the complete

next action. Currently, there are different models optimized to the prediction of a specific action

component, thus, it would be interesting to be able to predict each component in parallel, and

just as in the initial attempt of a p-RNN (Hidasi et al., 2016), the model could simply return

all hidden states from the different created networks. This could result in a rather heavy model

to train, thus the next step would be to study different training strategies to come up with a

lighter version.

The following ideas focus on the prediction of the next action in a more personalized way

for each website visitor. In this work, only session-based models are used, ignoring long-term

interests coming from previous sessions of the users, since it is thought to fit better a real-

world setting where the consumer behaviour is rapidly changing. Nevertheless, it would be

interesting to see the impact of using both long and short term interests of the visitors, to make

personalized recommendations to each user. To that end, a similar model to an H-RNN presented

by Quadrana et al. (2017) could be applied to the given dataset. Two distinct networks would

be used, one that models user’s activity across sessions and other that models the sessions. For a

returning user, in a new session, the model should take the last hidden state from both networks,

in order to predict a good initialization for a new user session. By propagating the user history

to help make new predictions, this should result in more personalized recommendations for each

specific user. Furthermore, if a new goal for this work would also be to recommend a next action

at the start of a brand new session, a potential cold-start problem would also be tackled with

this new approach.

In addition, a limitation to bear in mind in e-commerce settings is the heterogeneity of items

popularity Resnick and Varian (1997), which is not being specifically modeled in this work. As

54

stated in Section 4.1.2.2, the items popularity is not severely imbalanced, however, in terms of

items’ categories, there are certain categories that appear much more frequently in history than

others. That being said, attention mechanisms (Vaswani et al., 2017) could be used to highlight

certain categories, just as in the work presented by Wang et al. (2020), where depending on the

user and the time of the year, a different emphasis is given to certain elements. This is a relevant

mechanism since different dates can have different impact from user to user, such as the user’s

birthday.

55

56

Bibliography

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166.

Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language

modeling. Article No. csla.1999.0128.

Ching, W. K., Fung, E. S., and Ng, M. K. (2004). Higher-order markov chain models for

categorical data sequence. DOI 10.1002/nav.20017.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and

Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078.

Cui, L., Xie, X., and Shen, Z. (2018). Prediction task guided representation learning of medical

codes in ehr. J Biomed Inform.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and de Freitas, N. (2013). Predicting parameters

in deep learning. arXiv preprint arXiv:1306.0543.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2).

Fang, H., Zhang, D., Shu, Y., and Guo, G. (2019). Deep learning for sequential recommendation:

Algorithms, influential factors, and evaluations. arXiv preprint arXiv:1905.01997.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.

deeplearningbook.org.

Hancock, J. T. and Khoshgoftaar, T. M. (2020). Survey on categorical data for neural networks.

J Big Data 7, 28.

He, Q., Jiang, D., Liao, Z., Hoi, S. C. H., Chang, K., Li, E.-P., , and Li, H. (2009). Web query

recommendation via sequential query prediction. ICDE ’09. 1443–1454.

Hidasi, B. and Karatzoglou, A. (2018). Recurrent neural networks with top-k gains for session-

based recommendations. arXiv preprint arXiv:1702.03847.

57

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2015). Session-based recommendations

with recurrent neural networks. arXiv preprint arXiv:511.06939.

Hidasi, B., Quadrana, M., Karatzoglou, A., and Tikk, D. (2016). Parallel recurrent neural

network architectures for feature-rich session-based recommendations. RecSys ’16 Proceedings

of the 10th ACM Conference on Recommender Systems Pages 241-248.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhubere, J. (2001). Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies. A field guide to dynamical recurrent

neural networks.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8):1735–1780.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

arXiv:1412.6980v9.

Krause, B., Lu, L., Murray, I., and Renals, S. (2016). Multiplicative lstm for sequence modelling.

arXiv preprint arXiv:1609.07959.

Lin, K. H.-Y., Wang, C.-J., and Chen, H.-H. (2011). Predicting next search actions with search

engine query logs. 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and

Intelligent Agent Technology.

Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations: Item-to-item

collaborative filtering.

Ludewig, M. and Jannach, D. (2018). Evaluation of session-based recommendation algorithms.

arXiv preprint arXiv:1803.09587.

Lv, Y., Zhuang, L., and Luo, P. (2019). Neighborhood-enhanced and time-aware model for

session-based recommendation. arXiv:1909.11252.

Markov, A. (2006). Extension of the law of large numbers to quantities, depending on each other

(1906). reprint. Journal Électronique d’Histoire des Probabilités et de la Statistique [electronic

only], 2(1b):Article 10, 12 p., electronic only–Article 10, 12 p., electronic only.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4):115–133.

Mcfee, B. and Lanckriet, G. (2011). The natural language of playlists. ISMIR ’11. 537–541.

58

Ning, X., Desrosiers, C., and Karypis, G. (2015). A comprehensive survey of neighborhood-based

recommendation methods. Recommender systems handbook. Springer, 37–76.

Ning, X. and Karypis, G. (2011). Slim: Sparse linear methods for top-n recommender systems.

11th IEEE International Conference on Data Mining. IEEE, 497–506.

Quadrana, M., Cremonesi, P., and Jannach, D. (2018). Sequence-aware recommender systems.

arXiv preprint arXiv:1802.08452.

Quadrana, M., Karatzoglou, A., Hidasi, B., and Cremonesi, P. (2017). Personalizing

session-based recommendations with hierarchical recurrent neural networks. arXiv preprint

arXiv:1706.04148.

Resnick, P. and Varian, H. R. (1997). Recommender systems. Commun. ACM, 40(3):56–58.

Rosenblatt, F. (1957). The perceptron—a perceiving and recognizing automaton. Report 85-

460-1. Cornell Aeronautical Laboratory.

Rossi, R. J. (2018). Mathematical Statistics : An Introduction to Likelihood Based Inference.

Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross-Entropy Method. Springer, New York,

NY.

Ruder, S. (2017). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative filtering recom-

mender systems.

Sheil, H., Rana, O., and Reilly, R. (2018). Predicting purchasing intent: Automatic feature

learning using recurrent neural networks. arXiv:1807.08207v1.

Smirnova, E. (2018). Action-conditional sequence modeling for recommendation. arXiv preprint

arXiv:1809.03291.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Lukasz Kaiser, and

Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing

systems. 5998–6008.

Wang, J., Caverlee, J., Louca, R., Hu, D., Cellier, C., and Hong, L. (2020). Time to shop

for valentine’s day: Shopping occasions and sequential recommendation in e-commerce. The

Thirteenth ACM International Conference on Web Search and Data Mining (WSDM ’20),

February 3–7, 2020, Houston, TX, USA.

59

Wang, S., Cao, L., and Wang, Y. (2019). A survey on session-based recommender systems.

arXiv preprint arXiv:1902.04864.

Xu, C., Zhao, P., Liu, Y., Sheng, V. S., Xu, J., Zhuang, F., Fang, J., and Zhou, X. (2019).

Graph contextualized self-attention network for session-based recommendation. Proceedings

of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19).

60

	Introduction
	Motivation
	Thesis Proposal
	Contributions
	Structure of the Document

	Concepts and Related Work
	Fundamental Concepts
	Markov Chain
	Neural Networks for Sequence Modeling

	Related Work
	Overview

	The Proposed Approach
	Classification Problem
	Implemented Models
	Baseline Approach
	Statistical Approach
	Recurrent Neural Networks Approach

	Overview

	Experimental Methodology and Results
	Dataset
	Sessions Organization
	Characterization of Action Components

	Evaluation Metrics
	Experimental Evaluation
	Dataset Preparation
	Experimental Methodology
	Experimental Results
	Overview

	Conclusions
	Contributions
	Future Work

	Bibliography

