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Resumo

O Transport Layer Security (TLS) é um dos protocolos de comunicação segura mais utilizados no

mundo. Através dele, é posśıvel criar canais de comunicação que fornecem serviços de segurança

importantes, assim como confidencialidade, integridade, autenticação, estabelecimento de chave

e perfect forward secrecy. Os serviços são implementados através do uso de algoritmos definidos

em ciphersuites TLS. Executar o protocolo TLS requer muitos recursos devido à natureza das

suas operações, tornando-o impróprio para dispositivos de Internet of Things (IoT). Contudo, é

posśıvel seleccionar que algoritmos irão ser utilizados e, consequentemente, que serviços irão ser

fornecidos. Caso seja configurado correctamente, o TLS pode ser utilizado em ambientes IoT

constrangidos de forma adequada. Este trabalho pretende criar uma ferramenta que permitirá

aos utilizadores seleccionar configurações TLS apropriadas, possibilitando a execução do TLS nos

seus dispositivos e a optimização do mesmo. Esta ferramenta utiliza a biblioteca Mbed TLS como

objecto de estudo, contendo uma extensa análise desta biblioteca. Esta ferramenta permitirá

que os utilizadores adicionem métricas de custo e utilizem várias ferramentas para realizar as

medições. Esta ferramenta considera métricas básicas, assim como o tempo de execução e

o número de ciclos CPU. Esta ferramenta permitirá o uso de implementações de algoritmos

alternativas para optimizar ainda mais o protocolo TLS. No final, as capacidades da ferramenta

são testadas ao utiliza-lo para analisar a performance do protocolo Handshake e o impacto de

utilizar uma implementação do AES alternativa que utiliza o conjunto de instruções AES-NI.

Palavras-chave: TLS, SSL, Mbed TLS, IoT, Performance, Serviços de Segurança
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Abstract

Transport Layer Security (TLS) is one of the most used communication security protocols in

the world. Through its use, it is possible to create a communication channel that provides

important security services, such as confidentiality, integrity, authentication, key establishment

and Perfect Forward Secrecy (PFS). The services are implemented through the use of algorithms

defined in TLS ciphersuites. Executing the TLS protocol requires lots of resources due to the

nature of its operations, making it unsuited for Internet of Things (IoT) devices. However, it

is possible to select the algorithms that will be used and thus the services will be provided.

If configured properly, TLS can even be utilized in constrained IoT environments. This work

aims to create a tool that will allow its users to select proper TLS configurations, enabling their

devices to execute TLS and optimize it. This tool will make use of the Mbed TLS library as

its study target, thus an extensive analysis of this library is present in this work. This tool will

allow its users to add cost metrics and use various tools to perform the measurements. This

tool will implement basic metrics, such as execution time and the number of CPU cycles. This

tool will allow the use of alternate algorithms implementations to further optimize the TLS

protocol. In the end, the capabilities of the tool will be tested, by analysing the performance of

the Handshake protocol and the impact of using an alternate AES implementation, that makes

use of the AES-NI instruction set.

Keywords: TLS, SSL, Mbed TLS, IoT, Performance, Security Services
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Chapter 1

Introduction

This chapter contains a small introduction to the topics that will be covered in this project

and establishes the main issue that is trying to be solved. It also includes the requirements

and objectives of the tool that was developed to solve the main issue, as well as the major

contributions provided by this project.

1.1 Motivation

The Internet of Things (IoT) is a system composed of computing devices, as well as mechanical

and digital machines, that are connected with each other. Each device or machine has a unique

identifier and the ability to transfer data over a network. These devices or machines are usually

referred to as IoT devices.

Nowadays, the use of IoT devices is becoming more common, since they can be used to

perform a wide variety of tasks. There are many types of IoT devices, such as wireless sensors,

software, actuators, and computers. They can be embedded in various environments, such as

mobile devices, industrial equipment, environmental sensors, or medical devices, to perform

those tasks. IoT devices also play an important role in the concept and execution of smart home

technologies, that simply improve the life quality of its user.

Since IoT devices are connected to a network, they are susceptible to various attacks. These

attacks can lead to information theft or loss or corruption of critical data, precluding the correct

working of a device. Unsecured IoT devices can also be used as a backdoor into a secure network.

As such, secure communication protocols were created with the intent of securing commutation

channels and preventing such things from happening.

TLS, or Transport Layer Security, is one of those protocols. Currently, it is used in many

applications, such as web browsing, email, instant messaging, and voice over IP, to secure com-
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munication. Although effective if used properly, TLS requires the execution of many heavy and

costly operations to serve its purpose.

IoT devices are usually built to be portable and simple to use, as such they can be composed

of specific hardware components, that provide the desired functionality but limit the resources

available to the device. Manufacturers also need to consider costs for the mass production of

those devices and can opt for the use of cheaper and, in turn, weaker components, further

constraining the resources available to the devices.

To be able to use TLS, IoT devices usually must compromise and choose between having

weaker security to provide the desired level of performance or having a worse performance to

provide the desired level of security.

Nevertheless, it is still possible to achieve a desirable trade-off between security and per-

formance. This is done by efficiently using the resources available to a device and by carefully

selecting the configurations that the TLS session will use.

With this idea in mind, this work will create a tool that can provide the desired trade-off

between security and performance and enable the use of safer and/or more efficient TLS sessions,

by selecting the best available TLS configurations. The tool will also support alternate algorithm

implementations that take advantage of hardware acceleration techniques, such as the use of the

AES-NI instruction set in Intel and AMD processors.

1.2 Objectives

At the end of this work, it must be implemented a tool that creates a list of possible TLS

configurations for a device and then selects the best set of configurations from that list.

The implementation of this tool must also respect the following requirements:

• The tool should take advantage of all the available cryptographic mechanisms provided by

the device that is being evaluated

• The tool must provide secure configurations and take into account the specifications and

limitations of the target device

• The tool must select the configuration that best provides the desired trade-off between

security and performance

• The tool must provide mechanisms that enable the evaluation of each implementation

2



1.3 Main Contributions

In this work, a tool was created that allows its users to get a detailed analysis of all phases of

the TLS protocol. This tool will create a list of possible TLS configurations that can be used

by a given device.

The analysis given by the tool consists of a breakdown of the performance of the algorithms

used during TLS sessions, as well as the security services provided in the session.

The tool provides a dynamic performance analysis as it provides an interface that allows new

metrics to be easily integrated and dynamically choosing which ones to use.

This work contains an extensive analysis of the TLS implementation provided by the Mbed

TLS 2.16.5 library, which was used as a research target since it is one of the most popular TLS

implementation libraries used in embedded systems.

This work demonstrates the capabilities of the developed tool by using it to analyse the

performance of the TLS protocol in two different scenarios.

This work also demonstrates the benefits of integrating hardware acceleration techniques,

such as the use of the AES-NI instruction set, to optimize the performance of the TLS session.
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Chapter 2

Background

This section introduces cryptography and how its applications can be divided into security

services. There is also an overall explanation of those protocols and a more in-depth analysis of

the TLS protocol. This analysis focuses mainly on version 1.2 of the protocol and some more

details on many aspects of the protocol. Finally, there is an overview of computing platforms

and the inner workings of the AES-NI instruction set.

2.1 Cryptography and Security Services

Cryptography is the practice and study of techniques for securing communication from third

parties, which involves the creation and analysis of protocols that accomplish this objective.

Cryptography can be used for many purposes, such as verifying authorization access or

permissions to modify information [1]. To better group these services, cryptography can be

divided into security services, each with its own purpose. These services are confidentiality,

integrity, authentication, and non-repudiation.

Confidentiality is used to hide the content of the information from all, except the entities

allowed to access it. Typically, confidentiality is assured through ciphering information using

cryptographic algorithms and keys. This process will be better explained later in this section.

Integrity is used to preserve the consistency of the information and to prevent unauthorized

modifications to it. Cryptographic hash functions are used to achieve this service. Hash functions

are one-way functions that generate a fixed dimension value called hash, based on the inputted

texts. They can be used by comparing the hash contained in a message and the hash computed

from that message on the receiver end, making it possible to detect if the message was altered.

Hash functions must follow the following properties:

• Pre-image resistance: Given a hash value h it should be difficult to find any message m

5



such that h = hash(m);

• Second pre-image resistance: Given an input m1, it should be difficult to find a different

input m2 such that hash(m1) = hash(m2);

• Collision resistance: It should be difficult to find two different messages m1 and m2 such

that hash(m1) = hash(m2).

Authentication assures the identity of the sender or the origin of a received message. To

assure authentication, MACs (Message Authentication Codes) are used. MACs can be created

by hashing a message to get a digest and then ciphering that digest using a symmetric cipher

algorithm.

Finally, Non-repudiation is a service that prevents an entity from denying its previous com-

mitments or actions. Non-repudiation is achieved using digital signatures. Digital signatures are

very similar to MACs but instead of using symmetric ciphering, they use asymmetric ciphering.

This means that the sender has a secret key that is only possessed by him. By using that key

to sign messages, he cannot refute his ownership over those messages.

As mentioned previously, confidentiality is achieved using cryptographic algorithms and keys.

Starting with the algorithms, they are used to cipher plaintext into ciphertext and decipher

ciphertext into plaintext and can either be symmetric or asymmetric.

A symmetrical cipher algorithm only uses one key, preferably private, for ciphering and

deciphering information, which means that 2 entities use the same key when communicating.

An asymmetrical cipher algorithm uses a pair of keys. One of those keys is private, while the

other is public. If one key was used to cipher a message, the other one must be used to decipher

it. For 2 entities to communicate, each must have its own key pair and the public key of the

other party. The sender ciphers the message using the public key of the receiver and the receiver

deciphers the message using its own private key.

Symmetrical ciphers can also be classified as stream ciphers or block ciphers. Stream ciphers

generate a keystream, from the key, that is then combined with the plaintext, byte by byte, to

create the ciphertext. In block ciphers, the plaintext is grouped into blocks with a fixed size (64,

128, etc bits), and the blocks are then ciphered one at a time. Smaller amounts of data can be

padded onto the block, to assure that it has the pretended size.

To cipher data that does not fit in a single block, cipher modes were created [2]. Each cipher

mode describes how to repeatedly apply a block cipher using a different method. Some of the

modes are ECB (Electronic CodeBook), CBC (Cipher Block Chaining), OFB (Output Feedback

mode), and CTR (CounTeR mode).
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In ECB mode, the data is divided into blocks and each block is encrypted separately. In

CBC mode, each block of plaintext is XORed with the previous ciphertext block before being

ciphered. This way, each ciphertext block depends on all the previously processed plaintext

blocks. To assure the uniqueness of the ciphertext, an IV (Initialization Vector) must be used

when ciphering the first block. The OFB mode turns a block cipher into a stream cipher. It

generates keystream blocks, from an IV, which are then XORed with the plaintext blocks to get

the ciphertext. Finally, CTR mode, like OFB, also turns a block cipher into a stream cipher.

It generates the next keystream block by ciphering successive values given by a function. This

function can simply be a regular counter that increments its value by one.

There is also a hybrid ciphering method, that uses both symmetric ciphering and asymmetric

ciphering. It works by sharing a key using an asymmetric cipher, and, from there on, symmetric

ciphering is applied using that key. The shared key can also be called a session key.

Cryptographic algorithms take keys as input to perform their operations. These keys are a

piece of information that determines the functional output of the algorithm. Keys should be

generated using a truly random key generator that is cryptographically strong. The key size

depends on the algorithm it will be used on, as such, keys can have various sizes. 128-bit keys

are commonly considered strong.

As mentioned previously, when using asymmetric ciphers, one of the keys is public, but that

does not mean its distribution is not a challenge. The sender needs to be sure that it is using the

public key of the receiver when communicating, else the message can never get to the receiver or

the sender can even be tricked into communicating with a third party. To address this challenge,

public key certificates and certification authorities were created.

Public key certificates are public documents used to prove ownership over a public key.

These certificates contain information regarding the key, the identity of its owner, and the

digital signature of a certification entity. The certificate receiver can validate the certificate

signature using the public key of the certification authority. Certification authorities are official

organizations that manage certificates and CRLs (Certificates Revocation Lists). They also

define policies and mechanisms for the generation and distribution of certificates. If an entity

trusts in the certificate authority and the signature is valid, then he can trust the certified public

key.

2.2 Security Protocols

A security protocol is a sequence of operations that ensure the protection of data. When used

with a communication protocol, it provides secure delivery of data between 2 entities. These
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protocols must incorporate some of the security services described in the previous section along

with other aspects, such as:

• Key agreement or establishment

• Entity authentication

• Symmetric ciphers and message authentication

• Secured application-level data transport

• Non-repudiation methods

• Secret sharing methods

• Secure multi-party computation

There are various security protocols, such as IPsec, Kerberos, SSH, and TLS, each with its

purposes.

IPsec, or Internet Protocol Security, is a secure network protocol that protects all IP traffic

between machines. It provides confidentiality and integrity to the packets of data and is currently

used in VPNs.

Kerberos is an authentication protocol that works by giving tickets to network nodes, allowing

them to communicate over a non-secure network by proving their identity to one another in a

secure manner. It is primarily aimed at client-server models and provides mutual authentication,

as well as eavesdropping and replay attack protection.

SSH, or Secure Shell, is a secure communication application and protocol that works over

TCP/IP. It establishes secure remote sessions and multiplexes other information flows over a

secure session. It provides confidentiality and integrity of the communication, key distribution,

and authentication of the communicating parties. The secure channel is provided using client-

server architecture, connecting an SSH client to an SSH server.

TLS, or Transport Layer Security, is a communication protocol that operates over TCP/IP

and manages secure sessions. Like SSH, TLS also provides confidentiality and integrity of the

communication, key distribution, and authentication of the communicating parties. It also uses

a client-server architecture.
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2.3 TLS

2.3.1 General Overview

As mentioned previously, TLS is a communication protocol that provides secure communication

over computer networks. The protocol is comprised of the handshake protocol and the record

protocol. Figure 2.1 shows the establishment of a TLS session.

Figure 2.1: TLS protocol, with the TCP handshake in blue, the handshake protocol in orange
and the record protocol in gray

In the handshake protocol, the parties negotiate the settings that will be used for the duration

of the session. These settings define which cipher, message authentication and key distribution

algorithm will be used, along with other configurations. During this phase, the parties will also

exchange their certificates to share their public keys and agree on a session key. In the record

protocol, the parties will start securely exchanging messages, using the settings defined in the

handshake.

TLS communications have the following properties:

• Confidentiality using symmetric cryptography to cipher exchange data. The key used for

ciphering is the shared key, which is different for each session.

• Authentication through the use of asymmetric cryptography.

• Integrity through the use of message authentication codes.

9



• Optionally, perfect forward secrecy to ensure that any future disclosure of keys cannot be

used to decipher past communications.

2.3.2 History

TLS was not defined from the ground but is instead an upgrade of the now deprecated SSL.

SSL was first released by Taher Elgamal and Netscape, in 1995 as SSL 2.0, since SSL 1.0

was never publicly released as it had serious security flaws. In 1996, SSL 3.0 was released, as

version 2.0 still had many flaws. SSL 3.0 was redesigned by Paul Kocher, but it was still was

not robust enough and is deprecated as of 2015.

In 1999, TLS 1.0 was released as an upgrade to SSL 3.0. The differences between both

are not huge, and it is even possible to perform attacks to downgrade TLS 1.0 into SSL 3.0.

Much later, in 2006, TLS 1.1 was defined, and it added protection against attacks to CBC mode

ciphers.

TLS 1.2 was then defined in 2008 and it is a major upgrade. It specified acceptable hash

and signature algorithms, added support for authenticated ciphering, and added AES cipher

suites, SHA-256 hashes, and elliptical curve cryptography, along with other changes. TLS 1.2 is

currently the most used version of TLS.

TLS 1.3 was recently released, in 2018, and it removed support for weaker or deprecated

algorithms and weaker elliptical curves. It also integrated the use of session hashes and changed

the structure of ciphersuites.

The next subsections will focus on the inner workings of TLS 1.2.

2.3.3 Records

All data exchanged in a TLS session is framed in well-defined structures, called records. The

records are used in both the handshake and the record protocol. There are 4 different types

of records: the handshake record, the alert record, the ChangeCipherSpec record, and the

application record. Each record is used for a different purpose, but all have the same header

and similar structures [3]. Figure 2.2 shows the general structure of a record.

The header is composed of 5 bytes, where byte 0 is the content type, bytes 1 and 2 are

the legacy version, and bytes 3 and 4 are the message length. The content type is used to

differentiate the purpose of the record and its structure.

For handshake records, byte 5 identifies the message type, bytes 6 to 8 the message data

length, and bytes 9 to the last, the message data. Message type will be further explained in the

next subsection. These are only used in the handshake protocol and their content type value is
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Figure 2.2: General TLS record structure

22.

Alert records are only used if an error occurs. Bytes 5 and 6 represent the level and descrip-

tion of the error, respectively. The level field indicates the severity of the error, which can be

“warning” or “fatal”. These records can also have a MAC and padding. The content type value

for these records is 21.

ChangeCipherSpec records only use byte 5. It indicates the protocol type, which can only

be 1, currently. These are only used in the handshake protocol and their content type value is

20.

Application records have the application data, the MAC, and padding and are only used in

the record protocol. The content type value for these records is 23.

2.3.4 Handshake Protocol

The handshake protocol is responsible for making the entities agree on the specifications that

will be used to protect the communication between the entities [3]. These specifications include

the algorithms that will be used in the message exchanges and the definition of the session key

[4].

The handshake protocol has an initial negotiation phase, where the specifications are agreed

upon. After agreeing on those specifications, the entities exchange a final record, to assure that

both are using the same specifications.

To make the negotiation easier, TLS created ciphersuites. A ciphersuite is a set of algo-

rithms that will be used during the session. Since SSL 3.0, this set of algorithms is composed

of three algorithms, each with its role: a key exchange algorithm, a cipher algorithm, and a

MAC algorithm. The key exchange algorithm defines the session key that will be used for cryp-

tographic operations, while the cipher and MAC algorithms define how the exchanged data will

be protected and validated, to guarantee data integrity and confidentiality. A ciphersuite can

also include a signature and an authentication algorithm.

Each cipersuite has a unique name that indicates its algorithmic contents. Each segment
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of the name stands for a different algorithm type. An example of a ciphersuite name would

be: TLS DHE RSA WITH AES 256 CBC SHA256, where DHE RSA is the key exchange algo-

rithm, AES 256 CBC is the cipher algorithm and SHA256 is the MAC algorithm. All names

follow the structure and algorithm order of the example used.

As previously mentioned, TLS 1.3 uses different ciphersuites. The main differences are

that cipher and authentication algorithms were combined into authenticated encryption with

associated data (AEAD) algorithms and that hash algorithms must now be used in HMAC-based

key derivation (HKDF).

For the handshake, the client does not need to authenticate himself to the server, but if

the client does so, it is mandatory for the server to also authenticate himself. The handshake

protocol where only the server authenticates himself, depicted in Figure 2.1, proceeds as the

following:

• Negotiation phase:

1. ClientHello: the client sends the highest TLS version supported, a random number,

and the list of supported ciphersuites and compression methods.

2. ServerHello: the server responds with the highest version that can be support by both,

a different random number, and the selected ciphersuite and compression method.

3. Certificate: the server sends its certificate. Depending on the ciphersuite selected,

this may be omitted.

(a) The client verifies the certificate. If the certificate is valid, the client extracts the

public key of the server. If not, the handshake ends there, and the protocol fails.

4. ServerKeyExchange: the server sends its Diffie-Hellman key. Only used for DH

Ephemeral (DHE) or DH anon (DH anon) ciphersuites.

5. ServerHelloDone: the server indicates that he is done with the handshake negotiation.

6. ClientKeyExchange: the client sends, depending on the selected ciphersuite, a Pre-

MasterSecret, his public key, or nothing. If it sends the PreMasterSecret, it will also

cipher it using the public key of the server.

(a) Now that both parties have the 2 random numbers and the PreMasterSecret, they

compute the session key using a pseudo-random function using those parameters.

7. ChangeCipherSpec: The client sends the ChangeCipherSpec record. This informs the

server that from now on, the client will only send ciphered and authenticated records,

as per the negotiated settings.
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8. Finished: the client sends the Finished record that contains a hash and MAC of all

the previously exchanged messages.

(a) The server verifies both the hash and the MAC of the Finished record. If one of

the verifications fails, the handshake fails and is terminated.

9. ChangeCipherSpec: The server sends the ChangeCipherSpec record. It proceeds

identically to the client.

10. Finished: the server sends its Finished record.

(a) The client verifies the Finished record the same way as the server does.

• Application phase: at this point, the handshake is complete, and all messages exchanged

between the parties will be ciphered and authenticated the same way as the Finished

record.

The handshake where the client also authenticates himself is very similar to this one. The

only differences are that the server requests the client certificate, using the CertificateRequest

message, before the ServerHelloDone message and the client sends its certificate after the Server-

HelloDone message using the Certificate message. After the ClientKeyExchange, the client also

sends a CertificateVerify message, which contains the signature of the previously exchanged

messages. If the client certificate is indeed his, the server will be able to verify the signature

using its key, proving that the client owns that certificate.

To improve the handshake protocol, TLS 1.3 only has one round trip, instead of two round

trips [5]. To achieve this, the client tries to guess the key exchange protocol that the server

will likely select and sends the key or secret that will be used in that protocol along with the

ClientHello message. The server then proceeds as normal but before the ServerHelloDone, it

also sends its Finished message.

2.3.5 Record Protocol

The record protocol starts as soon as the handshake protocol ends [3]. As said previously, only

now do the client and server start to exchange application data between themselves.

The record protocol is responsible for taking the messages that are going to be transmitted,

fragment the data into manageable blocks, compress the data, if required or enabled, apply a

MAC, encrypt the data and send the result. When receiving data, the opposite operations are

executed, i.e. the data is decrypted, verified, decompressed, if applicable, reassembled and then

delivered to the client.
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It is also at the beginning of the record protocol that the keys that will be used in the

encryption and MAC algorithm are derived. As mentioned above, after the premaster secret is

established, a pseudo-random function (PRF) will be used to generate the master secret.

The master secret is then partitioned into blocks that will form the client write MAC key,

the server write MAC key, the client write key, the server write key, the client write IV, and the

server write IV. The partitions of the master secret always correspond to the key or IV following

the order described above. The client and server write IVs are created only if the encryption

algorithm needs to use them.

The maximum allowed fragment length is 214 bytes (16KB). Through the use of the TLS

extensions, the communication peers can define a different value for the maximum fragment

length during the established session, but that value must never be bigger than 16KB. This

implies that a message with a bigger size than the maximum fragment length must be sent in

multiple records and reconstructed when received.

When using stream cipher modes or the CBC block cipher mode, the MAC of the record is

generated by concatenating a sequence number, associated with the record, to the values of the

type, protocol version, message size and the message itself. The MAC algorithm will use the

respective write MAC key. AEAD ciphers guarantee data integrity when performing the cipher

operations and thus generate the MAC differently.

The encryption only occurs after the MAC is computed. This technique is called MAC-then-

encrypt. This is technique has been proven secure for certain combinations of encryption and

MAC algorithms but does not guarantee security in general [6]. This is the default technique

used by TLS since it was considered secure at the time of the original SSL protocol.

To provide further security to the records, a TLS extension was created that enables the

encryption-then-MAC technique to be used. This technique has been proven secure for any pair

of encryption and MAC algorithms, if the former is secure against chosen plaintext attacks and

the latter is secure against chosen-message attacks.

Using this technique the data within the record is first encrypted and then MAC is calculated

and concatenated to the record. For TLS 1.1 and newer versions, the MAC is calculated using

the same fields as the previous technique but their values are encrypted, except for the sequence

number. The IV is also included in the MAC [7].

2.3.6 DTLS and Other Variations

TLS is used over TCP, but it can also be used over UDP, which is described in DTLS. It provides

similar security guarantees as TLS since it is a stream-oriented version of it [8].
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Since DTLS uses UDP, it has to deal with all of its disadvantages and constraints like packet

reordering, loss of datagrams, and issues concerning data larger than the size of a datagram.

But there are also advantages in using DTLS. Applications have lower delays since they are

using a stream protocol and DTLS avoids the “TCP meltdown problem” when being used to

create a VPN tunnel [9].

There are also other TLS variations such as the opportunistic TLS or the use of resumed TLS

handshakes over regular TLS [4]. Opportunistic TLS is an extension in plaintext communication

platforms, which offers a way to upgrade plaintext connections to use a TLS connection, instead

of using separate ports for ciphered communication. Opportunistic TLS is mainly used for the

communication protocol of email clients.

Resumed TLS handshakes provide a secure shortcut of the regular handshake protocol. This

way the entities can avoid expending computational power for operations related to asymmetric

ciphers. Resumed handshakes are achieved using resumed sessions, which are implemented using

session IDs or session tickets. Simply put, these IDs or tickets contain the specifications of the

previous session and they allow the negotiation phase of the handshake protocol to be skipped.

2.3.7 Vulnerabilities and Common Attack

Like every other protocol, TLS is not perfect, and it is possible to perform attacks and exploit

vulnerabilities in order to hijack connections [10]. Some vulnerabilities lie in conceptual flaws of

the TLS standards, such as protocol downgrade and connection renegotiation.

Protocol downgrade attacks, such as the FREAK, the POODLE, or the Logjam attack, aim

to downgrade the TLS version of a connection into older, insecure versions. This allows attackers

to have access to the data being exchanged.

Connection renegotiation attacks, such as the triple handshake or the Renego MITM at-

tack, aim to perform a man-in-the-middle attack to inject packets in the connection or force a

renegotiation with the server in order to impersonate a legitimate user [11].

There are also attack vectors that exploit the use of weaker cryptographic primitives in a

TLS session. TLS versions up to 1.2 still allow the use of these weaker primitives, which means

that some services are still vulnerable despise performing the protocol correctly [12].

Finally, since there is not a defined implementation of the protocol, there can be implementa-

tion mistakes that create vulnerabilities that attackers can exploit. For example, the TLS/SSL

implementation provided by OpenSSL had a serious vulnerability that gave rise to the Heart-

bleed bug [13]. This vulnerability allowed attackers to steal private keys from servers that were

using this TLS implementation.
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2.3.8 Protocol Version 1.3

As mentioned before, the TLS 1.3 version was released in 2018. This new version of TLS aimed

at improving some security issues present in version 1.2 and also improve the performance of

the protocol. Some of the major differences between the version 1.2 and 1.3 are [5]:

• Only Authenticated Encryption with Associated Data (AEAD) algorithms are allowed,

removing support from all the legacy symmetric encryption algorithms.

• The ciphersuite concept has changed. Now the authentication and key exchange mecha-

niscs are separated from the record protection algorithm and a hash algorithm used in the

key derivation function and handshake message authentication code.

• All ciphersuites must provide perfect forward secrecy. This means static RSA and DH

suites were removed.

• A zero round-trip time (0-RTT) mode was added. This saves a round trip at connection

setup, at the cost of some security properties.

• All handshake messages after ServerHello are now encrypted.

• The key derivation functions have been redesigned.

• Some superfluous messages such as ChangeCipherSpec were removed

• Elliptic curve algorithms are now in the base spec, and new signature algorithms, such as

ECDSA, are included.

Although this version of the protocol improves security and performance, compared to version

1.2, it is still not as widely supported as its predecessor and thus it is still more common to use

version 1.2 instead of version 1.3.

2.4 Computing Platforms

A computing platform is an environment in which a piece of software is executed. It may be a

piece of hardware, an operating system (OS), or even a web browser, as long as code is executed

within it. Computing platforms are important tools for software development since they can

either constrain or assist in the performance of the software. SoCs (System on a Chip) and

FPGAs (Field-Programmable Gate Array) are examples of computing platforms.

An SoC is an integrated circuit, also known as chip, that integrates all or most of the

components of a computer or other electronic systems [14]. These components usually include
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a CPU (Central Processing Unit), memory, input and output ports, and secondary storage. As

the components are all integrated into a single substrate or microchip, SoCs consume much

less power and take much less space than other multi-chip equivalent designs. SoCs are most

commonly used in mobile systems and IoT.

An FPGA, as the name implies, is an integrated circuit designed to be configured by a

customer or designer after being manufactured. The FPGA configuration is generally specified

using a hardware description language (HDL). FPGAs contain an array of programmable logic

blocks and a hierarchy of “reconfigurable interconnections” that allows the blocks to be connected

in various manners, creating different configurations. The logic blocks can be configured to

perform complex combinational functions or can simply act as logic gates. The logic blocks also

contain memory elements.

By combining an SoC and an FPGA into a single device, it is possible to create another

computing platform, called SoC FPGA [15]. Besides integrating the functionalities of both

components, an SoC FPGA also provides higher integration, lower power consumption, smaller

board size, and higher-bandwidth communication between the components than other architec-

tures that would use the components separately.

Currently, there are 3 major manufacturers of SoC FPGAs: Intel, which acquired the original

manufacturer, Altera; Xilinx; and Microsemi. Each company has a wide array of products.

SmartFusion2 is the latest product that was developed by Microsemi. It was designed to be

used in critical industrial, defence, aviation, communication, and medical applications [16].

The SmartFusion2 includes capabilities that protect designs against tampering, cloning,

overbuilding, reverse engineering, counterfeiting, and differential power analysis (DPA) attacks.

Users may also use built-in cryptographic processing accelerators, including AES-256, SHA-256,

and 384-bit elliptical curve cryptographic (ECC) engine, and a non-deterministic random bit

generator (NRBG) [17].

Xilinx also developed a product that assists the performance of the handshake protocol,

called TLS Handshake Hardware Accelerator [18].

The TLS Handshake Hardware Accelerator is a secure connection engine that can be used to

offload intensive public key operations, such as Diffie-Hellman (DH) key exchange and signature

generation and verification. It combines a load dispatcher with several instances of another

product, also developed by them, the Public Key Crypto Engine. The number of Public Key

Crypto Engine instances is configurable.

The major features provided by the engine include support to the RSA algorithm and al-

gorithms that use RSA keys, such as DH and DH Ephemeral (DHE), all algorithms that use
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Elliptic Curve (EC) Cryptography, such as ECDSA, ECDH, and ECDHE. It also features Mbed

TLS integration and high performance on off-the-shelf FPGAs.

Intel provides various SoC FPGAs, with the Intel Stratix 10 SX being the most used for em-

bedded applications. It combines a quad-core ARM Cortex–A53 MPCore hard processor system

with the Hyperflex FPGA Architecture developed by Intel to deliver the necessary embedded

performance, power efficiency, density, and system integration [19].

Besides SoC FPGAs, Intel implemented an instruction set that improves the speed and

security of applications that use the AES algorithm to perform encryption or decryption oper-

ations. This implementation is known as the Advanced Encryption Standard New Instructions

(AES-NI).

AES-NI is currently supported by many different processors, mainly Intel and AMD ones.

The AES-NI is comprised of six new instructions that perform several computational intensive

parts of the algorithm [20]. The new instructions are:

• AESENC: Instruction used to perform a single round of encryption, by combining the

ShiftRows, SubBytes, MixCollumns and AddRoundKey steps of the AES algorithm into

a single instruction.

• AESENCLAST: Instruction used for the last round of encryption. It combines the ShiftRows,

SubBytes and AddRoundKey into a single instruction.

• AESDEC: This instruction performs a single round of decryption, by combining the In-

vShiftRows, InvSubBytes, InvMixCollumns and AddRoundKey steps of the AES algorithm

into a single instruction.

• AESDECLAST: Instruction used for the last round of decryption. It combines the In-

vShiftRows, InvSubBytes and AddRoundKey into a single instruction.

• AESKEYGENASSIST: Instruction used for generating the round keys used for encryption.

• AESIMC: Instruction used for converting the encryption round keys to a form usable for

decryption using the Equivalent Inverse Cipher.

The improvement in performance gained from using the AES-NI depends on the conditions

that it is being used, but for non-parallel modes of AES operation, such as CBC-encrypt, it can

be expected to improve the performance 2 to 3 fold. This is assuming the AES implementation

uses a software-only approach.
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Besides improving performance, AES-NI helps to address recently discovered side-channel at-

tacks on the algorithm. This is due to the instructions being performed completely in hardware,

removing the need for software lookup tables.

Although SoC FPGAs are emphasized in this section, they were not used in this work, as it

was never possible to obtain and use them.
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Chapter 3

State of Art

This section contains an overview of existing TLS implementations and libraries, as well as a

more in-depth analysis of the Mbed TLS library, followed by an overview on TLS acceleration.

Besides implementations and libraries, this section also covers some tools that can be used to

check the correct use of TLS sessions, both in the client and server endpoint, the robustness of

TLS implementations, and the performance of the protocol.

3.1 Implementations and Libraries

As mentioned previously, the TLS protocol is a standard defined by the IETF (Internet Engi-

neering Task Force) and as such, there is no default implementation of it. By following those

standards, many companies, organizations, and development teams created their own TLS im-

plementations or libraries.

A library is a collection of implementations of behaviour that has a well-defined interface by

which the behaviour is invoked, while implementation is a realization of a technical specification

or algorithm as a program, software component, or another computer system. Contrary to the

code of an implementation, which is structured to only work within a certain program, the code

from a library must be organized in a way that it can be used by different programs that have

no relation or defined structure between each other. For example, Bouncy Castle and the Java

Secure Socket Extension (JSSE) only provide a TLS implementation, while LibreSSL, Mbed

TLS, and wolfSSL provide a TLS library.

LibreSSL is an open-source library, that was developed by the OpenBSD Project [21]. After

the Heartbleed bug present in OpenSSL was discovered, OpenBSD Project forked LibreSSL from

OpenSSL 1.0.1g, in April 2014, with the goals of modernizing the codebase, improving security,

and applying development best practices. Like OpenSSL, LibreSSL was developed using C.
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One of the first changes performed by the OpenBSD Project was the removal of insecure and

obsolete code from OpenSSL. In June 2014, several other OpenSSL vulnerabilities were made

public, none of which affected LibreSSL. It currently has support for TLS 1.0 to 1.3 and DTLS

1.0.

WolfSSL is also an open-source library, that was developed by Todd Ouska [22]. It is the

predecessor of yaSSL (yet another SSL) that was created in 2004. WolfSSL features an embedded

lightweight SSL/TLS library written in ANSI C that primarily targets embedded, RTOS (Real-

Time Operating System), and resource-constrained environments. The library also includes an

OpenSSL compatibility interface that includes the most commonly used OpenSSL functions. It

also has support for various platforms, along with hardware cryptography and acceleration for

some of them. Currently, it supports TLS 1.0 to 1.3, DTLS 1.0 and 1.2, and SSL 3.0.

Mbed TLS, previously known as PolarSSL, is an open-source library, that was developed in

a collaborative project managed by ARM Holdings [23]. It is the official fork continuation of the

XySSL. XySSL was first released in November 2006 by Christophe Devine, but, as of 2008, he

was no longer able to support it and, thus, allowed Paul Bakker to create the official fork, named

PolarSSL. In November 2014, PolarSSL was acquired by ARM Holdings. In 2011, the Dutch

government approved an integration between OpenVPN and PolarSSL named OpenVPN-NL to

be used for the protection of government communications up to the level of “Restricted”. As of

version 1.3.10, PolarSSL was rebranded into Mbed TLS to better show its fit inside the Mbed

ecosystem. Mbed TLS was developed in C and currently supports TLS 1.0 to 1.2, DTLS 1.0

and 1.2, and SSL 3.0, although it is disabled by default.

Mbed TLS is divided into various modules, each with its own purpose. The modules are

the following: TCP/IP communication, SSL/TLS communication, X.509 (a certificate format),

random number generation (RNG), hashing, and encryption/decryption. The hashing and en-

cryption/decryption modules contain the implementations of their respective cryptographic algo-

rithms. The TCP/IP and SSL/TLS communication modules provide a communication channel

for the SSL/TLS communication to use and the SSL/TLS communication itself, respectively.

The X.509 module provides support for reading, writing, and verifying certificates with that

format, and the RNG module provides random number generation.

To allow the separation of its modules, the library makes use of C macros. Each macro can

define an implemented module, a functional part it or a configuration option that improves or

adds new functionality to a program. These macros are then included in a configuration file

that defines which modules or functionalities of the library will be used in a program or project.

The encryption/decryption and hashing modules use a generic structure that serves as a
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wrapper for algorithms they implement. The generic structures contain a vtable (virtual table)

and data fields that are necessary for characterizing the behaviour and specifications of an

algorithm. Each algorithm type, such as hashing, symmetric cipher and key distribution has its

own specific structure.

A vtable is a mechanism that allows non-object-oriented languages to support polymorphism

by storing function pointers and defining the data types of the inputs and outputs of each

function in a data structure. To call a stored function, a program only needs to access the vtable

as it would access a regular data field. By using this mechanism, it is possible to implement the

functions necessary to perform each algorithm separately and save the pointers to each function,

along with the data that specifies the algorithm, in a wrapper. That wrapper represents the

implemented algorithm and is then added to a list of wrappers of the same algorithm type.

Because these wrappers are generic structures, it is possible to add new algorithms to the

library or simply change the implementation of the already existing ones without changing the

source code. To do so, it is necessary to disable the old macros and define new ones that will

include the new implementations, in the configuration file.

The SSL/TLS communication module implements the SSL and TLS protocols. To do so,

there is a sub-module that implements TLS generic functions, along with two sub-modules that

implement the client and server-specific functions. This allows the library to be used only to

create a TLS client or server. The client and server sub-modules are responsible for performing

each phase of the handshake protocol. During the handshake protocol, a structure is created in

the general sub-module that is used to save all the settings that the client and the server are

trying to agree on. After finishing the agreement, the settings saved in that structure can no

longer be changed and are then assigned to a new structure. This new structure also contains all

the data necessary to perform the record protocol using the settings defined in the handshake,

such as the wrapper structure of each algorithm specified in the ciphersuite. The operations

regarding the records and the record protocol are also performed by the general sub-module.

Some libraries, such as Mbed TLS, also provide support for accelerating the TLS protocol.

TLS acceleration is a method of offloading processor-intensive operations to a hardware accel-

erator. These operations are usually public-key cryptographic operations, such as asymmetric

ciphering or signing, that are performed at the beginning of the TLS handshake since they re-

quire much more computational power than other operations, such as symmetric ciphering or

hashing. This, however, does not mean that lighter operations cannot be offloaded [24].

The process of allowing Mbed TLS to use hardware acceleration is very similar to that of

changing the implementation of a module or part of it. It is simply needed to provide the new
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implementation that uses those external hardware accelerators and change the configuration

file to use the new implementation, instead of the one provided by the library. Some hardware

acceleration engines require an initial setup to be done on the platform before they start working.

With that in mind, Mbed TLS also provides functions that can be used to set up and tear down

the platform. By default, they do nothing, but using the module replacing method it is possible

to provide the desired functionality to those functions. The setup and teardown functions must

be the first and last functions to be called, respectively, if used.

Due to all of the capabilities explained above, Mbed TLS was chosen as the research target

for this work. By taking advantage of the modularity provided by the library, it will be possible

to reduce the size of the compiled code as much as possible. The library will also ease the

creation of new implementations allowing a better fine-tuning of the algorithms that will be

used and improving their performance when integrated with hardware accelerators.

3.2 Performance Evaluation Tools

First and foremost, a TLS implementation must provide secure communication, but that does

not mean that performance or resource management is negligible. Some devices, such as mobile

or IoT ones, have limited access to resources, precluding the use of some more resource-heavy

TLS implementations. Besides the use of resources, there is also a need for implementations to

be fast since there are systems that rely heavily on the use of the protocol. As such, there is

a need to create metrics that allow for the evaluation of the performance of the TLS protocol

[25, 26].

The most common metric that is used is the time certain operations take to do or the number

of operations made in a certain time interval. For example, Mbed TLS also includes a set of

test suites and benchmarking tests. These tests evaluate the performance of the algorithms

implemented in the library using similar metrics to the ones mentioned above.

For symmetric ciphering and hashing algorithms, they measure the number of clock cycles

the processor performs per byte, in cycles/byte, and the amount of data that can be ciphered and

deciphered or hashed in one second, in KiB/s. For key generation algorithms, they measure the

number of public and private keys that can be created in one second, in public/s and private/s,

respectively. For key distribution algorithms, they measure the number of handshakes that

can be made in one second, in handshake/s. Finally, for signing algorithms, they measure

the number of signing and verifying operations that can be made in one second, in sign/s and

verify/s, respectively. Since the implementation of those algorithms can be changed, it is possible

to benchmark different implementations using only these provided tests [27].
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Another useful metric for evaluating TLS is the amount of power required to perform the

algorithms used by the protocol. To evaluate this, the Embedded Microprocessor Benchmark

Consortium (EEMBC) developed a software that benchmarks the performance and energy cost

of certain cryptographic operations required for the TLS protocol. The EEMBC is a non-profit,

member-funded organization formed in 1997 to create standard benchmarks for the hardware

and software used in embedded systems. Since its foundation, it has created various benchmarks,

each with a different purpose or to be used in a different environment, including the SecureMark-

TLS.

SecureMark-TLS is a benchmarking tool that was created using the SecureMark framework

and it focuses on the analysis of TLS for IoT [28]. It measures the performance and energy

consumption of a physical device for a prescribed set of cryptographic functions. These functions

are the ones considered common for ciphersuites used in IoT devices and are comprised of ECC

and ECDSA on the NIST secp256r1 curve, SHA256, and AES-128 in CCM/ECB mode. The

energy measurements are then aggregated into a final score that is representative of the TLS

operations. Other measurements, such as the size and security robustness of the implementation

are described in a disclosure report. This disclosure report also includes a description of all

relevant implementation details, such as the hardware device tested, the software library version

used, compiler options and flags, and hardware crypto engine details if applicable.

The SecureMark-TLS software consists of a host PC application and an embedded DUT

(device under test) software. The host application executes the benchmark by using the testbed

hardware boards to send commands to the DUT for it to perform cryptographic operations. It

then receives the results of those operations and obtains the power and timing measurements

from the Energy Monitor. Since the implementation of the cryptographic operations can be

any combination of hardware and software, the EEMBC only defines an API, that needs to

be implemented according to the combination used. The tool is currently being worked on to

provide benchmarking for more algorithms, such as the Chacha20-Poly1305 cipher algorithm

and the Ed25519 digital signature algorithm.

Another interesting metric would be the RAM consumption of the operations executed by

the protocol since IoT devices have limited access to that resource. This is a less used metric

and there are currently no tools that measure it, although the SecureMark-TLS also plans to

include that analysis in future upgrades.

Despise also having no support for RAM benchmarking, Mbed TLS provides a way to reduce

the RAM and ROM footprint of the library. This is done by changing the values of some macros

present in the configuration file. This reduces the amount of resources that will be used to the
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minimum required by a program. The default values for those macros are the maximum values

that the library can support.
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Chapter 4

Proposed Solution

This section contains a description of the proposed tool and resulting tool, based on the objective

and requirements that were given in the introduction. The description goes over all the func-

tionalities and capabilities of the tool, as well as the methodology that will be used to evaluate

and assure the correct working of the tool.

4.1 System Architecture

TLS operations can be quite taxing on a device and hinder its performance. Particularly mobile

and other weaker IoT devices suffer even more from this problem since they have restricted

access to or limited resources. By properly configuring the TLS session, it is possible to enable

the use of the protocol in those devices or considerably improve the performance of TLS. This

tool will allow its users to select a better TLS configuration for the device, taking into account

the resources available to the device.

As mentioned previously, there are many versions of the TLS protocol, but this tool will

mainly consider the configurations available to TLS 1.2. This is due to the lack of support for

TLS 1.3, which was only recently developed, and TLS 1.1 or lower versions, which are currently

considered insecure and, thus, deprecated.

In the TLS context, the configuration refers to the ciphersuite that will be used during a

session. The ciphersuite specifies which algorithms will be used by the communication peers,

which will also specify the security services that the session will guarantee since the security

services are achieved through the use of certain algorithms. Table 4.1 shows a list of all security

services and the list of respective algorithms, implemented in Mbed TLS [29], that can be used

to provide them. The table does not include the use of AEAD modes for symmetric cipher

algorithms. It also includes algorithms that are no longer considered safe to use, such as DES,
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RC4, MD5 and 3DES-EDE.

Security Service List of implemented algorithms

Authentication ECDSA, PSK, RSA

Confidentiality
AES, ARIA, CAMELLIA,

DES, RC4, 3DES-EDE

Integrity MD5, SHA, SHA256, SHA384

Key Establishment DHE, ECDH, ECDHE, PSK, SHA256

Perfect Forward
Secrecy

DHE, ECDHE

Table 4.1: List of security services and the respective algorithms that provide them.

The tool is composed of two major modules, the data acquisition module and the data

analysis module. As the name implies, the data acquisition module is responsible for generating

all the data related to the metrics that the user wants to know, while the data analysis module

is responsible for generating statistics and plots using the acquired data. All of the generated

statistics and plots will then be used by the user to decide which configuration better suites its

needs. Fig. 4.1 better illustrates the architecture of this tool.

Figure 4.1: Architecture of the tool

Even if connected, the two modules can be used separately, i.e. the data can be acquired in

the target device and then be analysed in another device.

To use the data acquisition module, the target device only needs to be able to establish TCP

sockets, so that the server and client can execute the TLS protocol, and create CSV files, as that

is how the generated data is saved. Using the default configuration this module occupies around
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2.4 MB of memory. This value can be reduced by removing unnecessary capabilities from the

module.

There are no special requirements to use the data analysis module save for the graphical

user interface (GUI). The device must support graphical applications in order to use it.

The data acquisition module was mainly written in C code and is composed of various

components, namely the measurement component, the communication component and the TLS

component.

There are various reasons as to why C was chosen as the programming language, but the

main one is because the TLS library that was chosen as the research subject of this project is

Mbed TLS. Since we were using Mbed TLS, we wanted to make it easy to integrate the TLS

library component, which uses the library, with the other components which meant that they

also needed to be written in C code.

The data analysis module was mainly written in Python code and it contains various pro-

grams that will assist the users in analysing the data collected by the acquisition module. This

module also contains an User Interface (UI) from where the user can issues commands to the

tool. This module was written in Python since it is a programming language that is easy to learn

and use and it also contains a lot of libraries that were created with the purpose of analysing

data, shortening the development time of this module dramatically.

Two different methodologies can be used to analyse the data. The first is by grouping the

data by algorithm, while the second is by grouping the data by security service. Although these

methodologies are similar, they allow the user to choose which one better meets his interests.

For example, the user might not have restrictions on which algorithms he can use and, as

such, is only focused on the impact caused by each security service. Alternatively, he might

want to focus solely on the cost in performance that each algorithm has when being used.

Using these two methodologies, the algorithm data grouping and the security service data

grouping, the user has access to much more detailed information since they complement each

other.

4.2 Data Acquisition Module

This subsection focuses on explaining how the Data Acquisition module was developed, the

reasoning behind the approaches that were used during development as well as other alternatives

that were considered and how the components that constitute this module communicate and

interact with each other.
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4.2.1 Measurement Component

The measurement component is the one responsible for implementing all the behaviour, data

structures and functionality that is needed to make measurements. For this work, a metric

refers to a type of data that is measured using a specific measurement tool. As such, if multiple

tools measure the same data type, those data types will be considered different metrics. This

component must allow the users to do the following:

• To use multiple measurement tools at the same time

• To measure all the enabled metrics

• To allow a measurement tool to measure different metrics, if possible

In order to meet all of the requirements listed above, it was decided that this component

should use a structure similar to the one used by Mbed TLS. As such, each metric is implemented

separately in its own module. Lastly, there is a wrapper module that serves as an interface for

all the metric modules and the main module that uses the wrapper module to perform the

measurements themselves. Figure 4.2 better illustrates how the modules are connected.

Figure 4.2: Architecture of the Measurement Component

All the metric modules follow a specific structure, consisting of a data structure that will

store two measured values, since this component obtains the value of the metric by subtracting

two measured values, and functions that allow the following:

• Allocate the memory needed to store the measured values

• Measure the values and store them in the data structure
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• Calculate the metric value

• Reset or free memory in the data structure

The wrapper module serves two major purposes. The first one is to create a virtual table

for each metric module, storing all the implemented functions as pointers and the second one is

to convert a generic pointer into the corresponding metrics data structure. This will facilitate

the addition, removal or change of metrics that will be used since new metrics can be created by

simply implementing a new module following the structure mentioned above and creating the

corresponding virtual table in the wrapper module.

The main module is the only one in this component that directly interacts with the other

components. It contains all the functions needed to perform the measurements and save the

acquired values in a file, as well as a list of generic pointers that can be converted into the

metrics data structure.

Each metric module is also associated to a macro. These macros will allow the users to select

which metrics to use, by enabling or disabling the macros in a configuration file. If a macro is

enabled, the corresponding module will be compiled as well as the virtual table in the wrapper

module, allowing it to be used by the main module. The opposite will occur if the macro is

disabled.

To get the values of the metrics, it is necessary to perform two measurements. The first

one is before the execution of what wants to be evaluated and, the second one is after the

execution. The first measurement is called the starting measurement while the second one is

called the ending measurement. Then, the metric value is calculated by subtracting the value

of the starting measurement from the value of the ending measurement.

This component allows for either all the measurements to be made first and to then calculate

and save the values in a file or to calculate and save the values after two measurements are

completed. The values are saved in a CSV (Comma-Separated Value) format as it would make

it easier to parse the data from files in this format when performing the analysis of the data.

This component was implemented in this way since it would allow its users to perform the

measurements using their preferred method and since it would give them the most freedom when

instrumenting the other components with the calls from the main module.

The currently implemented metrics are: number of virtual CPU cycles measured using the

PAPI library, time using the PAPI library, in microseconds, and time using the time.h standard

library from C.

PAPI (Performance Application Programming Interface) is a tool used to measure the per-

formance of programs and applications by accessing the performance counter hardware found in
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most major microprocessors. PAPI is a reliable tool that results in near real-time, can be used

to generate many different metric values and is easy to use.

PAPI is only being used to acquire the number of cycles and time needed to perform a

cryptographic algorithm since it was not possible to add more metrics due to time constraints.

Although PAPI is a great tool, it has limitations. One of them is that it is machine-dependent

and, as of version 3.7, does not work on Windows architectures as its components no longer

target Windows. The PAPI version that is currently being used is 6.0.0.

To make up for this issue, it was decided that a metric that would be OS independent should

be created, even if the values it would acquire would be less precise than the ones acquired from

PAPI. Thus it was decided that a time metric would be created using the time.h library. Since

time.h is a standard C library it can be used on any system that can also run and compile C

code.

For the purpose of this work, calls from the main module from this component were integrated

into the TLS component to measure the performance of algorithms used during a TLS session.

The next subsection further explains how the integration was done and how the measurements

were made.

4.2.2 TLS Component

The TLS component is the one responsible for implementing the TLS protocol as well as all the

cryptographic algorithms that it uses. This component also contains the measurement functions

that were mentioned in the previous subsection.

Since implementing the TLS protocol and the cryptographic algorithms would take a massive

development time and this work does not have the purpose of implementing the protocol, it was

decided that a library that already implements the protocol and the cryptographic algorithms

would be used. The System Architecture subsection already explains the reasons as to why

Mbed TLS was chosen.

As the TLS library is already implemented, the only thing left to do is to place the mea-

surement functions. Depending on where they are placed, the obtained data can be noisy as it

is possible to get the metric values for a single function call as well as for a block of code that

contains multiple complex functions. In this work, the purpose is to evaluate the performance

of the individual cryptographic algorithms as they mostly make up the configuration of the TLS

session and, thus, majorly influence the performance of the protocol.

As mentioned in the “Implementations and Libraries” subsection, Mbed TLS is divided into

various modules where each implements an algorithm or a component needed for TLS to work.
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Taking this into account, some of the approaches that could be used to instrument the library

with measurement functions that were considered were:

• Placing the measurement functions in the algorithms respective module

• Placing the measurement functions in a module that communicates with all the crypto-

graphic modules

The first approach has the advantage that it is easier to find the places where to put the

measurement functions. One would only need to go to the module of each algorithm and place

the measurement functions at the start and end of each relevant function. The relevant functions

are only the ones that involve the cryptographic procedure, as the purpose of some functions is

to allocate memory, make some minor verifications or decide which relevant functions need to

be used.

Although simple, this approach has two major disadvantages. The first one is that since it

needs more instrumenting than the second approach, it increases the code size of the compo-

nent much more and is also more susceptible to mistakes such as misplacing the measurement

functions or not placing them at all. The second one is that if new cryptographic algorithms are

implemented they need to be instrumented anew. This is relevant since it is a possible method

to create different implementations of the same algorithm, which will be further explained later.

The second approach is the opposite of the first one, as it is needed to analyse the workflow

and data flow of Mbed TLS to know where to instrument the library, making it harder to execute

than the first approach, but creating lower overheads in the code and making it possible to create

new algorithms without the need to instrument them. This is due to the communication with

other modules being done via the wrapper structures. One only needs to find where the wrapper

functions are being used to instrument multiple algorithms at once.

This approach, besides being harder to execute, has the issue that it can measure some

irrelevant operations along with the cryptographic functions since the instrumentation needs to

be placed in a module that calls the functions of the algorithms posteriorly.

Taking both approaches into account, it was decided that the second one is the most suited

as it is the one that takes the most benefits from the mechanisms used to implement the library.

After analysing the workflow of the library, it was decided that the best module to place the

measurement functions in, is the SSL/TLS communication module [30].

This module is the central point of this library, making use of the cipher, hashing and public

key module to implement the TLS specific behaviour, such as the handshake protocol. As

mentioned in the “Handshake Protocol” subsection, a premaster secret and master secret are
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formed during the handshake.

The premaster secret is used to provide greater consistency between all TLS ciphersuites

since each key exchange algorithm uses different cryptographic materials to form the premaster

secret. Table 4.2 shows all the key exchange algorithms along with the respective cryptographic

material needed to form the premaster secret [3, 31, 32, 33].

Key Exchange
Algorithm

Premaster Secret
Material

Details

PSK N || 0N || N || PSK
PSK: pre-shared key, N: size of PSK (in octets),

0N : zero octets, N times

RSA R R: 2-byte version number and 46-byte random value

RSA-PSK 48 || R || N || PSK
R: 2-byte version number and 46-byte random value,

PSK: pre-shared key, N: size of PSK (in octets)

DHE-PSK M || Z || N || PSK
Z: DH session key, M: size of Z (in octets),

PSK: pre-shared key, N: size of PSK (in octets)

DHE-RSA Z Z: DH session key

ECDH-RSA X X: x-coordinate of the ECDH session key

ECDH-ECDSA X X: x-coordinate of the ECDH session key

ECDHE-PSK L || X || N || PSK
X: x-coordinate of the ECDH session key, L: size of X (in octets),

PSK: pre-shared key, N: size of PSK (in octets)

ECDHE-RSA X X: x-coordinate of the ECDH session key

ECDHE-ECDSA X X: x-coordinate of the ECDH session key

Table 4.2: List of key exchange algorithms and the material each respective algorithm needs to
form the premaster secret.

After establishing the premaster secret, the master secret is generated by applying a pseudo-

random function (PRF) to the premaster secret, along with the two random numbers that were

exchanged in the Client and Server Hello messages. Later in the handshake, the master secret

is used to generate the keys used for the cipher and hash operations of the session data.

The messages exchanged by the communication peers, during the handshake, vary depend-

ing on the chosen key exchange algorithm. Taking into consideration the TLS standards, the

SSL/TLS communication module implements the particular interactions between the commu-

nication peers as followed [3, 31, 32, 33]:

• PSK, RSA-PSK, ECDH-RSA, ECDH-ECDSA: The ServerKeyExchange message is not

sent. The other algorithms will send this message.

• RSA, RSA-PSK: The random value is generated by the client, which is sent in the Clien-

tKeyExchange message. This message is also encrypted using the public key of the server.

• DHE-RSA, ECDHE-RSA, ECDHE-ECDSA: The ServerKeyExchange message contains a

signature of the server DH or ECDH parameters and the random values of the communi-

cation endpoints. The signature uses the private key of the server.
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• DHE-PSK, ECDHE-PSK: The ServerKeyExchange message may not include the server

identity hint field.

• PSK, RSA-PSK, DHE-PSK, ECDHE-PSK: The CertificateRequest message is not sent.

The other algorithms may send this message.

In this module, all the cipher and hashing algorithms are called via the wrapper structures

and the calls from the public key module are well contained and defined. These characteristics

help to limit the overhead placed on the code by the instrumentation, as well as the measurement

of irrelevant operations as much as possible.

The code created by the instrumentation is all associated with four macros that can be

enabled or disabled in a configuration file, to make it easy to identify the code that was added

to the library and to allow the user to select which type of algorithms he wants to evaluate.

Three of those macros are associated with the algorithms types, meaning there is one for cipher

algorithms, one for hashing algorithms and one for key exchange algorithms.

The last macro is associated with the measurement of the handshake protocol including

the irrelevant operations. Although this is not the purpose of this work, it was decided that

acquiring this data could be relevant to users as the handshake protocol contains many irrelevant

operations and their sum significantly influences the performance of the TLS protocol.

Cipher and hashing algorithms are only evaluated during the record protocol, as it is during

that phase of the TLS protocol that they influence performance the most. The SHA-2 algorithms

are the only ones that are evaluated in the handshake protocol, but only when being used as

pseudo-random functions to generate the master secret, from the premaster secret, and to derive

the keys used in the record protocol. Cipher modes that use AEAD algorithms are not being

analysed as they use structures and mechanisms that are different from regular cipher algorithms

and could not be analysed properly due to time constraints.

The public key module implements two types of algorithms: signing algorithms, such as

RSA and ECDSA, and key exchange algorithms, such as DHE, ECDH and ECDHE. The signing

algorithms also use wrapper structures, while the key exchange algorithms do not follow a specific

structure.

Taking all of this into account and following the second approach, the instrumentation of

the algorithms in the cipher and hashing module and the signing algorithms in the public key

module was done by finding the calls from the wrapper structures in the SSL/TLS module. In

turn, for the key exchange algorithms and the SHA-2 algorithms when used for key derivation, it

was needed to find the relevant function calls. This was done by following the stack of functions

calls, during runtime.
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To ensure that the measurement was done correctly, global variables that represent the state

of the measurement component were created. The states are “currently working” and “not

working”. If the current state is “currently working” and a new starting measurement is going

to be done, an error occurs and the execution of the program is terminated. Likewise, if the

current state is “not working” and an ending measurement is going to be done, the program is

also terminated with an error.

The instrumentation was also done in a way that allows for all metric values to be collected

first and, only when the algorithm is completed, saved in a file. By instrumenting the SSL/TLS

communication module this way, the overall performance of the algorithms used during the

session suffers the least possible change.

Since this work also has the aim of enabling the use of hardware accelerators to assist and

improve the execution of the TLS protocol, a method needed to be created that would allow

just that. There were two methods considered for this task:

• Using the alternative implementation mechanism of the Mbed TLS library

• Creating the new implementations as new algorithms and add them to the library

The first method is the simplest as it is already a mechanism that is implemented in the li-

brary itself. As mentioned in the “Implementations and Libraries” subsection, Mbed TLS allows

its users to create an alternative implementation of an algorithm by replacing relevant functions

in its module or by replacing the whole module through the use of macros in a configuration file.

The downside of using this method is that the user cannot change the implementation it wants

to use during runtime, since only one of the implementations can be compiled. This means that

if a user would like to, for example, compare the performance of a certain algorithm when using

hardware accelerators against the native Mbed TLS implementation, he would need to compile

and run his program twice.

The second method works on the idea that an alternate implementation of an algorithm is

a “new” algorithm. This would allow the user to compile both implementations at the same

time. To create an alternate implementation using this method, one would need to create a new

module following the structure of the module of the original implementation, create its respective

virtual table in the corresponding wrapper module and, finally, create new ciphersuites, in the

ciphersuite module, that would use that algorithm.

Although this method allows more flexibility than the first method, it has some issues when

trying to provide alternative implementations to algorithms that do not have a wrapper struc-

ture. Since those algorithms, such as DHE or ECDHE, do not use a wrapper structure the
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functions of the new implementation module must be integrated directly into the SSL/TLS

communication module. This demands a deeper understanding of the structure used by Mbed

TLS, thus being more prone to errors. Using this method, new implementations for these algo-

rithms also need to be instrumented as they create new cryptographic functions in the SSL/TLS

communication module.

4.2.3 Communication Component

The communication component is the one responsible for implementing the means to enable the

evaluation of the TLS protocol. That is to say that this component implements not only a server

and client program but is also responsible for creating all the keys and certificates necessary to

perform the protocol.

The client and the server are both implemented using the TLS component and make use

of a configuration file in order to select which features need to be used. This structure allows

both this component and the TLS component to share the same settings. It also helps to

reduce the size of the compiled code by only enabling and compiling the necessary TLS and

algorithm modules and features. This configuration file imports the configurations used by the

measurement component to enable the use of the measurement functions in the TLS component.

Before starting the execution of the TLS protocol, the client and server need to perform

some setup operations. The communication endpoints also need to enable the handshake and

record protocols to be executed multiple times to generate the data more effectively. With these

requirements in mind, the endpoints were implemented following these steps:

1. Parse some session parameters sent as user input. These parameters will be further ex-

plained in this subsection.

2. Seed the random number generator used to generate the messages that will be exchanged.

This allows multiple message sizes to be tested during the same runtime.

3. The server will create and bind a TCP socket to a certain IP and port.

4. Load the certificates of the opposite endpoint. The server only performs this step if the

client is going to authenticate itself to the server.

5. Load the keys and certificates of the corresponding endpoint. The client only performs

this step if it is going to authenticate itself to the server.

6. Setup the settings of the TLS session. These settings refer to the parameters received as

input and the keys and certificates that were loaded in the previous steps.
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7. Perform the handshake protocol in a loop:

(a) Reset the session state

(b) The server waits for and accepts a valid client connection, while the client creates a

socket and connects to the server

(c) Perform the handshake protocol

(d) Verify the certificate of the opposite endpoint. The server only performs this step if

the client authenticated himself with a certificate of his own.

8. Perform the record protocol in a loop:

(a) The client generates a request, while the server generates a response. This is done

using the random number generator that was seeded in Step 2.

(b) The client sends its request and the server receives it

(c) The server sends its response and the client receives it

9. Close the connection with the opposite endpoint

10. Show the status of the last connection that was done

As mentioned above, the user needs to send some parameters to these programs for them to

work properly. These parameters are: ciphersuite, sec lvl, max sec lvl, msg size, max msg size,

n tests, path and debug lvl. Ciphersuite is the only parameter that is mandatory and it serves

to indicate which ciphersuite will be used for the TLS session. The debug lvl parameter can

only be used if the debug module is enabled. It serves to set the level of debug logs, ranging

from 0 to 5, where 0 is no logs and 5 is the most logs [34]. Table 4.3 contains a description and

limit value of all the optional parameters.

Parameter Default Value Description

sec lvl 0 Minimum security level that will be used

max sec lvl 4 Maximum security level that will be used

msg size 32 B Smallest message size (in bytes) that will be used

max msg size 1 GB Largest message size (in bytes) that will be used

n tests 20000 Number of tests that will be executed

path ddMMyyyy.hhmm Name of the directory where the data will be saved

Table 4.3: List of the parameters used by the communication endpoints, their default value and
description.

The server and client will execute the handshake protocol using all the security levels within

the range of sec lvl and max sec lvl and will execute the record protocol using messages with

base two exponential sizes within the range of msg size and max msg size.
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The sec lvl, max sec lvl, msg size and max msg size parameters can all be set within the

default values shown in Table 4.3, while n tests can be any integer bigger than 0 and path can

be any string that does not contain any special symbol. The data is always saved in a directory

defined in the configuration file, so the path parameter serves to create a sub-directory to allow

multiple sets of data to be saved simultaneously.

The security provided by the algorithms used in the handshake protocol is not set. By using

the algorithms with bigger keys it is possible to provide more robust security. The security level

is a value that represents the size of the cryptographic keys, and thus the degree of security,

that will be tested during the data acquisition.

Table 4.4 shows all the security levels considered in this work, along with their security

strength and the corresponding key size for all the algorithms used during the handshake pro-

tocol. The security strength is a number associated with the amount of work that is required

to break a cryptographic algorithm or system. In this work, it is measured in bits and security

strength of 80 bits or lower, thus a security level 0, is no longer considered sufficiently secure

[35]. The minimum required security, as per the current TLS standards, corresponds to security

level 1.

Security
Level

Security Strength
(in bits)

Key size (in bits)
PSK RSA, DHE ECDSA, ECDH(E)

0 80 80 1K = 1024 192

1 112 112 2K = 2048 224

2 128 128 3K = 3072 256

3 192 192 7.5K = 7680 384

4 256 256 15K = 15360 521

Table 4.4: Security levels with their corresponding security strength and key sizes for all algo-
rithms used during the handshake.

It was decided that the communication endpoints would use the localhost as the IP and

8080 as the port number of the TCP sockets. This is because the focus of this work is, again,

to measure the performance of the cryptographic algorithms. Thus the impact in performance

the program suffers from sending or receiving messages is irrelevant.

Some TLS ciphersuites make use of certificates to authenticate the communication endpoints.

As such, if the ciphersuite requires the use of certificates, they must be generated and loaded

into the endpoints before the start of the TLS protocol.

The generated certificates are all self-signed. This means that they do not use the private

key of a certificate authority (CA) to generate a digital signature and, instead, have a digital

signature generated using the private key of the certificate itself.
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Although it is more correct to use a CA certificate and build a proper certificate chain, this

work does not focus on analysing the impact in performance created by verifying a certificate

chain. Additionally, Mbed TLS allows the use of self-signed certificates since self-signed end-

entity certificates can be used as trust CA certificates [36]. As such, it was decided to use

self-signed certificates as it would be simpler and would save development time.

The RSA certificates and keys that are loaded before the start of the TLS session were

generated using OpenSSL. Although Mbed TLS has key and certificate generating capabilities,

it cannot generate RSA keys bigger than 8192 bits (or 8 Kb). As such, OpenSSL was used. The

ECC certificates were generated using Mbed TLS.

The certificates and keys that are loaded at the start of the programs do not influence the

size of the DHE or ECDHE key that will be generated. By default, Mbed TLS uses a 2048 bit

key for DHE and a 521 bit key for ECHDE. To properly evaluate the security levels for DHE

and ECDHE, the endpoints force the use of externally generated DHE parameters and elliptic

curves already implemented in Mbed TLS, respectively. The DHE parameters were generated

using OpenSSL since Mbed TLS cannot generate parameters bigger than 8192 bits.

4.3 Data Analysis Module

The next subsections focus on explaining how the Data Analysis module was developed. It

includes the reasoning behind the approaches that were used as well as other alternatives that

were considered. The subsections will also explain the purpose of the various tools that were

developed to analyse the performance of the algorithms used and the impact of the security

services provided by each algorithm or ciphersuite.

4.3.1 Security Services Analysis

As mentioned in the “System Architecture” subsection, the data analysis can be done by group-

ing the data into the security services provided by each algorithm or ciphersuite. Each algorithm

can provide one or more security services.

With this in mind and taking into account that each algorithm in Mbed TLS is implemented

through the use of many functions, it is possible to assign each individual function to a security

service.

Another approach to this data grouping would be to assign a single security service to an

algorithm, but using the method described above, it is possible to get a clearer understanding

of the impact each algorithm has regarding a specific security service.

For example, DHE provides the key establishment service, as would DH, but it also provides
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the perfect forward secrecy service. If this algorithm were to be assigned to a single service, the

data that would be analysed regarding that service was going to be polluted since it would also

contain data regarding a different service.

Following the first approach, all the functions in each Mbed TLS algorithm module were

analysed, regarding their purpose in implementing the algorithm and assigned to a security

service. Table 4.1 located in the “System Architecture” subsection shows all the security services

that each algorithm provides.

Taking this data grouping into account, some analysis tools were developed to give the user

all the necessary information to decide which ciphersuite better provides the security services the

user deems relevant. The developed tools were: profiler, comparator, analyser and calculator.

These tools were all developed using Python. They all follow a specific procedure, except

for profiler:

• Parse and group the data that will be used.

• Filter the data outliers from the data population using z-scores. This step is optional.

• Calculate the statistics from the remaining data.

• Save the statistics in a file.

• Generate plots using the statistics.

In statistics, the z-score is the number of standard deviations by which an observed value

is above or below the mean value of what is being measured. Observed values above the mean

have positive z-scores, while those below the mean have negative z-scores. It is calculated using

the following equation:

z =
x− µ
σ

(4.1)

In this equation, z is the z-score, x is the observed value, µ is the population mean and σ

is the standard deviation of the population. For this work, an observed value is considered an

outlier if the modulus of its z-score is bigger than a weight parameter. By default this parameter

is equal to 2, the user can input the value of this parameter.

All tools also use the same basic data grouping procedure. The idea of this procedure is

to group the data by security service, metric, operation and id. The operation is the entity

that performed the algorithm in case the service is provided in the handshake protocol, i.e

“authentication”, “key establishment” or “perfect forward secrecy”, or the algorithm operation
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if the service is provided during the record protocol, i.e “confidentiality” and “integrity”. The id

corresponds to the security level or strength of the keys used in algorithms during the handshake

protocol and the size of the message used as input in the algorithms during the record protocol.

The generated statistics are always saved in CSV files since that format is easier to understand

and use in external programs. Apart from data filtering and grouping, each tool performs each

step in the procedure differently.

The comparator tool is used to compare the performance of individual algorithms within a

certain security service. To use this tool, the user must first select the security services and the

data set that are going to be analysed, and provide the tool with a file that contains the list of

algorithms that are to be evaluated. The format of each line of the file needs to be “security

service, algorithm”. Algorithms that provide multiple security services need to be paired with

all the services they provide in different lines.

The tool then performs the basic data grouping, and further groups the data by algorithm,

i.e data from different ciphersuites are grouped if those ciphersuites use the same algorithm

to provide a certain service. After filtering the data, the tool calculates the sample mean and

standard deviation for each collection of data and then saves those values.

Lastly, the tool creates a bar plot for each combination of security service, metric and

operation. Each bar represents the sample mean of the combination of an individual algorithm

and data-id. Each bar also contains an error bar with the sample standard deviation of the

corresponding algorithm. The bars are then grouped by their data-id. Figure 4.3 shows an

example of a single bar plot produced by the comparator tool.

Figure 4.3: Bar plot showing the server-side performance of the algorithms that provide the
Authentication service, in cycles

The analyser tool is used to analyse the performance of each ciphersuite when performing

the handshake protocol. To use this tool, the user must first select the security services and the

data set that are going to be analysed. The user can also include the performance of the whole
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handshake protocol if he so desires. The tool then performs the basic data grouping, and further

groups the data by algorithm and ciphersuite. The total handshake data is also grouped as if

it were an algorithm. After filtering the data, the tool calculates the sample mean of each data

group and saves those values.

Lastly, the tool creates a plot of stacked bars for each combination of operation, data-id

and metric. Each stack of bars represents the total performance of the services provided by the

ciphersuite. Each bar in the stack represents the performance of a different algorithm, within

that ciphersuite, and the value of each algorithm is the sum of its sample mean from each

security service. The total handshake value for each ciphersuite is represented in a single bar

and placed in the background of the stacked bar of the corresponding ciphersuite.

The calculator tool is used to calculate the performance of each ciphersuite in the handshake

protocol and record protocol. To use this tool, the user must first select the security services and

data set that are going to be analysed. The tool then performs the basic data grouping, but,

instead of grouping by security services, it groups the data by protocol, handshake or record, i.e

only two groups are created and each group contains all the data regarding the security services

that are provided in each protocol. The data is then further grouped by ciphersuite.

After filtering the data, the tool calculates the sample mean of each data group and saves

those values. These statistics are then presented in tables, grouped by the data-id, that highlights

the biggest and smallest values in each metric, per group, in red and blue, respectively. Each

table contains the statistics of one protocol operation, i.e the server and client performance for

the handshake protocol and the sending and receiving performance for the record protocol.

The profiler tool is used to automate the acquisition of data and the generation of statistics.

To use this tool, the user needs to input all the parameters mentioned in the “Communication

Component” subsection, select which security services are going to be analysed, including the

total handshake performance, and provide the tool with a file that contains the list of algorithms

that are to be evaluated. The format of this file is the same as the one used in the comparator

tool.

The user can choose not to provide some parameters, in which case their default values will

be used instead, as shown in Table 4.3. The user can also implement a custom version of the

“Communication Component”, and input its directory to this tool to use it instead of the one

provided in this project. If the user chooses to do this, he needs to ensure that his version follows

the same structure as the one used in the “Communication Component”.

This tool then generates all possible ciphersuite combinations using the algorithms in the

file and compiles the Data Acquisition module using a different thread. After the compilation
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is done, the tool creates two threads, one for the server and one for the client, and executes the

TLS protocol according to the parameters that were chosen. After the data acquisition is done,

this tool will run all other tools in order to generate their respective statistics. The user can also

choose to only execute the data acquisition procedure or only execute the statistics generation

procedure, instead of executing both.

4.3.2 Algorithms Analysis

Besides security services, there is another grouping methodology that was used to analyse the

data. By grouping the data into the algorithm type, it is possible to get more information

regarding the performance of the algorithms themselves.

As mentioned in the “Handshake Protocol” subsection, there are three types of algorithms,

namely cipher, MAC and key exchange, that compose a ciphersuite. By grouping the data by

those algorithms, it is possible to make a direct comparison between them since they will have

the same purpose within the TLS protocol. Table 4.5 shows the list of algorithm types and

all the possible algorithms that belong in that category. All the listed algorithms are used in

ciphersuites and implemented in Mbed TLS [29].

Algorithm Type List of implemented algorithms

Cipher AES, ARIA, CAMELLIA, DES, RC4, 3DES-EDE

MAC MD5, SHA, SHA256, SHA512

Key Exchange
DHE-PSK, DHE-RSA, ECDH-ECDSA, ECDH-RSA, ECDHE-ECDSA,

ECDHE-PSK, ECDHE-RSA, PSK, RSA, RSA-PSK

Table 4.5: List of algorithm types and the respective list of algorithms that belong to it.

AEAD modes for cipher algorithms are not being considered, as mentioned before.

Taking this grouping into account some tools were developed in order to help the user

understand the performance of each algorithm and decide on which ciphersuite to use. The

developed tools were: profiler, comparator and plotter. These tools were also developed in

Python and follow the procedure described in the “Security Services Analysis” subsection. They

also make use of z-scores to filter the data outliers, as described in the previous section.

A general data grouping procedure, used by all the tools described in this subsection, was

also created. It follows the same logic as the one in the “Security Services Analysis” subsection,

but instead of grouping the data by security services, it the data groups by algorithm type.

The purpose of the plotter tool is to thoroughly analyse the data set being used by generating

various statistics that describe it. To use this tool, the user must first select the algorithm types

and the data set that are going to be analysed. The tool then performs the basic data grouping,

and further groups the data by ciphersuite.
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After filtering the data, the tool calculates the sample mean, median, mode and standard

deviation for each collection of data and then saves those values. Lastly, the tool creates three

plots for each combination of algorithm type, metric and ciphersuite. The three plots are:

• A plot containing two scatter subplots. Each subplot shows the measured values relative

to an algorithm operation, grouped by the data-id.

• A plot containing two error subplots. Each subplot shows the sample mean and standard

deviation relative to an algorithm operation, grouped by the data-id.

• A plot containing three regular subplots. Each subplot shows the statistical values of each

algorithm operation, for each data-id. The statistical values shown are the sample mean,

median and mode.

The comparator and profiler tool from this section work mostly in the same way as the

ones described in the “Security Services Analysis” subsection. The major difference between

them is that the user must select which algorithm types are going to be analysed instead of the

security services and the file provided must contain lines in the following form: “algorithm type,

algorithm”.

The other existing difference between tools is that the profiler tool does not analyse total

handshake performance, while the comparator tool will generate a plot for each combination of

algorithm type, metric and operation.

4.4 User Interfaces

All tools described in the previous subsections need a command line to interact with them. To

make them more accessible to users, a GUI was also developed. Figure 4.4 shows the main

window of the GUI.

As can be seen, the layout of the GUI is divided into two sections, the “Services” section

and the “Algorithms” section. The “Services” section makes use of the tools described in

the “Security Services Analysis” subsection, while the “Algorithms” section makes use of the

“Algorithms Analysis” subsection. Each section contains a collection of checkboxes that are

used to select which category of algorithms are going to be considered when using the tools.

Both sections also contain a collection of buttons, each with its own purpose.

The “Edit Services” or “Edit Algorithms” button will make the edit window appear. The

edit window is used to edit the files that contain the list of algorithms, which will be provided to

the tools. In this window, the users will be able to check which algorithms each category contains
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Figure 4.4: Main window of the Graphical User Interface

and will also be able to add new algorithms or remove existing ones. There is also a “Restore

Defaults” button that will allow the user to restore the files to their original configuration. The

existing categories in the “Services” section are the security services, while the categories in the

“Algorithms” section are the algorithm types. The layout of the edit window can be seen on

the left side of Figure 4.5.

Figure 4.5: Edit and Profile window of the GUI

The “Acquire Data” buttons in the main window will make the profile window appear. The

profile window is used to input the parameters needed to run the profiler tool from the respective

section. The layout of the profile window can be seen on the right side of Figure 4.5.
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After the user inputs the parameters, the GUI will run the data acquisition process. Upon

conclusion, the user can either choose to run the data analysis process or not. If the user chooses

to continue, the GUI will prompt the user to input the filter parameter and run the data analysis

procedure.

In the “Services” section, the user will also be prompt if he wants to include the total

handshake performance in the analysis. Additionally, after running the data analysis process

the user will be prompt on which tables, from the ones generated by the calculator tool, he

wants to see.

The “Generate Statistics” buttons in the main window will run the data analysis process

from the profiler tool of the section. The GUI will prompt the user for a directory that contains

the data set to be analysed and the proceeds the same as described above.

Through the GUI it is not possible to run the tools individually, as the GUI only interacts

with the profiler tool. To use those tools individually, the user must use the command line. The

tools also have a helper function that shows how to use them. Appendix C contains a user guide

with all command line tools and how to use them.
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Chapter 5

Results and Discussion

This section focuses on showing the capabilities of the tool that was developed. This will be

done by using the tool to obtain and analyse data in two different scenarios. The section will

also include a description of the tests that were made and an analysis of the obtained results.

5.1 Scenario 1: Analysis of the Security Services Provided by

the Handshake Protocol

For the first scenario, it was decided to use the developed tool to analyse the performance of

each security service provided during the handshake protocol. The services that can be provided

during the handshake are authentication, key establishment and perfect forward secrecy. This is

a relevant test since, in the TLS protocol, the handshake is the most taxing part of the session.

As mentioned previously it is during the handshake that the communication endpoints make

use of asymmetric cryptography techniques, such as digital signatures, DH key generation and/or

elliptic-curve cryptography, to authenticate themselves, generate symmetric keys and/or assure

perfect forward secrecy. Each technique provides different security services and has a different

cost associated with it. It is also possible to strengthen the security provided to the session by

using the algorithms with keys bigger than the minimum required size.

For this scenario, each key exchange algorithm that can be used in a ciphersuite will be

tested. Table 4.5 of the “Communication Component” section contains all the key exchange

algorithms that were tested. The server and client authenticate themselves mutually, when

possible, and used the same symmetric encryption and MAC algorithms.

Additionally, each key exchange algorithm was tested using keys that provide a security level

of 1 to 3. Table 4.4 of the “Communication Component” section contains the respective key

sizes for each algorithm. This range of security levels was chosen since level 1 is the minimum
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required security [35] and level 4 is already excessive.

The services profiler tool was used to execute the tests and acquire the data. The number of

tests executed for each combination of key exchange algorithm and security level was 30. After

executing the tool using many different numbers of tests, this was the smallest number of tests

needed to produce reliable data. The data acquisition module was only compiled once since the

services profiler tool was used. This means that no data discrepancies were created by compiler

optimizations.

The metric used was the number of CPU cycles used during algorithm execution, which

was obtained using the PAPI library. The tests were executed using the VirtualBox software

to emulate a pre-built Ubuntu (32-bits) image. The image was provided by SEED Labs [37].

This was done so because the native device cannot use PAPI and PAPI was the most precise

measurement tool available.

The host device uses an Intel(R) Core(TM) i7-4720HQ processor [38] and the virtual envi-

ronment made use of all 4 CPU cores. The tests also use the default filter weight mentioned in

the “Security Services Analysis” subsection.

After getting the data, the services analyser and comparator tools were used to generate

plots. The produced plots can be seen in the “Handshake Protocol Performance” section of the

Appendix A.

Figures 5.1, A.1 and A.2 show the performance of each key exchange algorithm when using

keys that provide 112, 128 and 192 bits of security, respectively. Each layer of a stacked bar

represents the performance of an individual algorithm and each key exchange algorithm has an

extra-label that indicates which security services are provided by that algorithm.

As can be seen from all those plots, the most taxing key exchange algorithm is DHE-RSA

followed by DHE-PSK. The difference is even more apparent the lower the provided security

strength is. This is due to the use of extremely large key sizes by DHE and RSA to produce

equivalent security levels. DHE and RSA need to generate a key that is around 30 times bigger

than the ones used by ECDHE and ECDSA to produce the same level of security.

Figures 5.2, A.3 and A.4 show the performance of each algorithm used to provide the au-

thentication, key establishment and perfect forward secrecy services, respectively. The plot uses

a logarithmic scale and groups the bars by security strength. The bars also contain an error bar

corresponding to the standard deviation of the data sample.

As can be seen in Figures 5.2 and A.3, PSK is the least taxing configuration when used to

provide authentication and key establishment, respectively. This is due to the operations that

are used by this algorithm being mostly simple data reading and parsing. In Figure A.4, the
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(a) Server-side

(b) Client-side

Figure 5.1: Performance of each key exchange algorithm for security strength of 112 bits, in
number of CPU cycles.

effect of the difference between DHE and ECDHE key sizes can be seen again.

All the produced statistics have expected values, relative to each other, except for the ones

produced by DHE. The DHE bars for the Client-side of Figures 5.1 and A.1 show an abnormal

difference in performance when using the DHE-PSK and DHE-RSA algorithms. This can also

be seen by the large DHE error bars in the Client-side of Figure A.4.

Upon further inspection of the data produced, it was discovered that the sample standard

deviation for the client-side DHE-PSK data using security levels 1 and 2 and for the server-

side DHE-PSK and DHE-RSA data using security level 2 was relatively high. This points out

inconsistencies in the data itself. This is most likely due to the processor making unexpected

calls when running tests for one of the ciphersuites as both key exchange algorithms use DHE

in the same way, i.e. they make the same calls to the DHE module.

The statistics produced by the ECDHE and ECDH algorithms are reasonable since their

values are similar for all ciphersuites that use them.

As for the ECDSA algorithm, the difference in values in Figures 5.1, A.1 and A.2 and the

reasonably sized error bar in Figure 5.2 exists due to the fact that ECDHE-ECDSA performs
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(a) Server-side

(b) Client-side

Figure 5.2: Performance of each algorithm that provides the authentication security service for
all security strengths, in number of CPU cycles.

the signing of the ServerKeyExchange message, using ECDSA. That operation does not exist

in ECDH-ECDSA since that ciphersuite does not send the ServerKeyExchange message as the

ServerCertificate contains all the necessary information to generate the EC key.

More complex analysis is needed for the RSA algorithm. The RSA and RSA-PSK key

exchange algorithms encrypt the ClientKeyExchange message using the server public key, while

the DHE-RSA and ECDHE-RSA sign the ServerKeyExchange message using the private key

from the server. The ECDH-RSA key exchange algorithm does not send the ServerKeyExchange

message nor it encrypts or signs the ClientKeyExchange message. Additionally, the RSA, DHE-

RSA, ECDH-RSA and ECDHE-RSA algorithms perform a signature in the CertificateVerify

message, while RSA-PSK cannot perform this operation since the CertificateRequest message

is never sent.

Therefore, the client-side in RSA-PSK ciphersuites only use RSA to encrypt the Clien-

tKeyExchange message using the public key from the server. Meanwhile, server-side in ECDH-

RSA ciphersuites only use RSA to verify the CertificateVerify message using the public key from

the client. This makes RSA-PSK and ECDH-RSA ciphersuites the ones with the least taxing
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use of the RSA algorithm for the client and server endpoint, respectively.

The above analysis can be seen in Figures 5.1, A.1 and A.2. The analysis also explains the

error bars in Figure 5.2, since the bar is made from the accumulated use of the algorithm from

all different ciphersuites.

The PSK and SHA256 have such little impact, relative to the other algorithms that they

cannot be seen in Figures 5.1, A.1 and A.2. In Figures 5.2 and A.3 it can be seen that these

two algorithms have a relatively high standard deviation.

Upon further inspection of the data produced, it was discovered that the sample standard

deviation of many key exchange algorithms that use the SHA256 algorithm was relatively high.

For the PSK algorithm, this issue is also seen in some key exchange algorithms. This points out

inconsistencies in the data itself.

The cause of these values is likely the same as the one that caused data inconsistencies for the

DHE algorithm. The inconsistencies in the data are also more visible for these two algorithms,

since the scale of their values is much smaller compared to other algorithms and, thus, more

easily influence the standard deviation.

In the case of the client-side PSK algorithm, the relatively large standard deviations are also

due to PSK and RSA-PSK key exchanges not sending the ServerKeyExchange message while

the DHE-PSK and ECDHE-PSK do so.

Concluding, the key exchange algorithm that provides the best trade-off between security and

performance, assuming the objective is to have the most robust security possible, is the ECDHE-

ECDSA. This key exchange algorithm provides all the security services, i.e. authentication,

key establishment and perfect forward secrecy, and also adds an extra layer of security by

signing the ServerKeyExchange message. Additionally, it uses the algorithms that have the best

performance taking into account the services provided.

From all this data, it can also be concluded that, overall, ECC algorithms have much better

performance, both in the server-side and client-side, since they can use much smaller keys to

provide equivalent security levels when compared to the RSA or DHE algorithms.

5.2 Scenario 2: Comparative Analysis of Different AES and

SHA-2 Implementations

For the second scenario, it was decided to use the developed tool to analyse the performance of

different implementations of the AES and SHA-2 algorithms. This test was made to show that

it is possible to improve or deteriorate the performance of the TLS session by using algorithm

53



implementations that make better or least use of the architecture of the device used to perform

the protocol.

For this scenario, it was decided to use two different implementations of the algorithms being

tested. For both algorithms, the first implementation of both algorithms is the native Mbed

TLS implementation. This implementation will be mentioned as the native implementation for

the duration of this section.

The second SHA-2 implementation was created using the code from an open-source project

[39] and adapting it to be used in the Mbed TLS library. The second AES implementation was

created using the example code found in the white paper that gives an overview of the AES-NI

instruction set [20] implemented by Intel. This code was also adapted to be used in the Mbed

TLS library.

The adaptations were made using the chosen alternate implementation method described

in the “TLS Component” subsection. These implementations will be mentioned as alternate

implementations for the duration of this section.

The algorithms profiler tool was used to acquire the data for this scenario. By only generating

data relative to the record protocol, it is possible to directly compare the implementations of

both algorithms. The records were secured using the default MAC-then-encrypt technique.

To generate the data, only the TLS-PSK-WITH-AES-256-CBC-SHA384 ciphersuite was

tested. This ciphersuite is sufficient as it contains both the algorithms whose implementa-

tions are being compared. To get all the necessary data, the tool needed to be used twice, once

for the native implementations and another for the alternate implementations. This is because

Mbed TLS only allows the use of a single implementation of an algorithm at a time.

To get a better understanding of the performance of both implementations, various message

sizes were tested. The tested message size ranges were from 256 bytes to 16384 bytes (16 KB),

which is the maximum plaintext size that can be used in TLS [3].

The number of tests that were executed for each combination of algorithm and message size

was 400. After much experimentation, this is the minimum number of tests required to produce

reliable data.

The metric used for this scenario was CPU time, in microseconds, using the time.h standard

library from C. The tests were performed using the host device mentioned in the previous

scenario. This is because the virtual environment that allows the use of the PAPI library does

not have access to the AES-NI instructions. As such, the tests needed to be performed in the

host device and use the time.h library to perform the measurements. The tests also use the

default filter weight mentioned in the “Algorithms Analysis” subsection.
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After getting the data, the algorithms plotter and comparator tools were used to generate

plots. The produced plots can be seen in the “Software Implementations Comparison” section

of the Appendix B.

(a) Native AES Implementation

(b) Alternate AES-NI Implementation

Figure 5.3: Mean and standard deviation of the AES operations for all message sizes, in mi-
croseconds.

Figures 5.3, B.1 and B.2 show the plots relative to the implementations of the AES algorithm,

while Figures 5.4, B.3 and B.4 show the plots relative to the implementations of the SHA-2

algorithm. The data coloured in red represents the encrypt or hash operation, whereas the blue

coloured data represents the decrypt or verify operation from the respective algorithm. For the
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rest of this section, the encrypt and hash operations will be referred to as out operations while

the decrypt and verify operations will be referred as to in operations.

(a) Native SHA-2 Implementation

(b) Alternate SHA-2 Implementation

Figure 5.4: Mean and standard deviation of the SHA-2 operations for all message sizes, in
microseconds.

As can be seen in Figures B.2 and B.4, the in operations are slightly slower than the out

operations. For the decrypt operations only, this might be because the data set has higher

standard deviations and the data points are also more dispersed compared to the ones from the

encrypt operations, as can be seen in Figures 5.3 and B.1.

No proper reason could be pointed out as to why all decrypt operations have such values.
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Every single operation is done separately so there is no interference from multiples operations

being executed at the same time. Additionally, it was noted that this behaviour is persistent no

matter the number of that were run when acquiring the data. Apart from this particularity, all

the generated plots show reasonable results.

Figures 5.5 and B.5 show the performance of the AES and SHA-2 algorithms, respectively,

using the native and alternate implementation. The native implementations are represented in

blue while the alternate ones are represented in orange. All the plots present in both Figures

use a logarithmic scale.

(a) Encryption Operation

(b) Decryption Operation

Figure 5.5: Comparison of the performance of both AES implementations for all message sizes,
in microseconds.

As can be seen in Figure 5.5 the alternate AES implementation is a lot less taxing on the

device, as it takes around half the time to perform cipher operations than the native implemen-

tation. This can also be seen when comparing the scale on of the plots in Figure B.2. This

result is as expected since the alternate implementation uses the AES-NI instruction set which

optimizes the use of the AES algorithm in Intel processors, such as the one used by the host

device.

As can be seen in Figure B.5, the alternate implementation of the SHA-2 algorithm is
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marginally slower than the native implementation, as there is not even that much of a differ-

ence between their performances. This result is within expectations as the SHA-2 alternate

implementation only focused on implementing the algorithm and not optimize it.

Concluding, for this device, the best implementations, from the ones tested, is the alternate

AES implementation and the native SHA-2 implementation. It can also be concluded that the

AES-NI instruction set provides a great optimization for the performance AES algorithm of

devices that use Intel processors.

5.3 The Tool

Although the objectives of each scenario are very different from each other, the tool contributed

to the performance analysis of the available ciphersuites in each scenario to a great extend. In

the first scenario, the objective is to compare the impact of different algorithms when providing

certain security services, whereas the second one intended to make a direct comparison of the

performance of different algorithm implementations.

By making use of different capabilities provided by the tool, it was possible to generate

relevant and intelligible statistics regarding the performance of the algorithms that were used

as well as the security services that they provide. All of the generated results and statistics are

also reliable as they are within realistic expectations and are coherent between them.

The tool can also take into account different algorithm implementations. This allows its

user to further improve the performance of the TLS protocol as they can analyse different

implementations and choose the one that better suits the situation they find themselves in.

Concluding, the tool greatly contributes to selecting better TLS configurations by providing

an extensive, relevant and intelligible performance analysis of all the tested algorithms as well

as the security services provided by them. The tool can also be used in many different scenarios

and even take into account different algorithm implementations.
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Chapter 6

Conclusions and Future Work

This chapter contains the conclusions that were drawn from this project as well as the accom-

plishments that were made from it. The chapter also proposes some ideas to further improve

this work or to extend its uses.

6.1 Achievements

This work proposes a tool that allows its users to get a detailed analysis of the TLS protocol, in

all its phases. After providing the analysis, the tool creates a list of possible TLS configurations

that can be used by a given device.

The tool provides a dynamic performance analysis as it allows its users to enable and disable

the metrics that are going to be evaluated, as well as implement new ones. The analysis given by

the tool is not only limited to the performance of algorithms that are used during TLS sessions,

but also to the security services that are provided during the session.

Through this tool, devices, particularly IoT ones that have limited access to resources, can

secure their communications by properly configuring TLS sessions. Although the main targets

of this tool are IoT devices, other devices, that have access to more resources, can also use this

tool to further increase the performance and/or robustness of their TLS sessions.

Currently, this work also provides the most extensive analysis of the Mbed TLS 2.16.5

library, which was used as a research target. The analysis includes a detailed explanation of the

mechanisms used by the library, as well as its structure and its modules are connected.

This work also demonstrates the capabilities of the developed tool by using it to analyse

the performance of the TLS protocol in two different scenarios. The first scenario focuses more

on the analysis of the security services provided by the handshake protocol, while the second

scenario focuses on the analysis of using different algorithm implementations, with the focus of
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using the AES-NI instruction set developed by Intel.

6.2 Future Work

For future work, it would be interesting to extend the profiling capability of the tool by including

other relevant metrics. As it stands, the tool can only generate data regarding time or CPU clock

cycles. These metrics are strongly related and may not provide enough relevant information to

allow its users to choose a good TLS configuration.

The most interesting metrics to include would be power consumption and memory usage.

Both of these metrics are relevant because they greatly complement the information provided

by time metrics. These are also two resources that are usually lacking in IoT devices, due to

their nature, and can even, ultimately be the bottlenecks of those devices.

Another relevant study that this project did not cover, due to time constraints, would be

analysing the use of AEAD ciphersuites within Mbed TLS. Although AEAD algorithms or

AEAD cipher modes are more relevant for TLS 1.3, they can still be used in version 1.2 and

are even supported by Mbed TLS. This study would require the analysis of the flow of the

information flow of Mbed TLS when using such ciphersuites.

This study would allow to further increase the scope of possible configurations that devices

may use and simultaneously strengthen the TLS sessions, since AEAD algorithms are considered

safer than using both an encryption and message authentication algorithm.

Lastly, it would be interesting to use this tool to evaluate the performance of an actual IoT

device, since the testing performed in this work was all done using a general-purpose computer.

Although the tool can also be used to profile the performance of general devices, its main

focus is still to be used within an IoT environment and understand how it can truly benefit that

device.

Ideally, only the Data Acquisition module would be put in the target device, as IoT devices

have limited memory. After generating the data from that device and testing different configu-

rations, the data can be transferred to another device where, the Data Analysis module would

be used to generate statistics, plots and tables.
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Appendix A

Handshake Protocol Performance

(a) Server-side

(b) Client-side

Figure A.1: Performance of each key exchange algorithm for security strength of 128 bits, in
number of CPU cycles.
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(a) Server-side

(b) Client-side

Figure A.2: Performance of each key exchange algorithm for security strength of 192 bits, in
number of CPU cycles.
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(a) Server-side

(b) Client-side

Figure A.3: Performance of each algorithm that provides the key establishment security service
for all security strengths, in number of CPU cycles.
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(a) Server-side

(b) Client-side

Figure A.4: Performance of each algorithm that provides the perfect forward secrecy security
service for all security strengths, in number of CPU cycles.
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Appendix B

Software Implementations

Comparison
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(a) Native AES Implementation

(b) Alternate AES-NI Implementation

Figure B.1: Data distribution of the AES operations for all message sizes, in microseconds.

70



(a) Native AES Implementation

(b) Alternate AES-NI Implementation

Figure B.2: Mean, median and mode of the AES operations for all message sizes, in microseconds.

71



(a) Native SHA-2 Implementation

(b) Alternate SHA-2 Implementation

Figure B.3: Data distribution of the SHA-2 operations for all message sizes, in microseconds.
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(a) Native SHA-2 Implementation

(b) Alternate SHA-2 Implementation

Figure B.4: Mean, median and mode of the SHA-2 operations for all message sizes, in microsec-
onds.
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(a) Hash Operation

(b) Verify Operation

Figure B.5: Comparison of the performance of both SHA-2 implementations for all message
sizes, in microseconds.
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Appendix C

Shell Tool User Guide

C.1 Data Acquisition Tools

s e r v i c e s a n a l y s e r . py [−w < f i l t e r w e i g h t >] [−H] [−a ] [−k ] [−p ]

<path to data>

s e r v i c e s c a l c u l a t o r . py [−w < f i l t e r w e i g h t >] [−c ] [− i ] [−a ] [−k ] [−p ]

<path to data>

s e rv i c e s compara to r . py [−w < f i l t e r w e i g h t >] [−c ] [− i ] [−a ] [−k ] [−p ]

<path to data> < s e r v i c e s l i s t >

s e r v i c e s p r o f i l e r . py [− t <comp i l a t i on ta rge t >] [−w < f i l t e r w e i g h t >]

[− s < i n i t i a l l v l >,< f i n a l l v l >]

[−m < i n i t i a l s i z e >,< f i n a l s i z e >] [−n <n t e s t s >]

[−d <data d i r e c to ry >] [−H] [−c ] [− i ] [−a ] [−k ]

[−p ] < s e r v i c e s l i s t >

p o s i t i o n a l arguments :

path to data Re la t i v e path from the . / docs d i r e c t o r y where the

data i s s to r ed

s e r v i c e s l i s t F i l e with l i s t o f s e c u r i t y s e r v i c e s and

a lgor i thms that prov ide them . Example found in

examples / k e s e r v s . txt
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op t i on a l arguments :

−h , −−help show help message and e x i t

−t <comp i l a t i on ta rge t >, −−t a r g e t=<comp i l a t i on ta rge t>

Path to endpoint implementation r e l a t i v e to

l−t l s / d i r e c t o r y . Defau l t i s t l s a l g s

−w < f i l t e r w e i g h t >, −−weight=<f i l t e r w e i g h t >

Weight o f the z−s co r e f i l t e r parameter . The

d e f a u l t i s 2 . f i l t e r w e i g h t =0 means no data i s

f i l t e r e d

−s < i n i t i a l l v l >,< f i n a l l v l >, −−s e c l v l=< i n i t i a l l v l >,< f i n a l l v l >

Range o f s e c u r i t y l e v e l s to be cons ide r ed . From 0

to 4 , where 0 i s cons ide r ed i n s e c u r e and 4 i s

maximum s e c u r i t y

−m < i n i t i a l s i z e >,< f i n a l s i z e >,

−−message s i z e=< i n i t i a l s i z e >,< f i n a l s i z e >

Range o f message s i z e s to be cons idered , in

bytes . From 32 to 16384 (16KB)

−n <n t e s t s >, −−n t e s t s=<n t e s t s>

Number o f i t e r a t i o n s

−d <data d i r e c to ry >, −−data path=<data d i r e c to ry>

Name o f the d i r e c t o r y where the data w i l l be

s to r ed and used . Root d i r e c t o r y i s docs /

−H, −−handshake Analyse o v e r a l l handshake performance

−c , −−conf Analyse performance o f the c o n f i d e n t i a l i t y

s e c u r i t y s e r v i c e

−i , −−i n t Analyse performance o f the i n t e g r i t y s e c u r i t y

s e r v i c e

−a , −−auth Analyse performance o f the au then t i c a t i on

s e c u r i t y s e r v i c e

−k , −−ke Analyse performance o f the key es tab l i shment

s e c u r i t y s e r v i c e

−p , −−p f s Analyse performance o f the p e r f e c t forward

s e c r e cy s e c u r i t y s e r v i c e
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C.2 Data Analysis Tools

a lgs comparator . py [−w < f i l t e r w e i g h t >] [−c ] [−m] [−k ] <path to data>

<a l g o r i t h m l i s t>

a l g s p l o t t e r . py [−w < f i l t e r w e i g h t >] [−c ] [−m] [−k ] <path to data>

a l g s p r o f i l e r . py [− t <comp i l a t i on ta rge t >] [−w < f i l t e r w e i g h t >]

[− s < i n i t i a l l v l >,< f i n a l l v l >]

[− i < i n i t i a l s i z e >,< f i n a l s i z e >] [−n <n t e s t s >]

[−d <data d i r e c to ry >] [−c ] [−m] [−k ]

<a l g o r i t h m l i s t>

p o s i t i o n a l arguments :

path to data Re la t i v e path from the . / docs d i r e c t o r y where the

data i s s to r ed

a l g o r i t h m l i s t F i l e with l i s t o f a lgor i thm types and a lgor i thms

that belong in them . Example found in

examples / k e a l g s . txt

op t i on a l arguments :

−h , −−help show help message and e x i t

−t <comp i l a t i on ta rge t >, −−t a r g e t=<comp i l a t i on ta rge t>

Path to endpoint implementation r e l a t i v e to

l−t l s / d i r e c t o r y . Defau l t i s t l s a l g s

−w < f i l t e r w e i g h t >, −−weight=<f i l t e r w e i g h t >

Weight o f the z−s co r e f i l t e r parameter . The

d e f a u l t i s 2 . f i l t e r w e i g h t =0 means no data i s

f i l t e r e d

−c , −−c iphe r Analyse performance o f c iphe r a lgor i thms

−m, −−md Analyse performance o f message d i g e s t a lgor i thms

−k , −−ke Analyse performance o f key exchange a lgor i thms

−s < i n i t i a l l v l >,< f i n a l l v l >, −−s e c l v l=< i n i t i a l l v l >,< f i n a l l v l >

Range o f s e c u r i t y l e v e l s to be cons ide r ed . From

to 4 , where 0 i s cons ide r ed i n s e c u r e and 4 i s
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maximum s e c u r i t y

−m < i n i t i a l s i z e >,< f i n a l s i z e >,

−−message s i z e=< i n i t i a l s i z e >,< f i n a l s i z e >

Range o f message s i z e s to be cons idered , in

bytes . From 32 to 16384 (16KB)

−n <n t e s t s >, −−n t e s t s=<n t e s t s>

Number o f i t e r a t i o n s

−d <data d i r e c to ry >, −−data path=<data d i r e c to ry>

Name o f the d i r e c t o r y where the data w i l l be

s to r ed and used . Root d i r e c t o r y i s docs /
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