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Abstract

Transcription factors are proteins essential in the control of gene expression and a proper mapping and profiling of these proteins
could prove invaluable for the understanding and control of gene regulation in a microbiome. Directly analyzing the abundance and
presence of different transcription factors may be a tool that can help provide insight on the external factors that drive transcription
factor abundance.

The metagenomic assemblies originating from a benzene-degrading nitrate-reducing succession experiment were analyzed with
the newly developed PredicTF tool in order to identify which transcription factors were present in the metagenome. This data was
used to conduct a diversity analysis which detected shifts in the abundance of different transcription factor families over time. Machine
learning algorithms, such as Random Forest, and statistical tests were then employed to identify potential bioindicators among the
different transcription factor families, with 2 different families being identified as potential bioindicators. This work demonstrates that
this technique has potential for determining the impact of external factors on biological samples, motivating further exploration of the
proposed approach in broader datasets.
Keywords: Random Forest; Transcription Factor; Microbial Diversity; Machine Learning.

1. Introduction
The inspiration for this work is the combination of 3 main fac-

tors: The progress and availability of new tools to determine the
abundance of transcription factors (TFs); the interest in better
modeling of microbial communities’ transcription networks; and
the question of whether the regulatory and expression patterns
of a microbial community are related to the abundance of tran-
scription factors within that community.

Given that one of the major objectives in microbiome manip-
ulation for the ecology and biotechnology fields is to control mi-
crobiome function and expression[1][2], and that TFs are essen-
tial in the control of gene expression[3], a proper mapping and
profiling of TFs could allow for better understanding and control
of gene regulation in a microbiome. Improving our understand-
ing of these regulatory networks and their many components
permits a superior level of manipulation, control, and monitor-
ing of these microbiomes. This could prove valuable in many
facets, providing benefits in the biotechnology fields, but also
allowing better prevention of potential environmental hazards
in communities, given that understanding the specific methods
of regulation of a microbiome would allow us to better predict
the environmental impact of external factors introduced to this
environment[1].

When studying TFs, there is a lot of work published on their
effect on gene expression [3]. However, research on which
external factors directly impact TF abundance and how these
factors integrate transcription regulatory networks is often over-
looked. With the advent on new tools geared specifically to-
wards the detection of TFs such as PredicTF[2], and with the ex-
pansion of TF databases like UniProt[4] and CollectTF[5], anal-
ysis of TF abundance and the environmental stresses impacting
it can be more properly undertaken.

The main objective of this work is to determine the impact
of environmental stresses on the abundance of bacterial TFs
and whether these differences in abundance levels could be
used to distinguish between samples at different time points
of a succession experiment, thus providing direct insight into
the regulatory networks of the community. In order to achieve
this objective, 4 main steps are taken, according to a proposed
methodology graphically summarized in fig 1: The elaboration
of a succession experiment on a bacterial, benzene degrad-
ing, nitrate reducing microcosm performed by a collaborator[6],
the sequencing of metagenomic data of these samples and it’s
assembly, the use of a tool to predict TFs in the assemblies
(PredicTF[2]) and an extensive diversity analysis and search for
bioindicators in the TF abundance results, using multiple diver-

sity metrics, statistical tests and machine learning approaches.

2. Materials and Methods
The proposed methodology and associated main steps, sum-

marized in figure 1, are detailed next.
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Figure 1: Schematic description of the proposed methodology.

2.1. Microcosm setup and sampling
A controlled mineralization experiment was set up with

a benzene-mineralizing nitrate reducing culture with
concentration of 1% (v/v) benzene, using 2,2,4,4,6,8,8-
Heptamethylnonane as a carrier phase. Samples for DNA
extraction were taken as 5 mL of liquid. Technical triplicates
were obtained per each sampling time (0, 70, 76, 96 and
124 days) and were immediately stored at -80°C until DNA
extraction. Microbial community diversity was analyzed by
paired-end sequencing of 16S RNA amplicons on the Illumina
MiSeq platform using the MiSeq Reagent Kit v3 (2 x 300 bp).
The V3-V4 regions of the 16S rRNA genes were amplified
using the primers according to Klindworth and colleagues[7].

2.2. Rarefaction and assembly
Following sequencing and quality control,the initial reads

were normalized by rarefaction to the lowest sample size of
6·106. After the rarefaction step, assembly was performed using
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the Metaspades[8] algorithm, with 30GB of allocated memory
over 10 hours. This was performed in order to remove library
size bias from our analysis[9].

2.3. PredicTF
PredicTF was used to determine the abundance of TF fami-

lies and subfamilies in the metagenomic assemblies. Following
the assembly process, the assemblies are used as input for Pre-
dicTF. PredicTF outputs the predicted TF subfamily and family,
their query position, closest hit in the database, probability of a
real match, alignment length, e-value and in which bin/assem-
bly it was predicted. Any output with a probability lower than
97% is disregarded as well as any e-value (probability due to
chance, that there is another alignment with a similarity greater
than the given score) higher than 10−10.

2.4. Diversity analysis
For the diversity analysis, 4 different indices are used: ab-

solute abundance of TF subfamilies, relative abundance of TF
subfamilies, absolute abundance of TF families and relative
abundance of TF families. Given the fact that, to the best of
our knowledge, no research has yet been published using the
PredicTF tool or measuring TF abundance for a diversity analy-
sis, these multiple metrics were used in an attempt to ascertain
which could provide the most meaningful results.

Data analyses were completed using the phyloseq[10],
vegan[11] and RandomForest[12] packages in R software [13].
In an attempt to assess richness and evenness of the samples,
the alpha diversity indices (observed number of TFs and Shan-
non Index) were estimated using the rarefied data. The statis-
tical significance of the differences in alpha diversity measures
between samples was then estimated using a pairwise t-test
(“rstatix” R package)[14]. The beta diversity of the samples was
studied using both NMDS and PCoA ordination, using the Bray-
Curtis dissimilarity method to calculate distance [14].

PCoA is an ordination method which preserves dissimilarity
measures between objects[15]. It is used to represent all points
in an Euclidean space and can produce 2-dimensional (2D)
reduced ordinations of multi-dimensional objects[15]. NMDS
is also an ordination technique, however, unlike PCoA where
many axes are calculated but only a few are viewed, in NMDS,
a small number of axes are explicitly chosen prior to the analysis
and the data is fitted to those dimensions; there are no hidden
axes of variation[16].

Given that PredicTF identified 27 families and well over 100
subfamilies, in order to represent them graphically in a manner
that could be understandable there was need for the dimen-
sionality reduction of the PCoA and/or NMDS methods, allow-
ing the visualization of the most relevant features of our data
in a 2-dimensional plot. This visualization is used in order to
determine whether or not clusters or decision surfaces can be
observed, separating the different time points at which samples
were collected. They may also be used to cluster multiple time
points. For example, the visualizations may show a clear divi-
sion in samples taken before a certain date vs those taken at
later time points.

Following the visualization of the results, the samples were
divided between Early (taken at 0,70 and 76 days) and Late
(taken at 96 and 124 days).

The statistical significance of the principal coordinates in
the different time points and groupings created was then as-
sessed using a PERMANOVA[17], as this statistical test has
been shown to be very powerful as a tool to detect changes in
community structures[14].

In order to analyze variance, the Bray-Curtis distance of each
sample within the same time point was graphed. This is done as
it reveals which time points had the greatest variance of abun-
dance level between samples indicating potential sampling or
analysis errors.

Overall this diversity analysis will allow the determination of
whether there really is a statistically significant difference in
the abundance levels of certain TFs between the different time

points and groupings, allowing for a further study forward on
which specific TF (sub)families have differences in their abun-
dance level.

2.5. Identifying bioindicators using machine
learning

A Random Forest[18] is constructed to distinguish the sam-
ples between Early and Late, with the families that contribute
the most GINI information gain to the creation of this forest be-
ing selected. Those with statistically significant differences in
their abundance levels are considered potential bioindicators
and the difference in abundance between their Early and Late
samples is tested using LS Means tests.

The Gini impurity metric is the probability of an incorrect clas-
sification of a new input of a random variable, if that classifica-
tion were done according to the current distribution of the data
set’s class labels[19]. It is calculated using equation 1, with
G representing the Gini impurity, c being the total number of
classes and p(i) the probability of picking a data point with class
i.

G =

C∑
i=1

p(i) ∗ (1− p(i)) (1)

A process of feature selection can be performed by observing
the impact each feature has on the Gini value of a node and
establishing a threshold value of Gini impact above which the
features are selected[20].

This analysis was performed using the “RandomForest”
package[21]. The number of variables tried at each split (also
known as tree depth) is generally recommended to be close
to the square root of total, so in this case

√
27 = 5. In order

to analyze the impact of tree depth in the final performance of
the model and associated study, two models were implemented,
corresponding to a depth of 5 and 20. Forests were created with
the number of trees ranging from 2000 to 800000.

Following this, a plot of the mean decrease GINI value for
each family was obtained from the Random Forests with the
lowest out-of-bag error rate and all families that caused an in-
crease of +5% in the mean Gini value were selected. This was
done since distinctive features identified by random forests are
visualized by their Gini score[12]. Prediction success was es-
timated with the out-of-bag error (how often a subsample was
misclassified)[22].

Following the Random Forest generation and selection of the
relevant TF families by using their Mean GINI value, a Least
Squares Means test is performed on all relevant families, com-
paring their early and late abundance values. Least-squares
means are predictions on a linear model and can be used in
unbalanced datasets[23]. Following a pairwise t-test on the LS
means results, with false discovery rate adjustment, the families
with statistically significant (p<0.01) differences between these
two time groups were considered to be bioindicators.

After the selection of these bioindicator families, one fam-
ily (NtrC.DctD) was chosen as it had the most significant re-
sults and few subfamilies. These subfamilies were also tested
with a pairwise LS-means statistical test, in order to determine
whether their abundance varied significantly between the Early
and Late time groups.

3. Results and Discussion

3.1. PredicTF
Upon using the PredicTF tool to predict transcription factors

on the 15 metagenomic assemblies, a total of 1569 TFs were
found, spread out over 159 subfamilies and 27 families.
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Figure 2: Absolute abundance of Transcription Factor families for samples collected
at the different days of the experiment. Each column represents one sample. The

divisions (line) inside each family represent subfamilies.

Figure 3: Relative abundance (%) of Transcription Factor families for samples
collected at the different days of the experiment. Each column represents one

sample. The divisions (line) inside each family represent subfamilies.

3.2. Alpha Diversity

The alpha diversity analysis reveals that there are statisti-
cally significant differences in the alpha diversity of sub-families
among certain samples, for both the observed and Shannon
metrics, but no statistically significant differences between the
alpha diversity of the families.

Days Days Adjusted p value
(Observed)

Adjusted p value
(Shannon)

0 70 1 1
0 76 1 1
0 96 1 1
0 124 1 0.969

70 76 0.897 0.019
70 96 1 1
70 124 0.184 0.026
76 96 1 1
76 124 0.033 0.057
96 124 1 1

Table 1: Pairwise t-test on the Alpha diversity results for TF sub-families (Observed
Number of TF families and Shannon Index), using Bonferroni correction for adjusted

p-values. Statistically significant (adjusted p-value<0.05) values in bold.

Days Days Adjusted p value
(Observed)

Adjusted p value
(Shannon)

0 70 1 1
0 76 1 1
0 96 1 1
0 124 0.848 1

70 76 1 1
70 96 0.848 1
70 124 0.848 1
76 96 1 1
76 124 0.198 1
96 124 1 1

Table 2: Pairwise t-test on the Alpha diversity results for TF families (Observed
Number of TF families and Shannon Index), using Bonferroni correction for adjusted

p-values.

This indicates that the overall species diversity seems to be
the same among all samples, for the families of TFs. Since
these are alpha diversity measures, the results indicate that
over time in this succession experiment, the number of differ-
ent transcription factor families does not seem to change sig-
nificantly. This does not however mean that the abundance of
certain families has not changed. In order to observe whether
different families are being expressed more or less, we’ll have to
resort to beta diversity metrics, comparing the diversity between
samples and time points.

3.3. Beta Diversity

The PCoA results using relative abundance of TF families
and the absolute abundance of subfamilies can be seen in fig-
ure 4 and 5, respectively. Following analysis of the graphs, there
was a decision to split the samples into two distinct groupings.
These groupings are the Early (0, 70 and 76 days) samples
and the Late (96 and 124 days) samples. The reason for these
groupings came from realizing that this separation of samples
could always be divided by a decision surface in all PCoA and
NMDS graphs, but most importantly, this split is very apparent
in the family plots and given that in these graphs the 2 first
principal coordinates account for the greatest amount of vari-
ance( 60% for the family analysis vs 30% for the subfamily anal-
ysis) and they also have the most statistically significant results
in the PERMANOVA analysis, they were considered the most
relevant. The lower variance of the 2 main principal coordinates
and the less statistically significant values of the subfamily anal-
ysis are believed to be due to the somewhat limited nature of
this dataset and the large number of different subfamilies with
very low abundance present, which makes it difficult to mean-
ingfully discern between different samples.

Figure 4: Principal Coordinate analysis of Bray distances comparing the relative
abundance of TF families in different samples. We defined two time groups as Early

and Late. Permutational multivariate analysis of variance (PERMANOVA) of both
the individual Days and the time groups are shown in the figure.
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Figure 5: Principal Coordinate analysis of Bray distances comparing the absolute
abundance of TF subfamilies in different samples. We defined two time groups as
Early and Late . Permutational multivariate analysis of variance (PERMANOVA) of

both the individual Days and the time groups are shown in the figure.

Principal coordinates analysis using Bray-Curtis distances re-
vealed contrasts associated with the sampling time, both for
the individual time samples and time groups. Samples col-
lected before and at 76 days differed significantly from those
collected afterwards. These differences among the different
time points and time groups were confirmed in a PERMANOVA
analysis on Bray distances, for the different time samples
(Pseudo-F=1.88;P=0.01149) and for the time groups (Pseudo-
F=3.61;P=0.0005). This indicates there is a clear difference in
the abundance levels of certain families in the samples among
the different time points/group, potentially as a result of the
stress of the environment altering abundance levels over time.
Following these results, a decision was made to, for the most
part, disregard the abundance of subfamily values in the pro-
ceeding analyses, as these are not considered as relevant, for
the reasons previously stated.

By classifying the samples as late or early, as previously es-
tablished, a random forest model was obtained with the confu-
sion matrix shown in table 3. This confusion matrix corresponds
to an out-of-bag error of 6,7%, due to a missclassification of 1
late sample as early. Interestingly, this exact confusion matrix (1
missclassification of a late sample) was always obtained with ei-
ther 5 or 20 variables per tree, with the number of trees ranging
from 2000 to 800000. This shows that, at least for this dataset,
corresponding the number of trees in a forest to the number of
possible combinations of features was excessive and a lower
value should be picked as it provides the same results while be-
ing less computationally intensive. It should however be noted
that this effect may be due to the very high GINI index value of
the NtrC.DctD family, as it is possible to determine the class of a
sample by simply taking into account the relative abundance of
this family, something which will be further discussed below. In
addition, several different divisions of the samples were created
in an attempt to create a RF classifier with a confusion matrix
with a smaller OOB error rate than the Early vs Late division RF
in an attempt to determine whether a more optimal division of
the samples could be found. One such example was the group-
ing of all samples except the ones taken at 96 days and com-
paring them against the samples taken at 96 days, given that,
as demonstrated in ?? and the pairwise t-tests in table ??, the
samples taken at this time point seem to have higher variance
than at any other period. All different subdivisions, however,
proved unsuccessful as all forests generated OOB errors above
10%.

The mean decrease GINI values for the RF with Early and
Late time groups and tree depth of 5 is plotted in figure 6, and
the relevant families are determined by evaluating which fami-
lies contribute more then 5% to the sum of Mean GINI values
so far. This results in 7 families being selected as relevant(
NtrC.DtcD, LysR, XRE, GntR, LacI.GalR, CopY and Fur).

Table 3: Confusion Matrix following the Random forest analysis of the time groups.
Out-of-bag error= 6,7%. a Early time group, consisting of the samples taken at 0, 70
and 76 days, b Late time group, consisting of the samples taken at 96 and 124 days,

c The proportion of instances misclassified over the whole set of instances.

Confusion Matrix Earlya Lateb Classification errorc

Early 9 0 0
Late 1 5 0,17

Figure 6: Mean Gini Decrease values for all 27 Transcription Factor families,
representing their impact on the Random Forest algorithm, using 5 variables per
tree. The Transcription Factor families below the red line add less than 5% for the

sum of the Mean Gini Decrease values.

3.4. Statistical Test

Following the selection of the families in the previous section,
the LS means test was applied, with results being shown in table
4.

Table 4: Least square mean analysis of selected Transcription Factor families
between the Early and Late time groups. Values in bold indicate TF families with
relative abundance values statistically different between the Early and Late time

groups.
TF family p-value SE t ratio
NtrC.DctD 0.00004 0.01417 -6.08016
LysR 0.00644 0.02002 3.24074
XRE 0.07771 0.00388 -1.91529
GntR 0.02975 0.00678 2.44025
LacI.GalR 0.13747 0.00352 1.58285
CopY 0.05081 0.02058 -2.15160
Fur 0.20420 0.00853 1.33683

The 2 families selected as bioindicators are the NtrC.DctD
and LysR families.

In order to visualize the difference in abundance levels of
these 2 families between early and late, a box plot was con-
structed, as can be seen in figure 7. Interestingly, the change
in the number of variables tried at each tree led to no difference
in the final results as to which families are considered bioindi-
cators, since the families added by lowering this value did not
have statistically significant (p < 0.01) differences in their early
vs late abundance levels.
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Figure 7: Relative abundance of the (a) NtrC.DctD and (b) LysR transcription factor
families over 5 different days. Different capital letters (A or B) represent a

statistically significant difference between the two time groups (Early and Late), with
the respective p-value represented in the graph.

As can be seen in figure 7, the relative abundance of the
NtrC.DctD family rises in the late time group while decreasing
for the LysR family. Of note, there is a clear cutoff for the abun-
dance of the NtrC.DctD family since all early samples have a
relative abundance below 22%, while all late samples have a
relative abundance above 22%. This clear cutoff may account
for why this family had such a high GINI value following the con-
struction of the Random Forest, as a clear cutoff would have
made any node which took into account the relative abundance
of this family be able to immediately classify a sample as early
or late. This effect is only exacerbated in the forest which had
20 variables per tree, as most of the trees would have this fam-
ily as a node, thus increasing its impact in the decision mak-
ing even further, showing why a smaller number of variables
should be used in each tree, as it allows them to be further de-
correlated[18].

This effect is further confirmed by the building of a decision
tree using all families selected by the GINI plot (before the LS-
means test), in order to be able to visualize the decision mak-
ing process and potentially visualize some patterns regarding
whether a family was up or downregulated over time. However,
due to the clear cutoff previously mentioned, a decision tree
which includes the NtrC.DctD family is just a single node, using
that family’s abundance value to distinguish between samples,
with 100% accuracy.

The NtrC.DctD family is not only relevant in the RFs, but also
had relatively few subfamilies detected (7) when compared to
families like LysR which had around 40 subfamilies. Therefore,
an LS-means analysis on the absolute abundance values of
NtrC.DctD subfamilies with more than 5 instances comparing
the Late and Early time groups was conducted in an attempt
to study which specific subfamilies were up- or downregulated
over time. The results can be found in table 5.

NtrC.DctD
Subfamily p-value SE t-ratio

PILR 0.01201 0.68563 -2.91703
GNFM 0.16114 0.48603 1.48595
XYLR 0.71193 0.58875 0.37745
CBRB 0.05081 0.02058 -2.15160

Table 5: Least square mean analysis of selected Transcription Factor families
between the Early and Late time groups. Values in bold indicate TF families with
absolute abundance values statistically different between the Early and Late time

groups.

Only one subfamily had a statistically significant(p<0,05) dif-
ference in it’s abundance between Early and Late time groups,
the PILR subfamily. This subfamily is responsible for activation
of the pilin gene. This gene has been implicated in playing a
key role during the initial stages of colonization of a host by the
pathogen Pseudomonas aeruginosa. In order to visualize it’s
abundance, the following graph was produced 8.

Figure 8: Absolute abundance of the PILR transcription factor subfamily over 5
different days. Different letters (a or b) represent a statistically significant difference

between the two time groups (Early and Late).

Although not as statistically significant as the results from the
2 bioindicator families, the abundance of the PILR subfamily
seems to decrease over time. This could be due to a multitude
of reasons: the increased stress of this environment led to the
microorganisms having to ”focus” their expression to other TFs
which would help them deal with the pollutant in the ecosys-
tem; it’s also possible the motility conferred by the piln gene ac-
tivated by the PILR subfamily was not as advantageous in the
new benzene-degrading conditions of the community, leading to
either it not being expressed as much or even to a decrease in
the population of microorganisms which express this TF, given
that it has only been identified in certain species[24][25].

The NtrC.DctD family represents transcription factors which
are involved in nitrogen regulation[2]. As previously mentioned,
the family NtrC.DctD has a higher relative abundance in the
late time group. Considering these samples originate from
a microcosm with nitrate-reducing conditions, this result may
be partly attributed to environmental conditions. Due to the
use of nitrate as a substrate, the pathways that regulate nitro-
gen consumption/nitrate reduction would be expected to have
higher importance among the different organisms present in this
ecosystem. It is important to note that this family contains TFs
that both upregulate and downregulate multiple different steps
in the nitrogen regulation pathways and therefore an increase
in the abundance levels of NtrC.DctD TFs can have multiple
causes[26].Although, it should be noted that most TFs have
been shown to upregulate genes[27].

One potential cause for this increase could be that, due to
the increased importance of nitrogen regulation in a nitrate-
reducing environment, the organisms present within the micro-
cosm had their NtrC.DctD transcription factors’ abundance in-
creased in order to more accurately and better regulate the
nitrate-reducing pathways. This increase in abundance can be
observed gradually over time, indicating why the abundance lev-
els of the TFs are higher in samples taken at later times.

Another potential bioindicator is the LysR family, which has a
statistically significant difference in its relative abundance when
comparing the early and late time groups. Unlike the NtrC.DctD
family, the relative abundance of the LysR family decreases for
the later time group, possibly indicating a decline in the tran-
scription or regulation of genes regulated by this family in a ni-
trate reducing/benzene present environment.

The LysR family of transcriptional regulators is the most
abundant family in the prokaryotic kingdom and regulates a very
diverse set of genes, involved in functions such as virulence,
metabolism, quorum sensing and motility[28]. Due to the var-
ied amount of gene functions that the LysR family regulates,
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it is hard to determine whether the regulation of certain spe-
cific functions within this family is being suppressed or activated
due to the environmental stresses and it is therefore harder to
draw conclusions as to what specific functions could be affect-
ing the abundance levels of TFs of this family. One way to more
precisely map out which functions’ TFs are being affected is to
analyze the abundance levels of the LysR subfamilies, as each
will have more precise functions who’s importance in this sys-
tem may be more easily studied. However, due to the size of the
dataset and, in the LysR family, the very large number of sub-
families, there isn’t enough data to draw any significant conclu-
sions. This could potentially be remedied with a larger dataset
to work with, less specific subfamily groupings, or better-quality
reads.

It should always be noted that an increase or decrease in the
abundance of a certain TF in the genome does not necessarily
equate to that TF being more or less translated (though the 2
are often correlated)[29]. Therefore an analysis of the transcrip-
tome and proteome (as was originally planned to be performed
in this work) can accompany this sort of work in order to more
accurately determine whether or not these TFs are indeed be-
ing transcribed into RNA and proteins.

The techniques performed in this work for TF analysis have
proved useful, as they allow a better understanding of regu-
latory networks and the mechanisms which govern TF abun-
dance, helping in the modeling and description of these com-
plex networks, by providing insight that techniques such as phy-
logenetic or gene expression analyses do not, namely TF abun-
dance values and how they are affected.

4. Conclusions and Future Work
The main objectives of this work were to determine the im-

pact of environmental stresses on the abundance of bacterial
TFs and whether these differences in abundance levels could
be used to distinguish between samples at different time points
of a succession experiment, thus providing direct insight into
the regulatory networks of the community. With this objective in
mind, data from a microcosm experiment was used as input for
the newly developed PredicTF tool in order to detect TF abun-
dance. These abundance values are then used to perform a
diversity analysis and to determine bioindicators using Random
Forests and statistical tests.

The diversity analysis results, mainly the beta diversity analy-
sis using PCoA, show that the TF family abundance levels of the
community are indeed changing over time, indicating that ex-
ternal factors do indeed affect bacterial TF abundance, as had
been shown in literature before[30]. In addition, this analysis
also showed that there appears to be a clear contrast between
samples taken earlier than 96 days and those taken later.

When searching for bioindicators, 2 TF families were found
who’s abundance altered significantly over time: NtrC.DctD
and LysR. While the NtrC.DctD change in abundance may be
caused by the nitrate reducing environment of the microcosm
experiment the differences in abundance of LysR TFs may be
harder to explain, due to the very wide variety of functions differ-
ent TFs in this family regulate. Regardless, these results show
that not only does TF abundance change as a result of exter-
nal factors, but this fact may potentially be used in the realms of
ecology, given that if the abundance of specific families changes
with specific external factors (e.g. overabundance of NtrC.DctD
TFs in the presence of a nitrate reducing environment), then the
abundance of these families may be used as a tool for better
monitoring of the regulatory networks of microbial communities.

As previously stated, just because a TF is present in the
metagenome, this does not mean it is necessarily transcribed
into a protein. In future work one could complement the metage-
nomic samples with transcriptomic (determine whether the TF
genes are being transcribed) and proteomic (determine whether
the TFs are being translated into proteins) samples in order to
have a more accurate understanding of which TFs are in fact be-
ing expressed. In addition, in this work due to the limited nature
of the dataset, the abundance values of the TF subfamilies were

not extensively used, namely in the search for bioindicators. De-
spite this, the abundance values of the subfamilies have the
potential to be more relevant than the more generalized family
groupings and should not be disregarded immediately in any fu-
ture work, especially if a larger dataset with greater abundance
of subfamilies can be produced. This is due to the subfamilies
affecting the expression of a smaller amount of genes, often
with similar functions, so a variation on the abundance of a spe-
cific subfamily can be more easily linked to a specific function
or characteristic of the community.

Another analysis that may be performed alongside this work
is a phylogenetic analysis of the species present in the micro-
biome. Such an analysis provides insight into the microbial
composition of the community over time. When coupled with
the PredicTF tool, it may allow for determination of, for instance,
whether a decrease of the abundance of a specific TF is due to
that TF not being upregulated in the conditions of microcosm,
or, due to the population of microorganisms in which that TF is
present decreasing or disappearing over time[31]. A phyloge-
netic analysis could have provided such insight into the causes
of the decreased abundance of the PILR subfamily over time.
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