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Abstract

The process of migrating a monolith to a microservices architecture has a cost due to the refac-

torization of its functionalities in an eventual consistent transactional context. On the other hand, the

object-oriented approach commonly followed in the development of monolith systems promotes fine-

grained interactions in the functionalities implementation, which further increases the migration cost due

to the large number of remote invocations between microservices. This calls must be changed to more

coarse-grained interactions that increase the fault tolerance and reduce the latency of the system. In this

research, we propose the addition of a new tool to the Mono2Micro system to help the software architect

identify the functionality refactorings that transform several fine-grainded interactions into coarse grained

ones, to ease the migration of any functionality to a SAGA pattern. We address two specific research

questions: (1) Is it possible to automatically recommend refactorizations that minimize the migration

effort of functionalities as SAGA orchestrations? (2) Can we characterize the SAGA orchestrators that

result in a higher reduction of the migration effort? - Regarding the first question, the heuristic accu-

racy, and efficiency of the tool are evaluated by executing it for a dataset of 78 codebases, doing a

statistical analysis of the results in terms of complexity reduction and operations performed, and then

manually validating the SAGAs proposed for a particular codebase and comparing them with refactor-

izations made by an expert. To answer the second question, we define a set of metrics that characterize

each microservice in a candidate decomposition and evaluate its correlation with the microservices or-

chestrators proposed by the tool in order to see if a pattern emerges.
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Resumo

O processo de migração de um sistema monolı́tico para uma arquitetura de microserviços tem um

custo associado devido à refatorização das funcionalidades para um contexto distribuido com transações

consistentes. Para além disto, a implementação de sistemas monolı́ticos promove um grande número

de interações entre os diferentes módulos usados em cada funcionalidade, o que aumenta ainda mais

o custo da migração, uma vez que é necessário alterar este comportamento de modo a reduzir as

invocações externas entre microserviços. Nesta tese, propõe-se a adição de uma nova ferramenta

ao sistema de Mono2Micro para ajudar a identificar refatorizações que diminuem a granularidade das

interações entre os módulos, facilitando a migração de um dado sistema para uma arquitetura de

microserviços que aplica o padrão de Sagas. Abordam-se, então, duas questões de pesquisa: (1)

É possı́vel fazer uma recomendaçāo automática de refatorizações que minimizam o custo de migraçāo

de uma funcionalidade para um padrāo de Sagas? (2) É possı́vel caracterizar os orquestradores das

Sagas que resultam numa maior redução do custo de migração? Relativamente à primeira questāo,

a precisão dos métodos heurı́sticos e a eficiência da ferramenta sāo avaliados executando esta última

para um dataset de 78 sistemas, e efetuando a análise estatı́stica dos resultados quanto à redução

da complexidade de migração e operações efetuadas. Além disto, realiza-se uma verificação manual

das implementações propostas para um sistema especı́fico e compara-se com as refatorizaçõs feitas

por um especialista. Para responder à segunda questāo, definiu-se um conjunto de métricas que car-

acterizam cada um dos microserviços no contexto de uma decomposição, antes das refatorizações, e

avaliou-se se estas métricas estão relacionadas com os orquestradores propostos pela ferramenta.

Palavras Chave

Migração de Monólitos; Microserviços; Padrāo Saga; Refatorização; Heurı́stica
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The microservices architecture [1] allows the split of a large software development project into several

small agile cross-functional teams and facilitates independent scalability of the services that constitute

the product [1]. On the other hand, it is a common practice to start developing a complex system as

a monolith [2] due to the shorter time to market and the fact that it is difficult to find the correct modu-

larization of a system without doing several refactorings. Therefore, many monolith systems have to go

through a migration phase to a microservices architecture when scalability and development efficiency

become a bigger priority.

This migration phase is a complex task for the developers. It requires timely planning of the correct

decomposition of the monolith, dividing the business logic in a way that promotes high maintainability.

In a later phase, it requires a complete rewrite of the monolith business logic to deal with the break

of transactional behavior into eventual consistency. Therefore, it is relevant to prepare the monolith to

reduce the migration effort.

The work in this thesis aims at improving the Mono2Micro system developed in previous work by

integrating it with a new service implementing an automated refactorization algorithm. This algorithm

reads the candidate decomposition of a monolith into clusters, and the monolith set of functionalities, an

then proposes refactorizations that prepare the monolith to be migrated to a microservices architecture

according to the SAGA pattern, while reducing the migration cost. Additionally, the service indicates

what should be the orchestrator cluster for each functionality.

1.1 Context

We leverage on previous work [3–5] to support the architect with a recommendation mechanism for the

refactoring of monolithical codebases in the context of a candidate decomposition.

The investigation in [3] resulted in the creation of a workflow that, by using static analysis of a mono-

lith source code, can generate a callgraph showing the domain entities accessed by each functionality

of the codebase. After this, given the call graph and a similarity measure based on the domain enti-

ties accessed by each functionality, a hierarchical clustering algorithm is applied to generate candidate

decompositions. Each candidate decomposition is made of clusters of domain entities that are closer

according to the similarity measure. Each cluster represents a candidate microservice. The architect is

then able to visualize each one of the proposed clusters in a graphic user interface.

Later, in [4] the research is extended, this time by focusing on the definition of a migration complexity

metric, and improving the data collection started in the previous work by also extracting the mode of the

domain entities accesses, read or write, which allowed for the definition of new similarity measures that

consider the type of access.

In [5] two new metrics are proposed to measure the complexity of migrating a monolith functionality

2



to a microservices architecture implemented by applying the Sagas pattern. These metrics extend the

previous one for the Saga context and split it into two aspects: the complexity of migrating a function-

ality, and the complexity it adds to the migration of other functionalities. Additionally, it was observed a

code smell for migrations with high complexity. An important conclusion in this research is that the high

complexity associated with the migration of a functionality is due to the number of inter-candidate mi-

croservices invocations, which increases the number of the Saga intermediate states. The main reason

for this situation is that monoliths are implemented using a significant number of fine-grained invocations,

prevalent in the Object-Oriented Programming (OOP) paradigm.

1.2 Problem

Although our previous work allowed the software architect to be informed about the cost of migrating the

functionality, given a candidate decomposition, he is not aware of the possible reductions that can ex-

ist if fine-grained inter-microservice invocations are refactored into a smaller number of coarse-grained

interactions. This situation is worsened because a monolith can have hundreds, if not thousands, of

functionalities, making it time-consuming and impractical for a manual inspection of each functionality

structure. Engineering teams often dedicate months or even years to ultimately achieve a 100% mi-

croservice migration in the production environment [6], which results in less time allocation to develop

new features and improve the system’s core functionalities. This issue leads us to strongly believe that

an automation system should make it easier to calculate the most efficient way to achieve the end goal.

Another important aspect is that developers’ decision-making is undoubtedly flawed. Sometimes, the

microservices design implemented might not be the one that results in a less complex, more scalable,

and maintainable system and results in a faster time-to-market due to fewer changes in the logic. Plan-

ning for a microservices architecture requires an extensive discussion of the problem and answering

important architectural questions such as:

• How will communications be made between multiple clusters?

• How will distributed transactions be handled?

• How will the system be monitored?

• How will it behave in a failure scenario, and how will it recover?

• How will dependencies be managed between the different teams maintaining each service?

• Are these dependencies tightly coupled?

If planning is not thorough enough, problems will arise during the migration phase, requiring going

back to the whiteboard and completely overhauling the initial design.

3



1.3 Research Questions

This research leverages on previous work that suceeded to extract data from monolithic codebases,

generate sequential callgraphs of functionalities and define a set of complexity metrics that measure the

migration complexity in terms of the cost associated with the relaxation of the transaction model. With

this valuable data extraction algorithms and complexity metrics we are able to focus on the automation

of the process of refactoring a monolith by reducing the number of fine-grained accesses, by the means

of reads or writes, to domain entities, so that, we reduce the overall cost of the migration by proposing a

way to minimize te remote invocations between clusters.

However, this attempt at recommending the best functionality refactorizations needs to be validated

regarding the accuracy of the results, since it is not enough to reduce the fine-grained invocations, but

we need to make sure that this changes are implementable in the original source code and do not break

data dependencies between sequential domain entity accesses.

With this in mind, we evaluate the performance of the tool on reducing the system complexity, by

applying it to a dataset of 78 codebases, and analyze the accuracy of the results of one codebase by

comparing them to a manual refactorization by a developer. Using this methodology, we will focus on

answering the following research questions:

• Is it possible to recommend the refactoring of a functionality, by merging fine-grained inter-microservice

interactions into coarse-grained ones, that minimizes its migration effort as an orchestrated Saga

in the context of the decomposition?

• Can we characterize the Saga orchestrators that allow for a higher reduction of the migration effort?

1.4 Contributions

The main contributions of this work are:

• A recursive algorithm that, given a candidate decomposition of a monolith and the monolith set

of functionalities, outputs a refactoring for each functionality that reduces the complexity of its

migration using the Saga pattern. It presents a refactored callgraph, the identification of the best

fitting orchestrator, and the overall impact that the reduction of fine-grained invocations had on the

overall cost of the migration.

• An easily deployable and scalable Golang service, implementing a Representational State Transfer

(REST) Application Program Interface (API) to expose the algorithm.

4



• An integration with the Mono2Micro system, through a graphical user interface and visualization

tool which can be used to interact with the Refactorization Service by requesting codebase refac-

torizations and analyzing the results.

1.5 Outline

This thesis is organized as follows: Chapter 2 introduces some valuable concepts for the correct analysis

of this research and then presents a discussion of the state-of-the-art on the field of monolith codebase

migrations and identification of code-smells, both from a heuristic and from a machine learning perspec-

tive. Chapter 3 presents the discussion around the possible approaches to solve the problem and the

decision of best suiting approach. Later its presented the core algorithm that was developed to refactor

monolithic functionalities, given a candidate decomposition, such that the complexity of the migration

is reduced. Chapter 4 describes the web service requirements, implementation, and how this service

was integrated with the Mono2Micro system. In Chapter 5 the tool is evaluated by applying it to a large

dataset of 78 codebases and then narrowing the analysis to a single codebase by comparing the refac-

torizations proposed to the ones made by an expert. Finally, Chapter 6 concludes this thesis with final

remarks, an overall summary of the work done, and a brief description of possible future research topics

that can extend these conclusions.
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This section starts by presenting a set of critical concepts essential for a better analysis of the work

done and the proposed solution. These concepts involve a description of the system where the Refac-

torization Service will be integrated and an introduction to the Saga pattern, which will be used to create

microservice orchestrations.

Further on, we present the existing research on the field of monolith to microservice refactoriza-

tions and code-smell detection, both using heuristic and machine-learning solutions while comparing

the benefits and drawbacks of each approach.

2.1 Background

The solution presented in this thesis will be integrated in the Mono2Micro software system, which we

briefly describe below. The imlementation of the proposed solution involves executing an algorithm to

compute refactorizations for the functionalities of a codebase, in the context of a decomposition and by

applying the Saga Pattern, which is the next topic to be introduced in this subchapter.

2.1.1 Mono2Micro system

In the context of previous research [3–5] the Social Software Engineering research team1 at the Lisbon’s

Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento (INESC-ID)

developed Mono2Micro2, a software system that implements tools to support software architects on the

task of migrating codebases from a monolithic to a microservices architecture.

This system is composed of a frontend user interface built on top of the React Javascript library3,

which communicates directly with the backend Application Program Interface (API) service, built using

the Spring-Boot Java framework4, responsible for all the computations, script executions and persisting

the data in the file system. Both the UI and the backend application are deployed in a containerized

Docker environment, described in Fig. 2.1.

The main features implemented in Mono2Micro include:

1. Data extraction from the source code of codebases implemented using Spring-Boot, by applying

static or dynamic analysis algorithms. This analysis generates a call-graph containing the order of

entity accesses and type of access (read of write) for each functionality of the codebase.

2. Clusterization of the domain entities using a hierarchical clustering algorithm5 implemented by

Scipy Python library, which generates a dendrogram, as described in [3].
1https://socialsoftware.github.io/
2https://github.com/socialsoftware/mono2micro
3https://reactjs.org/
4https://spring.io/projects/spring-boot
5https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
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Figure 2.1: Architecture overview of the Mono2Micro system.

3. Manually cutting the dendrogram into a set of different clusters, to create a decomposition, as

shown in Fig. 2.2. The architect can do this by choosing one of two distinct methods:

• Choosing the total number of clusters that the cut must have.

• Choosing the maximum distance between domain entities inside each cluster.

4. Visualizing complexity metrics that enable the architect to assess the quality of the decomposition

created.

5. Experimenting with the clusters by allowing the architect to rename, merge and split clusters, as

well as move data entities between them.

6. Refactoring any functionality of the codebase by applying a set of refactorization operations, includ-

ing: Add Compensating, Sequence Change, Local Transaction Merge and Define Coarse-Grained

Interactions, described in [5].

The solution presented in this research thesis has the purpose of being integrated into the Mono2Micro

system in order to make it more feature complete, so that developers can have a recomendation system

for refactoring the decompositions that they create, with a low effort, and while being able to analyse

them in a rich user interface.
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Figure 2.2: Workflow of creating a codebase decomposition in the Mono2Micro system.

2.1.2 The Saga Pattern

The traditional solution for handling data operations in a distributed system spanning multiple services

is known as distributed transactions. In this approach, the services provide data-changing resources,

and a manager is responsible for invoking each one of the services and managing the global state

of the transaction, making sure that the Atomicity, Consistency, Isolation and Durability properties are

used. This approach has significant drawbacks when it comes to maintaining data consistency across

all services. For instance, if the local transaction in one of the services fails, the manager must make

sure that this is reflected in the data state of all the other services. Another drawback is visible when

accounting for service availability since for a distributed transaction to be successful, all the services

must be available, which creates tight coupling between all the participants.

The so-called gray literature proposes the use of the Saga pattern to implement business func-

tionalities in the microservices architecture [7] in order to maintain data consistency across the multi-

ple services and without using distributed transactions. This pattern is based on the seminal work by

Hector-Molina and Kenneth [8] and addresses the lack of isolation between the code modules due to

the creation of intermediate transactional states that are visible outside the scope of the functionalities

execution.

Each local transaction updates data within a single service using the familiar Atomicity, Consistency,

Isolation, Durability (ACID) transaction frameworks and then publishes a message or event to trigger the

next local transaction in the Saga. If a local transaction fails because it violates a business rule, then

the Saga executes a series of compensating transactions that undo the changes that were made. In

Table 2.1 we present the main benefits and drawbacks of using the Saga pattern in a distributed system.

Table 2.1: Benefits and drawbacks of the Saga pattern.

Benefits Drawbacks
Maintains data consistency across services The programming model is more complex

Promotes loose coupling More difficult to debug

Supports long-lived transactions Developers must design compensating transac-
tions which undo changes made
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There are two main approaches for designing a Saga pattern when it comes to the service’s roles

and protocols of communication between them: orchestrations and choreography. In an orchestration,

which is presented in Fig. 2.3, an orchestrator informs the participants about which local transactions

should be executed. The orchestrated cluster performs the local transaction and reports back to the

orchestrator, informing if it was completed or not. This communication can be done by any regular HTTP

implementation or by an asynchronous event-producer and event-consumer design.

Figure 2.3: Orchestration approach for the Saga pattern.

In Table 2.2 we present the benefits and drawbacks of an orchestration, which were used to decide

the approach to follow in the solution implementation.

Table 2.2: Benefits and drawbacks of the orchestration approach.

Benefits Drawbacks
Suitable for complex workflows where new par-
ticipants can be added anytime

Additional complexity, since it requires imple-
menting coordination logic in the orchestrator

It does not introduce cyclical dependencies Single point of failure since the orchestrator man-
ages the whole workflow

The participants do not need to know about com-
mands for other participants

More separation of concerns, which simplifies
the business logic
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Figure 2.4: Choreography approach for the Saga pattern.

In a choreography, Fig. 2.4, in opposit to the orchestration, there is not a Saga manager cluster which

triggers and coordinates the execution.

Instead of relying on an orchestrator cluster, the Saga is triggered by an event published to a mes-

sage broker. Participants configured to consume that event will then trigger their local transactions, and

upon completion, publish an event back to the message broker, which will trigger local transactions in

other participants. This pattern goes on until all the required local transactions in the Saga are completed

or until one fails and a compensating transaction is initiated.

In Table 2.3 we present the benefits and drawbacks of a choreography, which were used to decide

the approach to follow in the solution implementation.

For this thesis we will consider the orchestration approach, since it is the most generic one that can

be applied to more complex workflows. Additionally, we have datasets of refactorizations by human

experts that converted functionalities to Saga orchestrations, which will be useful during the evaluation

phase.
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Table 2.3: Benefits and drawbacks of the choreography approach.

Benefits Drawbacks
Suitable for simple workflows with few partici-
pants

Workflows can become confusing, are more
challenging to track and debug

Does not require additional orchestrator service
implementation and maintenance

Risk of cyclic dependencies between partici-
pants, since they consume each other’s events

It does not introduce a single point of failure All services must be running to simulate a trans-
action, making integration testing more difficult.

More separation of concerns, which simplifies
the business logic

2.2 Related Work

By looking at the research community, we can find significant contributions to the problem of migrat-

ing a monolithic codebase to a microservices architecture [3, 9–15]. Although they propose different

techniques, they concur on the definition of three steps of the migration process:

1. Collection of data about the original codebase.

2. Generation of a decomposition.

3. Visualization of metrics and migration of the functionalities.

Data collection techniques like static and dynamic analysis are applied to extract data about the

monolith behavior, either based on data models or the monolith’s source code. This information is fed to

the second step, which identifies candidate decompositions of the monolith into a set of microservices,

each containing a set of the domain entities of the system, based on a group of metrics that maximize

the expected quality of the decomposition. Finally, some of the approaches also support visualizing

the algorithm’s results, which the architect can use to interact with a representation of the candidate

decomposition and even change the decomposition while continuously receiving feedback on the impact

the changes have on the quality metrics. The authors in [12] developed a framework called Functionality-

oriented Service Candidate Identification (FoSCI) to identify service decomposition candidates, including

entity and interface identification. This framework identifies service candidates through the extraction

and analysis of execution traces. The workflow of the solution proposed is divided into three main steps:

1. Execution Trace Extraction - extraction of representative execution traces based on a file containing

execution logs.

2. Entity Identification - based on the execution traces, the tool identifies functional atoms, which

represent units where all the entities are responsable for the same functional logic, and then uses

a multi-objective optimization technique to group this functional atoms in candidate microservices.
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3. Interface Class Identification - for each service candidate, the framework identifies its interface

classes.

Moreover, the contributors develop an evaluation to assess the service candidates on top of eight

metrics that quantify three quality criteria for service candidates. These metrics are derived from the

revision history stored in the application version-control system and provides an evolution map of the

codebase. These quality criteria for the service candidates are:

• Independence of Functionality - a functionality should be a well-defined, independent, and co-

herent function provided by an application, which should be a business capability accessible by

external clients.

• Modularity - Focuses on the coupling and cohesion of the system. Measures if internal entities

within a service behave coherently, while entities across services are loosely coupled.

• Evolvability - Measures a service’s ability to evolve independently.

This research is comparable to the work developed in the context of the Mono2Micro system since

it provides a similar pipeline for the identification of microservices. However, their metrics focus on

different microservices qualities. Additionally, while our research focuses on the functionalities migration

complexity by applying design patterns, the author’s research focuses on the quality of the decompositon

according to the three quality criteria described above.

The values returned by the quality metrics are strongly dependent on the monolith functionalities

structure, but this aspect is absent in the literature, except in [5], where it is analyzed how the refactoring

of a functionality can significantly impact the value of complexity metrics for the monolith decomposition.

Most of the approaches, but [3, 11], do not consider the interactive capability of experimenting with

different decompositions, containing different numbers of clusters.

In [11] the authors proposed a visualization tool that allows developers to migrate an existing mono-

lithic application as microservices interactively. This task is achieved by initially constructing a callgraph

using a codebase execution profiler, then generating two different microservice designs by applying two

clustering techniques, one using semantic-based clustering, which takes into account semantic similari-

ties between the classes, and another using call-context-based clustering, which creates clusters based

on the communication between the multiple modules of the codebase. After this decomposition strategy,

the architect is then presented with a user interface containing clusters of classes, where he can freely

change the candidate decomposition of the system by applying a class operation from the list available:

• Create a new microservice with a selected class.

• Move a class into another microservice.
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• Clone the selected class into all the microservices that communicate with it.

The results when applying the call-context-based clustering showed a considerable reduction of the

number of calls between services, which is a critical metric when developing a microservices architecture

since the communication between clusters must be very coarse-grained in order to limit the number of

intermediate states and inter-cluster dependencies.

This approach, despite being similar to what is applied in Mono2Micro in [3] when it comes to creating

a decomposition and allowing the developer to edit it, it is still, however, a manual task and does not apply

a microservice-specific design when it comes to managing data consistency and database transactions

in a distributed manner.

The current research on code-smell and design pattern detection follows two main trends: heuristic

algorithms and machine learning classification models. In most heuristic classification approaches, a

set of code metrics is computed and combined to create detection rules, which by employing thresholds,

decides if the code follows a certain pattern [16–19]. However, some drawbacks have been identified

in the heuristic approach due to the low agreement between different detectors and difficulties in finding

suitable thresholds to be used for detection [20].

In [16] the researchers develop a well-defined methodology that summarizes and defines all the

steps necessary for the specification and detection of code and design smells. This methodology, called

DECOR (Detection & Correction), is composed of five steps:

1. Description Analysis: by doing an extensive analysis of the literature descriptions for each code-

smell, key concepts are identified, which form a glossary of concepts to describe each one of the

smells when it comes to specific code abstractions, e.g., Low Cohesion, No Inheritance, Private

Field, Uses Global Variable.

2. Specification: The concepts are aggregate in order to specify smells concisely.

3. Processing: The specifications, created in step 2, are translated into detection algorithms that can

be directly applied to a system.

4. Detection: The detection algorithm is applied to the system and returns the list of code abstractions

(e.g., classes, methods) suspected of implementing a smell.

5. Validation: The outputted abstractions are manually analyzed to assert that they contain, in fact,

the code-smell.

By applying DECOR, the scholars develop their own detection technique called DETEX (Detection

Expert), allowing software engineers to specify smells at a high level of abstraction using a unified vocab-

ulary and domain-specific language and automatically generate detection algorithms. This implemen-

tation is supported by a Domain-specific Language (DSL) called SmellDL (Smell Definition Language)
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for specifying smells using high-level abstractions, which is used to execute steps 1 and 2. Then, in

order to generate the detection algorithms, the authors resort to a framework developed in previous

research, called SmellFW (Smell FrameWork), built on top of the Pattern and Abstract-level Description

Language (PADL) meta-model and Primitives, Operators, Metrics (POM) framework. This framework

exposes interfaces to build systems models, manipulate them, and generate other models using the

Visitor design pattern. This framework is applied to the code-smell models built in step 2, generat-

ing source code that implements detection algorithms through JAVA templates and services within the

framework. By replacing well-defined tags in these templates with concrete code, the developer can

apply the detection algorithm to a specific code abstraction.

Additionally, it is performed an empirical validation of the algorithms generated by DETEX, in terms

of precision and recall, by applying them to 4 code-smells: Blob, Functional Decomposition, Spaghetti

Code, and Swiss Army Knife, on 11 open-source codebases, and then manually validating the results.

This validation resulted in a recall of 100% for all the smells and precision between 41.1% and 90%. This

classification provided between 5.6% and 15% of the total number of the classes of each codebase,

as having smells, which is a fair number of classes to be manually analyzed compared to having to

analyze the entire systems. With this, the authors were able to reduce the effort required to identify

refactorizations to be made to a system, which goes hand-to-hand with what we want to achieve in this

research. However, their approach only identifies antipatterns in the code but does not identify the final

design of the system and the specific changes that need to be made, which is something that we want

to achieve.

Some other heuristic tools base their analysis on the data contained in version control systems

since it provides a good overview of how the elements of a codebase change over time. In [17] the

researchers propose an approach, named Historical Information for Smell deTection (HIST), to detect

smells based on change history information mined from versioning systems, specifically, by analyzing co-

changes between source code artifacts. The technique aims at detecting five specific smells: Divergent

Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. The authors based their choice

of smells on the need to have a benchmark, including smells that can be identified using change history

information and smells that do not necessarily require this type of data. The first three smells, Divergent

Change, Shotgun Surgery, and Parallel Inheritance, are defined as historical smells, which means that

they can be detected using revision history. However, the last two code smells (Blob and Feature Envy)

can also be detected solely relying on structural information about the codebase’s classes, which is

explored in several approaches using static analysis tools, like [16]. The heuristic algorithms applied for

detecting each one of the smells are briefly described below:

• Divergent Change Detection: The detector mines association rules for detecting subsets of meth-

ods in one class that often change together. This extraction is done by identifying compositions of
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methods that have been committed together in the version control repository.

• Shotgun Surgery Detection: A class affected by this smell contains at least one method changing

along with several other methods contained in other classes. Accounting for this, the researchers

use association rules for detecting methods that often change together so that the smell is identified

in a class if it contains at least one method that changes with methods present in more than δ

classes.

• Parallel Inheritance Detection: This smell occurs when adding a subclass to one class requires

also adding a subclass to another one. In this approach, this is also detected by identifying, in the

version control data, pairs of classes that had subclasses added to them in the same commit.

• Blob Detection: The detection strategy for this smell is quite simple since it only requires identifying

classes that were modified in more than α% of the commits involving another class. This detection

algorithm assumes that a Blob occurs when a specific class needs to be modified whenever a new

change is done to the software system.

• Feature Envy Detection: The contributors state that a method affected by this code smell changes

more often with the envied class than with the class it lives in. With this, they develop an approach

that identifies methods that are involved in commits with methods of other classes, by a threshold

of β% more, than in commits with methods of their own class.

Finally, the researchers proceed to evaluate HIST with two empirical studies. The first, conducted on

8 Java projects, aimed at evaluating HIST’s detection accuracy in terms of precision and recall against a

manually-produced identification. The second compared HIST, wherever possible, with results produced

by approaches that detect smells by analyzing a single project snapshot, such as JDeodorant, and the

author’s re-implementations of DECOR’s detection rules, known as DETEX, in [16].

The results of the study indicate that HIST’s precision is between 61 and 80 percent, and its recall is

between 61 and 100 percent. HIST tends to provide better detection accuracy compared to alternative

approaches, especially in terms of recall, since it can identify smells that other approaches omit because

they do not consider historical information.

One of the visible drawbacks of this approach is that it relies on correct usage, within the engineering

team, of the version control commit patterns. If more than one system change is made to the codebase,

the algorithm’s precision will inherently be affected. Also, once again, there is an intrinsic reliance

on configuration thresholds, such as in detecting Shotgun Surgeon, Blob, and Feature Envy smells.

Our approach will differ significantly from this research since it rellies solely on structural data about

the codebase, and instead of having well-defined detection strategies for specific codebases, we will

focus on minimizing the migration complexity of the system by reducing the number of inter-service

communications in the context of a decomposition.
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In [18] the authors present a technique, called TACO (Textual Analysis for Code Smell Detection),

that uses textual analysis of the source code to detect a set of code smells with different natures and

different levels of granularity: Long Method, Feature Envy, Blob, Promiscuous Package, and Misplaced

Class. The proposed process to calculate the probability of a code component being affected by a smell

can be summarized in three steps:

1. Textual Content Extractor: the first step is to extract textual content characterizing each code com-

ponent of the module being analyzed, including source code identifiers and comments. Despite

this being one of the important steps of the technique, the authors do not go much in-depth on the

approach used to extract this data.

2. Normalization Process: the dataset containing the identifiers and comments extracted in the step

above is cleaned by using a Information Retrieval normalization process. This normalization ap-

plies the following changes: separating identifiers by using a camel case splitting method; reducing

all the extracted words to lower case; removing special characters; stemming words to their origi-

nal roots via Porter’s stemmer. Finally, a term frequency algorithm is used to reduce the relevance

of too generic words contained in the text.

3. Smell Detector: in this step, the normalized dataset of each component is analyzed by applying

a set of heuristics. The detector relies on Latent Semantic Indexing (LSI), an extension of the

Vector Space Model (VSM), modeling code components as vectors of terms. These vectors are

then projected into a reduced k space of concepts to limit textual noise. To obtain the textual

similarity between components, they calculate the cosine of the angle of the corresponding vectors.

Finally, these similarity values are combined using different heuristics according to the smell being

detected to obtain the probability that a code component is smelly.

Below we proceed to describe the heuristics used in the Smell Detector step to detect each code

smell:

• Long Method: the authors define that a method is affected by this smell when it is composed of

sets of statements semantically distant from each other. To detect this, they use an implementation

of a text analysis algorithm, called SEGMENT, which automatically segments a method into a set

of consecutive statements implementing a high-level action. For each pair of statements in the list,

they apply LSI and cosine similarity to calculate the similarity value.

• Feature Envy: for this smell, the authors define that a method more interested in another class is

characterized by a higher similarity with the concepts implemented in another class, when consid-

ering the concepts of the class it is in. To calculate the probability of this smell, the authors derive
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the class having the highest textual similarity with the method. If the resulting class is not the class

where the method is placed, then Feature Envy occurs.

• Blob: the author’s conjecture for this smell is: Blob classes are characterized by a semantic

scattering of contents. To detect this, they calculate the mean cosine similarity between each

pair of methods contained in the class, named ClassCohesion, with values between 0 and 1.

This is then used to calculate the probability of the class being a Blob by applying the formula:

PB(C) = 1− ClassCohesion(C).

• Promiscuous Package: packages affected by this smell are characterized by a subset of classes

semantically distant from the other classes of the package. This conjecture is applied by applying

a very similar method as the Blob smell, but at a package level, where the mean cosine similarity

is calculated for each pair of classes in the package, named PackageCohesion, which is then used

to calculate the probability of the Promiscuous Package smell occurring, by applying the formula

PPP (P ) = 1− PackageCohesion(P ).

• Misplaced Class: the conjecture for this case is: a class affected by this smell is semantically

more related to a different package with respect to the package it is actually in. To detect this,

the authors go by retrieving the package with the highest textual similarity with the class being

analyzed. If the resulting package is different from the actual package of the class, then the class

should be moved.

They run TACO on ten open source projects, comparing its performance with existing smell detectors

purely based on structural information extracted from code components. The analysis of the results

indicates that TACO’s precision ranges between 67% and 77%, while its recall ranges between 72% and

84%. This approach presents itself as a good candidate for solving the dependence on configurable

thresholds and strict detection rules that tend to occur in usual heuristic strategies. It relies on well-

defined conjectures for each smell that depend purely on the textual characteristics of the source code.

However, the final purpose of the smell detection is different from the one we present in our research

since we focus only on a smell present in regular Object-Oriented Programming (OOP) software, where

modules have a very fine-grained communication behavior with many calls to separate classes since

this is the smell that highly increases the migration complexity to a microservices architecture of any

functionality. Additionally, we also want to effectively fix the smell in the context of a decomposition,

instead of just detecting it, as is done in [18].

When it comes to machine-learning classification approaches to identifying code-smells and design

patterns, a considerable amount of work has been done by a cluster of researchers led by Francesca

Fontana. The techniques presented by the authors in [21–24] tend to be more flexible and independent

compared to heuristic classification, since learning by example allows for better handling of distinct
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scenarios. However, they require extensive manual classification work to train the machine learning

algorithm.

In [21], the authors developed a benchmark for design pattern detection tools, composed of a work-

flow with two main steps:

1. Exact Matching: a module called Joiner extracts all the pattern instances contained in a software

codebase. This module executes logic to find all the instances that match an exact rule, which is

very general and considers only the fundamental behavior of the pattern. As a result, this Joiner

tends to produce a large number of results, but with low precision.

2. Classification: a module called Classifier classifies as correct or incorrect the instances detected

by the Joiner, resulting in a better filter for the results.

By exploring this workflow, the contributors were able to create a base model for identifying design

patterns in the context of a machine-learning approach and formulate the problem specifically as a

supervised classification task. Moreover, they also generated a large dataset of manually verified design

pattern instances, which is required to evaluate the base model.

This work distinguishes itself by resorting to a two-step data collection step, with a classification step

after an exact matching step. Additionally, this process does not depend on the supervised machine-

learning classification algorithm used, which promotes future experimentation.

In [22] the researches pick up on previous work done in [21] and implemented the Design Pattern De-

tection (DPD) approach to the the Metrics and Architecture Reconstruction Plug-in for Eclipse (MARPLE)

project. Here, they enhance the previous experimentation by:

• Developing test cases with more design patterns.

• Implementing and testing the model with more machine learning techniques.

• Testing the algorithms on a larger dataset.

• Applying an automatic and systematic method for the optimization of the algorithm’s parameters.

Additionally, the detection process presented in [21] is improved by introducing a clustering algorithm

for particular cases where the pattern structure is flat. The rationale for this was to provide the classifier

algorithms with a more direct representation of the pattern instances.

The approach is tested to detect five specific design patterns: Singleton, Adapter, Composite, Dec-

orator, and Factory Method, on ten open-source software systems. In this experimentation phase, the

authors divided the patterns into two groups: one for the patterns Singleton and Adapter, where they

applied only classification models, and a second group containing Composite, Decorator, and Factory

Method, where they applied a cascade of clustering and classification models. The approach obtained
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good performance values, especially for detecting the Singleton, Adapter, and Factory Method patterns.

The authors attributed lower performances in other patterns to the lack of examples in the dataset,

which shows that a larger, more diversified dataset should be used. As for the best classification mod-

els, Support Vector Machines (SVM), Decision Trees, and Random Forests resulted in the best results

for this specific dataset.

In [23], Fontana et al, extend the work on exploiting supervised machine learning techniques by

proposing a methodology to support a learn-by-example process to build code smell detection rules.

The resulting models can provide a confidence value of how the results fit the detected pattern and

also, in some cases, provide human-readable rules, which allowed the researchers to analyze which

combinations of input metrics have more influence on the detection of a given pattern.

Once again, this research required manually evaluating a set of example class instances for each

code smell, by classifying them as affected or not affected by the antipattern. This manual evaluation

required scraping dozens of projects in search of those instances, which was made more efficient by

applying a stratified random sampling approach on 74 codebases, guided by the results of pre-existing

code smell detection tools in the market, which the authors called Advisors. The usage of such a

strategy ensures that the selection of instances to evaluate is homogeneous and prioritizes the labeling

of instances with a higher chance of being affected by a code smell. This dataset of instances is then

used to train each one of 32 supervised machine learning classification algorithms on detecting four

code smells Data Class, God Class, Feature Envy, and Long Method.

To summarize, the proposed approach requires five sequential steps, described below:

1. Data Collection: The authors consider a collection of 111 Java systems, from where they extract

74, which are compiled correctly in order to compute metric values. The selected projects are quite

heterogeneous in size and application domain. They state that the size of the dataset to be the

largest available for code smell detection using machine learning algorithms and provide a high

enough number of systems which ultimately results in a generalized model.

2. Metrics Extraction: A large set of well-known OOP metrics was computed using a variance of the

Eclipse JDT library on all the 74 systems. Some of these metrics describe characteristics of the

codebase at class, method, package, and project level, which are needed to feed the Advisors

chosen. Others are simple standard metrics such as complexity, cohesion, size, and coupling,

which are pretty similar to the metrics generated by our Mono2Micro system.

3. Choosing the Advisor tools: the researchers analyzed the literature related to code smell detection

tools and handpicked the ones that respected a set of criteria: can be implemented as an external

tool; must perform batch computation and export data in a parsable and documented format; have

a different approach to advisors for the same smell, so that they avoid possible correlations among
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similar rules. The authors also considered tools only defined by research papers, if however, the

rule is clearly described and is replicable.

4. Labeling: During this phase, the Advisors were executed for each one of the codebases in order

to extract instances that are classified as having a code smell. However, since these automated

classifiers are prone to error, the authors implemented an additional manual labeling phase. In this

phase, a group of three MSc students individually evaluated each selected instance by inspecting

the code and classified them according to 4 severity levels: 0 - non smell, 1 - non-severe smell,

2 - smell and 3 - severe smell. In the context of the machine learning training phase, these

labels were grouped as: 0 - INCORRECT, 1, 2, 3 - CORRECT, which ultimately showed to provide

more information to the model when comparing to traditional binary classification, producing more

accurate results.

5. Experimentation: A set of machine-learning algorithms was trained on the datasets and tested

using 10-fold cross-validation. This dataset was separated per code smell, with two datasets per

smell. Each row of the dataset represented a class or method instance, with one attribute for each

metric and the last column containing a boolean representing the label that states if the instance is

a code smell or not. Some of the machine learning classifiers used are J48 Decision Trees, JRip,

Random Forest, Naive Bayes, SVM, and SMO.

2.3 Conclusion

The research on the migration of monolith systems to a microservices architecture that uses automatic

and semi-automatic methods already use heuristic, e.g. [9, 12], and machine learning, e.g. [25, 26],

techniques to the identification of candidate decompositions, but there is no work on the automatic

identification of code-smells and recommend refactorings to ease monolith functionality migration in the

context of a candidate decomposition.
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In this chapter is presented the process that resulted in the decision of the best approach to follow to

solve the problem presented in Chapter 1. This decision process involved analysing the Saga refactor-

ization done by an expert in a specific codebase and identifying patterns in his decision making. Later,

is presented the formalization of concepts around the task of migration a functionality from a monolith

architecture to a microservices architecture applying the Saga pattern, which also includes the complex-

ity metrics that will be minimized by the solution. Finally, is presented the algorithm responsible for the

proposition of Saga orchestrations, in the context of a monolith decomposition and the functionalities

callgraph.

3.1 Strategy

In order to make a justified decision about the approach that better fits this use case, we start by analyz-

ing how the human developer decides which changes must be done to the functionalities callgraphs to

refactor them as Saga orchestrations, and if there is a way to mimic this decision-making. Based on the

analysis of the human refactorizations and the data that we have available, then proceeded to cement

the approach that will be followed in the rest of the thesis.

In previous research [5], the authors defined a set of operations that can be made to a functionality

callgraph, in the context of a candidate decomposition, in order to refactor it as a Saga orchestration

without breaking the data-state layer of the codebase:

• Sequence Change: the flow of execution of the functionality is changed, which happens by swap-

ping the order of the original sequence of local transactions. In Fig. 3.1 we see the application

of this operation to a functionality that involves two clusters, A and B, where B performs two local

transactions, and A does only one. Suppose the local transaction in B, with id 2, does not depend

on data that is read by the local transaction in A, with id 1. In that case, they can be swapped

without breaking the data dependencies of the functionality.

• Local Transaction Merge: used when two local transactions in the same cluster become adjacent

in the sequential callgraph. Since it does not make sense to have a remote invocation between

the same cluster, we can merge both the local transactions as is seen in Fig. 3.2. When this is

done, it is necessary to integrate both execution sequences which results in a reduced number of

intermediate states.

• Define Coarse-Grained Interactions: this operation happens when both Sequence Change and

Local Transaction Merge operations are applied sequentially, in that order. More visually, this is

represented by joining both Fig. 3.1 and Fig. 3.2
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Figure 3.1: Sequence Change operation applied to a decomposition callgraph.

Figure 3.2: Local Transaction Merge operation applied to a decomposition callgraph.

After defining these operations, the authors proceeded to manually refactor a set of functionalities in

the LdoD codebase1 into Saga orchestrations, and evaluate the results when it comes to the reduction

of the Functionality Migration Complexity (FMC) and System Added Complexity (SAC) metrics.

Picking up on this work, we started by reverse-engineering the author’s refactorings to understand

his decision-making and conclude if it follows a standard pattern. With this, we defined a set of questions

to be answered:

• How are data dependencies preserved when the Sequence Change operation is applied?

• How is the orchestrator cluster chosen?

We extended this analysis to 8 functionalities of the codebase, for which we extracted the initial

sequential callgraph and the final callgraph resulting from the refactorings of the authors, and analyzed

the source code to make conclusions on the design decisions made. With this, we reached the following

conclusions:

• When it comes to the data dependencies, where two local transactions must not be swapped if

the second depends on data read by the first, we saw that not always did the developer respect

them. This conclusion does not suggest that the developer broke the data state changes in the

refactored design, but instead, it shows sometimes when having a write operation in cluster B after

a read operation in cluster A, the write in B does not actually use the data read in A.

• The rules defined in [5] were not enough to reach the refactorings made by the authors, since

some data dependencies where not taken into consideration while refactoring the functionalities.

This outcome indicates that some design decisions are particular to the codebase itself and how

the developer approaches the refactorization task, and indicates that heuristic rules tend to be too

strict and do not account for the deviation in the codebases implementations. This deviation in the

data is something that a deep learning model trained on a large dataset of refactorized codebases

may handle better.

1https://github.com/socialsoftware/edition
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• Regarding the last question to be answered, we could not find a pattern regarding the decision,

by the authors, of the clusters that should orchestrate each one of the functionalities. These

orchestrators are not always the ones that have more access to domain entities.

By answering the questions above, we concluded that heuristic tools based on defined rules are too

strict and do not account for the large number of levels of freedom that codebases have. The rules

may result in many test cases, but at some point, they become a bottleneck when trying to reach the

least complex design possible. These observations lead us to believe that a machine-learning classifier

approach may be the end-game at developing a refactorization system that can analyze codebases

implementing all kinds of design patterns, since theoretically, it is possible to train the classifier with a

large dataset of functionalities, their monolithic metrics, and the resulting orchestrations to achieve a

much better behavior when the model views data that is new and was not included in the dataset.

However, this characteristic of the machine-learning classifier, which requires an extensive dataset

with human-made refactorizations, is challenging to solve. It is hardly possible to have a dataset of at

least 100 functionality refactors analyzed purely by human developers without using existing automated

tools simply because it takes an immense amount of time to complete. The only dataset we have

available has the refactorizations made by the author in [5], and they are nowhere near enough for

training a deep learning model. This shortage of data became a stepping stone for any attempt at

following an approach based on machine-learning classifiers.

Considering this, and although their limitations, we decided to approach the problem from a purely

heuristic standpoint.

3.2 Functionality Migration

Definition: Monolith. A monolith is defined as a triple (F,E, T ), where F denotes its set of functionali-

ties, E the set of domain entities, T a set of traces of the monolith functionalities accesses. The traces

are defined as a triple (A,S,D), where A = E×M is a set of read and write accesses to domain entities

(M = {r, w}), S = A × A a execution sequence relation between elements of A, which indicates that

the first element of the pair was invoked, in the context of a monolith functionality, immediately before

the second element, and D = A × A the data dependencies between accesses in the context of a se-

quence, where the first element is a read access, the producer, and the second element a write access,

the consumer. Given a sequence, s ∈ S, its transitive closure, st, is a total order, in particular, any

element is comparable and there is no circularities, ∀(ai,aj)∈st(aj , ai) /∈ st For each functionality f ∈ F ,

f.s ∈ S denotes its set of sequence accesses. Additionally, the data dependencies occur in the context

of a functionality sequence of access and conform to the sequence order, ∀(ai,aj)∈D∃s∈f.s(ai, aj) ∈ st.

Definition: Monolith Decomposition. The decomposition of a monolith into a group of candidate

26



clusters is defined by the set of clusters C, where each cluster represents a microservice and contains a

set of domain entities, which are tightly coupled and represent a specific abstraction of the system. Given

candidate decomposition, the monolith functionalities are decomposed into a set of local transactions,

where each local transaction corresponds to the Atomicity, Consistency, Isolation, Durability (ACID)

execution of part of the functionality domain entity accesses.

A decomposition relaxes the consistency of the monolith’s functionalities, and the level of impact in

the system depends on the introduction of intermediate states on a functionality that was previously

atomic.

Definition: Functionality Migration. The migration of a monolith functionality is based on the

information collected of the functionalities accesses to the monolith domain entities, the sequences of

accesses, and their data dependencies.

Functionality migration occurs in the context of a candidate decomposition, in which each candidate

microservice is represented by a cluster of domain entities. Therefore, given the set of sequence of

accesses f.s of a functionality f and a decomposition into a set of clusters of the domain entities,

C ⊆ 2E , where the clusters are non-empty and a domain entity is in exactly one cluster, the partition of

a sequence s of a functionality f , s ∈ f.s, P (s, C) = (LT,RI) is defined by a set of local transactions

LT and a set of remote invocations RI, where each local transaction:

• is a tuple (A,S)

• is a subsequence of the functionality sequence of accesses, ∀lt∈LT : lt.s ⊆ s;

• contains only accesses to the domain entities of a single cluster, ∀lt∈LT∃c∈C : lt.a.e ⊆ c;

• contains all consecutive accesses in the same cluster, ∀ai∈lt.a,aj∈s.a : ((ai.e.c = aj .e.c ∧ (ai, aj) ∈

s)⇒ (ai, aj) ∈ lt.s) ∨ ((ai.e.c = aj .e.c ∧ (aj , ai) ∈ s)⇒ (aj , ai) ∈ lt.s);

Definition: Functionality Partition. A partition of a functionality f , given a decomposition C, is the

union of the partition of each one of its sequences, P (f, C) = ∪s∈f.sP (s, C), where local transactions

and remote invocations that are in the common prefixes of sequences are not repeated. Additionally,

sequence and data dependence relations between local transactions are inferred from the functionality

original sequence and data dependence relations and are denoted by <S and <D, respectively.

The partition of a functionality f , given a decomposition C, and obtained using the above rules, is

called the initial partition of f and it is denoted by Pi(s, C) and Pi(f, C), for, respectively, a sequence s

and all sequences of f .

Definition: Functionality Refactor. The refactor of a functionality, given a decomposition, is done

from its initial partition to a Saga implementing an orchestration, where the orchestrator is a pivot of the

interactions between local transactions. Therefore, a partition of a functionality sequence of accesses
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is an orchestration if it is involved in all remote invocations, c is an orchestrator if ∀(ai,aj)∈RI : ai.e.c =

c ∨ aj .e.c = c. Note that, by definition, a remote invocation occurs between different clusters.

The refactor of a functionality sequence of accesses is the change of its initial partition into a partition

that is an orchestration. This refactoring is done to minimize its migration complexity in the context of

a distributed transaction, because in the new implementation the functionlity business logic has to be

migrated. This complexity is measured by the number of local transactions and the impact that a local

transaction has on other functionalities migrations. This is due to the lack of isolation that each local

transaction brings to the functionality migration in a decomposition, which requires the introduction of

compensating transactions and the need to handle intermediate states of the domain entities accessed

by different functionalities [4,5].

Definition: Functionality Migration Complexity (FMC). The complexity of migrating a functionality

f , given its partition (LT,RI) in a decomposition, is the sum of the complexity of each one of its local

transaction:

complexity(f, (LT,RI)) =
∑

lt∈LT

complexity(lt)

Definition: Local Transaction Complexity. The complexity of a local transaction depends on the

domain entities it writes because it is necessary to implement compensating transactions for when the

functionality execution has to rollback. It also depends on the domain entities it reads because it is

necessary to consider the intermediate states that other functionalities introduce when they write them

in their local transactions.

complexity(lt) =

#writes({lt.s}) +
∑

e∈reads({lt.s})

#{fi ∈ F \ {f} : ∃ltj∈P (fi,C)e ∈ writes(ltj .s)}

where

writes(s) = {e : ∃si∈s(e, w) ∈ prune(si)}

reads(s) = {e : ∃si∈s(e, r) ∈ prune(si)}

and the prune function, when applied to a sequence of accesses, removes all read accesses to a

domain entity after the first read access to that entity, and removes all accesses to an entity after the first

write access to that entity. This function identifies which accesses are relevant for other functionalities,

because the local transaction executes with strict consistency properties and so, after a write local reads

do not need to concern about external writes done by other functionalities, and only the first read has to

consider intermediate states generated by other functionalities.

Definition: System Added Complexity (SAC). The migration of a functionality impacts other func-

tionalities migrations complexity. For instance, if a write is done on an entity e due to the execution of a
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functionality fi then every other functionality fj (where i 6= j) that read the same entity e must have to

be changed to handle the possible intermediate states. Hence, the cost of migrating fj depends on the

number of writes done by fi in entities that fj reads.

addedComplexity(fi, (LT,RI)) =∑
lt∈P (fi,C)

∑
fj∈F\{fi}

#({e : ∃ltj∈P (fj ,C)e ∈ reads(ltj .s)} ∩ writes(lt.s))

3.3 Saga Refactorization Algorithm

The approach we present in this thesis applies a brute-force heuristic algorithm to calculate, for each

functionality, what is the Saga orchestration that result in the lowest migration cost to a Saga microser-

vices architecture. In order to properly describe the algorithm, we first present and high-level flowchart

analysis of the main execution logic, and then present specific code modules responsible for refactorizing

the functionality callgraph.

3.3.1 Flowchart Analysis

In Fig. 3.3 we present a flowchart with the high-level execution flow of the algorithm. It performs one

refactorization for each one of the clusters in a functionality, picking in each iteration a different cluster

as orchestrator.

In order to create a Saga design, the algorithm copies the initial callgraph structure and inserts one

invocation of the orchestrator cluster between each invocation of two other clusters in the functionality.

These invocations are added without containing any accesses to domain entities, to create the interme-

diate state where each service reports back to the orchestrator to inform if its transaction was successful

or not. After this, the tool proceeds to execute a recursive method that iterates through each invocation

in the functionality callgraph and checks if it can be merged with the previous invocation of the same

cluster.

As we will explore later, two invocations can be merged if there are no read accesses in the latest δ

invocations of other clusters before the second one. This scope allows us to have some configuration

of the rigidity of the data dependence classification, and theoretically, lower values could result in more

merge-operations.

If the invocations are mergeable, they collapse into the first one, and their domain entity accesses

are pruned. The recursive method stops once we reach the end of a cycle through the callgraph where

the algorithm did not find any invocation that could be merge, which indicates that the functionality is at

the most simplified state that does not break data dependencies.

After all the invocation merges are complete, the Saga refactorization is saved in a data structure.
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Figure 3.3: Flowchart for the algorithm that computes the list of possible Saga orchestrations for a functionality.

The algorithm proceeds to execute the logic again, now with another cluster as orchestrator. When all

of the clusters in the functionality have been considered, the work is done, and the execution reaches

its end.
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3.3.2 Pseudocode Analysis

The main algorithm estimateSagas(F,C), Listing 3.1, uses the functionalities initial partitions Pi, given

a candidate decomposition, and calculates, for each functionality, what is the migration cost when con-

sidering each of the clusters that are involved in the functionality implementation as orchestrators. The

result is an ordered array of migration complexities where the cluster that has the lower value is the

recommended orchestrator for the functionality refactoring. The algorithm has three steps: (1) sets a

cluster orchestrator of the functionality, setOrquestrator(Pi(s, C), c); (2) merges the invocations between

the same pairs of clusters, to obtain coarse-grained invocations, mergeInvocations(p, c); (3) calculates

the complexity, complexity(f, pc).

Listing 3.1: SAGA estimator

1 estimateSagas (F ,C) {

2 comp lex i t i es := ar ray [ F . s ize , C. s ize ]

3 f o r f := range F {

4 f o r c := range C {

5 pc := {}

6 f o r s := range f . s {

7 p := se tOrques t ra to r (Pi ( s ,C) , c )

8 p := mergeInvocat ions (p , c )

9 pc := pc ∪ p

10 }

11 comp lex i t i es [ f , c ] := complex i ty ( f , pc )

12 }

13 }

14 comp lex i t i es [ f ] . sor ted

15 }

To set a cluster as the orchestrator of an initial partition of a functionality it is necessary to add empty

local transactions to the orchestrator cluster and remote invocations to the other clusters, Listing 3.2. The

sequence of execution of the local transactions is preserved because the only change is the introduction

of the empty local transactions, which works as pivot between the invocations. Therefore, the data

dependencies between the local transactions are not changed. When the the added remote invocation

contains an element where lt.previous or lt.next does not exist, the remote invocation is discarded. This

is done to avoid the introduction of conditionals in the algorithm.

Listing 3.2: Set Orchestrator for Partition

1 se tOrches t ra to r ( ( LT , RI ) , c ) {
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2 resu l t LT := LT

3 r e s u l t R I := {}

4 sk ip := f a l s e

5 f o r l t = range LT . sortedBy (<S ) {

6 i f ( ! sk ip ) {

7 i f ( l t . c == c ) {

8 r e s u l t R I := r e s u l t R I ∪ { ( l t . previous , l t ) , ( l t , l t . next )}

9 sk ip := t rue

10 } else {

11 emptyLT := new emptyLT ( c )

12 resu l t LT := resu l tLT ∪ {emptyLT}

13 r e s u l t R I := r e s u l t R I ∪ { ( l t . previous , emptyLT ) , ( emptyLT , l t )}

14 sk ip := f a l s e

15 }

16 } else {

17 sk ip := f a l s e ;

18 }

19 }

20 r e t u r n ( resu l tLT , r e s u l t R I )

21 }

Fig. 3.4 exemplifies a transformation made according to setOrchestrator in Listing 3.2, where we set

the empty pivot orchestrator invocations between each one of the other cluster invocations.

Figure 3.4: Operation of adding pivot orchestrator invocations

The merge of invocations, Listing 3.3, merges the invocations that occur between the orchestrator

and another cluster, if there is no data dependence with a local transaction that occurs in between. It

repeats recursively while two remote invocations can be merged into a coarse-grained remote invocation.

The canMerge condition, which applies to pairs of invocations between the same clusters, is defined by

the data dependence relation <D, such that, it does not exist a local transaction between the two remote

invocations that the local transactions in the second remote invocation have a data dependence on. As

a result, the merged local transaction sequences are concatenated and the data dependencies between

them are preserved.

Listing 3.3: Refactor through merge of fine-grained invocations into coarse-grained.
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1 mergeInvocat ion ( ( LT , RI ) , c ) {

2 resu l t LT := LT

3 r e s u l t R I := RI

4 whi le (ri1 i n range RI , ri2 i n range RI . a f t e r (ri1 ) , canMerge (ri1 ,ri2 ) ) {

5 ri1 . c a l l e r . prune (ri2 . c a l l e r )

6 ri1 . c a l l e e . prune (ri2 . c a l l e e )

7 resu l t LT := resu l tLT \ {r21 . c a l l e r , ri2 . c a l l e e }

8 r e s u l t R I := r e s u l t R I ∪

9 { (ri2 . p rev ious . c a l l e r , ri2 . next . c a l l e e )} \

10 {ri2 . previous , ri2 , ri2 . next}

11 }

12 r e t u r n ( resu l tLT , r e s u l t R I )

13 }

The canMerge(ri1, ri2) function can be parameterized to allow variations on the scope (δ) of data

dependencies to be considered. When δ = 1 a data dependence is only considered if it occurred

in the local transaction immediately before the local transaction being analyzed, however, if δ = ∞

are considered all the local transactions in between the ones to be merged. Allowing different scopes

permits different evaluations because a previous read does not necessarily imply that it is used in a

subsequent write.

Figure 3.5 illustrates a transformation performed by mergeInvocation in Listing 3.3, where all invoca-

tion that do not have data dependencies, according to the value of δ, are merged.

Figure 3.5: Operation of merging and pruning invocations without data dependence

In Figure 3.6 are showed two distinct cases of merging and pruning invocations, according to different

values of the data dependence threshold. As it can be seen, when the threshold is 1, the algorithm allows

for the merging of the invocations in A. However if the threshold is bigger, the algorithm will consider that

the last invocation of A depends on the read operation made in B, and due to this, it doesn’t merge both

A’s invocations.
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Figure 3.6: Operation of merging and pruning invocations with data dependencies, according to data dependence
threshold
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The main contribution of this work is a Functionality Refactorization Service1 which given a code-

base analyzed by the Mono2Micro static analyzer and a cluster decomposition, applies the algorithm

presented in Chapter 3 which can estimate the Saga refactorings that minimize the migration cost of a

codebase to a microservices architecture. By integrating this service with the features already provided

by the Mono2Micro system, we can help a software architect on identifying the changes to make to a

monolithic codebase and making it faster and effortless.

4.1 Functional Requirements

In order to establish the functional requirements for the application we first need to define the use cases

for the service, in other words, how a user or programmatic client will interact with it. This interactions

can be visualized in Fig. 4.1 and are listed below:

Figure 4.1: Use case diagram for the Refactorization Service.

• Request Refactorization: the user can request the refactorization of the controllers of a codebase’s

decomposition made by the Mono2Micro system. The user either specify which controllers to be

refactored or refactor the entire codebase.

• View Status: the user can keep track of the status of the refactorization of each one of the con-

trollers in the codebase independently.

• View Refactorization: the user can request to view the refactorization of each one of the controllers,

which include the final complexities of the system, the orchestrator cluster chosen by the algorithm,

and the sequential callgraph of the final design.

1https://github.com/socialsoftware/mono2micro/tree/master/tools/functionality_refactor/src

36

https://github.com/socialsoftware/mono2micro/tree/master/tools/functionality_refactor/src


Having well-defined use cases makes it easier to set the functional requirements that will help define

the service architecture that perfectly fits its purpose. With this, we identified a set of requirements that

have to be met to assure the scalability, efficiency, and responsiveness of this web application:

• Support concurrency and parallelism for a faster execution time.

• Expose an API layer to receive refactorization requests.

• Have an asynchronous behavior so that the user can request a refactorization and return later to

visualize the results.

• Refactorizations must respect the data dependencies inside the callgraph. A read operation fol-

lowed by a write operation cannot be swapped.

• The algorithm must choose the refactorization that minimizes the sum of the FMC and SAC.

In the following sections, we present the solutions for the requirements presented above by demon-

strating a brief overview of the service architecture, execution flowchart and the primary logic interfaces

that perform computations, followed by the API specifications containing examples of how to use the

service, and finally an explanation of how the service was integrated with the Mono2Micro system.

4.2 Web Service

The web service, Fig. 4.2 was designed to consume the data that is created when the user generates

a decomposition for a given codebase, and compute the refactorization for each one of the function-

alities that are valid for a Saga design, hence have more than 2 clusters and perform state-changing

transactions. Finally, the refactorizations are stored in the file system.

Figure 4.2: Workflow from the moment a codebase is analyzed in Mono2Micro until it is refactored by the service.

4.2.1 Architecture Overview

This service was developed in Golang2, a programming language published in 2009 and developed

by Google’s Rob Pike, Robert Griesemer, and Ken Thompson. Although it is based on the syntax
2https://golang.org/doc/
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of C, it comes with some changes and improvements to safely manage memory usage and provide

static or strict typing. For a more efficient development process, we used the package Go-Kit3, a pro-

gramming toolkit to build microservices in Go, which provides straightforward interfaces for things like

HTTP requests and Logging. The main reason for going with Golang, and not the same language as

Mono2Micro, JAVA, was its speed and outstanding performance in handling concurrency, wich was one

of the main functional requirements of the service.

The abstractions that provide interfaces for handling concurrency in Go are called goroutines4. One

tends to find similarities in the functional behavior of threads and goroutines. However, they are rela-

tively different. A goroutine is a lightweight method that is executed independently and simultaneously

with the main routine and is managed by the Go runtime. They have a straightforward mechanism to

communicate with each other with low latency, have a swift startup time, and are very cheap when con-

suming memory resources since they start with a stack as small as 2Kb, increasing the size only when

necessary. Goroutines are multiplexed onto a minimal amount of OS threads which typically means

programs require far fewer resources to provide the same level of performance as languages such as

Java. Creating a thousand goroutines would require one or two OS threads at most, whereas if we were

to do the same thing in Java, it would require 1,000 whole threads, each consuming a minimum of 1Mb

of heap space.

Table 4.1: Comparision between the behaviour of goroutines and OS threads.

Goroutine Thread
Managed by the Go runtime Managed by the kernel
Provides built-in communication mechanisms
(channels)

Communication is more difficult and results in
more latency

One gorourine requires only 2Kb of allocated
memory

One thread requires a minimum of 1Mb of al-
located memory

Dynamic stack size Fixed stack size
Cooperatively scheduled Preemptively scheduled
Provides buil-in mechanism to avoid race
conditions and deadlocks

The developer must handle all the logic to
avoid race conditions

In addition to this, the language provides straightforward interfaces to handle the synchronism be-

tween goroutines. In the context of this application, one use case for this was the usage of mutex

synchronization primitives to assure that two goroutines do not write to the same shared memory space

at the same time. For instance when writing data to a file in the file system, its very easy to assure that

we dont run into a race conditons by applying a mutex that only lets one goroutine update the file at any

given time.

3https://github.com/go-kit/kit
4https://golangbot.com/goroutines/
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4.2.2 Execution Flowchart

As it can be seen in Fig. 4.3 the tool starts by extracting the valid controllers of the codebase decompo-

sition that can be implemented using a Saga Pattern.

Figure 4.3: Flowchart of the high level logic of the refactorization tool.

In [7], Richardson states that Sagas only make sense when more than 2 clusters are involved, and
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when the functionality involves a state-changing transaction that contains a write operation, and this

is the principle that we use to filter out invalid functionalities. After this, a JSON file is written in the

file system containing data about the codebase being refactored, the configuration parameters of the

request, and the controllers classified as valid to be implemented as an orchestration. From this moment

forward, if the user performs a View Status request to the service, he will receive the data in this JSON

file, which will be updated as refactorizations finish.

With this, the service starts iterating through each one of the controllers and instantiates a gorou-

tine to handle the computations. This way, we can achieve concurrency and parallelism, assuring that

Golang’s scheduler manages the routines memory allocation and uses multiple processors to reach a

lower execution time. After spawning a goroutine for each controller, the service performs the HTTP re-

sponse to the client immediately, without waiting for the refactorization results, which allows for reduced

latency.

When it comes to the controller refactorization goroutine, in Fig. 4.3 named Goroutine 1, it spawns

two goroutines, Goroutine 3 which computes the metrics for the monolith design and then proceeds to

compute the best Saga refactorization, and the Goroutine 2 which acts as a sidecar to the previous

one allowing for a monitorization of the whole process and killing the refactorization if a timeout is

reached. This Sidecar Pattern that promotes future scalability was adopted to have more control over

the asynchronous routines, so that we have control over the maximum amount of time that the goroutine

responsible for the refactorizations can be alive. The first secondary goroutine (2 or 3) to finish its

execution sends a signal to Goroutine 1 which updates the status of the controller in the JSON file with

either TIMED OUT or COMPLETED and adds the results of the refactorization in the later case.

4.2.3 Business Logic Interfaces

The interface is a very common abstraction used in Golang, and it consists of a collection of methods

that any given Type can implement. Hence an interface defines, but does not declare, the behavior of

the Type. This pattern can be used to achieve run time polymorphism since a method call is resolved at

run-time instead of compile-time, promoting more modular and decoupled code, reducing dependencies

between different functionalities, and providing loose coupling.

The interface RequestHandler5 presented in 4.1 is the main entry point to the business logic layer

and is responsible for receiving data from the transport layer endpoints and execute the processing for

the two available resources, so it depends on the other three interfaces presented below. It contains one

method to handle the request to the RefactorDecomposition endpoint and another to handle the request

to the ViewRefactorization endpoint.

5https://github.com/socialsoftware/mono2micro/blob/master/tools/functionality_refactor/src/app/handler/

handler.go
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Listing 4.1: Declaration of the RequestHandler interface

1 type RequestHandler i n t e r f a c e {

2 HandleRefactorDecomposit ion ( ) / / e n t r y p o i n t o f the RefactorDecomposi t ion business l o g i c

3 HandleViewRefactor iza t ion ( ) / / e n t r y p o i n t o f the V iewRefac to r i za t ion business l o g i c

4 }

The interface FilesHandler6 shown in 4.2 is responsible for the I/O operations with the file system.

It contains methods to read and write in files such as: the codebase file generated by Mono2Micro

containing the initial decomposition’s callgraph and the file generated by the refactorization operation

containing the result metrics and resulting callgraph of each functionality in the codebase.

Listing 4.2: Declaration of the FilesHandler interface

1 type F i lesHand le r i n t e r f a c e {

2 ReadCodebaseDecomposition ( ) / / read codebase decomposit ion f i l e

3 ReadDecomposi t ionRefactor izat ion ( ) / / read r e f a c t o r i z a t i o n JSON f i l e

4 Wri teDecompos i t ionRefac to r i za t ion ( ) / / w r i t e r e f a c t o r i z a t i o n JSON f i l e

5 Upda teCon t ro l l e rRe fac to r i za t i on ( ) / / update c o n t r o l l e r i n the r e f a c t o r i z a t i o n JSON f i l e

6 }

The MetricsHandler interface7 shown in 4.3 is responsible for calculating the metrics described in [4,

5] for each controller, for both the initial monolithic and final Saga designs.

The metrics calculated by this module are used to decide which one of the SAGA’s is the better

fitting.

Listing 4.3: Declaration of the MetricsHandler interface

1 type Metr icsHandler i n t e r f a c e {

2 C a l c u l a t e C o n t r o l l e r M e t r i c s ( ) / / c a l c u l a t e complex i ty met r i cs o f a c o n t r o l l e r

3 }

The RefactorizationHandler interface8 shown in 4.4 is the main logic module of the service since it

contains the algorithm responsible for the refactorization of a monolithic callgraph into a Saga design

that minimizes the complexity of the migration.

6https://github.com/socialsoftware/mono2micro/blob/master/tools/functionality_refactor/src/app/files/

files.go
7https://github.com/socialsoftware/mono2micro/blob/master/tools/functionality_refactor/src/app/metrics/

metrics.go
8https://github.com/socialsoftware/mono2micro/blob/master/tools/functionality_refactor/src/app/refactor/

refactor.go
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Listing 4.4: Declaration of the RefactorizationHandler interface

1 type Re fac to r i za t i onHand le r i n t e r f a c e {

2 RefactorDecomposi t ion ( ) / / method t h a t implements the r e f a c t o r i z a t i o n a lgo r i t hm

3 }

4.3 API Specification

In order to communicate with external services, the transport layer of the tool exposes a REST Application

Program Interface (API) with support for HTTP requests. The reason for choosing the REST model was

because the existing Mono2Micro project already contains specific logic modules for performing these

requests, opposed to what would happen if the Refactorization Service used RPC, which required imple-

menting an RPC client in Mono2Micro. This would increase the complexity of integrating both services.

The API contains two endpoints listed in Table 4.2. The URL for both endpoints takes as parameters

the name of the codebase, the name of the dendrogram to be used, and the name of the decomposition

to refactor.

Table 4.2: Available endpoints of the Refactorization Service.

Method Endpoint Description
GET /codebase/:str /dendrograms/:str /decompositions/:str View the refactorization results re-

lated to a codebase decomposition
POST /codebase/:str /dendrograms/:str /decompositions/:str Request the refactorization of a

codebase decomposition

In 4.5 and 4.6 are presented examples of cURL requests to the ViewRefactorization and RefactorDe-

composition endpoints, respectively.

Listing 4.5: Example cURL HTTP request for the ViewRefactorization endpoint

1 c u r l -X GET ' h t t p : / / 1 2 7 . 0 . 0 . 1 : 5 0 0 1 / ap i / v1 / codebase / LdoD / dendrogram /D1 / decomposit ion / N4 '

Listing 4.6: Example cURL HTTP request for the RefactorDecomposition endpoint

1 c u r l -X POST -H ” Content - type : a p p l i c a t i o n / json ” -d '{

2 ” con t ro l l e r names ” : [ ” AdminCont ro l le r . de le teAl lFragments ” ] ,

3 ” data dependence threshold ” : 2 ,

4 ” r e f a c t o r i z a t i o n t i m e o u t ” : 120 ,

5 } ' ' h t t p : / / 1 2 7 . 0 . 0 . 1 : 5 0 0 1 / ap i / v1 / codebase / LdoD / dendrogram /D1 / decomposit ion / N4 '
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Table 4.3: Description of the JSON fields in the body of the RefactorDecomposition request.

Field Type Description
controller names Array List of the controllers of the codebase to be refactored. If

its empty the tool will refactor every valid controller.
data dependence threshold Integer Value for the data dependency threshold used in the refac-

torization algorithm.
refactorization timeout Integer Maximum duration for the refactorization of each controller

after which the respective goroutine will be killed.

Both resources respond with the same data format, which can be seen in 4.7. This response contains

the refactorization data for each of the controllers in the codebase. For each controller are presented

the complexity metrics for the monolithic design, and the results of the refactorization, which include: the

complexity metrics of the new design, the orchestrator chosen, the sequence callgraph of the Saga and

the values of complexity reduction when comparing to the original design.

Listing 4.7: RefactorDecomposition successful HTTP response body

1 {

2 ” codebase name ” : ”LdoD” ,

3 ” dendogram name ” : ”D1 ” ,

4 ” decomposition name ” : ”N4 ” ,

5 ” c o n t r o l l e r s ” : {

6 ” AdminCont ro l le r . de le teAl lFragments ” : {

7 ” monol i th ” : {

8 ” met r i cs ” : {

9 ” system complex i ty ” : 3007 ,

10 ” f u n c t i o n a l i t y c o m p l e x i t y ” : 946 ,

11 ” i nvoca t i ons coun t ” : 48 ,

12 ” accesses count ” : 149

13 }

14 } ,

15 ” r e f a c t o r ” : {

16 ” met r i cs ” : {

17 ” system complex i ty ” : 1663 ,

18 ” f u n c t i o n a l i t y c o m p l e x i t y ” : 578 ,

19 ” i nvoca t i ons coun t ” : 11 ,

20 ” accesses count ” : 62

21 } ,

22 ” o r c h e s t r a t o r ” : {

23 ”name” : ” 0 ”

24 } ,

25 ” ca l l g raph ” : [

26 {
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27 ” c l u s t e r i d ” : 0 ,

28 ” accesses ” : [

29 {

30 ” type ” : ”R” ,

31 ” e n t i t y ” : 50

32 } ,

33 {

34 ” type ” : ”RW” ,

35 ” e n t i t y ” : 15

36 }

37 ]

38 }

39 ]

40 }

41 }

42 }

43 }

In 4.8 its presented the response format for errors related to [400 - Bad Request] or [500 - Internal

Server Error] errors. The response provides the error message so that the client receives context on the

failure reason.

Listing 4.8: RefactorDecomposition error HTTP response body

1 {

2 ” e r r o r ” : <error message>

3 }

4.4 Mono2Micro Integration

A critical task to assure the complete implementation of the Refactorization Service involves deploying it

in a way that it can be used by the Mono2Micro interface and implementing a graphical user interface in

Mono2Micro’s React.JS web application, so that the automated refactorization is completely integrated

with the existent system as an extension of the functionalities already developed, and efficiently improves

the capacity of the system to help software architects on the task of migrating a monolithic codebase to

the microservices architecture.
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4.4.1 Deployment

The Refactorization Service stands as a separate Docker9 container that runs in port 5001 and shares

a file system volume with Mono2Micro’s backend application, which is used to read the codebase files

generated by the other functionalities of Mono2Micro, as can be seen in Fig 4.4.

Figure 4.4: Containerized infrastructure of the Mono2Micro system integrated with the Refactorization Service.

A container is a unit of software that packages up code and all its dependencies, so the application

runs quickly and reliably from one computing environment to another. A Docker container image is

a lightweight, standalone, executable package of software that includes everything needed to run an

application: code, runtime, system tools, system libraries, and settings.

By implementing the frontend and backend applications of Mono2Micro as containers, the integration

of the additional Functionality Refactorization Service was much more efficient since all it required was

the configuration of a new container packaging the Golang application and configuring the frontend

service to make requests to this container’s port.
9https://www.docker.com/
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With this architectural decision, the service became easily replicable and completely independent

from the operating system of the machine it runs on, so it can be easily deployed in a local machine,

a remote server, or in a cloud provider’s virtual machine, such as Amazon’s AWS EC2, by cloning the

GitHub repository and executing the command in 4.9.

Listing 4.9: Command used to deploy all the components of the Mono2Micro system.

1 docker - compose up - - b u i l d

4.4.2 User Interface

Figure 4.5: Mono2Micro dashboard that is used to interact with the Refactorization Tool.

When it comes to the graphical interface contained in the Mono2Micro system frontend application,

we identified a set of requirements that needed to be met in order to interact with the Refactorization

Service properly and analyze the results of the automatic refactorizations:

• The user must have some context of how the tool works.

• The user must be able to request the refactorization of a codebase and come back later to check

its status.

• The user must be able to see the metrics of the monolithic design and compare them with the

metrics of the Saga design.
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• The user must be able to see the refactored callgraph so that he knows what are the easier

changes to make to the controller’s interactions.

In order to fill these requiremetns, was created a new static page, shown in Fig. 4.5. This interface is

built using the ReactJS framework and communicates directly with the Refactorization Tool. In the top of

the page, is presented the introduction to the service and the configuration section. In this section, the

user can configure the data dependence threshold and start the refactorization. After the refactorization

is requested, the user is free to leave the page and come back after.

Figure 4.6: Dynamic table of results were each row corresponds to a functionality being refactored.

Once the functionalities refactorings are completed, one by one, their status will be updated in the

table shown in Fig. 4.6, and the user will be able to instantly visualize the final complexity metrics and

the complexity reductions resulting from the refactoring.

When the user clicks in a functionality rows of the table in Fig. 4.6, a dropdown pannel appears,

Fig. 4.7, where it is shown the resulting Saga orchestration that minimizes the migration cost. Also, the

interface shows the initial complexity metrics of the monolithic functionality. By visualizing the sequence

of cluster invocations, and the domain entity accesses in each one of them, the architect is able to

approach the migration task in a more efficient manner.

The user interface is responsive and responds to all the requirements that we previously set, which

promotes a good user experience and assures the usage of the results from this research, in the context

of the Mono2Micro software system.
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Figure 4.7: Refactorization dropdown which demonstrates the proposed Saga.
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To answer the first research question and validate that refactorings can minimize the cost associated

with the migration, we executed the tool for a dataset of 78 codebases and analyzed the results to

evaluate the reduction of complexity. To validate the accuracy of refactorizations we compared with

the refactorizations done by an expert [5] on the LdoD codebase in terms of complexity reduction and

feasibility.

5.1 Complexity Reduction Analysis

The 78 codebases1 are monolith systems implemented using Spring-Boot and an Object-Relational

Mapper (ORM), where Java Persitence API (JPA) is used in 75 of the codebases and Fénix Frame-

work2 in the other 3. The Spring-Boot controllers are used to implement the monolith transactional

functionalities that access the persistent domain entities implemented using the ORM. The data set was

generated through static analysis of the source code, where sequences of read/write accesses to the

domain entities are obtained for the functionalities.

Each codebase was decomposed into clusters, and, after applying the initial partition to the function-

alities sequences, the functionalities were selected based on two conditions: (1) the sequence of ac-

cesses has least one write access; (2) the sequence of accesses includes more than two local clusters.

These are pre-conditions for the implementation of the functionalities as SAGAs, by excluding queries

and functionalities that can not be implemented as SAGAs because only have one or two clusters. After

these selections, the dataset was formed by 652 functionalities.

Table 5.1: Average values for running the recommendation heuristic for 652 functionalities, considering δ = 1, 2,∞.

Metric Initial Final % Reduction
δ = 1 δ = 2 δ =∞ δ = 1 δ = 2 δ =∞

FMC 329.0 78.4 86.7 95.6 76.1% 73.6% 70.9%

SAC 404.9 150.7 170.6 201.3 62.7% 57.9% 50.3%

Local Transactions 35.5 4.3 4.7 5.1 87.9% 86.8% 85.6%

Entity Accesses 38.7 10.3 11.3 12.4 73.4% 70.8% 67.9%

Number of Merges 22.5 21.7 21.4

Execution time in
seconds

3.76 4.13 4.40

Table 5.1 presents the results, on average, of applying the refactoring heuristic to the 652 functional-

ities. It compares the initial complexity with the complexity of the refactored functionalities. The heuristic

was applied for three variations of the data dependencies between local transactions, where δ = 1

means that there is no data dependence with the local transaction that executed immediately before,

1github.com/socialsoftware/mono2micro/tree/master/tools/functionality_refactor/codebases
2https://fenix-framework.github.io/
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δ = 2 means that there no data dependence with the two local transactions that executed immediately

before, and δ =∞ that there is no data dependence with any local transaction that executes in between

the data transactions to be merged. It is necessary to analyze these cases because the data depen-

dencies are obtained from an analysis of the sequences and this may not necessarily mean that a local

transaction effectively uses the data read on previous local transactions. For instance, if there is a write

access in a local transaction we consider that data dependencies exist with all the local transactions that

occur before and that have at least one read access, because the value read may be used to calculate

the value that is going to be written. This is a limitation of the static analysis procedure that captures the

monolith behavior, which does not capture the data-flow, and so we considered the worse situation in

terms of data dependencies.

The table also presents the percentage of reduction in the number of local transactions and domain

entities access. Additionally, it includes the average number of merges, and the heuristic performance,

which was calculated running 10 samples on an Intel i5 2.90GHz, 2 Cores with 4 Threads each.

Figure 5.1: Percentage reduction of the Functionality Migration Complexity in function of the number of merge
operations made.

From the observation of the Table 5.1 and Fig. 5.1 it be concluded that there is a significant positive

impact of the refactorings on the complexity reduction and that the scope of data dependencies also

impacts on final complexity, as expected a larger scope will reduce the number of possible merges, but it

is not significant, which means that in most of the functionalities there is a data dependence between a

local transaction and the local transaction that executes immediately before. It is also worth mentioning

the reduction in the number of domain entities access, which results from the fact the access are local-

ized inside the same local transactions and, so, the visibility of their effects to other local transactions is
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reduced.

The analysis of the codebases allows us to partially answer the first research question, due to the

reduction in the complexity, but it is necessary to analyze the accuracy of the results: are the recom-

mended refactorings feasible?

5.2 Refactorization Accuracy Analysis

The tool was applied to the LdoD archive3, which consists of 133 controllers and 67 domain entities.

The decomposition used was done by an which cuts the system into 5 clusters. The analysis involved

comparing the results with the refactorings of 9 controllers of LdoD [5], where the expert refactored the

code and calculated the initial and final Functionality Migration Complexity (FMC) and System Added

Complexity (SAC). We do not compare the SAC complexity because it depends on the type of local

transaction, which the algorithm cannot predict. For instance, whether a local transaction is compensat-

able or not. The heuristic always considers the worst-case scenario.

Table 5.2: Functionality Migration Complexity reduction resulting from a refactoring using the tool with δ = 1 and by
an expert.

Functionality Initial FMC Final FMC Reduction % Orchestrator
distance

Tool Expert Tool Expert Tool Expert
removeTweets 151 134 109 82 27.8% 38.8% 0%

getTaxonomy 317 317 159 192 49.8% 39.4% 1.24%

createLinearVE 2978 1790 263 383 91.1% 78.6% 0%

signup 1550 1490 314 376 79.7% 74.8% 0%

approveParticipant 193 190 113 147 41.5% 22.6% 0%

associateCategory 1813 1803 642 662 64.6% 63.3% 14.97%

deleteTaxonomy 261 253 187 164 28.4% 35.2% 11.79%

dissociate 806 772 358 489 55.6% 36.7% 0%

mergeCategories 485 453 187 253 61.4% 44.2% 37.87%

Averages 950.4 800.2 259.1 305.3 55.5% 48.2%

Table 5.2 presents the results when the heuristic was applied with a data dependence scope of 1. It

can be observed a clear relation between the complexity reduction of the functionalities when refactored

by the heuristic algorithm and by the expert, since the average reduction from both differs only 7.4%,

with the tool being able to achieve bigger complexity reductions on average. In the last column, we

present the relative distance between the complexity of the best refactoring calculated by the tool and

the complexity of the refactoring with the same orchestrator as chosen by the expert. As it can be seen

3https://github.com/socialsoftware/edition
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in cells with a 0% distance value, 5 out of the 9 functionalities, had both the expert and the tool selecting

the same orchestrator. Note that the value is 0% because orchestration distance comparison is not done

with the complexity values reported by the expert, but with the values calculated by our tool.

After having the best refactoring estimated by the algorithm, the next step of the evaluation involved

manually verification in the source code, to check if the recommended orchestrations are feasible, for

instance, that they do not break any data dependence between entity accesses.

The selection process of the functionalities was based on the values from Table 5.2 and the function-

alities selected fall in one of the following categories:

• The tool recommendation has a bigger complexity reduction.

• The expert refactoring has a bigger complexity reduction.

• The orchestrators selected by the tool and the expert are different.

• The initial complexity value calculated by the tool is much different than the one calculated by the

expert.

This allows us to identify 6 cases where to do this analysis.

The refactoring of the mergeCategories functionality has a complexity reduction of 62.7% when com-

pared to the initial architecture and converted 32 independent cluster invocations to 5. The algorithm

chose a different orchestrator than the expert and achieved a complexity 18.5% lower. After manually

checking the source code, we verified that this refactor is a valid option, all the operations are valid and

the data dependencies that exist in the functionality are all taken into consideration. We can see that

the tool computed fewer cluster invocations, fewer entity accesses, and fewer write operations, which

reduces the complexity compared to the expert refactor. By looking at the code, we can see that the

expert choice was based on selecting the cluster that contains more entity accesses as the orchestrator,

which resulted in more repetitive invocations of other clusters. By choosing an orchestrator that was not

so obvious at first glance, the algorithm was able to obtain a better refactor. The same happened for

the functionality getTaxonomy, where the tool recommend a different orchestration than the expert, but

it was able to obtain an higher reduction of the complexity by having all the operations condensed in

1 invocation per cluster, while the expert refactorization created more intermediate states. The source

code also revealed that no data dependencies were broken by the tool’s operations, and the sequence

is applicable.

In the functionality approveParticipant, both, the tool and the expert, selected the same orchestrator

cluster and did a very similar refactorization, where only 1 additional merge operation by the tool was

enough to reduce the complexity in 41.5% when compared to the expert’s 22.5%. The functionality

dissociate falls in this same category since it shows that the tool was able to achieve a lower complexity
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with the same orchestrator, however by checking the source code we see that some invocations were

merged while having a data dependence with previous invocations, which reveals invalid merges. This

occurred because the data dependence distance had a scope > 1 and due to the test being executed

with δ = 1 the tool did not consider it when verifying if an invocation can be merged.

The refactor of removeTweets saw a complexity reduction of 26.8% when compared to the initial

architecture and converted 14 independent cluster invocations to 7. Both the algorithm and the expert

chose the same orchestrator and performed a very similar refactor but the expert refactor achieves a

higher complexity reduction. After manually checking the source code, we verified that this refactor is a

valid option, except for one invocation that could have been merged with a previous one. Since in the

original trace there was a data dependence between that operation and the one immediately before, the

tool did not do the merge. This behavior reveals that the heuristic rules can be too restrictive and since

the static analysis is not capturing the data-flow, we cannot accurately conclude that a write following a

read does not use data from the first, which is something that an expert can directly observe by reading

the code. At most, this rule follows the worst-case scenario since by not breaking data dependencies,

we are sure that the refactorization will work. However, it is possible that the result of the final refactoring

is not the one that has the lowest migration cost.

In functionality createLinearVE there is a significant difference of 1188 between the tool’s initial com-

plexity and the one calculated manually by the expert. This functionality is quite complex, with 108 local

transactions and 210 entity accesses, and from looking at the source code, it involves many if/else con-

ditions that define which accesses are performed during run-time. Ultimately, this difference relates to

how the static analysis builds the functionality trace since it does not account for conditions and so all

branches are collapsed in a single sequence, as is seen in Fig. 5.2. When the expert manually cal-

culates the complexities, she only considers one of the if/else conditions, which results in fewer entity

accesses and lower initial complexity.

Figure 5.2: Behavior of the static analysis step when encountering conditional branching.

To answer the first research question fully, we can say that most of the refactorizations applied to

LdoD were feasible. However, there was at least 1 case where data dependencies were broken due to

the configuration of the data dependence scope δ as 1. This difficulty when defining thresholds is still one
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of the major drawbacks of most heuristic techniques for code-smell and design-pattern detection [20].

5.3 Orchestrators Characterization

The validation of the refactorization of the LdoD codebase, when compared to the expert, has shown

that the recommended refactorings highly reduce the complexity of migrating the functionalities and

they, in most of the cases, even when the scope is 1, do not break the data dependencies between

the accesses. Another interesting observation is that the heuristic can suggest better refactors than the

ones envisioned by the expert. To try to explain why the experts intuition may be misleading, take us to

the second research question: what are the characteristics of a cluster that make it a better fit for being

a SAGA orchestrator.

We defined 4 metrics that measure, for each cluster and in the context of the monolithic functionality

being refactored, several aspects, like the number of read and write accesses to the cluster domain

entities, the number of times the cluster is invoked in the context of the functionality, and the number of

the invocations that cannot be merged due to a data dependence.

Table 5.3: Correlation between the metrics for the orchestrator cluster and the reduction of the functionality migra-
tion complexity and system added complexity

Metric Correlation (r)
FMC SAC FMC+SAC

Number of read accesses to domain entities 0.145 -0.083 0.014

Number of write accesses to domain entities -0.145 0.083 -0.014

Number of times the cluster is invoked in func-
tionality

-0.103 -0.090 -0.112

Number of initial data dependencies, when
δ =∞

-0.110 0.210 0.087

These metrics were visualized for the orchestrators of each one of the recommended refactorizations

for 78 codebases and correlations were calculated between the value of the metrics and the reduction of

the complexity. Table 5.3 shows the resulting correlations with values between [−0.145,+0.210], which

demonstrates that the data has a big variation and does not necessarily follow a trend line, with points

that are too dispersed in space. The metric with higher correlation was related to the metric for reads

accesses of orchestrators, but, even though, not significative.

One of the metrics that showed a more considerable correlation was the number of read accesses

of the cluster when compared to the number of read accesses in the other clusters of the functionality,

which can be measured by calculating the probability of a read access being in that cluster. By looking at

Fig. 5.3 we see a pattern where bigger FMC reductions were related with a more significant probability

of having read accesses, which is inversely proportional to the probability of write accesses. This leads
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Figure 5.3: Probability of the orchestrator cluster having a read access in the initial monolithic functionality, in
function of the final FMC reduction.

us to believe that better orchestrators have a greater chance of being the ones with fewer write accesses

to their entities. However, the results show a considerable deviation, and even though a regression can

be drawn, there are many clusters with a considerable distance from it.

The low correlation values show that the metrics cannot characterize the orchestrator, due to the

great diversification of code patterns in the functionalities. A good orchestrator for a given codebase

might have a lot of invocations, for example, while in another codebase we verified that the opposite may

happen, which makes it hard to set a characterization for an orchestrator that applies to all the cases.

To answer the second research question we can conclude that it was not possible to extract enough

metrics from the functionality sequence to characterize what is a good orchestrator. This increases the

need of the recommendation heuristic tool which applies refactorization operations and validates if a

given candidate orchestrator has the lowest complexity.

5.4 Performance Analysis

The performance analysis of the tool was done in the context of the large dataset of 78 codebases and

considering 3 values for the data dependence threshold to evaluate how the tool behaves for different

configurations. The set of machines used for the performance analysis are shown in Table 5.4 and

consist of the local machine of the author, and two Amazon Web Services EC2 dedicated instances

that were started exclusively to test the tool, and did not share resources with other users of the cloud

service.
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Table 5.4: Machines used to test the Refactorization Tool.

Machine
CPU

Model Frequency Cores
Local Intel i5 2.90 GHz 4

AWS m5.xlarge Intel Xeon Platinum 8000 (Skylake) 3.1 GHz 4

AWS c5.4xlarge Intel Xeon Scalable Processors (Cascade Lake) 3.4 GHz 16

The test results were extracted by refactoring all of the codebases in the dataset ten times for each

value of the data dependence threshold and each one of the machines. Each metric is the result of

averaging the same metric for all ten executions.

In Tables 5.5, 5.6 and 5.7 we present, for each machine and data dependence threshold, the aver-

age, lowest and highest duration, both for refactoring a complete codebase and for refactoring a single

functionality in any codebase of the dataset.

Table 5.5: Execution times when refactoring the dataset in the Local machine.

Data Dependence
Codebase Refactor Functionality Refactor

Average Lowest Highest Average Lowest Highest
delta = 1 4080ms 1.40ms 64520ms 4440ms 1.38ms 64520ms

delta = 2 3340ms 1.38ms 63050ms 3690ms 1.35ms 63030ms

delta =∞ 2790ms 1.49ms 68430ms 3060ms 1.47ms 68320ms

Table 5.6: Execution times when refactoring the dataset in the AWS m5.xlarge machine.

Data Dependence
Codebase Refactor Functionality Refactor

Average Lowest Highest Average Lowest Highest
delta = 1 2170ms 1.05ms 52660ms 2160ms 1.03ms 52660ms

delta = 2 2210ms 0.98ms 52940ms 2190ms 0.96ms 52940ms

delta =∞ 2140ms 1.05ms 52.84s 2130ms 1.03ms 52780ms

Table 5.7: Execution times when refactoring the dataset in the AWS c5.4xlarge machine.

Data Dependence
Codebase Refactor Functionality Refactor

Average Lowest Highest Average Lowest Highest
delta = 1 1100ms 0.86ms 21910ms 1040ms 0.84ms 21910ms

delta = 2 1100ms 0.86ms 21800ms 1050ms 0.84ms 21800ms

delta =∞ 1060ms 0.86ms 21670ms 1020ms 0.84ms 21670ms

As expected, the value of delta = 1 results in higher refactorization times since this is the case

where the algorithm has more freedom to execute sequence change operations. Since fewer data

dependencies are considered, this results in more recursive iterations of the merge-invocations method
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described in Chapter 3. On the other hand, the value delta =∞ results in the lowest execution times both

for refactoring a complete codebase and for refactoring a single functionality, since, with this threshold

value, the tool will consider more data dependencies and will not be able to execute as many sequence

change operations as it would with another value.

By evaluating the metrics, there is a relationship between the number of CPU cores in the machine

and a lower refactorization duration for each codebase and its functionalities. This is a very CPU inten-

sive application that requires a lot of logical computations, so a more powerful CPU like the one in the

AWS c5.4xlarge machine will ultimately lower the execution time.

When it comes to the parallelism of the tool, it is interesting to note that the codebase that took the

longest to refactor matches the functionality that also took the longest to refactor. This behavior clearly

shows the parallelism of the application, since while the most extensive functionality is refactoring, all

the other ones are finishing their refactor, so the total amount of time that the tool takes to compute all

the Sagas in a codebase is equal to the time it takes to compute it for the heaviest functionality.

Table 5.8: Cumulative bytes allocated for heap objects during the refactorization of the 78 codebases dataset.

Data Dependence Allocated Memory
delta = 1 10377 Mib

delta = 2 10594 Mib

delta =∞ 10009 Mib

In Table 5.8 is presented the total amount of memory that the tool allocated in the heap of the machine

during the refactorization of the dataset. This metric has the same result for all three machines since

the amount of memory allocated does not depend on the hardware specifications. Also, it increases as

heap objects are allocated but does not decrease when objects are freed, so it is a purely cumulative

value. On average, the tool allocated a total of roughly 10 Gb to refactor the dataset of 78 codebases.

Looking at these numbers, we are sure that the execution times of are quite acceptable and are low

enough for it to be used by a software architect.

5.5 Summary

In summary, the analysis has shown that:

• There is a very positive impact on the complexity reduction when analyzing the refactorings made

by the service.

• The service is able to reduce both the number of external requests between microservices and the

number of domain entities access.
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• The impact of changing the scope of data dependencies is not significant, since in most of the

functionalities there is a data dependence between a local transaction and the local transaction

immediately before, so increasing the value won’t change the proposed refactorization.

• Most of the refactorizations analysed in depth are feasible, however we have seen cases where a

wrong configuration of the data dependence scope resulted in breaking changes.

• We were not able to determine metrics that can characterize possible good orchestrators in the

monolithic version of the controllers.

• The performance analysis of the tool for a large codebase showed that the algorithm is very effi-

cient when it comes to the time it takes to refactorize a codebase.

5.6 Threats to Validity

In terms of internal validity, it is verified that the refactorings provide a significant reduction of the com-

plexity, even though the data dependencies are inferred from the analysis of the sequence of accesses

and not directly obtained from the code. This may have impact on the accuracy of the results, but the

experiment with variations of the scope of data dependencies has shown consistent results. Therefore,

even if the architect uses the wider scope, the recommended refactorings do not have a significant varia-

tion on the complexity. The sequences of accesses used for the validation, obtained from static analysis

linearize all the accesses of a functionality in a single sequence. However, we obtained results similar

to the expert refactorizations, sometimes even better. This also depends on the used dataset, a future

version of that static analyser that captures the data-flow will allow to work with a dataset that will provide

more precise results.

In terms of external validity, the dataset is for a small set of technologies, Spring-Boot and JPA, but

the functionalities logic is technology independent.
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6
Conclusion
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The research documented in this thesis proposes a heuristic approach to help software architects on the

task of identifying the possible refactorings of monolithic functionalities, and reducing their migration cost

to a microservices architecture by applying the SAGA pattern that minimizes the total system complexity.

The results have shown that the Refactorization Service could recommend refactorings that signifi-

cantly reduce the functionalities migration cost. Interestingly, some recommended refactorings provide

higher reductions than those identified by an expert in previous research, which cements, even more,

the method efficiency.

A study with four metrics that characterize the clusters accessed by the functionality has shown that

there is no statistical significance in the correlation between the values of the metrics and the reductions

in complexity. These results suggest that it is really hard to tell, by looking at initial metrics and without

any computation of refactoring, which one of the clusters that participate in the Saga is the one that

will promote a more significant reduction of complexity when acting as orchestrator. The results also

suggest that more complex metrics need to be created and extracted from the initial design, should a

machine-learning approach be implemented.

The good results on the tests to the Refactorization Service, allied to a low correlation between the

initial metrics and the best orchestrator for any given Saga, and the fact that it is so challenging to

create quality datasets to train a machine-learning classification model indicate that an efficient heuristic

approach which calculates all refactorization combinations fits these use cases better for now.

An important task to complete in future work is improving the static or dynamic analysis that per-

forms the data collection in the monolithic codebase, so that even more valuable data can be added to

the sequential callgraphs. Currently, the data dependencies between local transactions are not being

captured, but only which domain entities are being accessed in each cluster. This behavior results in

the current implementation of the refactorization algorithm, where the data dependencies are estimated

given a configuration threshold representing the maximum distance between the current local transac-

tion and a previous read operation. This approach leaves to the software architecture the decision on

which threshold to use, and leads to a more strict refactorization operation as we saw for some of the

functionalities in LdoD where some Sequence Changes could have been done but were not, due to

wrongly implicitly inferred data dependencies. By extracting which fields are being read and written in

the domain entities, the Refactorization Service would be able to create a more detailed map of the data

accesses in each local transaction and understand if what is being read in a domain entity on a cluster

is necessary for writing into another domain entity on another cluster.

Also, more profound research can be done on studying possible metrics in order to try to characterize

better what is a good candidate for a Saga orchestrator while trying to discover a pattern behavior in

monolithic codebases for this types of clusters.
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