
1

Visual Inertial Odometry with Event Cameras
José Pedro Ribeiro Gomes

Instituto Superior Técnico / UTL, Lisbon, Portugal
josepgomes@tecnico.ulisboa.pt

I. INTRODUCTION

Vision plays a very important role in the animal kingdom,
and virtually every higher order animal has developed some
sort of visual system to improve their chance of survival.
As such, it is only natural that sensors that can imbue
artificial systems with the sense of sight have been created,
in particular cameras (what we call throughout this work as
“conventional cameras”, to distinguish from event cameras, ex-
plained briefly). However, conventional cameras do not exactly
mimic animal’s visual system. They are much slower (typically
produce around 20-30 fps), produce redundant information,
and are much more energy-costly. Furthermore, they are not
very good with scenes with high contrast (as detail is lost
in bright and dark areas), or with high movement (as images
produced suffer from motion blur).

Neuromorphic hardware appears as a bio-inspired approach
to hardware development that tries to replicate the advantages
of animal systems, either in speed, energy efficiency, or
any other positive or desirable attribute. The work described
within this report focuses on Dynamic Vision Sensors type of
neuromorphic cameras (DVS cameras [1]), which are a type of
event cameras that report changes in the brightness captured
by each pixel (precisely, the log-intensity of the brightness
captured by each pixel). Unlike conventional cameras (that
record a sequence of the intensity of all pixels in the scene, and
therefore produce redundant information, and are not energy
efficient), event cameras produce “events”, which contain the
timestamp, pixel location, and polarity of the change in the
pixel.

This approach has multiple advantages, such as 1) lower
latency (because there is no need for video compression at
the camera level), 2) higher energy efficiency, 3) no redundant
information, 4) higher temporal resolution (in the order of
microseconds (as opposed to milliseconds of conventional
cameras)), and 5) higher dynamic range, to name a few.

With the advantages of event cameras in mind, we set out to
develop a system that is able to estimate the pose (position and
orientation) of a system based on event cameras. This work
appears integrated in the ORIENT project, that focuses “[· · · ]
on Neuroscience, with a goal to better understand how the
brain coordinates movements in the eyes and head, in order
for humans to orient themselves in the world and in relation
to any object that might be around” 1. In particular, this work
appears as a study on the possibility of using an event camera
to estimate the orientation of the eye.

1https://welcome.isr.tecnico.ulisboa.pt/orient-project-collaboration/

A. Overview of Related Works

Event cameras have demonstrated to be useful in multiple
tasks where speed is paramount, of which quadrotor control
comes immediately to mind ([2]). They have also been adopted
in areas such as flow estimation ([3]) , and image and video
reconstruction ([4]) , to name a few areas.

The problem of pose estimation shares some goals and simi-
larities with SLAM (Simultaneous Localization and Mapping),
as one of the problems is that of localization, which relies on
a correct estimation of the pose of the system. According to
[5], the first work on camera tracking with an event camera
was presented in [6], and proposed an implementation based
on particle filters, but was limited to a planar motion.

[7] proposed an implementations which, event though lim-
ited to rotation, and therefore without the need of translation
or depth, paved the way for more complex implementations,
such as [8], which we consider to be the state of the art in
terms of localization using event cameras.

Multiple authors have opted for approaches that try to rely
on bridging the “classic” approaches with event cameras. For
example, [9] relies on features tracked by [10], and combines
them with IMU information by means of an Extended Kalman
Filter (EKF).Our proposed approach borrows from this idea.

On the “conventional” side of pose estimation, multiple
SLAM approaches based on vision (Visual SLAM, or vSLAM)
are worth mentioning, however we highlight ORB-SLAM
([11]).

B. Problem Formulation

This work appears in the sequence of the previous works
in the Orient group (in particular [12]) where the orientation
of an eye is estimated by means of visual odometry. The eye
produces very fast (under 200 ms) and short (usually under
25 deg) movements, called saccades, on the order of 700 deg/s
([13]). This poses some challenges for conventional cameras,
that are susceptible to motion blur.

It is the goal of this work to design and suggest methods
that may be used to solve this problem of eye orientation,
by focusing on the larger problem of localization using event
cameras (for instance, though not relevant in the context of an
eye, we decided to estimate translation, not only to compare
our approaches with others, but also to try and contribute to
the state of the art).

We propose an approach that leverages visual and inertial
information (by means of events cameras with frames, events
and Inertial Measurement Unit (IMU)) in order to estimate the
pose of the system using an Unscented Kalman Filter (UKF)
based on Lie groups. We then propose further approaches that



2

rely less and less on frames, trying to push the information
obtainable from events to its limit.

Our approach is inspired by SLAM approaches, that simul-
taneously create a map while localizing the system in it, of
which ORB-SLAM and EKFSLAM are common examples.
Though our implementation is not that of SLAM, since no map
is being generated (only a local map relevant for localization),
most concepts are still valid, in particular we borrowed the
idea of a state that contains the pose of the system (and some
other useful variables) that is constantly being estimated.

C. Contributions

We propose a Lie group-based UKF approach to solve the
pose estimation problem which, to the best of our knowledge,
is a novel approach in the context of event cameras. This
approach attempts to combine visual information in the form
of events and frames, with inertial information obtained from
an IMU, by means of an Unscented Kalman Filter. Also,
we propose the use of the Event-based Kanade-Lucas-Tomasi
tracker (EKLT, [14]) in the context of pose estimation, which,
to the best of our knowledge, has not yet been done before.

Furthermore, we list, implement and compare possible ways
to improve said tracker by taking into account the current
estimation of the pose, in effect improving sensor output by
combining it locally (at the sensor level) with measurements
from outside the sensor, which is an unusual approach to
improving sensor reading.

Through this work, multiple tools have been developed,
such as trajectory generators for simulations, motion capture
scripts, simulations, datasets, and the UKF implementation
itself, which we hope can be of use for future works.

II. BACKGROUND AND STATE OF THE ART

A. Camera Projection Model and Imaging Features

1) Camera Model: An important concept to take into
account is that of camera model, which models the correspon-
dence between points in the world and their position in image
space. A common model used is the projective model (others
can be used, such as perspective, affine, and orthographic
models), in particular the pinhole model (Fig. 1). In this model,
the mapping from world (3D) to camera (2D) is performed by
tracing a ray of light from the world, through an infinitesimally
small aperture (pinhole), and into the image plane. Important
parameters in this model are the focal distance (distance from
aperture to image plane), and image (or optical) centre (centre
of the image plane), which are both intrinsic parameters.

From this model, we can derive the projective geometry
(Fig. 2), where the image plane is modelled in front of the
optical centre, and the optical axis is orthogonal to the image
plane. In this model, lines are projected to lines, collinear
features remain collinear, and tangents and intersections are
preserved, but parallel lines (in the world) eventually meet at
a vanishing point, since angles are not preserved.

This geometry makes it clear that projection between world
and image are given by the triangular similarity x = f X

Z , y =
f Y

Z , where X , Y , and Z represent 3D coordinates in the real

Fig. 1. Pinhole camera model and projectile geometry

Fig. 2. Projective geometry

world, x and y their corresponding projected 2D points, and
f the focus length of the camera.

The intrinsic parameters combine these properties, namely
focal length (f ), offset to the optical centre (cx and cy), and
skew (s, from non-orthogonality between optical axis and
image plane), and constitute the intrinsic parameters matrix
K. This matrix is also present in the projective matrix P ,
which relates the points in world space to their corresponding
image plane position, given by

λ

xy
1

 = P


X
Y
Z
1

 =
[
K 0

] 
X
Y
Z
1

 =

fx s cx 0
0 fy cy 0
0 0 1 0



X
Y
Z
1


(1)

which is critical for computer vision.
Assuming camera rotation and translation (extrinsic param-

eters, since image and world frames are not centred), the
projective model can be expanded to include rotation R and
translation t, and becoming completely generic, in what is
called the camera matrix, given by

x = K
[
R t

]
X . (2)

2) Feature Detection: In the context of computer vision and
image processing, image features are distinctive landmarks in
the images, preferably insusceptible to point-of-view, scale,
and the aperture problem. Features are important as they
provide information on the image, which can be used for
recognition, matching, reconstruction, and tracking, among
many other applications. Many types of features can be
considered, such as edges, corners, blobs, ridges, and shapes.
The process of identifying features in an image is called
feature detection, and multiple detectors have been described
in the literature, dependent on the features of interest, such as
Canny and Sobel detectors (for edges), Hough transform (for
shapes), Laplacian operator (for blobs), and Harris detector
(for corners).



3

a) Harris Corner Detector: The typical example for a
classic corner detector is the Harris Corner Detector ([15]).
It works using the following steps: 1) Compute the x-wise
Ix(x, y) and y-wise Iy(x, y) partial image derivatives, 2)
Compute the second-order derivatives I2x(x, y) and I2y (x, y),
and cross-derivatives IxIy(x, y), 3) Compute the second-
moment matrix M(x, y), 4) Compute the Harris score, and
5) Detect local extrema whose Harris score is greater than the
set threshold.

The partial derivatives are computed by applying a Sobel
derivative kernel (usually 3x3 or 5x5 kernels) to the whole
image, producing the x-wise Ix(x, y) and y-wise Iy(x, y)
partial image derivatives. From these derivatives, we can
define the vector ∇I(x, y) = (Ix(x, y), Iy(x, y))T and the
second-moment matrix for each pixel (M(x, y)), defined as
M(x, y) =

∑
(x,y)∈patch g(x, y)∇I(x, y)∇IT (x, y), where

g(x, y) is a Gaussian weighting function centred around (x, y),
which controls the “sharpness” of the edge. Then, we can
compute the Harris score as defined by

H(x, y) = λ1λ2−k× (λ1 + λ2)
2

= det(M)−k× trace(M)2

(3)
where k is an empirical value, k ∈ [0.04; 0.06]. Finally, if
H(x, y) ≥ H0, we consider the pixel as a corner. This will
produce corner blobs. In order to select a single pixel to
represent the corner, we select the local extrema (the pixel
with the highest Harris score).

B. Event Cameras

Event cameras, also called neuromorphic cameras, silicon
retina or dynamic vision sensor (DVS) are image sensors that
respond to changes in brightness in the scene. Unlike con-
ventional cameras, which capture full image frames at a fixed
frequency (commonly 30Hz or 60Hz), producing redundant
information and requiring a high bandwidth for transmission,
each pixel in an event-based camera operates independently
and asynchronously, reacting to changes of brightness in the
scene, eliminating the transmission of redundant information,
allowing for much higher temporal resolution (in the order of
microseconds, as opposed to the milliseconds of conventional
cameras). They possess other interesting properties, such as
high dynamic range (above 120dB), which allows for scenes
with both bright and dark zones, and does not suffer from
under/overexposure, nor motion blur.

Events are triggered when the brightness in a certain pixel
surpasses a certain threshold. In particular, discrete bright-
ness steps are pre-defined, and whenever brightness detected
crosses the threshold, an event is generated. Positive crossings
generate ON events, and negative crossings generate OFF
events. In effect, each pixel is constantly working as a com-
parator (with corresponding electronic to support this mode of
working).

Events are then defined as a four-component vector:

e =
(

(x, y)
T
, t, pol

)T
= (p, t, pol)T (4)

The component p = (x, y)
T refers to the spatial position

of the event in the camera. The component t refers to the
timestamp of the event, and is of extreme importance due to
the microsecond temporal resolution of the camera. Lastly,
the parameter pol refers to the polarity of the event (ON/OFF
events). With this event structure, it is common to represent
events in a three-dimensional (space-time), representation, as
shown in Fig. 3.(d), which shows the space-time evolution
of events generated from a rotating black bar on a white
background, over a period of 1000 ms.

Conventional cameras and event cameras have fundamen-
tally different modes of operation and output. As such, a
comparison of the behaviour in the same scene, and an analysis
of the output, is interesting. Fig. 3 shows the response of both
a conventional camera and an event camera when presented
with a disk rotating at a high speed, with a black dot. The
fixed capture of the conventional camera is unable to keep up
with the speed of the dot, and the images suffer from motion
blur (not represented) and some discontinuity between frames.
The event camera, however, due to its asynchronous event
generation and temporal resolution, is able to continuously
produce events relating to the movement of the dot.

(a) (b)

(c) (d)
Fig. 3. Comparison of the output of a standard camera (above), and an event
camera (below), when recording a rotating disk with a black dot, adapted from
[16]. (a) shows a lower speed rotation; (b) shows a higher speed rotation, with
motion blur from the conventional camera. Also, space-time representation of
events (d) generated from a rotating black bar (c), from [17].

Advances in camera manufacturing have allowed for cam-
eras that have both conventional camera pixel arrays, and event
camera pixel arrays (DAVIS cameras). This enables hybrid
algorithms, which take advantage of the benefits of event
cameras, with the extensive research on conventional cameras.

1) Feature Detection and Tracking on Event Cameras:
For event-based cameras, new types of features, as well of
detectors, are being proposed, as classical techniques are
not easily transferable in most cases, or result in a non-
negligible performance decrease, due to conversion overhead
from asynchronous events to frames. Due to the nature of
events, gradient operators are not possible (at least directly
applied to the event stream), since there is no image on which
to apply them, and multiple techniques have been proposed.
We choose to isolate the Event-Based Lucas-Kanade-Tomasi



4

Feature Tracker (EKLT), which was used for the proposed
methods.

EKLT ([14]) is a hybrid feature tracking technique that
is able to merge information from conventional cameras and
events (and hence is more suitable for the new generation
of DAVIS event cameras), that tracks corners across time.
The method is based on the Lucas-Kanade tracker, hence
the name EKLT (Event-based Lucas-Kanade tracker). This
method tracks corners, as they are easy to recognize in both
conventional cameras and correspond to areas with high event
generation.

The idea behind this tracker is to detect features using a
conventional frame, which are then tracked using events until a
new frame arrives, at which point the estimation from events is
compared to the corner detection in the new frame, in essence
correcting this estimation. If the feature is not detected, it is
still tracked in event space, as subsequent frames may re-detect
missed features. This approach is particularly useful in high-
speed movements, where motion blur becomes a problem for
frames, but not for events.

This comparison between frames and events is crucial, and
the key concept is ”image variation in a frame patch”. As
previously discussed (Section II-B), event cameras respond to
brightness changes in the environment. Therefore, it is not
farfetched to compare events to image gradients, as zones
with higher gradients in the world are precisely the ones that
produce the most events. In fact, integration (accumulation)
of events over a period of time produce results that are very
similar to the gradient of the image, as shown in Fig. 4. This
is the idea at the core of this approach, as the brightness
change behaves as the descriptor for the features, and are
used as patches for a Lucas-Kanade inspired patch comparison
and matching, using both the patch and estimated velocity
(estimated through events)

While a new frame is not received, the corner is tracked in
event space and the local patch is being created for comparison
with a frame patch created from image gradients, as shown in
Fig. 4.

(a) (b)

(c)
Fig. 4. Comparison of the brightness change from event integration (a), versus
the brightness change from image gradient (b). (c) shows the block diagram
of EKLT, illustrating the comparison between brightness changes from images
and events, from [14].

It is worth noting, however, that the dependence on corners
may present a problem for low-textured, or highly organic
environments, where high quality corners are not always
present. Also worth mentioning is the parameter v shown in
Fig. 4, which accounts for the optical flow. Though incon-
spicuous at first glance, v is crucial for the generation of
the Predicted Brightness Increment, as it estimates the flow
angle (the direction objects in the image are moving), which
is needed to predict the polarity of the events and generate
the template based on frames to compare against the real
Brightness Increment generated from events. In the extreme
case that v = 0, the Predicted Brightness Increment is blank,
and the matching of templates fail. This is a problem that can
occur when changing direction of movement abruptly.

C. Inertial Measurement Unit (IMU)

The event cameras used for this work all have an Inertial
Measurement Unit (IMU), with coordinate frame matching the
camera frame. As such, explaining the type of information that
is produced by the IMU is fundamental. The IMU is a sensor
that reports the linear acceleration and the angular velocity of a
body by means of accelerometers and gyroscopes (sometimes
also the orientation by means of magnetometers, but the IMU
used did not have this capacity and therefore it is not analysed).

Starting with the gyroscope, and considering a single axis, it
provides a measurement ω̃ that relates to the angular velocity
of that axis, and is (according to [18]) given by

ω̃ = ω + ωb + ηω

ηω ∼ N
(
0, σ2

gyro

) (5)

which corresponds to the true angular velocity ω corrupted by
the sensor bias ωb and the sensor noise ηω , which is modelled
as additive, zero-mean Gaussian noise.

In order to have 3DOF we use 3 gyroscopes, one for each
orthogonal axis, and we assume no crosstalk between them.
The bias is temperature dependent and can vary over time,
but is generally modelled as a constant, and may be specified
in the manufacturer’s datasheet, alongside the sensor variance
σ2
gyro.
Continuing with the accelerometers, a similar reasoning can

be applied. We have a measurement ã given by

ã = a+ ab + ηa

ηa ∼ N
(
0, σ2

acc

) (6)

dependent on the true value a, sensor bias ab and noise ηa.
The accelerometer deserves special attention, as it does not
measure acceleration relative to a coordinate frame as one
would expect. Rather, this acceleration is relative to a free fall
state, meaning the reading is 0 when the sensor is free falling.
When static, it measures the gravitational acceleration pointing
upwards (since the accelerometer is accelerating upwards
comparing to a free fall).



5

D. Pose Estimation

Pose estimation refers to the problem of trying to estimate
the position and orientation (collectively called the pose) of a
system. A common approach is to use information provided
by a camera to detect and track a set of features, which are
used to estimate the motion of the system (ego-motion), as
there is a relation between the 3D point in the world and its
corresponding 2D projection in camera space (Section II-A1),
which is also influenced by the movement of the system
(Section II-D1).

1) Camera Motion and Motion Field: There is much in-
formation to be extracted from a time-varying sequence of
images. When a camera moves (or when objects move in front
of a camera), there are changes in the captured image, that
can be used to estimate the motion of the camera. Let us
consider the perceived movement of scene points generated
exclusively by the movement of the camera (ego-motion), with
translational velocity T and angular velocity ω. In relation to
the observer, a 3D point P = (X,Y, Z)

T moves, according to
[19], following

Ṗ = −T − ω × P = −

TxTy
Tz

−
 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

XY
Z


(7)

Recovering the projection equations presented in Sec-
tion II-A1, in particular

x = f
X

Z

y = f
Y

Z

⇒


ẋ = f

ZẊ −XŻ
Z2

ẏ = f
ZẎ − Y Ż

Z2

(8)

Combining (7) and (8), we arrive at

[
ẋ
ẏ

]
=
f

Z

[−Tx + x
f Tz

−Ty + y
f Tz

]
+

ωx
xy
f − ωy

(
f + x2

f

)
+ ωzy

ωx

(
f + y2

f

)
− ωy

xy
f − ωzx

 .

(9)
Analysing this equation is interesting, and we can see the

left part pertains to translation, and the right to rotation.
Furthermore, we can also see that translational component
depends inversely on depth, and there is scale ambiguity
(meaning T and Z can only be recovered up to a scale
factor). On the rotation side of things, we see that there is
no dependence of depth, and therefore depth estimation is not
possible without translation.

2) Visual Odometry: Visual odometry appears as the in-
verse problem to (9), as we want to estimate the translational
and angular velocities of our camera, assuming we know
how certain specific points in our camera plane (features),
are moving along time. Odometry itself is the use of data
from movement sensors to estimate the change of position
and orientation of a system over time. It naturally follows that
visual odometry is the use of visual information (in particular
cameras) to estimate this displacement.

A typical pipeline for visual odometry is as follows: 1)
Acquire image; 2) Undistort image, 3) Detect features (Match

features between consecutive frames, and Obtain optical flow
field), 4)Estimate camera motion from optical flow (a common
approach is the use of Kalman Filter.

Visual odometry is particularly relevant in the context of
SLAM, more specifically Visual SLAM (also called vSLAM),
whose goal is to use visual information to construct a map
of the system’s surrounding environment, and to place the
system in said map. In this case, the visual component is useful
to estimate the motion of the system across time (and also
to correct the predicted pose of the system when it passes
through a previously mapped zone (loop closure)). Multiple
SLAM approaches have been proposed, of which we high-
light FastSLAM ([20]), ORB-SLAM ([11]), EKF-SLAM, and
GraphSLAM ([21]). These approaches rely on conventional
cameras to provide features that are used to construct a map
and also be used as reference for the estimation of the pose
of the system.

III. VISUAL INERTIAL ODOMETRY BASED ON EVENT
CAMERAS

A. System Model

Our system consists of an event camera that contains an
IMU sensor embedded. It is important to understand what each
sensor is reading and what reference frame each one uses to
make sense of the data being fed into, and received from, the
system. By wanting to estimate the pose of our camera, what
is implicit in this statement is that we have defined some sort
of reference in the world (for example, the starting point of the
camera trajectory), and we want to define its current position
and rotation (pose) with regard to this initial reference.

Our IMU reports two types of information: angular ve-
locity ω = [ωx ωy ωz]

T ∈ R3 and linear acceleration a =

[ax ay az]
T ∈ R3. However, this information also has a

reference frame implied. As such, the accelerometer reads
movement on the x-axis, for instance, this reading is placed
in its own reference frame, and somehow needs to be related
to the world frame so that in can be useful in the context of
pose estimation (the same applies for gyroscope information,
which also relates to the internal reference frame of the IMU).

Luckily, to relate two frames of reference, we only need to
rotate their axis so they align, and translate their centres to
match, by means of the rigid transformation T (x) = Rx+ t ,
where T denotes the transformation, R the rotation, and t the
translation. The set of rigid body transformations constitutes
the Special Euclidean Group (SE). Multiple transformations
can be successively performed, so that nested frames of
reference can be used (frames references that depend on other
frames of references to be described, so that moving the former
automatically moves the latter).

The camera also has a reference frame for the image frame.
Luckily, this reference frame is aligned with the IMU reference
frame. As such, the critical frames of reference are the world
frame (on which we are estimating the pose of the camera),
and the IMU/camera reference frame. This setup is shown in
Fig. 5, showing the world frame W , with regards to which we
want to estimate the position and orientation of our system,



6

x

y

z

W

x

y

z

C

Fig. 5. Representation of our system model, with relevant coordinate frames
of reference described, in particular, world frame W and camera frame C.

and the camera frame C, with regards to which the sensor
readings are produced.

To reiterate, the odometry methods presented in this chapter
intend to estimate the position of the camera, at all times, with
regards to the world frame W .

B. Visual Inertial Odometry

Our filtering and sensor fusion approach is based on [22],
which proposes a filter that integrates IMU and visual in-
formation in the form of a UKF (Unscented Kalman Filter).
This filter introduces several suggestions worth mentioning,
such as 1) a Lie group structure for the state space (resulting
in a matrix state space, rather than a vector state space), 2)
integration of the landmark position in the Lie group, and
3) representation and computation of the uncertainty directly
in the Lie group, rather than outside of it, followed by a
conversion to the Lie group.

This filter that estimates the body pose (position and ve-
locity) and 3D landmark positions, as well as accelerometer’s
and gyroscope’s biases. The first two parameters (pose and
landmark positions) are integrated in the Lie group structure,
and the latter two (biases) are appended to the state estimation.
Though this is not a SLAM implementation, as the whole
area is not being mapped (only the local, current region in
the vicinity of the body is estimated), the formulation itself
is very similar as if it were a SLAM problem (and could be
extended if desired).

Our approach, based on the integration of the visual in-
formation (processed by EKLT) with inertial information by
means of the filter presented, aims to leverage a synergy and
complementarity between the two types of information. The
global overview of this approach is shown in Fig. 6.

Fig. 6. First proposed approach, where the feature tracker EKLT is fed into
the pose estimator, FUSION, a Lie groups-based Unscented Kalman Filter.

1) Filter Structure: This filter expands on the works of
[23], which introduced a Lie group based EKF, following the
suggestions of [24], that showed the similarities between the
SLAM problem and the group SE1+p(3). [25] proposed a
UKF implementation on SE(3). Lastly, [22] proposed the
inclusion of the landmarks into the group itself, creating
a group SE2+p(3), coupled with a UKF implementation.
Furthermore, two techniques of propagating the uncertainty

were suggested, of which we kept the right uncertainty from
their proposed Right-UKF-LG.

a) State Space: The state being estimated by the filter is
given by the tuple (χ, b) where χ is defined as

χ =

[
R v x p1 · · ·pp

0(p+2)×3 I(p+2)×(p+2)

]
(10)

and corresponds to a Lie group SE2+p(3) that incorporates the
orientation R ∈ SO(3) , velocity v ∈ R3 and position x ∈ R3,
as well as the 3D positions of the landmarks p1, . . . ,pp ∈ R3.
b ∈ R6 is the bias vector, defined as

b =
[
bTωb

T
a

]
(11)

containing the gyroscope and accelerometer biases bω and ba.
b) Dynamics Model: The system can be modeled by

body state


Ṙ = R (ω − bω + nω)×
v̇ = R (a− ba + na)− g
ẋ = v

(12)

IMU biases

{
˙bω = nbω

ḃa = nba
(13)

landmarks ṗi = 0, i = 1, . . . , p (14)

where we have access to angular velocity ω and linear accel-
eration a through the IMU mounted on the system.

The notation (ω)× represents the skew symmetric matrix
associated with the cross product with vector ω ∈ R3

n =
[
nTω nTa nTbω nTba

]T ∼ N (0, Q) (15)

2) Measurement Model: Visual information is also fed into
the system by means of a calibrated monocular event camera,
in order to correct the predicted state of the system. The
camera observes and tracks p landmarks through the standard
pinhole model and corresponding projection model (Section
II-A1):

yi =

[
yiu
yiv

]
+ niy (16)

where yi is the normalized pixel location of the landmark in
the camera frames, and ny ∼ N (0, N) represents the pixel
image noise.

This location is then compared with the expected location
of the feature in camera space, obtained by projecting the
estimated 3D position of the landmark into camera space
through

λ

xiuyiu
1

 = Π
[
RT

C

(
RT (pi − x)− xc

)]
(17)

where Π denotes our camera matrix, RT
C our initial rotation

of the system, RT the current estimated rotation, pi the i− th
landmark 3D estimated position, x the estimated position of
the system, and xc the initial position of the system.



7

Since events do not naturally follow the organized and ex-
pectable pattern of producing visual information at a constant
interval (which can be both advantageous and disadvantageous
depending on the situation), changes are needed to provide a
batch of features to the measurement model. The proposed
approach is that of accumulation of the asynchronous features
over a period of time, in order to simulate frames being
received. We call these accumulation of event features over
time pseudo-frames, and are usually of 20 ms or less, to take
advantage of the speed of events.

Three strategies are proposed for the creation of the pseudo-
frames, in particular 1) fixed time interval integration, 2) fixed
number of features update, and 3) hybrid approach, combin-
ing both ideas. Though the hybrid approach should perform
better, we found that a fixed interval integration was much
more easily manageable (as it translates quite naturally to a
conventional camera producing features, albeit at a much faster
rate), we used the fixed interval integration when validating the
approach.

IV. CLOSED LOOP INTEGRATION OF SENSOR AND POSE
FILTER ON EVENT CAMERAS

Two problems identified when testing the previous approach
were as follows: the number of features is limited; and
sometimes features are lost, only to be found a few moments
later, but with a different ID (which is not necessarily bad,
but then the filter treats this feature as a new one, and all
previous sightings are discarded). The first problem is of
difficult resolution without major changes in the approach, as it
is based on corner detection, which are common in images, but
still limited. The second problem, however, implies improving
the tracking of features so that they are kept alive for longer.
As such, we set out to improve EKLT tracking performance.

A. Motivation for Improved Approach

Revisiting EKLT, at first glance it may seem like a simple
implementation of KLT, where the matching patches are
obtained from frames and events (as opposed to the normal
strategy of both patches coming from frames), and, to a certain
extent, this is true. But there is more to be said about the
generation of these templates.

Looking back at Fig. 4, we can see that the x-wise and y-
wise image gradients are generated, and (after being subject to
a warp) are merged by means of a dot product with the flow
angle. This parameter of the flow angle v may look innocent,
but it is critical in the generation of the template, and has
proven to be one of the main reasons for tracking loss. Another
parameter to be optimized is the initial location of the feature,
which corresponds to the expected position of the feature, and
is fed into the optimizer as a starting value. This parameter is
also important, but since features are updated very frequently
(sometimes around 1 ms, in very fast paced scenes) it is not
as critical as the flow angle (though it also plays an important
role, in particular when a feature is lost (Section IV-D)).

With this in mind, we propose an approach where the
current estimated pose is fed back into EKLT to help with the
tracking of features. This approach creates a sort of ”closed

loop”, where position from FUSION is fed into EKLT, which
then provides information for FUSION, as shown in Fig. 7.
To the best of our knowledge, though not novel, this is an
uncommon and innovative approach where there is some sort
of additional processing at the sensor level, with information
external to said sensor.

Fig. 7. Global view of our proposed closed loop integration suggestion, where
the pose estimation is fed back into EKLT to help with feature detection.

B. Ego Motion and Optical Flow

In Section II-D1, it is already derived how the movement of
the features being captured by the camera are influenced by
its motion, in particular (according to [26]), following (8).

This way, we can predict the evolution of the position of
the feature over time, meaning it is possible to estimate the
flow angle. However, it is very important to take into account
that these predictions work for the immediate proximity of the
feature, i.e., this assumption only works for small timestep. If
the timestep is bigger, the predicted movement will not match
the real position of the feature.

C. Features Tracking complemented by the Pose Filter State

Our objective is to improve the feature tracking from EKLT
by feeding it information from the current pose estimation,
which, in turn, will benefit from a greater number of features.
As already explained, the most critical (or, at least, the
component that contributes most from loss of features) is
the generation of the template to match from frames, which
depends on two main components: the initial position location
and the flow angle. Their importance (and relative importance)
have already been mentioned (Section IV-A). We believe the
pose estimator can (either directly or indirectly) help the
tracker with regards to these two components.

Starting with the flow angle, we propose the use of (9) to
determine it by means of

v = atan2
(
ẏ

ẋ

)
(18)

where ẋ and ẏ are given by (9). We reiterate the importance
of a small timestep, and synchronisation between the current
estimate and EKLT, as disparities become more detrimental
than beneficial. To tackle this problem, all timesteps are kept
to a minimum, and are usually of about 1 ms. This ensures the
assumptions for (9) are valid (according to our testing).

In terms of the estimations being used for motion, the
angular velocity comes directly from the last measurement
of the gyroscope (or some sort of mean or median of the last
measurements, if readings are too contaminated by noise). The
linear velocity, on the other hand, comes from the state, that
estimates the filter velocity (along with system rotation and



8

position, landmark position, and sensor bias), converted to the
camera frame.

Moving on to the initial feature position, our proposed filter
structure keeps the estimated 3D position of landmarks in the
state, which can be projected into camera space to obtain the
estimated position of the features by means of the projection
equation (17). This way, the tracker benefits from having
an additional information of the features being tracked by
adding the depth factor. In effect, by “helping” the tracker
with the starting values, what is being done is placing the
initial estimate inside the region of convergence, and closer
to the global minimum, as the rest of the matching is still
performed by the optimizer, that tries to match both templates,
and estimate the current position of the feature (and its flow)
in the process.

From our experiments, the importance of the flow angle
is much greater than the initial feature location. This is
because the neighbourhood of the feature is really small (the
displacement between initial location and final location is
typically around 2-3 pixels diagonally), whereas flow angle
could have deviated significantly from the last optimization
(imagine a rotation in the z axis of the camera, where features
on the borders of the camera move faster than those on the
inside), and influences the next matching negatively.

D. Set of Backup Features

In our case, the pose estimator is capable of storing features
and landmarks over time (in effect, creating a sort of map, as
per a SLAM formulation) and keeping these features (when
they are lost and discarded by EKLT) in a sort of zombie or
dormant state. Since we can project their predicted location
onto camera space by means of (17), it is possible to awaken
these features when they enter the FOV again, for example.
This means that these features (that would eventually be
detected again, but would be given a new ID, which would
not benefit from using past sightings of these features), are
able to be reidentified as used in the filter with the same ID.

This method also allows for bigger jumps in feature track-
ing, as the initial feature position can be set to a place that
is far away from the previous estimated position (imagine a
situation where this landmark becomes occluded, and therefore
disappears, but is kept in memory by the pose estimator; when
the landmark is no longer occluded, since the pose estimation
kept running, the expected position based on current pose can
be used). An interesting side effect of such an approach is that
it is possible to rank features based on how distinct and/or
observable they are, as features that are detected more, have
more entries in the table, and therefore are probably the ones
we want to use, as they are more robust.

V. EXPERIMENTS AND RESULTS

In order to validate the proposed approaches, simulation
and real data was used. Simulated data was generated us-
ing ESIM ([27]), an event camera simulator, and real data
used datasets available online that use real event cameras
2, as well as recordings we performed using the Kinova

2http://rpg.ifi.uzh.ch/davis data.html

Movement Mean error [deg] Max error [deg] RMSE [deg]

Rotation x axis -30.49 -58.04 34.48
Rotation y axis -8.14 -45.70 17.35
Rotation z axis -7.03 -32.46 9.66

TABLE I
OPEN LOOP ON shapes SCENE

robot arm to generate trajectories. Fig. 8 shows samples from
each recording. Given the group’s interest in the visual and
vestibular system, the focus of the work (and therefore, of the
results presented), was directed towards rotational movements
(though the trajectories themselves may (and do sometimes)
have translational components).

(a) simulation (b) shapes

(d) boxes (e) Kinova
Fig. 8. Samples from scenes.

A. Experiment 1, Integrated Experiment with a DAVIS Camera
Dataset

To test the proposed approaches, we tested the performance
on the datasets available online, which consist of a series of
movements of the camera, by hand, on multiple scenes. In
particular, we tested the approach on the shapes and boxes
datasets, as the former has clear contrast between background
and shapes, and the latter has a much more textured environ-
ment.

Open Loop Approach: We start with the first proposed
approach. The results running this approach are presented in
Table I. We have decided to isolate each axis estimation for
the sake of a less cluttered analysis, as well as to interpret
the evolution of each axis independently. It is possible to
observe that the obtained results are not exactly satisfactory.
First, there is an obvious drift in the x axis that was not
able to be compensated. We believe this drift is because of
an uncompensated bias in the gyroscope, as this axis more
easily loses features by moving out of the FOV, which means
that the local map may itself drift overtime, and not correct
sensor bias.

After, we tested the proposed approaches on the boxes
scene. The results running this approach are presented in
Table II. This experiment still produces some clear deviations
on the true values. However, we believe these results are
slightly better than the ones presented previously, as not
only are the errors smaller (with the exception of the x axis
rotation), the overall profile of the estimation more closely
follows the true values, which is positive.



9

Movement Mean error [deg] Max error [deg] RMSE [deg]

Rotation x axis -20.40 -50.10 30.88
Rotation y axis 3.63 -10.25 6.13
Rotation z axis 5.96 -12.27 8.80

TABLE II
OPEN LOOP ON boxes SCENE

Movement Mean error [deg] Max error [deg] RMSE [deg]

Rotation x axis 4.35 23.51 6.66
Rotation y axis -1.53 -10.77 5.11
Rotation z axis 1.05 14.90 5.39

TABLE III
CLOSED LOOP ON boxes SCENE

Closed Loop Approach: We tested the closed loop approach
on the boxes scenario. The results running this approach are
presented in Table III. It is possible to see that the proposed
approach does help with tracking, as the results show an
improvement over the previous approach.

B. Experiment 2, Integrated Experiment on Simulation

To validate the approaches proposed, we generated a syn-
thetic dataset based on ESIM, simulating a DAVIS240 event
camera, with access to both frames and events simultaneously.
The images produced have some distortion parameters, and
some noise, but have no motion blur when simulating conven-
tional frames, which would (in principle) give the upper hand
to event cameras.

Open Loop Approach: In this case, we also performed a
comparison with a conventional camera approach. The results
are presented in Table IV. We observe that the approach with
events outperforms the approach using frames, both in terms
of the mean error, and the max error. We believe this has to do
with two factors: the more frequent updates that events allow
mean that the filter can be updated with visual information
more frequently; the features, being tracked with events, are
tracked better (which can be debatable as it has their own
problems, as lack of good descriptors, and being limited to
corner features). We repeated this same setup, in the same
scene, but with other motions, in particular rotations in the
other axes. The results are summarised in Table V.

Overall, the results are very uplifting, and validate the
proposed approach, even if with a simulator, and outperform
the conventional camera approach in all cases (even though

Setup Mean error [deg] Max error [deg]

Image + IMU 1.05 4.41
Image + Events + IMU 0.85 3.05

TABLE IV
CONVENTIONAL VS EVENT-BASED APPROACHES

Movement Mean error [deg] Max error [deg]

Rotation x axis 18 deg 1.66 5.04
Rotation y axis 18 deg 0.65 2.43
Rotation z axis 18 deg 0.85 3.05

TABLE V
OPEN LOOP ON SIMULATION

Movement Mean error [deg] Max error [deg]

Rotation x axis 18 deg 1.73 5.89
Rotation y axis 18 deg 0.049 0.12
Rotation z axis 18 deg 0.80 4.23

TABLE VI
CLOSED LOOP ON SIMULATION

sometimes a change in the settings for the filter or the tracker
is needed).

Closed Loop Approach: After testing the first proposed ap-
proach, we present the result for the second proposed approach
(closed loop) using the same scene and setup. The results
are presented in Table VI. These results seem to corroborate
that the closed loop approach does, in fact, improve feature
tracking, which, in turn, improves the estimation quality, as
these results seem promising (even though simulated data was
used as input, which does not necessarily transfer to the real
system effortlessly).

Nevertheless, some limitations of this approach also pre-
sented themselves, the most relevant of which is the lower
robustness of the filter. The closed loop presents itself as a
double edged-sword, in the sense that good pose estimations
lead to better tracking, which leads to better estimation, but
a bad starting estimation is very detrimental to the tracker,
which loses features very quickly. This can be shown for the
case of x and y axis rotations. The former had some biases
that hurt the performance of the filter, resulting in a rotation
that was worse than the first proposed approach. However, for
the former, some parameters must have been optimal, as the
error is very low.

C. Experiment 3, using the DVS Camera Mounted on the
Kinova Arm

In this experiment, multiple rotation-focused movements
were performed by means of a Kinova robot arm, with the
hope of mimicking the eye saccadic movement, and being able
to track it along time. This mimicking was mostly in terms
of the velocity and acceleration profiles, not necessarily what
is humanly possible (we consider torsional movements, which
do not occur in the eyes, for example). Since the DVS camera
is the camera considered for this experiment, either frames or
events may be recorded at each time (exclusive or). The data
recording encompasses two parts (i) image frames when the
camera is still, and (ii) events when the camera is moving. The
commutation from frames to events is not automatic, is placed
in the script of the data acquisition. IMU is always recording.

After feeding this recording into EKLT it was verified that
frames based features are effectively tracked, however the
event based features are lost between tens to hundreds of
milliseconds after detection, resulting in a drift in estimation.

In a second experiment, we have calibrated the IMU and
initialized the pose estimation method with estimated biases
of the IMU. Under these conditions, though not perfect, the
estimated rotation much closely follows the real value,

In a third experiment, we took an hybrid approach lever-
aging the start of the recording, where the camera stays
static until around 10 s, and therefore IMU output is mostly



10

noise (and gravity). As such, we start by running the filter
considering frames (as if we were using a conventional setup),
in order to estimate bias, obtaining a RMSE of 0.3635 deg on
the z axis, which is actually quite interesting, though results
mostly from a good estimation of the biases from the initial
estimation from frames.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion
In this work we set out to develop a system for pose

estimation that was based around event cameras, a novel type
of visual sensor that is yet to be fully explored. In the end,
two approaches were developed to tackle this problem. A
first, which combined an Unscented Kalman Filter developed
around a Lie group structure, with a feature detector and
tracker based around events, which performed well under
simulated environments, but ultimately under-performed in
the real system. The second approach seemed even more
promising based on simulations results, but its usefulness in
real environments is debatable, as the initialisation of the filter
is much more critical in this method (as poor estimations
lead to poor tracking, in turn leading to poorer estimations).
Nevertheless, when said initialisation was done more carefully,
the filter performed acceptably.

Though far from perfect (in fact, both fell short of the
current state of the art), both introduced new concepts that
can be further improved, and not only produced acceptable
results, but served as a basis to understand the current status
of event cameras, their limitations and advantages. In a way,
it served as a learning experience not only for myself, but for
the group as well.

B. Future Work
We believe the ideas presented in this thesis are sound, and

multiple possible paths can be taken to follow-up on this work.
We believe the main shortcoming of the suggested approaches
lies on the features being tracked, and the way they are fed into
the filter. As such, a possible path is to try and “robustify” said
features, such as using a RANSAC approach, or some other
way to select good features. However, this is easier said than
done, as we identified problem pertaining to the low number of
features. Reducing this number even more may be dangerous.

Other solutions based on the methods proposed may include
running parallel estimation of both approaches proposed, to see
when it possible to reliable switch to the closed loop method,
in effect taking advantage of the first moments to initialise the
system correctly, and switch only when estimation is good and
ensuring the closed loop will run correctly. Or even to try and
predict the movement in real time, and switch between models,
i.e., have translation-only, rotation-only, and combined models
that can be selected based on the current predicted trajectory.

Lastly, as machine learning approaches seem to be ubiq-
uitous, considering such an approach might be interesting.
However, depending on the type of data being used (for
example, if direct events are to be used), work on Spiking
Neural Networks (SNN) may be needed, as the asynchronous
nature of events is best captured by the asynchronous nature
of SNN.

REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128× 128 120 db 15µ s
latency asynchronous temporal contrast vision sensor,” IEEE journal of
solid-state circuits, vol. 43, no. 2, pp. 566–576, 2008.

[2] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-dof pose
tracking for high-speed maneuvers,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2761–2768, IEEE,
2014.

[3] H. Akolkar, S. Ieng, and R. Benosman, “Real-time high speed motion
prediction using fast aperture-robust event-driven visual flow,” arXiv
preprint arXiv:1811.11135, 2018.

[4] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed and
high dynamic range video with an event camera,” IEEE transactions on
pattern analysis and machine intelligence, 2019.

[5] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, et al., “Event-
based vision: A survey,” arXiv preprint arXiv:1904.08405, 2019.

[6] D. Weikersdorfer and J. Conradt, “Event-based particle filtering for robot
self-localization,” in 2012 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pp. 866–870, IEEE, 2012.

[7] C. Reinbacher, G. Munda, and T. Pock, “Real-time panoramic tracking
for event cameras,” in 2017 IEEE International Conference on Compu-
tational Photography (ICCP), pp. 1–9, IEEE, 2017.

[8] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate
slam? combining events, images, and imu for robust visual slam in
hdr and high-speed scenarios,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 994–1001, 2018.

[9] A. Zihao Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual
inertial odometry,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5391–5399, 2017.

[10] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature tracking
with probabilistic data association,” in 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 4465–4470, IEEE, 2017.

[11] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[12] M. Martins, “Determining the orientation of a rgb camera embedded on
an artificial eye,” 2019.

[13] L. Luo, Principles of neurobiology. Garland Science, 2015.
[14] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “Eklt: Asyn-

chronous photometric feature tracking using events and frames,” Inter-
national Journal of Computer Vision, vol. 128, no. 3, pp. 601–618, 2020.

[15] C. G. Harris, M. Stephens, et al., “A combined corner and edge
detector.,” in Alvey vision conference, vol. 15, pp. 10–5244, Citeseer,
1988.

[16] E. Mueggler, C. Bartolozzi, and D. Scaramuzza, “Fast event-based
corner detection,” 2017.

[17] X. Clady, S.-H. Ieng, and R. Benosman, “Asynchronous event-based
corner detection and matching,” Neural Networks, vol. 66, pp. 91–106,
2015.

[18] B. Siciliano and O. Khatib, Springer handbook of robotics. springer,
2016.

[19] B. Horn, B. Klaus, and P. Horn, Robot vision. MIT press, 1986.
[20] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam: A

factored solution to the simultaneous localization and mapping problem,”
Aaai/iaai, vol. 593598, 2002.

[21] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45,
no. 3, pp. 52–57, 2002.

[22] M. Brossard, S. Bonnabel, and A. Barrau, “Unscented kalman filtering
on lie groups for fusion of imu and monocular vision,” in Proc. Int.
Conf. Robot. Automat.(ICRA), pp. 1–9, 2017.

[23] A. Barrau and S. Bonnabel, “An ekf-slam algorithm with consistency
properties,” arXiv preprint arXiv:1510.06263, 2015.

[24] S. Bonnabel, “Symmetries in observer design: Review of some recent
results and applications to ekf-based slam,” Robot Motion and Control
2011, pp. 3–15, 2012.

[25] G. Loianno, M. Watterson, and V. Kumar, “Visual inertial odometry
for quadrotors on se (3),” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1544–1551, IEEE, 2016.

[26] D. J. Heeger and A. D. Jepson, “Subspace methods for recovering
rigid motion i: Algorithm and implementation,” International Journal
of Computer Vision, vol. 7, no. 2, pp. 95–117, 1992.

[27] H. Rebecq, D. Gehrig, and D. Scaramuzza, “Esim: an open event camera
simulator,” in Conference on Robot Learning, pp. 969–982, 2018.


