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Abstract

Transcription factors are proteins essential in the control of gene expression and a proper mapping and

profiling of these proteins could prove invaluable for the understanding and control of gene regulation

in a microbiome. Directly analyzing the abundance and presence of different transcription factor genes

in metagenomic samples may be a tool that can help provide insight on the external factors that drive

transcription factor abundance.

The metagenomic assemblies originating from a benzene-degrading nitrate-reducing succession ex-

periment were analyzed with the newly developed PredicTF tool in order to identify which transcription

factors were present in the metagenome. This data was used to conduct a diversity analysis which

detected shifts in the abundance of different transcription factor families over time. Machine learn-

ing algorithms, such as Random Forest, and statistical tests were then employed to identify potential

bioindicators among the different transcription factor families, with two different families being identified

as potential bioindicators for benzene degradation/nitrate reduction. This work demonstrates that this

technique has potential for determining the impact of external factors on biological samples, motivating

further exploration of the proposed approach in broader datasets.
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Resumo

Fatores de transcrição são proteı́nas essenciais no controlo da expressão génica e um mapeamento e

caracterização destas proteı́nas poderá ser essencial na descrição e controlo da regulação génica num

microbioma. Analisar diretamente a abundância e presença de diferentes fatores de transcrição poderá

ser uma ferramenta que ajude a melhor entender o impacto de fatores externos na expressão de fatores

de transcrição.

As montagens metagenómicas obtidas de amostras provenientes de uma experiência de sucessão

com um microcosmo com degradação de benzeno e redução de nitrato foram analisadas com a nova

ferramenta PredicTF, de forma a identificar os fatores de transcrição presentes nos metagenomas.

Estes dados foram usados de forma a realizar uma análise de diversidade, que detetou alterações na

abundância de diferentes famı́lias de fatores de transcrição, com 2 famı́lias sendo identificadas como

possı́veis bio-indicadores. Este trabalho demonstra que esta técnica tem o potencial de estudar o

impacto de fatores externos em amostras biológicas, motivando estudo dos métodos utilizados num

dataset maior.

Palavras Chave

Random Forest; Fator de transcrição; Diversidade Microbiana; Aprendizagem Automática.
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1.1 Context and Motivation

The inspiration for this work is the combination of three main factors: The progress and availability of

new tools to determine the abundance of transcription factors (TFs); the interest in better modeling of

microbial communities’ transcription networks; and the question of whether the regulatory and expres-

sion patterns of a microbial community are related to the abundance of transcription factors within that

community.

Given that one of the major objectives in microbiome manipulation for the ecology and biotechnology

fields is to control microbiome function and expression [1] [2], and that TFs are essential in the con-

trol of gene expression [3], a proper mapping and profiling of TFs could allow for better understanding

and control of gene regulation in a microbiome. Improving our understanding of these regulatory net-

works and their many components permits a superior level of manipulation, control, and monitoring of

these microbiomes. This could prove valuable in many facets, providing benefits in the biotechnology

fields, but also allowing better prevention of potential environmental hazards in communities, given that

understanding the specific methods of regulation of a microbiome would allow us to better predict the

environmental impact of external factors introduced to this environment [1].

When studying TFs, there is a lot of work published on their effect on gene expression [3]. How-

ever, research on which external factors directly impact TF abundance and how these factors integrate

transcription regulatory networks is often overlooked. With the advent on new tools geared specifi-

cally towards the detection of TFs such as PredicTF [2], and with the expansion of TF databases like

UniProt [4] and CollectTF [5], analysis of TF abundance and the environmental stresses impacting it can

be more properly undertaken.

1.2 Objectives and proposed framework

The main objective of this work is to determine the impact of environmental stresses on the abundance

of bacterial TFs and whether these differences in abundance levels could be used to distinguish between

samples at different time points of a succession experiment, thus providing direct insight into the regu-

latory networks of the community. In order to achieve this objective, 4 main steps are taken, according

to a proposed methodology graphically summarized in fig 3.1: The elaboration of a succession exper-

iment on a bacterial, benzene degrading, nitrate reducing microcosm performed by a collaborator [6],

the sequencing of metagenomic data of these samples followed by metagenomic assembly, the use of

a tool to predict TFs in the assemblies (PredicTF [2]) and an extensive diversity analysis and search for

bioindicators in the TF abundance results, using multiple diversity metrics, statistical tests and machine

learning approaches.
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1.3 Thesis outline

This document is divided in 5 chapters. Chapter 2 introduces the background and state of the art of

underlying concepts and techniques explored in this work , such as transcription factors, metagenomics,

diversity analysis and machine learning. In chapter 3 I describe the methodology employed in this work ,

including the microcosm setup, assembly, the use of PredicTF tool, the diversity analysis and the search

for bioindicators. In the following chapter 4, the results of the previous described work are shown and

discussed. Finally, in chapter 5 I summarize the main findings of this work and some potential future

questions to be addressed are briefly discussed.
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2.1 Biology Background

2.1.1 Gene regulation

For different cells and organisms, the same genomic sequence can present widely different phenotypes.

These variations are caused by specific genomic instructions, which stem from transcriptional regulatory

pathways. The metabolism of cells and organisms are therefore affected and regulated by transcriptional

regulation [3]. This regulation can be positive regulation (activating gene expression), negative regula-

tion (repressing gene expression), and co-regulation (activating or repressing multiple genes at the same

time) [3].

In order to commence transcription, RiboNucleic Acid (RNA) polymerase must bind to a promoter, a

site in Deoxyribonucleic Acid (DNA) often adjacent to genes, with an affinity for this enzyme. Promoters

also contain, or are near , binding sites for transcription factors, which are DNA-binding proteins that can

either help recruit, or repel, RNA polymerase [3].

Figure 2.1: RNA-polymerase in DNA transcription [7]
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2.1.2 Transcription Factors

Transcription Factors (TFs) are involved in the process of converting/transcribing DNA into RNA and

include a wide number of proteins that initiate and regulate the transcription of genes [8]. TFs directly

interpret genomes by recognizing specific DNA sequences and controlling chromatin and transcrip-

tion [9], often functioning as regulators, controlling developmental patterning [10], immune response

pathways [11],and drive cell differentiation [12], de-differentiation and trans-differentiation [13]. These

TFs can function alone or in combination with other proteins (often other TFs) in order to promote/upreg-

ulate (activators) or repress/downregulate (repressors) the recruitment of RNA polymerase in specific

genes [14]. RNA polymerase is the enzyme responsible for transcribing DNA into RNA and, therefore,

by controlling the recruitment of this enzyme, transcription factors can regulate the expression levels of

the genes they target [15] [14]. The process by which this regulation of transcription occurs can be by:

directly stabilizing (upregulation) or blocking (downregulation) the binding of RNA polymerase; catalyz-

ing the acetylation (upregulation) or deacetylation (downregulation) [16];recruitment of coactivators and

corepressors into the TF DNA complex [17]. An example of how gene expression may be promoted by

TFs can be found in fig 2.2.

Although many different proteins also take part in gene regulation such as kinases, coactivators,

histone acetyltrasnferases and deacetlyases, TFs are defined by the presence of one or more DNA-

binding domains (DBD) [19], a protein domain which recognizes and binds to DNA [20]. In TFs this DBD

binds to a specific sequence of DNA adjacent to the gene being regulated, with this sequence being

either an enhancer or a promoter [21]. For a large number of promoters and enhancers, a combination

of TFs working together allows for the integration and modulation of different signals [22] [23]. Bacterial

TFs have also been shown to work together with other DNA-binding proteins with the primary role of

sculpting the bacterial folded chromosome [2] [22] [24].

In addition, TFs are known to be associated with or even bioindicators of human diseases such as

alzheimer’s [25], congenital heart disease [26], Parkinson’s [27], among many others.

2.1.2.A Transcriptional regulatory networks

Transcriptional regulatory networks encompass all molecular species and regulatory interactions nec-

essary to accurately describe observed patterns of gene expression [28]. Meaning that any component

that can influence if or how a certain gene is expressed is part of this network, which would include

genes, transcription factors, promoters, repressors, and many other enzymes and proteins previously

mentioned which also take part in gene regulation, as well as all interactions between these different

components. These networks are essential in all biological organisms, and understanding them is es-

sential to deciphering the development, functioning and pathological pathways of these organisms [29].

Given the importance of these networks in understanding the biological pathways of organisms and

8



Figure 2.2: Schematic of TF assisted gene expression adapted from [18].

the importance of transcription factors in these networks, a clearer understanding of the external factors

affecting TF abundance could provide valuable insight into the metabolism of organisms in communities.

2.1.2.B Transcription factors for community modeling

Recently, research has shown how certain external factors affect expression, namely, that bacterial tran-

scription factors in specific are heavily modulated by their environment, directly responding to factors

such as pH levels,oxygen and nutrient concentration, presence of toxins, among others [31]. In addi-

tion, work has been done on modeling transcription networks, including those responsible for biofilm

formation [32], controlling stromal cell differentiation [33] or handling copper stress [30]. The study of

these networks is often associated with the study of the transcription factors present in them, given their

integral role.

If the hypothesis that the abundance levels of TFs may be used for community modeling, this would

9



Figure 2.3: Schematic of a computational model of a global transcriptional regulatory network for Enterococcus
faecalis. Orange circles indicate transcription factor families. Adapted from [30].

prove a very advantageous tool in this field, given that, even if TF abundance alone may not be enough

to model a community, it may be used as an extra tool to get a more accurate and complex model of

communities and their regulation patterns.

Given the importance of transcription factors in the metabolism of organisms [3], work has been done

in an attempt to model the expression of these factors in order to provide more accurate modeling of

gene regulatory networks [10] [34] [35] [36]. These works include the study of the importance of spe-

cific TF families on plant growth and development [36], determining Aspergillus fumigatus transcription

factor expression and function during invasion of lungs [35], studies on the transcription factor regula-

tory networks in order to better comprehend and defend against heat stress [37] and many different

environmental conditions [38] in plants.

2.2 Metagenomics

Several methods may be employed to determine the microbial composition of biological samples, with

two main methods being considered of great importance, cultivation-dependent and independent ap-

proaches, namely, metagenomic sequencing. Although microbial culture is still widely used and the

classical method for microbial studies, the majority of species cannot be cultured in a lab, either due

to the lack of biological knowledge to culture them or a lack of more advanced laboratory techniques

required to simulate the proper culture environment [39] [40]. Contrary to microbial cultures, techniques

such as nucleotide sequencing are not affected by the microbial characteristics or environment mimick-
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ing technology. Rather, these techniques are limited by the current sequencing technologies available,

which are becoming increasingly faster, cheaper and more accurate [41].

Genomics is the study of the complete genetic complement of a given organism which is obtained

using high-throughput sequencing of the base pairs of its DNA [42]. Metagenomics, on the other hand,

constitutes the sampling of all the genomic sequences of a community of organisms in the same envi-

ronment [42].

2.2.1 Sequencing and assembly

Currently, the main sequencing strategies for metagenomics involve high-throughput, short read tech-

nologies, like Illumina NextSeq and HiSeq, which are able to generate billions of short reads (small

fragments of DNA base pairs) in a matter of days [43]. New sequencing techniques are in constant

development with some of the most promising technologies including single-molecule sequencing [44],

synthetic long reads [45], and Hi-C [46]. Some of these technologies, such as single-molecule sequenc-

ing, have been around for a few years but have not seen widespread use, mostly due to complex sample

processing requirements and elevated costs [43]. Following DNA sequencing, the obtained reads are

assembled in order to reconstruct the genomes of observed microorganisms. Current methods are

able to reconstruct DNA segments, including operons, tandem gene arrays, and syntenic blocks [43].

Metagenome assembly is a process used to order the multiple reads previously sequenced, in order to

obtain a genome in the correct order. This process is required due to the fact that a lot of current se-

quencing techniques produce reads that are far shorter than whole genomes, meaning some degree of

assembly is required in order to obtain the full picture. These reads are typically 35-1000 Base Pairs (bp)

for short reads, while genomes can vary from as low as 2000 bp for bacteriophages, to 100 billion bp for

certain eukaryotes [47].

If no reference genomes can be used a de novo assembly is required; this type of assembly assumes

no a priori knowledge of the correct order of sequenced reads and relies solely on read and contig over-

lap to construct the reference. Using de-novo assembly is also required for a metagenomics analysis,

given that the diversity found in complex microbial communities would lead to a lot of chimeric contigs

(contigs that combine sequences from more than one genome) if reference genomes were used [48].

A contig is the name given to a set of overlapping reads. When reads share a significantly large

enough subset of nucleotide base pairs, they are considered to have been sequenced from the same

”location” within the genome, creating a contig. These contigs contain at least two reads, but may be

comprised of more, with a greater number of reads overlapping in a certain region translating to a greater

level of confidence in the nucleotide sequence in this given region [49] [50]. At times reads may have to

be reversed in order for a matching orientation to be obtained [49].

When multiple contigs are joined, a scaffold is created. Once again, these contigs may have to be
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reversed in or to match orientation and, in a scaffold, not all contigs have to overlap all other contigs.

Finally, multiple scaffolds are matched and gaps between them filled in order to create chromosomes.

Figure 2.4: Reference based and de-novo assembly. Adapted from [51].

Given the complex nature of metagenomic assembly, it is currently considered impossible to have an

error-free assembly, regardless of the sequencing method or assembly algorithm used [43]. One of the

greatest challenges for genomic assemblies are intragenomic repeats, repeated strands of non-coding

DNA, sometimes forming arrays that are megabases long [52]. This problem is only further exacerbated

in metagenomic assemblies due to the presence of both intragenomic and intergenomic repeats. In fact,

Nagarajan N [53] has shown that the complexity of an assembly is directly related to the ratio between

the read length and the length of repeats. Due to these potential errors, in order to verify the quality

of assembled metagenomes, validation is required. This validation can be done in one of two ways:

de-novo validation; or reference based. De-novo validation, much like de-novo assemblies, relies solely

on the original data’s features, attempting to ascertain internal inconsistencies within the assembled

data [54]. Reference based validation use databases of previously assembled genes and genomes, in

order to identify possible differences between the assembly and the reference data [55]. As a general

rule, reference based validation is very effective, but can only be used provided a reference genome has

already been properly cataloged. Otherwise, a de-novo validation will have to be used. It is also difficult

to determine whether certain minor differences between a reference genome and the newly assembled

genome are due to legitimate assembly mistakes or simply regular genetic differences between the

reference and studied organisms [55].
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2.3 Diversity analysis

In ecology, diversity measures the richness and evenness of species in a given community [56]. Given

that a comparison between every single possible living form within a given area would not only be

unfeasible, but also meaningless, as, for instance, a comparison between the richness of proteins and

of plants in a given community would have no meaningful information. Therefore, a precise definition of

community must exist. In general, a community is considered to represent all the organisms belonging

to a specific taxonomic group within a defined area [56] [57]. To perfectly determine the richness of

every single species in a given community, a complete and thorough survey of the entire community

would be required, which is impossible in most scenarios [56]. Therefore, richness is usually estimated

based on environmental samples, using sampling designs and methods that are specific for the given

context/situation in order to avoid biasing of the results, however leading to a decrease in the accuracy

of the analysis [58] [59] [60].

Diversity analysis is generally classified as alpha or beta diversity analysis.

2.3.1 Alpha Diversity

Alpha diversity metrics evaluate either the species richness (number of species, taxonomic groups,

transcription factor families, etc), evenness (abundance of species in relation to each other) or a combi-

nation of both in a single sample or community. Since disturbances to a community often affect its alpha

diversity, analyzing this metric in amplicon sequencing data tends to a be a first step when studying

differences between environments [61]. The simplest calculation of alpha diversity richness is to count

the number of different species in a community (observed species). Evenness, on the other hand, is cal-

culated with methods such as Shannon Index [56]; This index measures species biodiversity in a given

community according to the formula in 2.1, with H representing the Shannon Diversity Index (entropy)

and pi being the proportion of the entire community made up of species i. The lower the entropy the

more evenly distributed the species are [56].

H = −Σ(pi
∗ ln (pi)) (2.1)

2.3.2 Beta Diversity

Beta diversity metrics are used to quantify differences between different samples within the same com-

munity , leading to several techniques being called ”beta diversity” analyses [62] [63], such as (Non-

Metric Dimensional Scaling (NMDS) [64], Principal Coordinate analysis (PCoA) [65], etc). As a gen-

eral rule, an indice relating to compositional heterogeneity between different samples can be classi-

13



fied as beta diversity [66] [67] [68], although such a broad classification is challenged by certain au-

thors [62] [69].

2.3.3 Library Rarefaction

A common bias introduced in diversity analysis when using sequence data is library size. So much

so, that if not accounted for, this bias is often the most determining factor in the result of diversity

analyses [70]. To help minimize this bias, rarefaction can be employed as a method for normalizing

library sizes across different samples. This method involves randomly discarding reads from samples

until a certain threshold is hit. This threshold should be equal to or less than the number of reads of

the sample with the least amount of reads (before rarefaction) [71]. Using these subsets of samples,

diversity metrics may be more accurate [72]. However, it should be noted that although rarefaction is

necessary for comparing absolute abundances in samples, its use with relative abundance analyses of

diversity is highly contested, with many authors discouraging the use of rarefaction [61] [73] [74], while

pipelines such as QIIME2 and other authors advocate for its use [75] [60].

2.4 Machine Learning Background

2.4.1 Machine learning in genomic prediction

DNA sequencing produces sequences of unknown function. Genomic prediction and annotation, the

prediction of genes, proteins and transcription elements in an organism, is the process of identifying

functional elements in these sequences and describing their function. This is an essential technique in

many scientific fields, such as biomedical engineering, ecology, biotechnology, among others.

Genomic prediction was initially performed using computational annotation of long coding genes

on a single genome and the experimental annotation of short regulatory elements and their impacts

on a small number of genes [76] [77]. However, with the rise of high-throughput technologies, the

data for gene, protein, and transcription elements’ interactions has grown significantly and these meth-

ods are not as widely used due to very low turn-over rate rendering these techniques incredibly time-

consuming [76]. Consequently, network-based techniques using Machine Learning (ML) have gained

considerable prominence [77] [78] [79] [80] [81] [82]. These new techniques allow for the population

annotation of elements as small as single nucleotides on thousands of different genomes [76]. Ma-

chine learning approaches, such as deep learning are being used for identification of previously un-

known genes in metagenomic data [79] [82], microRNA genes [78], prediction of gene-disease interac-

tions [81] [80] or identification of transcription factors (TF) [2] and their binding sites [83] [84]. Further

examples of applications of ML include the use of techniques like support vector machines to improve
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genome annotation of commercially relevant species [85], exploration of supervised learning methods

to differentiate between cured and at-risk cancer patients by analyzing gene expression [86], and clas-

sification of Drosophila melanogaster essential genes using Random Forests, support vector machines

and artificial neural networks [87].

The following sections detail the techniques to be explored along the thesis by building on the state-

of-the-art and the most promising ML techniques used in this context.

2.4.2 Supervised learning

Overall, machine learning comprises the study of algorithms which use data and experience to improve

automatically [88]. More specifically, machine learning algorithms construct models based on training

data with the intent of making predictions which they have not been explicitly programmed to [89].

Supervised learning is characterized by having fully labeled datasets, meaning its training data con-

sists of data samples and associated class labels (corresponding to the desired output of the classifier),

and the algorithm builds a model that best matches input data to its desired output [90]. This model is

often achieved by iteratively optimizing an objective function in order to obtain the best possible score

in the training data [91]. Some examples of supervised learning include classification, regression and

active learning [92].

When training a machine learning model, the dataset used to build this model is often divided into

two subsets, training and testing. First, a training set, which will be used to train the model and tune

its parameters to best predict the outputs of the training set. And second, a testing set, which will be

used to evaluate the performance of the algorithm and can help ensure the model isn’t overfit to training

data. In order to evaluate the performance of the model error metrics are used, with some of the most

common metrics being: error probability, the probability of the model making a wrong decision; confusion

matrices, a table layout that allows visualization of the performance of an algorithm, with each row of

the matrix representing the instances in an actual class and each column representing the instances

in a predicted class; and out-of-bag error estimates (explained in detail below as a performance metric

for Random Forests). Overfitting is the process which may occur when the available training data is too

small to express all patterns of variability and, therefore, the trained model is unable to generalize for

data beyond the training set. As a result, the efficiency and accuracy of the model decrease when tested

with data it has never seen before (testing set) [93].
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Figure 2.5: Schematic of the Machine Learning process

These algorithms are employed in many different applications, and are especially useful and preva-

lent in tasks considered too hard to program in a rule-based algorithm. Some of these tasks include

image processing [94], email filters [95] and fraud detection [96].

2.4.3 Feature selection/representation

Feature selection, the process which allows a system to automatically discover the most relevant fea-

tures for classification from raw data, is often required in machine learning models. This is due to the fact

that these algorithms commonly require mathematically or computationally precise input, but raw data

often has many features which are completely irrelevant, therefore, a process of selection of relevant

features is often required before the classification and prediction steps [97]. Similarly, several learning

algorithms have the ability to discover better feature representations of the inputs provided in the training

set, using a process called feature extraction [97]. Some examples include principal components/coor-

dinate analysis and clustering methods. The algorithms attempt to preserve the input information while

transforming it in an attempt to make it more useful/relevant.

2.4.4 Decision trees

A decision tree is a predictive model designed to associate a prediction or decision over an observation,

the decision being organized in a hierarchy that forms a tree. The two main types of decision trees

are classification (the output is a discrete set of variables) and regression (the outputs are continuous

values). Given the intelligibility of these algorithms and the ability to visualize decision making, decision
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trees constitute some of the most popular machine learning algorithms [98] [99]. Each tree is composed

of decision nodes, branches and leaf nodes. At decision nodes tests are made on a specific feature,

the outcome of which results in a branch connecting to other nodes in the tree; the first decision node is

called a root node and the terminal nodes with a class label are called leaf nodes [100].

Figure 2.6: Example of a decision tree. Adapted from [101].

The construction of these trees tends to start at the root node and builds its way down to the leaf

nodes, choosing the best test to perform at each decision node in order to split the set of items to be

classified in the optimal manner [102]. Depending on the algorithm used, different metrics are used for

determining the best split, including information gain, variance reduction and Gini impurity.

The Gini impurity metric is the probability of an incorrect classification of a new input of a random

variable, if that classification were done according to the current distribution of the data set’s class

labels [103]. It is calculated using equation 2.2, with G representing the Gini impurity, c being the total

number of classes and p(i) the probability of picking a data point with class i.

G =

C∑
i=1

p(i) ∗ (1− p(i)) (2.2)

At each decision node the Gini gain is calculated by taking the initial Gini impurity of the branch

upstream from the decision node and subtracting the Gini impurity of the resulting subsets for each

possible split of each class [103].

Given that these metrics provide a way to measure how relevant each feature is, decision trees

or techniques utilizing decision trees (i.e. Random Forests which will be further explained below) can

therefore be used for feature selection. A process of feature selection can be performed by observing

the impact each feature has on the Gini value of a node and establishing a threshold value of Gini impact

above which the features are selected [104].
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2.4.5 Random Forest

One technique often employed in machine learning is the use of Ensemble methods. These are tech-

niques that aim at improving the accuracy of results in models by combining the prediction of multiple

models instead of a single one. One way to do this is to train multiple weaker models and then in-

corporating all their predictions into a single result. This approach has been shown to improve result

accuracy significantly by reducing bias and variance, consequently, boosting the accuracy of regression

and classification models [105].

A Random Forest (RF) is an ensemble learning method, constructed with multiple decision trees,

which seeks to correct the tendency of decision trees to overfit to the training data [106]. It has a singular

output which will be either the mode (classification) or the mean (regression) of all outputs [100] [106].

Each tree is constructed by selecting a random subset of all features, meaning that no tree takes into

account all features. The amount of features selected for each tree (tree depth) is a heuristic based

on the total number of features, which can be altered in order to obtain better accuracy. Typically, with

N as the total number of features,
√

N or log(N) features tend to be used for classification problems

and N/3 features for regression [107]. Since no tree has all features, the trees are de-correlated which

helps prevent over-fitting to the training data [107] [100]. In addition, the trees are constructed utilizing

a process called bagging or bootstrap aggregating, meaning that each tree is also given a random

independent subset of all samples within the training set, so for each tree, there is a subset of samples

with which it was not trained (the ”out-of-bag” samples), and can therefore be used for model validation

[108].

Figure 2.7: Schematic of a Random Forest model.Taken from [109].
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2.4.5.A Performance evaluation

Many different approaches can be used to evaluate the performance of machine learning models, such

as cross-validation and Out-of-bag (OOB) error.

Cross-validation methods involve the partitioning of samples into subsets, with a particular instance

of this being a simple train-test set split of the available training data. Using the latter method, one subset

is called the training set and is used to train the model, while the other subset (testing or validation set)

is used to validate the generated model. These methods often resort to multiple different partitions and

rounds of cross-validation, with the performance results being averaged over all rounds in an attempt to

reduce variability [110].

OOB error is used in error prediction in machine learning models utilizing bagging, such as random

forests. Since in a RF, each tree utilizes a subset of all samples smaller than the total number of samples,

then for each tree there is a subset of samples with which it was not trained. The OOB error is measured

by validating each tree with the subset of samples which had not been part of that tree’s training set,

using this set to obtain the decision for each tree and then determining the mean prediction error using

the fusion of all these individual decisions into a singular class label [108]. A visual representation of the

allocation of samples for training and validation can be found in 2.8.

The OOB error is one of the most common means of analyzing prediction error in RFs [108], mainly

due to requiring far less computational power than methods like cross-validation and allowing the testing

of the model during the training process. This is mainly due to the subsets used in this method already

being created during the bagging phase. It should be noted that despite its frequent use, this metric has

been shown to overestimate the prediction error rate [111].

Figure 2.8: Visualization of the in-bag and out-of-bag sets. Adapted from [108].
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2.4.6 Neural Networks

Neural Networks (NN) are a series of interconnected layers of nodes, which loosely model a brain. For

this reason, the nodes are often referred to as (artificial) neurons, while the connections between these

neurons are often called edges [112].

Figure 2.9: Model of a feed-forward neural network. Adapted from [113].

In the simplest NN models, feed-forward NNs, signals travel from the input layer to the output layer,

with the signal being transformed in each layer. Each neuron can receive a signal, a real number,

process it and output a new signal to all connected neurons in the following layer. The output at a given

neuron is calculated by a function of the sum of it’s inputs. Both the neurons and the edges will generally

have a weight, which either increases or decreases the ”strength” of a signal or even stops it from being

sent if the aggregate signal is above/below a certain threshold. For most cases, these weights are the

variables adjusted by the algorithm as the training process takes place, increasing or decreasing these

weights in an attempt to better model the training data and receive the expected outputs [112].

The training process generally consists of using examples with a known input and result. The input

of these examples is used as the ”initial signal” and produces an output. This output is compared with

the expected result and the difference between the two is considered the error. Following this, the model

changes it’s weights using this error and a learning rule (backpropagation). Iterating this process leads

to the neural network’s output to become increasingly similar to the result [112]. The simplest form of a

neural network has 3 layers, the input, hidden and output layers. A neural network with multiple hidden

layers is called a deep neural network [112].

2.4.7 Deep learning

As of recent years, deep learning is one the most used approaches in machine learning applications [92].

This is a technique that uses neural networks with multiple layers to progressively extract higher-level

features from the raw data [112]. An example comparing a traditional neural network with a deep learning

model can be found in figure 2.10. As can be seen, in a Deep Learning model, there are multiples
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layers which transform their input into a more abstract and composite representation in order to output

a prediction.

Figure 2.10: Comparison between a classical neural network and deep-learning neural network. Adapted from
[114].

2.4.8 PredicTF

Deep Learning techniques have been employed in prediction of DNA sequence affinities [115], to identify

TF binding sites in humans [116] and even gene regulation [117], however, until the creation of the

PredicTF tool, it had never been used as an approach to predict bacterial TFs.

PredicTF is a software tool used for the prediction of novel TFs and their respective families using

genomic and metagenomic data. The deep learning approach used is similar to the one described

in the DeepARG tool [118]. The reason why deep learning was used as opposed to other machine

learning techniques is due to its ability to extract relevant features without the need for human inter-

vention [119] [120] [121] and its ability to resolve multiclass classification problems [122] [119]. Initially,

characterization had to be performed, in order to represent DNA sequences as numerical values (fea-

tures). With this purpose, dissimilarity based classification [123] was used, with any given sequence

being represented by its identity distance to known TFs. The PredicTF model then consisted of 4 dense

hidden layers with 2000, 1000, 500 and 100 nodes, propagating the input score distribution into dense

and abstract features.

For the purpose of training and validation, a transcription factor database was created (BacTFDB) by

merging and curating TFs in the UniProt [4] and CollectTF [5] databases. UniProt is ”a comprehensive,
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high-quality and freely accessible resource of protein sequence and functional information” [4] and Col-

lecTF is a database with well described and characterized TFs, which have been validated in vivo [2].

BacTFDB was then used as the training set for development of a deep learning model capable of TF

prediction, with the accuracy and performance being tested with five model organisms (Escherichia coli,

Bacillus subtillis, Pseudomonas fluorescens, Azotobacter vinelandii and Caulobacter crescentus), a clin-

ical isolate (P. aeruginosa PAO1) and a metagenomic sample from an anaerobic ammonium oxidation

community [2]. In addition, this tool was also tested in transcriptomes and metatranscriptomes. During

the training, to prevent overfitting, random hidden units were removed from the model at different rates

using the dropout technique [124], an algorithm for training neural networks by randomly dropping units

during training to prevent their co-adaptation. Finally, the output layer of the deep neural network out-

puts the most likely subfamily of TF, as well as its confidence in this result. This output layer utilizes

a softMax [125] activation function (converting the output values into probabilities) that computes the

probability of the input sequence against each TF category and using this value assigns a TF category

to the sequence [2].

Figure 2.11: Summary of training, testing and validation of the PredicTF tool [2].
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In this chapter the experimental design and data analysis methods are detailed. The proposed

methodology and associated main steps, summarized in figure 3.1, are detailed next.
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Figure 3.1: Schematic description of the proposed methodology.

3.1 Microcosm setup and sampling

The initial microcosm setup was performed by Dennis Metze and colleagues [6].A controlled mineral-

ization experiment was set up with a benzene-mineralizing nitrate reducing culture. This culture was

enriched using an on-site column system with coarse sand which had been percolated with ground-

water at a benzene-contaminated aquifer and had been maintained under nitrate-reducing conditions

in the laboratory for several years [126]. A concentration of 1% (v/v) benzene was obtained, using

2,2,4,4,6,8,8-Heptamethylnonane (HMN) as a carrier phase. Samples for DNA extraction were taken as

5 mL of liquid. Technical triplicates were obtained per each sampling time (0, 70, 76, 96 and 124 days)

and were immediately stored at -80°C until DNA extraction. Likewise, samples for metaproteome analy-

sis were taken at the same time. Microbial community diversity was analyzed by paired-end sequencing

of reads obtained thorugh shotgun, full metagenome sequencing [126].
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3.2 Rarefaction and assembly

With the sequencing of metagenomic data, 1.3 · 108 reads were sequenced, among 15 different samples

in 5 different time points, for an average of 8.6 · 106 reads per sample.

Following sequencing and quality control, initially, the reads were assembled using MetaSpades, ran

on the PredicTF tool and diversity analysis was started. However, following visualization of the initial

results, a decision was made to rarefy the original reads and repeat this process. The initial reads

were normalized by rarefaction to the lowest sample size of 6 · 106. This was performed in order to, as

previously explained, remove library size bias from our analysis.

After the rarefaction step, assembly was performed using the Metaspades [127] algorithm, with 30GB

of allocated memory over 10 hours.

3.3 PredicTF

In this section we explain how PredicTF was used to determine the abundance of TF families and

subfamilies in the metagenomic assemblies.

This tool is used as a platform for prediction and classification of bacterial TFs in microbial commu-

nities [2]. Following the assembly process, the assemblies are used as input for PredicTF. PredicTF

outputs the predicted TF subfamily and family, their query position, closest hit in the database, proba-

bility of a real match, alignment length, e-value and in which bin/assembly it was predicted. Any output

with a probability lower than 97% is disregarded as well as any e-value (probability due to chance, that

there is another alignment with a similarity greater than the given score) higher than 10−10.

For the diversity analysis, 4 different indices are used: absolute abundance of TF subfamilies, relative

abundance of TF subfamilies, absolute abundance of TF families and relative abundance of TF families.

Given the fact that, to the best of our knowledge, no research has yet been published using this tool

or measuring TF abundance for a diversity analysis, these multiple metrics were used in an attempt to

ascertain which could provide the most meaningful results. Note that the absolute abundance of the TFs

and their families could only be used given that the reads were previously rarefied [128].

For the TF families, any family with absolute abundance lower than 3 is not taken into account in

downstream analyses. Due to the limited amount of data in this dataset and the large amount of TF

subfamilies, when analyzing the PredicTF output, the absolute abundance of most subfamilies was

below 3 and the vast majority of subfamilies had at most 2 instances in each sample. Unfortunately,

these low abundance levels make it difficult to differentiate between the different samples. Consequently,

further along in the diversity analysis, the results concerning TF families are generally considered to be

more trustworthy and relevant. In any future work with this tool this is a concern that has to be taken into

account, which may potentially be dealt with by either having a larger dataset or simply using only the
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abundance of TF families, as is eventually done in this work. It should be noted that due to the broad

range of functions that members of certain TF families (such as LysR) can have, being able to ascertain

differences in abundance levels of individual subfamilies should be more relevant than entire families,

therefore being able to analyze these subfamilies in more detail with more data should be an objective

of any future work and not something to be disregarded initially.

3.4 Diversity Analysis

In this section, an explanation of how the diversity analysis was conducted, using the PredicTF output

(abundance data of specific TF subfamilies and families in each sample). First, the alpha diversity of the

samples is analyzed by both absolute number of TFs and Shannon Index. Following this analysis, an

analysis on the beta diversity of the samples is undertaken, using Non-metric multidimensional scaling

(NMDS) and Principal coordinate analysis (PCoA) methods. Finally, the variance between samples

belonging to the same time point is observed.

3.4.1 Alpha and Beta diversity

Data analyses were completed using the phyloseq [129], vegan [130] and RandomForest [131] pack-

ages in R software [132]. In an attempt to assess richness and evenness of the samples, the alpha

diversity indices (observed number of TFs and Shannon Index) were estimated using the rarefied data.

The statistical significance of the differences in alpha diversity measures between samples was then

estimated using a pairwise t-test (“rstatix” R package) [133]. The beta diversity of the samples was

studied using both NMDS and PCoA ordination, using the Bray-Curtis dissimilarity method to calculate

distance [133].

PCoA is an ordination method which preserves dissimilarity measures between objects [65]. It is

used to represent all points in an Euclidean space and can produce 2-dimensional (2D) reduced ordi-

nations of multi-dimensional objects, allowing for the data to be far more easily visualized, with the most

relevant coordinates (those accounting for the most variance) being represented in the 2D space [65].

NMDS is also an ordination technique, however, unlike PCoA where many axes are calculated but only

a few are viewed, in NMDS, a small number of axes are explicitly chosen prior to the analysis and the

data is fitted to those dimensions; there are no hidden axes of variation [64].

Given that there are 27 TF families and well over 100 subfamilies, in order to represent them graph-

ically in a manner that could be understandable there was need for the dimensionality reduction of

the PCoA and NMDS methods, allowing us to visualize the most relevant features of our data in a 2-

dimensional plot. This visualization is used in order to determine whether or not clusters or decision

surfaces can be observed, separating the different time points at which samples were collected. They
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may also be used to cluster multiple time points. For example, the visualizations may show a clear

division in samples taken before a certain date vs those taken at later time points.

Following the visualization of the results, the samples were divided between Early (taken at 0,70 and

76 days) and Late (taken at 96 and 124 days).

The statistical significance of the principal coordinates in the different time points and groupings cre-

ated was then assessed using a Permutational multivariate analysis of variance (PERMANOVA) [134],

as this statistical test has been shown to be very powerful as a tool to detect changes in community

structures [133]. PERMANOVA is a non-parametric multivariate statistical test, used to compare groups

of objects and test the null hypothesis that the centroids and dispersion of the groups as defined by

measure space are equivalent for all groups [133]. Meaning that if this null hypothesis is rejected then

the centroid and/or spread of species is different among the different groups. This statistic is calculated

as follows:

With p groups and n objects in each group out N total objects, with d2ij the squared distance between

objects i and j and εij being equal to 1 if i and j are in the same group and 0 otherwise, the total

sum-of-squares(SST) and the within groups sum-of-squares (SSW) are determined as:

SST =
1

N

N−1∑
i=1

N∑
j=i+1

d2ij (3.1)

SSW =
1

n

N−1∑
i=1

N∑
j=i+1

d2ijεij (3.2)

Then, the between groups sum-of-squares SSA can be calculated as the difference between the

overall and the within groups sum-of-squares: SSA = SST − SSW This value is used to calculate the

Pseudo F value:

F =

(
SSA

p−1

)
(

SSW

N−p

) (3.3)

Finally, this Pseudo-F value is used to obtain a p-value, by performing multiple permutations of the

data with each permutation shuffling the items between groups and calculating the F value. The p-value

is then calculated by:

P =
( count F p ≥ F ) + 1

( total countF p) + 1
(3.4)

Where F is the F statistic obtained from the original data and F p is a permutation F statistic.

Overall this diversity analysis will allow us to determine whether there really is a statistically significant

difference in the abundance levels of certain TFs between the different time points and groupings, al-

lowing for a further study forward on which specific TF (sub)families have differences in their abundance
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level.

3.4.2 Bray-Curtis dissimilarity index

Bray–Curtis dissimilarity is used to determine the compositional dissimilarity between two different sam-

ples, based on each sample’s counts. As defined by the authors [135], the index of dissimilarity is:

BCij = 1− 2Cij

Si + Sj
(3.5)

With Cij representing the sum of the lesser value between all species present in both samples. So,

for instance, if we have Sample 1 with 5 A species and 3 B species and Sample 2 with 2 A species, 7

B species and 3 C species, Cij would be equal to the sum of 2 (smallest number of species A in either

sample) + 3 (smallest number of species B in either sample). C species are not used for the calculation

of Cij, as they are not present in both samples. Si and Sj represent the total number of specimens in

each sample.

In order to analyze variance, the Bray-Curtis dissimilarity of each sample within the same time point

was graphed. This is done as it reveals which time points had the greatest variance of abundance level

between samples indicating potential sampling or analysis errors.

3.5 Identifying bioindicators using machine learning

Since the division of the samples into the Early and Late time groups leads to the overall abundance

levels of TF families to change over time, an analysis on which families have the most significant change

is conducted. With this objective, a Random Forest is constructed to distinguish the samples between

Early and Late, using their relative abundance, with the families that contribute the most GINI infor-

mation gain to the creation of this forest being selected. Following this selection, those with statistically

significant differences in their abundance levels are considered potential bioindicators and the difference

in abundance between their Early and Late samples is tested using Least Square Means (LS Means)

tests.

A Random forest was generated with the intent of identifying TF families which may be potential

bioindicators. This analysis was performed using the “RandomForest” package [136]. As previously

mentioned in chapter 2 , Random Forests can be used for feature selection. This method was also

chosen as it is very useful when dealing with limited datasets where the number of features is larger

than the number of samples [100], which is the case in this work, as there are only 15 samples but 27

families (and 165 subfamilies). The number of variables tried at each split (also known as tree depth)

is generally recommended to be close to the square root of total, so in this case
√

27 ≈ 5. In order to
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analyze the impact of tree depth in the final performance of the model and associated study, two models

were implemented, corresponding to a depth of 5 and 20.

When determining the number of trees in each forest, an initial value of 2000 was used. However,

this value was increased to take into account all the possible combinations of 5 or 20 variables out

of the initial 27 families. This value corresponds to 80730 combinations of 5 variables and 888030

combinations of 20 variables. With this in mind, forests were created with values ranging from the initial

2000 to 800000.

Following this, a plot of the mean decrease GINI value for each family was obtained from the Random

Forests with the lowest out-of-bag error rate and all families that caused an increase of +5% in the mean

Gini value were selected. This was done since distinctive features identified by random forests are

visualized by their Gini score [131]. Prediction success was estimated with the out-of-bag error (how

often a subsample was misclassified) [111].

Following the Random Forest generation and selection of the relevant TF families by using their Mean

GINI value, a Least Squares Means (LS means) test is performed on all relevant families, comparing

their early and late abundance values. Least-square means or marginal means are the group means

after having controlled for a covariate [137]. In the instance of this work, this entails calculating the

mean abundance value for each family in all samples and then calculating the average value for each

time group (Early and Late). Least-squares means are predictions on a linear model and can be used

in unbalanced datasets [138]. Following a pairwise t-test on the LS means results, with false discovery

rate adjustment, the families with statistically significant (p<0.01) differences between these two time

groups were considered to be bioindicators.

After the selection of these bioindicator families, one family (NtrC.DctD) was chosen as it had the

most significant results and few subfamilies. These subfamilies were also tested with a pairwise LS-

means statistical test, in order to determine whether their abundance varied significantly between the

Early and Late time groups.
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The present chapter is divided into 3 main sections, in accordance with the framework layed out to

achieve the main goal of this thesis – the exploration of potential applications of newly developed tran-

scription factor predicting tools in order to determine the impact of environmental stresses on the abun-

dance of bacterial TFs and whether these differences in abundance levels could be used to distinguish

between samples at different time points of a succession experiment. In section 4.1, the PredicTF out-

put results are initially analyzed and visualized. In section 4.2, the diversity analysis of the samples is

conducted. In section 4.3, Random Forests and statistical tests are used in order to determine which TF

families could be potential bioindicators in this specific succession experiment, in order to understand

how the abundance of TF families and subfamilies is altered when a community is exposed to a new

stress in its environment.

4.1 PredicTF output

Upon using the PredicTF tool to predict transcription factors on the 15 metagenomic assemblies, a total

of 1569 TFs were found, spread out over 159 subfamilies and 27 families. These results can be found in

Supplementary Material A, as the tables are too large to be conveniently shown in the main document.

The number of TFs of each family and their relative abundance in every sample can be found in figures

4.1 and 4.2, respectively.
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Figure 4.1: Absolute abundance of Transcription Factor families for samples collected at the different days of the
experiment. Each column represents one sample. The divisions (line) inside each family represent
subfamilies.

Figure 4.2: Relative abundance (%) of Transcription Factor families for samples collected at the different days of
the experiment. Each column represents one sample. The divisions (line) inside each family represent
subfamilies.
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4.2 Diversity analysis

4.2.1 Alpha diversity

The Alpha diversity measures for the TF subfamilies can be found in figure 4.3 and for the TF families

can be found in figure 4.4.

Figure 4.3: Alpha Diversity of the TF sub-families, measured in number of Observed Transcription Factors (a) and
Shannon Index (b). The line inside the box represents the median value, and the box contains the 25th
to 75th percentiles of the dataset.

Figure 4.4: Alpha Diversity of the TF families, measured in number of Observed Transcription Factors (a) and
Shannon Index. The line inside the box represents the median value, and the box contains the 25th to
75th percentiles of the dataset.

The pairwise t-test results can be found in tables 4.1 and 4.2.
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Days Days p-value
(Observed)

Adjusted p value
(Observed)

p-value
(Shannon)

Adjusted p value
(Shannon)

0 70 0.184 1 0.146 1
0 76 1 1 0.658 1
0 96 0.309 1 0.224 1
0 124 0.119 1 0.097 0.969
70 76 0.09 0.897 0.002 0.019
70 96 0.145 1 0.134 1
70 124 0.018 0.184 0.003 0.026
76 96 0.24 1 0.233 1
76 124 0.003 0.033 0.006 0.057
96 124 0.539 1 0.974 1

Table 4.1: Pairwise t-test on the Alpha diversity results for TF sub-families (Observed Number of TF families and
Shannon Index), using Bonferroni correction for adjusted p-values. Statistically significant (adjusted p-
value<0.05) values in bold.

As can be seen in table 4.1, there are statistically significant differences in the alpha diversity of sub-

families among certain samples, for both the observed and Shannon metrics. This indicates a significant

difference in the number of different sub-families between samples taken at 76 and 124 days. as well

a significant difference in the diversity of the samples taken at 70 days vs the samples taken at 76 and

124.

Days Days p-value
(Observed)

Adjusted p value
(Observed)

p-value
(Shannon)

Adjusted p value
(Shannon)

0 70 0.742 1 0.927 1
0 76 0.635 1 0.567 1
0 96 0.296 1 0.846 1
0 124 0.096 0.848 0.184 1
70 76 0.58 1 0.712 1
70 96 0.094 0.848 0.638 1
70 124 0.109 0.848 0.282 1
76 96 0.444 1 0.95 1
76 124 0.02 0.198 0.113 1
96 124 0.691 1 0.575 1

Table 4.2: Pairwise t-test on the Alpha diversity results for TF families (Observed Number of TF families and Shan-
non Index), using Bonferroni correction for adjusted p-values.

Despite the results in figure 4.4 seemingly indicating a decrease in the alpha diversity over time, the

pairwise t-test shows no significant statistical difference in the Alpha Diversity values of the different time

points for families, in either Observed or Shannon measures. This indicates that the overall species

diversity seems to be the same among all samples. Since these are alpha diversity measures, the

results indicate that over time in this succession experiment, the number of different transcription factor

families does not seem to change significantly. This does not however mean that the abundance of

certain families has not changed. In order to observe whether different families are being expressed

more or less, we’ll have to resort to beta diversity metrics, comparing the diversity between samples.
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4.2.2 Beta Diversity

In order to perform an analysis on the beta diversity of the samples, both PCoA and NMDS plots were

created, using Bray-Curtis dissimilarity as a measure of distance. The PCoA results can be seen in

figures 4.5, 4.6, 4.7 and 4.8. Following analysis of the graphs, there was a decision to split the samples

into two distinct groupings. These groupings are the Early (0, 70 and 76 days) samples and the Late

(96 and 124 days) samples. The reason for these groupings came from realizing that these 2 groupings

of samples could always be divided by a decision surface in all 4 PCoA graphs, but most importantly,

this split is very apparent in the family plots (4.7 and 4.8) and given that in these graphs the 2 first prin-

cipal coordinates account for the greatest amount of variance( 60% for the family analysis vs 30% for

the subfamily analysis) and they also have the most statistically significant results in the PERMANOVA

analysis, they were considered the most relevant. Once again, the lower variance of the 2 main principal

coordinates and the less statistically significant values of the subfamily analysis are believed to be due

to the somewhat limited nature of this dataset and the large number of different subfamilies with very low

abundance present, which makes it difficult to meaningfully discern between different samples. For this

reason, the graphs are colored according to this split, with the different shapes in each datapoint repre-

senting the day at which it was collected. In addition, the PERMANOVA results for both the individual

time samples and the time groups are shown as inset boxes. The graphs with time sample coloring and

the NMDS plots can be found in annex A.1, as their results are generally consistent with those observed

in following PCoA plots.

Figure 4.5: Principal Coordinate analysis of Bray-Curtis dissimilarity comparing the relative abundance of TF sub-
families in different samples. We defined two time groups as Early (Days ≤ 76) and Late (Days>76).
Permutational multivariate analysis of variance (PERMANOVA) of both the individual Days and the time
groups are shown in the figure.
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Figure 4.6: Principal Coordinate analysis of Bray-Curtis dissimilarity comparing the absolute abundance of TF sub-
families in different samples. We defined two time groups as Early (Days ≤ 76) and Late (Days>76).
Permutational multivariate analysis of variance (PERMANOVA) of both the individual Days and the time
groups are shown in the figure.

Figure 4.7: Principal Coordinate analysis of Bray-Curtis dissimiliarity comparing the relative abundance of TF fam-
ilies in different samples. We defined two time groups as Early (Days ≤ 76) and Late (Days>76).
Permutational multivariate analysis of variance (PERMANOVA) of both the individual Days and the time
groups are shown in the figure.

38



Figure 4.8: Principal Coordinate analysis of Bray-Curtis dissimilarity comparing the absolute abundance of TF fam-
ilies different samples. We defined two time groups as Early (Days ≤ 76) and Late (Days>76). Per-
mutational multivariate analysis of variance (PERMANOVA) of both the individual Days and the time
groups are shown in the figure.

Principal coordinates analysis using Bray-Curtis dissimilarity revealed contrasts associated with the

sampling time, both for the individual time samples and time groups. Samples collected before and at 76

days differed significantly from those collected afterwards. These differences among the different time

points and time groups were confirmed in a PERMANOVA analysis on Bray distances, for the different

time samples (Pseudo-F=1.88;P=0.01149) and for the time groups (Pseudo-F=3.61;P=0.0005). This

indicates there is a clear difference in the abundance levels of certain families in the samples among the

different time points/group, potentially as a result of the stress of the environment altering abundance

levels over time. Following these results, a decision was made to, for the most part, disregard the

abundance of subfamily values in the proceeding analyses, as these are not considered as relevant, for

the reasons previously stated.

4.2.3 Variance analysis

The variance at each time point is analyzed using the previously determined Bray-Curtis dissimilarities

between samples taken on the same day.

As can be seen in figures 4.9 and 4.10, all time points seem to have low variance between their

different samples, with the exception of the time point corresponding to 96 days, which has far higher

variance among its different samples. This pattern was also observed in the PCoA plots 4.7 and 4.8,

as the samples taken at 96 days have a high level of dispersion in the 2 axes represented. However, it

should always be noted that in these PCoA graphs, only about 60% variance is shown in the 2 axes and,
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therefore, these samples could have lower levels of dispersion in the remaining principal coordinates,

hence why an analysis of the Bray-Curtis dissimilarity was performed. The differences in variance values

was then tested using a pairwise T-test, verifying the statistical significant difference between the sam-

ples taken at 96 days and those taken at 70, 76 and 124 days for the absolute values, but no statistical

significance between time points was found for relative abundance data.

Days Days p value Adjusted p-value Signficance
0 70 0.064 0.128 ns
0 76 0.204 0.337 ns
0 96 0.040 0.100 ns
0 124 0.236 0.337 ns
70 76 0.825 0.917 ns
70 96 0.014 0.047 *
70 124 0.810 0.917 ns
76 96 0.013 0.047 *
76 124 0.979 0.979 ns
96 124 0.014 0.047 *

Table 4.3: Pairwise t-test on the Bray Curtis dissimilarity results for the absolute abundance data, with the statisti-
cally significant results (Adjusted p-value<0,05) in bold.

This increase in variance of the absolute abundance values at 96 days could be due to multiple rea-

sons, such as sampling errors or the community undergoing a shift in the abundance of its transcription

factors to adapt to the stress in the environment. In order to further analyze this effect, besides the

Early and Late split, other groupings of samples will be used when generating random forests later on,

including grouping all samples except those taken at 96 days vs those taken at 96 days, in an attempt to

determine which grouping may have the most relevant differences in their abundance.

Despite what was previously mentioned, this analysis was also performed on the subfamily abun-

dance values, annex A.2, with the overall average distance being larger when compared to the family

abundance values. This is to be expected due to the larger number of classes and more disperse nature

of these values, with a lot of TF subfamilies not being detected in all samples.
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Figure 4.9: Bray-Curtis dissimilarity index among the absolute abundance of TF families in samples taken in the
same day. The line inside the box represents the median value, and the box contains the 25th to 75th
percentiles of the dataset.

Figure 4.10: Bray-Curtis dissimilarity index among the relative abundance of TF families in samples taken in the
same day. The line inside the box represents the median value, and the box contains the 25th to 75th
percentiles of the dataset.
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4.3 Bioindicators

4.3.1 Random Forest

By classifying the samples as late or early, as previously established, a random forest with the following

confusion matrix was obtained, as shown in table 4.4, using the relative abundance of TF families. This

confusion matrix corresponds to an out-of-bag error of 6,7%, due to a missclassification of 1 late sample

as early. Interestingly, this exact confusion matrix (1 missclassification of a late sample) was always

obtained with either 5 or 20 variables per tree, with the number of trees ranging from 2000 to 800000.

This shows that, at least for this dataset, corresponding the number of trees in a forest to the number

of possible combinations of features was excessive and a lower value should be picked as it provides

the same results while being less computationally intensive. It should however be noted that this effect

may be due to the very high GINI index value of the NtrC.DctD family, as it is possible to determine the

class of a sample by simply taking into account the relative abundance of this family, something which

will be further discussed below. In addition, several different divisions of the samples were created in

an attempt to create a RF classifier with a confusion matrix with a smaller OOB error rate than the Early

vs Late division RF in an attempt to determine whether a more optimal division of the samples could

be found. One such example was the grouping of all samples except the ones taken at 96 days and

comparing them against the samples taken at 96 days, given that, as demonstrated in 4.10 and the

pairwise t-tests in table 4.3, the samples taken at this time point seem to have higher variance than at

any other period. All different subdivisions, however, proved unsuccessful as all forests generated OOB

errors above 10%. These results can be found in annex A.3.

The mean decrease GINI values for the 2 RFs with Early and Late time groups are plotted in figures

4.11 and 4.12, and the relevant families are determined by evaluating which families contribute more

than 5% to the sum of Mean GINI values so far. This results in 7 families being selected as relevant(

NtrC.DtcD, LysR, XRE, GntR, LacI.GalR, CopY and Fur). In addition, the confusion matrix obtained from

both these RFs can be seen in table 4.4.

Table 4.4: Confusion Matrix following the Random forest analysis of the time groups. Out-of-bag error= 6,7%. a

Early time group, consisting of the samples taken at 0, 70 and 76 days, b Late time group, consisting of
the samples taken at 96 and 124 days, c The proportion of instances misclassified over the whole set of
instances.

Confusion Matrix Earlya Lateb Classification errorc

Early 9 0 0
Late 1 5 0,17
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Figure 4.11: Mean Gini Decrease values for all 27 Transcription Factor families, representing their impact on the
Random Forest algorithm, using 5 variables per tree. The Transcription Factor families below the red
line add less than 5% for the sum of the Mean Gini Decrease values.

Figure 4.12: Mean Gini Decrease values for all 27 Transcription Factor families, representing their impact on the
Random Forest algorithm, using 20 variables per tree. The Transcription Factor families below the red
line add less than 5% for the sum of the Mean Gini Decrease values.
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As can be seen, the graph created with the RandomForest with 20 variables (4.12) has a far higher

value of GINI impact for the NtrC.DctD family than the RF with 5 variables per tree(4.11); the reasons

for this are discussed further below. Due to higher GINI value of this family, not as many families are

selected in 4.12 compared to 4.11(5 vs 7), since each subsequent family is less relevant for the overall

GINI score in 4.12. It was decided to use the families selected in 4.11 as it includes all the families

selected by 4.12 and was performed with a heuristic that is generally considered to be more accurate,

as it de-correlates the individual trees more effectively.

4.3.2 Statistical Test

Following the selection of the families in the previous section, the LS means test was applied, with results

being shown in table 4.5, where SE is the standard error of the sampling distribution [139] and t-ratio

is the ratio of departure of the estimated value of a given parameter from its hypothesized value to its

standard error. The greater the absolute value, the greater the confidence that coefficient observed is

different than zero [139].

Table 4.5: Least square mean analysis of selected Transcription Factor families between the Early (Days≤76) and
Late (Days>76) time groups. Values in bold indicate TF families with relative abundance values statisti-
cally different between the Early and Late time groups.

TF family p-value SE t ratio
NtrC.DctD 0.00004 0.01417 -6.08016
LysR 0.00644 0.02002 3.24074
XRE 0.07771 0.00388 -1.91529
GntR 0.02975 0.00678 2.44025
LacI.GalR 0.13747 0.00352 1.58285
CopY 0.05081 0.02058 -2.15160
Fur 0.20420 0.00853 1.33683

The two families selected as bioindicators are the NtrC.DctD and LysR families. In order to visualize

the difference in abundance levels of these two families between early and late, a box plot was con-

structed, as can be seen in figure 4.13. Interestingly, the change in the number of variables tried at each

tree led to no difference in the final results as to which families are considered bioindicators, since the

families added by lowering this value did not have statistically significant (p < 0.01) differences in their

early vs late abundance levels.
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Figure 4.13: Relative abundance of the (a) NtrC.DctD and (b) LysR transcription factor families over 5 different
sampling days. Different capital letters (A or B) represent a statistically significant difference between
the two time groups (Early and Late), with the respective p-value represented in the graph.

As can be seen in figure 4.13, the relative abundance of the NtrC.DctD family rises in the late time

group while decreasing for the LysR family. Of note, there is a clear cutoff for the abundance of the

NtrC.DctD family since all early samples have a relative abundance below 22%, while all late samples

have a relative abundance above 22%. This clear cutoff may account for why this family had such a high

GINI value following the construction of the Random Forest, as a clear cutoff would have made any node

which took into account the relative abundance of this family be able to immediately classify a sample as

early or late. This effect is only exacerbated in the forest which had 20 variables per tree, as most of the

trees would have this family as a node, thus increasing its impact in the decision making even further,

showing why a smaller number of variables should be used in each tree, as it allows them to be further

de-correlated, as previously mentioned.

This effect is further confirmed by the building of a decision tree using all families selected by the

GINI plot (before the LS-means test), in order to be able to visualize the decision making process and

potentially visualize some patterns regarding whether a family was up or downregulated over time. How-

ever, due to the clear cutoff previously mentioned, a decision tree which includes the NtrC.DctD family

is just a single node, using that family’s abundance value to distinguish between samples, with 100%
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accuracy.

The NtrC.DctD family is not only relevant in the RFs, but also had relatively few subfamilies detected

(7) when compared to families like LysR which had around 40 subfamilies. Therefore, an LS-means

analysis on the absolute abundance values of NtrC.DctD subfamilies with more than 5 instances com-

paring the Late and Early time groups was conducted. This analysis could prove relevant in revealing

which specific subfamilies were up- or downregulated over time. The results can be found in table 4.6.

Table 4.6: Least square mean analysis of selected Transcription Factor families between the Early (Days≤76) and
Late (Days>76) time groups. Values in bold indicate TF families with absolute abundance values statis-
tically different between the Early and Late time groups.

NtrC.DctD
Subfamily p-value SE t-ratio

PILR 0.01201 0.68563 -2.91703
GNFM 0.16114 0.48603 1.48595
XYLR 0.71193 0.58875 0.37745
CBRB 0.05081 0.02058 -2.15160

Only one subfamily had a statistically significant(p<0,05) difference in it’s abundance between Early

and Late time groups, the PILR subfamily. This subfamily is responsible for activation of the pilin gene.

This gene has been implicated in playing a key role during the initial stages of colonization of a host by

the pathogen Pseudomonas aeruginosa, by mediating attachment of the bacterium to host cell receptors

[140], meaning the study of this gene is considered to be important in understanding chronic respiratory

disease in patients with cystic fibrosis [140]. In order to visualize it’s abundance, the following graph was

produced 4.14.
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Figure 4.14: Absolute abundance of the PILR transcription factor subfamily over 5 different sampling days. Different
letters (a or b) represent a statistically significant difference between the two time groups (Early and
Late).

Although not as statistically significant as the results from the 2 bioindicator families, the abundance

of the PILR subfamily seems to decrease over time. This could be due to a multitude of reasons: the

increased stress of this environment led to the microorganisms having to ”focus” their expression to

other TFs which would help them deal with the pollutant in the ecosystem; it’s also possible the motility

conferred by the piln gene activated by the PILR subfamily was not as advantageous in the new benzene-

degrading conditions of the community, leading to either it not being expressed as much or even to a

decrease in the population of microorganisms which express this TF, given that it has only been identified

in certain species [140] [141].

The NtrC.DctD family represents transcription factors which are involved in nitrogen regulation [2].

As previously mentioned, the family NtrC.DctD has a higher relative abundance in the late time group.

Considering these samples originate from a microcosm with nitrate-reducing conditions, this result may

be partly attributed to environmental conditions. Due to the use of nitrate as a substrate, the path-

ways that regulate nitrogen consumption/nitrate reduction would be expected to have higher importance
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among the different organisms present in this ecosystem. It is important to note that this family contains

TFs that both upregulate and downregulate multiple different steps in the nitrogen regulation pathways

and therefore an increase in the abundance levels of NtrC.DctD TFs can have multiple causes [142].

Although, it should be noted that most TFs have been shown to upregulate genes [143]. One potential

cause for this increase could be that, due to the increased importance of nitrogen regulation in a nitrate-

reducing environment, the organisms present within the microcosm had their NtrC.DctD transcription

factors’ abundance increased in order to more accurately and better regulate the nitrate-reducing path-

ways. This increase in abundance can be observed gradually over time, indicating why the abundance

levels of the TFs are higher in samples taken at later times.

Another potential bioindicator is the LysR family, which has a statistically significant difference in its

relative abundance when comparing the early and late time groups. Unlike the NtrC.DctD family, the

relative abundance of the LysR family decreases for the later time group, possibly indicating a decline

in the transcription or regulation of genes regulated by this family in a nitrate reducing/benzene present

environment. The LysR family of transcriptional regulators is the most abundant family in the prokaryotic

kingdom and regulates a very diverse set of genes, involved in functions such as virulence, metabolism,

quorum sensing and motility [144]. Due to the varied amount of gene functions that the LysR family

regulates, it is hard to determine whether the regulation of certain specific functions within this family

is being suppressed or activated due to the environmental stresses and it is therefore harder to draw

conclusions as to what specific functions could be affecting the abundance levels of TFs of this family.

One way to more precisely map out which functions’ TFs are being affected is to analyze the abun-

dance levels of the LysR subfamilies, as each will have more precise functions whose importance in this

system may be more easily studied. With this purpose in mind, the previously mentioned analysis on

the subfamilies of all TF families was performed; however, due to the size of the dataset and in some

families’ (namely LysR) case, the very large number of subfamilies, there isn’t enough data to draw

any significant conclusions. This could potentially be remedied with a larger dataset to work with, less

specific subfamily groupings, or better-quality reads. Nonetheless, a list of all LysR and NtrC.DctD TF

subfamilies detected by PredicTF was made, and the functions of the genes they regulate (if known)

were annotated in Supplementary Material B. Of note, we can find LysR TFs such as:

• PCAQ-RHIRD, a TF which activates the pcaDCHGB operon, which is involved in the catabolism

of aromatic compounds. Given the high benzene concentration of this microcosm, it is possible

the activation of this operon was useful or even necessary for certain microorganisms to process

benzene as an energy source [145].

• NAC-KLEAE, a TF activator which is downregulated in the presence of nitrogen sources [146].

• CYNR-ECOLI, a TF activator for genes which permit E.coli to use cyanate as a sole nitrogen
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source and is downregulated in the presence of nitrogen [147].

It should always be noted that an increase or decrease in the abundance of a certain TF in the

genome does not necessarily equate to that TF being more or less translated (though the 2 are often

correlated) [42]. Therefore an analysis of the transcriptome and proteome (as was originally planned

to be performed in this work) can accompany this sort of work in order to more accurately determine

whether or not these TFs are indeed being transcribed into RNA and proteins.

The technique performed in this work for TF analysis has proved useful, as it allows a better un-

derstanding of regulatory networks and the mechanisms which govern TF abundance, helping in the

modeling and description of these complex networks, by providing insight that techniques such as phy-

logenetic or gene expression analyses do not, namely TF abundance values and how they are affected.
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5
Conclusions and future work
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The main objectives of this work were to determine the impact of environmental stresses on the abun-

dance of bacterial TFs and whether these differences in abundance levels could be used to distinguish

between samples at different time points of a succession experiment, thus providing direct insight into

the regulatory networks of the community. With this objective in mind, data from a microcosm experi-

ment was used as input for the newly developed PredicTF tool in order to detect TF abundance. These

abundance values are then used to perform a diversity analysis and to determine bioindicators using

Random Forests and statistical tests.

The diversity analysis results, mainly the beta diversity analysis using PCoA, show that the TF family

abundance levels of the community are indeed changing over time, indicating that external factors do

indeed affect bacterial TF abundance, as had been shown in literature before [31]. In addition, this

analysis also showed that there appears to be a clear contrast between samples taken earlier than 96

days and those taken later.

When searching for bioindicators, 2 TF families were found whose abundance altered significantly

over time: NtrC.DctD and LysR. While the NtrC.DctD change in abundance may be caused by the

nitrate reducing environment of the microcosm experiment the differences in abundance of LysR TFs

may be harder to explain, due to the very wide variety of functions different TFs in this family regulate.

Regardless, these results show that not only does TF abundance change as a result of external factors,

but this fact may potentially be used in the realms of ecology, given that if the abundance of specific

families changes with specific external factors (e.g. overabundance of NtrC.DctD TFs in the presence of

a nitrate reducing environment), then the abundance of these families may be used as a tool for better

monitoring of the regulatory networks of microbial communities.

In this work, the initial reads were rarefied, in part due to the fact that at least part of the analysis

would use absolute abundance data. However, considering that a lot of the work ended up being com-

pleted using relative abundance data, which may ,as previously mentioned, be affected by this initial

normalization step, any future work should take into account whether or not normalizing the initial reads

is a necessary step.

When determining the statistical significance of the Beta Diversity values a PERMANOVA analysis

was performed. However, after the grouping into the Early and Late time groups, an unbalanced dataset

was created (one of the groups had 9 samples while the other had 6). Due to this, an analysis using

ANOSIM may have proven more accurate, as it has been shown to better handle unbalanced datasets

when compared to PERMANOVA [133].

As previously stated, just because a TF is present in the metagenome, this does not mean it is

necessarily transcribed into a protein. In future work one could complement the metagenomic samples

with transcriptomic (determine whether the TF genes are being transcribed) and proteomic (determine

whether the TFs are being translated into proteins) samples in order to have a more accurate under-
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standing of which TFs are in fact being expressed. In fact, a proteomics and transcriptomics analysis

was part of the original objective of this work, however, due to poor quality proteomics data and primarily

the extended lockdowns in Germany due to the COVID-19 pandemic, which barred access to the nec-

essary equipment, it was not possible to perform these extra steps. In addition, in this work due to the

limited nature of the dataset, the abundance values of the TF subfamilies were not extensively used,

namely in the search for bioindicators. Despite this, the abundance values of the subfamilies have the

potential to be more relevant than the more generalized family groupings and should not be disregarded

immediately in any future work, especially if a larger dataset with greater abundance of subfamilies can

be produced. This is due to the subfamilies affecting the expression of a smaller amount of genes, often

with similar functions, so a variation on the abundance of a specific subfamily can be more easily linked

to a specific function or characteristic of the community.

Another analysis that may be performed alongside this work is a phylogenetic analysis of the species

present in the microbiome. Such an analysis provides insight into the microbial composition of the com-

munity over time. When coupled with the PredicTF tool, it may allow for determination of, for instance,

whether a decrease of the abundance of a specific TF is due to that TF not being upregulated in the

conditions of microcosm, or, due to the population of microorganisms in which that TF is present de-

creasing or disappearing over time [148]. A phylogenetic analysis could have provided such insight into

the causes of the decreased abundance of the PILR subfamily over time.
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[85] G. Rätsch, S. Sonnenburg, J. Srinivasan, H. Witte, K.-R. Müller, R.-J. Sommer, and B. Schölkopf,

“Improving the caenorhabditis elegans genome annotation using machine learning,” PLoS Comput

Biol, vol. 3, no. 2, p. e20, 2007.

[86] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaasenbeek,

M. Angelo, M. Reich, G. S. Pinkus et al., “Diffuse large b-cell lymphoma outcome prediction by

gene-expression profiling and supervised machine learning,” Nature medicine, vol. 8, no. 1, pp.

68–74, 2002.

[87] O. Aromolaran, T. Beder, M. Oswald, J. Oyelade, E. Adebiyi, and R. Koenig, “Essential gene

prediction in drosophila melanogaster using machine learning approaches based on sequence

and functional features,” Computational and structural biotechnology journal, vol. 18, pp. 612–

621, 2020.

[88] T. M. Mitchell et al., “Machine learning,” 1997.

[89] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, “Automated design of both the topology

and sizing of analog electrical circuits using genetic programming,” in Artificial Intelligence in De-

sign’96. Springer, 1996, pp. 151–170.

[90] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,” 2002.

[91] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press,

2018.

[92] E. Alpaydin, Introduction to machine learning. MIT press, 2020.

[93] D. M. Hawkins, “The problem of overfitting,” Journal of chemical information and computer sci-

ences, vol. 44, no. 1, pp. 1–12, 2004.

[94] J. Mairal, “Sparse coding for machine learning, image processing and computer vision,” Ph.D.

dissertation, Cachan, Ecole normale supérieure, 2010.

[95] E. G. Dada, J. S. Bassi, H. Chiroma, A. O. Adetunmbi, O. E. Ajibuwa et al., “Machine learning for

email spam filtering: review, approaches and open research problems,” Heliyon, vol. 5, no. 6, p.

e01802, 2019.

[96] J. Stilgoe, “Machine learning, social learning and the governance of self-driving cars,” Social stud-

ies of science, vol. 48, no. 1, pp. 25–56, 2018.

[97] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,”

IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 8, pp. 1798–1828,

2013.

62



[98] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu,

S. Y. Philip et al., “Top 10 algorithms in data mining,” Knowledge and information systems, vol. 14,

no. 1, pp. 1–37, 2008.
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Annex A

A.1 NMDS and PCoA plots

Figure A.1: Principal Coordinate analysis of Bray distances comparing the relative abundance of TF families in
different samples.
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Figure A.2: Principal Coordinate analysis of Bray distances comparing the absolute abundance of TF families in
different samples.

Figure A.3: NMDS analysis of Bray distances comparing the absolute abundance of TF families in different sam-
ples.

69



Figure A.4: NMDS analysis of Bray distances comparing the absolute abundance of TF families in different sam-
ples. We defined two time groups as Early (Days ≤ 76) and Late (Days>76).

Figure A.5: NMDS analysis of Bray distances comparing the relative abundance of TF families in different samples.

70



Figure A.6: NMDS analysis of Bray distances comparing the relative abundance of TF families in different samples.
We defined two time groups as Early (Days ≤ 76) and Late (Days>76).

Figure A.7: Principal Coordinate analysis of Bray distances comparing the relative abundance of TF subfamilies in
different samples.
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Figure A.8: Principal Coordinate analysis of Bray distances comparing the absolute abundance of TF subfamilies
in different samples.

A.2 Subfamily Variance analysis

Figure A.9: Bray-Curtis dissimilarity index among the relative abundance of TF subfamilies in samples taken in the
same day.
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Figure A.10: Bray-Curtis dissimilarity index among the absolute abundance of TF subfamilies in samples taken in
the same day.

A.3 RF Attempts

Table A.1: Sample groupings used for the building of RFs with 5 variables tested per tree and their OOB error rate

Sample grouping (Days) Sample grouping 2 (Days) Sample grouping 3 (Days) OOB error(%)
Early (0,70,76) Late(96,124) - 6

Early + 124 96 - 13
Early 96 124 27

70 + 76 Late - 25
70 + 76 124 - 11
Early 124 - 16
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